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The first-order theory of the integers with addition and order, commonly known as Presburger arithmetic,
has been a central topic in mathematical logic and computer science for almost 90 years. Presburger arith-
metic has been the starting point for numerous lines of research in automata theory, model theory and
discrete geometry. In formal verification, Presburger arithmetic is the first-choice logic to represent and rea-
son about systems with infinitely many states. This article provides a broad yet concise overview over the
history, decision procedures, extensions and geometric properties of Presburger arithmetic.

1. A VERY SHORT HISTORY OF PRESBURGER ARITHMETIC
Around the 1920s of the last millennium, David Hilbert together with his doctoral
student Wilhelm Ackermann began to pursue what is nowadays known as Hilbert’s
program. The goal of this program was to create a formal system that would allow
for providing solid foundations for all of mathematics. The means to achieve this goal
was to use mathematical logic as an unambiguous language in which all mathematical
statements could be formalised and manipulated according to a well-defined axiomatic
system. In addition to asking for consistency and completeness, Hilbert also required
that it should be possible to verify or falsify the truth of any given mathematical state-
ment in a finite number of steps within this formal system. This requirement gave
rise to the Entscheidungsproblem (decision problem) that was introduced by Hilbert
and Ackermann in their book Grundzüge der Theoretischen Logik (Principles of Math-
ematical Logic) published in 1928, see [Hilbert and Ackermann 1950] for an English
translation. The Entscheidungsproblem demands an algorithm that given a sentence
in first-order logic together with a finite number of axioms allows for deciding whether
that sentence is valid, i.e., holds in any structure satisfying the given axioms.

After studying the Principles of Mathematical Logic and related work, Alfred Tarski
approached his student Mojżesz Presburger and asked him to investigate the com-
pleteness of a particular theory capturing a limited fragment of number theory. A
couple of months later, Presburger showed in his Master’s thesis the completeness

Fig. 1. Presburger’s student card from the University of Warsaw, Poland.
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of Th(Z,+, 0, 1), the first-order theory of the integers with addition, equality and the
standard axioms of arithmetic. He achieved this result by developing a quantifier-
elimination procedure, an approach that Tarski had suggested to him. To this end,
he extended Th(Z,+, 0, 1) by infinitely many divisibility predicates c|·, c > 0, since
Th(Z,+, 0, 1) by itself does not admit quantifier elimination. Presburger presented and
published his results in the proceedings of the First Congress of Mathematicians in
the Slavic Countries [Presburger 1929]. In his article, he remarked that his quantifier-
elimination method can be adapted to work for the extended theory Th(Z, 0, 1,+, <),
which is nowadays commonly known as Presburger arithmetic. Legend has it that Pres-
burger was awarded a Master’s instead of Ph.D. degree for his work, since Tarski con-
sidered his results to be too simple for constituting a Ph.D. thesis. As of now, there is,
however, not sufficient evidence supporting this legend [Zygmunt 1991].

Presburger’s results imply that Th(Z, 0, 1,+, <) possesses all the requirements laid
down by Hilbert, except that the theory is not expressive enough to reason about
all of number theory. Nevertheless, some basic statements can be expressed in it.
[Smoryński 1991, Chap. 3] gives as an example the well-known Frobenius problem:
Given positive integersm1, . . . ,mn, what is the largest number that cannot be obtained
as a non-negative linear combination of those numbers? The Frobenius number, if it
exists, is the smallest element of all satisfying assignments of the following formula:

Φ(x) ≡ ∀y. x < y → (∃z1 · · · ∃zn. y = z1m1 + · · · + znmn ∧ z1 ≥ 0 ∧ · · · ∧ zn ≥ 0)

Hilbert became aware of Presburger’s work and viewed it as a first step towards the
successful completion of his program. Shortly after, Kurt Gödel, Alan Turing and
Alonzo Church shattered all of Hilbert’s hopes. A simplified version of Presburger’s
quantifier elimination procedure made its way into Hilbert’s and Bernay’s Grundlagen
der Mathematik (Foundations of Mathematics), and Presburger arithmetic is nowa-
days a topic found in many introductory courses on mathematical and computational
logic.

With the advent of automata theory in the 1950s, several authors began to relate
Presburger arithmetic to formal language theory. In 1960, J. Richard Büchi developed
an automata-based decision procedure for Presburger arithmetic [Büchi 1960]. Given
a relation R ⊆ Nm defined by a formula in Presburger arithmetic, Büchi showed how to
construct a finite-state automaton whose language encodes R. The idea of generating
the solutions of a formula of a logical theory by a finite-state automaton later gave rise
to the more general concept of automatic structures [Hodgson 1982; Khoussainov and
Nerode 1994; Blumensath and Grädel 2000]. In the mid 1960s, Seymor Ginsburg and
Edwin H. Spanier investigated the geometry of the sets of integers definable in Pres-
burger arithmetic. They showed that Presburger-definable sets coincide with semi-
linear sets that had been discovered by Rohit Parikh in the early 1960s [Ginsburg
and Spanier 1964; Parikh 1966]. Semi-linear sets are generalisations of ultimately
periodic sets to higher dimensions, and Parikh had introduced them when studying
context-free grammars. He showed that the commutative closure of a context-free lan-
guage is a semi-linear set. From the mid 1990s on-wards, Büchi’s automata-based deci-
sion procedure received renewed interest. [Wolper and Boigelot 1995] and [Boudet and
Comon 1996] investigated how to efficiently construct the finite automaton for a given
Presburger formula. Later, [Klaedtke 2008] established precise upper bounds on the
size of the minimal deterministic finite state automaton for a given formula. [Durand-
Gasselin and Habermehl 2010] went on to continue Klaedtke’s work and showed that
Büchi’s automata constructions runs in triply-exponential time.

The 1970s and 1980s then saw a focus on the algorithmic and computational com-
plexity aspects of Presburger arithmetic. [Cooper 1972] investigated practical aspects
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of Presburger’s quantifier elimination procedure and developed several improvements
that allowed for applying it to non-trivial examples for the first time. Specifically, he
showed how to avoid the translation into disjunctive normal form that Presburger
required. [Oppen 1978] later showed that Cooper’s algorithm runs in deterministic
triply exponential time. Coopers quantifier-elimination procedure nowadays provides
the basis for most introductory texts on quantifier elimination for Presburger arith-
metic. In 1974, [Fischer and Rabin 1998] gave the first hardness result for Presburger
arithmetic and showed a non-deterministic doubly-exponential time lower bound for
full Presburger arithmetic, see also [Kozen 2006, Lect. 21ff] for a comprehensive
summary of their approach. [Berman 1980] observed that the complexity-theoretic
framework at the time was insufficient to accurately capture the complexity of Pres-
burger arithmetic. To overcome this problem, he introduced a combined space-time-
alternation (STA) complexity measure. A problem is decidable in STA(s(n), t(n), a(n))
if it can be solved by an alternating Turing machine that uses on every computa-
tion branch at most space s(n), time t(n) and makes at most a(n) alternations. For
the complexity of Presburger arithmetic, allowing for a finer control on the num-
ber of alternations is essential. Building upon the work of [Fischer and Rabin 1998]
and [Ferrante and Rackoff 1975], Berman showed that Presburger arithmetic is com-
plete for STA(∗, 22

p(n)

, O(n)), where p is some fixed polynomial and “∗” indicates an un-
bounded availability of a resource (which may of course be implicitly bounded). Since
A2EXPTIME ⊆ 2EXPSPACE [Chandra et al. 1981], Berman’s result consequently
yields a doubly-exponential space upper bound for Presburger arithmetic. One should
bear in mind that the high lower bounds of Presburger arithmetic require formulas
with an unbounded number of alternations. For many purposes, this is rarely the case,
and often existential or fragments with few quantifier alternations and much lower
complexity suffice.

2. ABOUT THIS ARTICLE
The purpose of this article is to give an introductory overview over Presburger arith-
metic, and to exhibit in some more detail some technical aspects of the concepts in-
troduced and discussed in the previous section. Section 3 provides the main ideas un-
derlying decision procedures for Presburger, Section 4 then exhibits the connection
between Presburger arithmetic and semi-linear sets. A detailed account on the com-
putation complexity of Presburger arithmetic and decision problems for semi-linear
sets is given in Section 5. Finally, decidable extensions of Presburger arithmetic are
discussed in Section 6. Throughout this article, many references to the literature are
provided, a reader not familiar with Presburger arithmetic or aspects of it may use
this article as a starting point.

For presentational convenience, except for Section 3.1 which presents Cooper’s quan-
tifier elimination procedure, we work in the theory Th(N, 0, 1,+), i.e., first-order vari-
ables quantify over the natural numbers and no explicit order relation is present. Note
that the order relation can be expressed without any problems, since x < y if and
only if ∃z x + z = y − 1. Moreover, by representing integers as differences of natural
numbers, it is easily seen that a decision procedure for this theory allows for deciding
Th(Z, 0, 1,+, <).

3. DECISION PROCEDURES
We present two approaches to deciding full Presburger-arithmetic: first a quantifier-
elimination approach, and second an automata-based approach. We will not discuss
SMT-based approaches that are typically used for deciding the existential fragment.
The interested reader is referred to an introduction by [de Moura and Bjørner 2011].
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3.1. Quantifier Elimination
The basis of the quantifier-elimination procedure presented in this section is the algo-
rithm of [Cooper 1972], which itself is a variant of Presburger’s seminal quantifier-
elimination procedure. One can even further trace back the core of Presburger’s
quantifier-elimination approach to the work of [Fourier 1826], who gave a quantifier-
elimination procedure for systems of linear inequalities over the reals. His approach
was rediscovered multiple times, most famously but not only by Theodore Motzkin,
see [Williams 1986].

Recall that we are working in the structure Th(Z, 0, 1,+, <). It is well-known that
in order to show that a logical theory admits quantifier elimination it is sufficient to
show how to eliminate a single existentially quantified variable from a conjunction
of atomic formulas, see e.g. [Enderton 1972, Chap. 3]. In order to gently approach
Cooper’s quantifier-elimination procedure, let us consider the following simple exam-
ple in which we aim for eliminating the variable z ranging over the reals:

2x+ 4y − 3z < 7 ∧ 3x− y + 2z < −4 (1)
Both inequalities yield lower and upper bounds on a satisfying z, which can be seen by
re-arranging the inequalities to:

2x+ 4y − 7 < 3z ∧ 2z < −3x+ y − 4

For a solution for z to exist, we have to ensure that the interval between the greater-
than and less-than constraints is non-empty. To this end, we scale all inequalities such
that z has the same coefficient everywhere:

4x+ 8y − 14 < 6z ∧ 6z < −9x+ 3y − 12 (2)
It is now obvious that (1), over the reals, is logically equivalent to the single constraint
4x+ 8y − 14 < −9x+ 3y − 12, which is equivalent to

13x+ 5y − 2 < 0.

If we can find a solution for x and y such that this inequality holds, we are guaranteed
to find a satisfying z over the reals. However, there is no guarantee that an integral
satisfying z will exist. What we have to ensure is that there is some integer divisible
by 6 in the interval defined by (2). In fact, if an integral z exists we will find it in the
intervals (4x+ 8y − 14, 4x+ 8y − 8] and [−9x+ 3y − 18,−9x+ 3y − 12). Therefore, over
the integers we find that (1) is equivalent to the constraint 13x − 5y − 2 < 0 together
with one of ∨

1≤m≤6

6 | 4x+ 8y − 14 +m or ∧
∨

1≤m≤6

6 | −9x+ 3y − 12−m.

This simple example illustrates all the ingredients we need in order to eliminate a
variable in a conjunction of linear inequalities over the integers: isolate the variable
to be eliminated, scale all obtained inequalities, add additional divisibility constraints
and discard the variable to be eliminated. It also demonstrates why Presburger intro-
duced the additional divisibility predicates. Without them, we could, for instance, not
eliminate x from the formula Φ(y) ≡ ∃x y = 2x, since the property of a number being
even cannot be expressed in terms of linear inequalities only.

Let us now generalise the previous example in order to obtain Cooper’s quantifier
elimination procedure. Given a conjunction of linear inequalities and divisibility con-
straints Φ(y) = ∃xϕ(x,y) from which we wish to eliminate the existentially quantified
x, rewrite Φ as

Φ ≡ ∃x
∧
i∈G

qi(y) < ai · x ∧
∧
j∈L

aj · x < pj(y) ∧
∧
k∈D

ck | ak · x+ rk(y) ∧ θ, (3)

ACM SIGLOG News 4 Vol. 0, No. 0, 0000



where L,G,D are finite sets of disjoint indices, and qi, pj , rk are linear polynomials in
y, and x does not occur in θ. For readability, in the following we will assume that θ is
equivalent to true, i.e., that x occurs in all conjuncts of Φ. Note that, as above, x occurs
isolated in (3), but with different coefficients. Now set

b := lcm{ai | i ∈ G ∪ L ∪D}.
We have that Φ in (3) is equivalent to

Ψ ≡ ∃x
∧
i∈G

b

ai
· qi(y) < x ∧

∧
j∈L

x <
b

aj
· pj(y) ∧

∧
k∈D

b

ak
· ck | x+

b

ak
· rk(y) ∧ b | x. (4)

To see this, suppose x ∈ Z is such that it satisfies (3). We claim that b · x satisfies (4).
This is indeed easily seen for all atomic formulas except for the divisibility constraints
in (3). But note that c | a · x + r for some c, r ∈ N if and only if there exists k ∈ N such
that

k · c = a ·x+r ⇐⇒ b ·k · c = b ·a ·x+ b ·r ⇐⇒ b

a
·k · c = b ·x+

b

a
·r ⇐⇒ b

a
· c | b ·x+

b

a
·r.

By the same argument, if x satisfies (4) then x/b satisfies (3).
We are now fully prepared to eliminate x. To this end, let

c := lcm

{
b,
b

ak
· ck : k ∈ D

}
,

where c := 1 if D = ∅. We now claim that (4) is equi-satisfiable with of the following
formulas: 

∨
j∈G

∨
1≤m≤c Ψ[((b/aj) · qj(y) +m)/x] if G 6= ∅∨

j∈L
∨

1≤m≤c Ψ[((b/aj) · pj(y)−m)/x] if G = ∅ and L 6= ∅∨
0≤m<c Ψ[m/x] otherwise.

(5)

Let us first consider the case in which G ∪ L = ∅. If the divisibility constraints in
Ψ have a solution then by the Chinese remainder theorem, see e.g. [Jones and Jones
1998, Thm. 3.12] they have a solution amongst {0, . . . , c − 1} as x is not constrained
by any inequality constraints. Thus we can just try out by brute-force all values for
x between {0, . . . , c − 1} in order to obtain an equi-satisfiable formula. If, for instance
G 6= ∅ then x is constrained from below by some greater-than constraint indexed by
G. But then some term ((b/aj) · qj(y) + m) will be the largest amongst all others in a
satisfying assignment, and hence we can use a long disjunction in order to “simulate”
guessing which assignment is going to be the largest, and then additionally add some
number in {1, . . . , c} giving a smallest solution, if it exists. The case G = ∅ and L 6= ∅
follows analogously.

We have thus shown how to eliminate a single variable from a conjunction of atomic
formulas. What is presented here is the essence of Cooper’s algorithm. We have omit-
ted additional technicalities that Cooper had to obey in order to avoid a translation
into disjunctive normal form. As stated in the introduction, [Oppen 1978] showed that
Cooper’s algorithm runs in deterministic triply-exponential time, which is the optimal
complexity for a deterministic algorithm deciding Presburger arithmetic.

3.2. Automata-Based Decision Procedures
An alternative approach to deciding Presburger arithmetic is based on constructing a
finite-state automaton whose language encodes all satisfying assignments of a given
formula. This approach was introduced by [Büchi 1960], and we will give the main
ideas below.
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Fig. 2. Basis for a finite-state automaton accepting the addition relation L.

Recall that we work in the structure Th(N, 0, 1,+). The decidability of Presburger
arithmetic by automata-based methods follows from the fact that the structure under-
lying Presburger arithmetic is an automatic structure [Hodgson 1982; Khoussainov
and Nerode 1994; Blumensath and Grädel 2000]. For a structure to be automatic, it is
required that its universe is isomorphic to a regular language. For the natural num-
bers, this can easily be achieved by representing a number by its binary expansion.
For instance, by using a least-significant-bit-first encoding, N is isomorphic to

N := ({0, 1}∗1) ∪ {0}.

The second requirement for a structure to be automatic is that all its relations are
regular languages over a suitable alphabet that allows for encoding tuples of strings of
the universe. For Presburger arithmetic, this requires that we give a regular language
L that encodes the addition relation of natural numbers represented as words from N .
To this end, consider the finite-state automaton depicted in Figure 2. This automaton
reads the binary representation of three numbers i, j, k digit-by-digit as triples over
{0, 1}, and accepts if i + j = k. In state 0, all triples of bits not leading to a carry are
read. Once a carry occurs, the automaton switches to state 1 and only accepts once the
carry has been resolved.

A problem with the automaton in Figure 2 is that it allows representations of num-
bers to have an arbitrary number of tailing zeros. In automatic structures, this prob-
lem is circumvented by introducing a special marker # that indicates that a word has
ended. Words of the domain of an automatic structure of different lengths can then be
glued together using a convolution function, and the automata defining a relation of a
structure can then take the special marker # into account. While the details are not
difficult, they are not relevant to this article. The interested reader is referred to the
literature cited above.

Once the domain and the relations of a structure have been represented by suitably
chosen regular languages, deciding the first-order theory of this structure becomes
easy. The closure of regular languages under inverse homomorphisms allows for mak-
ing the languages of relations involving different variables compatible. Conjunction,
disjunction and negation can be handled by application of the closure of regular lan-
guages under intersection, union and complement, respectively. Existential quantifi-
cation can be dealt with by applying the closure of regular languages under homomor-
phisms. Again, for the specific technical details see the literature cited above.

A priori, the automata-based approach to deciding Presburger arithmetic is non-
elementary due to the possibility of repeated complementation. However, [Durand-
Gasselin and Habermehl 2010] showed that the automata resulting from Presburger
arithmetic have a special structure that prevents this non-elementary blow-up from
happening. In fact, in terms of runtime the automata-based construction matches the
optimal deterministic triply-exponential time upper bound of quantifier elimination.
While to the best of the author’s knowledge the automata-based approach is not widely
applied in practice these days, it is worth mentioning that it can empirically be more
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efficient compared to quantifier elimination. For instance, even on small instances of
the Frobenius problem presented in the introduction, a straight-forward implementa-
tion of the automata-based decision procedure outperforms the quantifier-elimination
procedure implemented in the SMT-solver Z3 [de Moura and Bjørner 2008] by orders
of magnitudes [Blondin 2018].

4. SEMI-LINEAR SETS
We will now present an exposition of the result of [Ginsburg and Spanier 1964] that
the sets of integers definable in Presburger arithmetic coincide with semi-linear sets.
Given a base vector b ∈ Zd and a finite set of period vectors P = {p1, . . . ,pn} ⊆ Zd, the
linear set L(b, P ) is defined as

L(b, P ) = b+ {λ1p1 + · · ·+ λnpn : λi ≥ 0, 1 ≤ i ≤ n}.
A semi-linear set is a finite union of linear sets. Observe that semi-linear sets are
trivially closed under projection.

Given v ∈ Zd and 1 ≤ i ≤ d, write v(i) for the i-th component of v. It is easily seen
that every linear set is definable in Presburger arithmetic, since x ∈ L(b, P ) if and only
if x is a solution of

Φ(x) ≡ ∃λ1 · · · ∃λn
∧

1≤i≤d

x(i) = b(i) + λ1p1(i) + · · ·+ λnpn(i).

It follows that semi-linear sets are Presburger-definable.
Showing that Presburger-definable sets are semi-linear requires some more efforts.

From Section 3.1, we know that Presburger arithmetic admits quantifier elimination.
Hence in order to show that Presburger-definable sets are semi-linear, it suffices to
show that the sets of solutions to systems of linear inequalities and linear congruences
are semi-linear, and that semi-linear sets are closed under intersection.

4.1. Systems of linear inequalities
Given a d × n integer matrix A, we first show that the set of non-negative integer
solutions to the homogeneous system of equations A · x = 0 is semi-linear. Observe
that the set of all solutions to this system forms a monoid. In fact, this monoid is
generated by a finite set of minimal elements P ⊆ Nn with respect to the ordering <.
To the contrary, assume that P was infinite. Then Dickson’s lemma gives v,w ∈ P such
that v < w. But then w − v > 0, contradicting minimality of P . Thus P is finite and
the set of non-negative integer solutions of A · x = 0 is L(0, P ), a linear set.

For an arbitrary system A · x = b, consider the homogeneous system of linear equa-
tions obtained from augmenting A with −b:

(A | −b) · [ xy ] = 0.

Let B ⊆ Nn be the finite set obtained from the minimal elements generating the solu-
tions of the augmented system whose last component corresponding to y equals one.
Then the set of solutions of A · x = b is the semi-linear set L(B,P ) =

⋃
b∈B L(b, P ),

where P is as above. Semi-linear sets of the form L(B,P ) are called hybrid linear
sets [Chistikov and Haase 2016]. They form a convenient subclass of semi-linear sets
that lie between linear and arbitrary semi-linear sets.

Finally, semi-linearity of the set of solutions of a system of linear inequalitiesA·x ≥ b
follows a similar pattern. Consider the system of equations

(A | −Id) · [ xy ] = b,

where Id is the d × d identity matrix, and let L(C,Q) ⊆ Nn+d be a hybrid linear set
generating its solutions such that Q generates the solutions of the associated homo-
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geneous system of equations as above. Let B,P ⊆ Nn be obtained from projecting the
elements of C and Q onto the first n components. Then L(B,P ) generates the set of
all solutions of A · x ≥ b, and also observe that L(0, P ) generates all solutions of the
homogeneous system of linear inequalities A · x ≥ 0.

4.2. Systems of linear congruences
We now continue showing that the set of solutions of a system of divisibility constraints
is a hybrid linear set. Consider such a system

Φ(x) ≡
∧

1≤i≤d

ci | pi(x),

where the pi are linear polynomials in x = (x1, . . . , xn) with constant term zero. Let
c = lcm(c1, . . . , cd) and set

B = {v ∈ {0, . . . , c− 1}n : Φ(v/x) is true} .
Now the Chinese remainder theorem gives that for any v ∈ Nn,∧

1≤i≤d

ci | pi(v) ⇐⇒
∧

1≤i≤d

ci | pi(v) + c.

Consequently, letting ei ∈ Nn denote the i-th unit vector and defining P = {c · ei : 1 ≤
i ≤ n}, we get that L(B,P ) is the set of non-negative solutions of Φ(x).

4.3. Intersection of semi-linear sets
It remains to show that semi-linear sets are closed under intersection. Due to the
distributivity of union and intersection, it suffices to show that the intersection of two
linear sets is a semi-linear set.

Let L(c, Q) and L(d, R) be linear sets. We can view the sets of vectors Q and R as
matrices. Then v ∈ L(c, Q) ∩ L(d, R) if and only if there are λ,γ ≥ 0 such that

v = c+Q · λ and v = d+R · γ
⇐⇒ c+Q · λ = d+R · γ
⇐⇒ (Q | −R)

[
λ
γ

]
= d− c.

The latter is a system of linear equations whose set of solutions is a hybrid linear set.
Let L(E,S) be the hybrid linear set obtained from projecting the solution set onto the
components corresponding to λ. Setting B = c+Q · E and P = Q · S, we have

L(c, Q) ∩ L(d, R) = c+ {Q ·w : w ∈ L(E,S)}
= c+Q · L(E,S)

= c+Q · {E + S · ξ : ξ ≥ 0}
= L(c+Q · E,Q · S)

= L(B,P ).

Hence, semi-linear sets are closed under intersection.

4.4. Decompositions of semi-linear sets
When working with semi-linear sets, it is often helpful being able to assume with no
loss of generality some structural properties on the constituting linear sets.

We first mention that one may assume that all linear sets have linearly inde-
pendent period vectors. Essentially, this requires establishing a discrete analogue of
Carathéodory’s theorem. This theorem states that the convex cone generated by a fi-
nite set of vectors P can be decomposed into a union of cones generated by linearly
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independent subsets of P , see e.g. [Schrijver 1986, p. 94]. A fully discrete analogue of
Carathéodory’s theorem cannot be obtained since we may need additional base vectors
in order to preserve the discrete periodic structure of a linear set. It was first shown
by [Ginsburg and Spanier 1964] that a linear set L(b, P ) decomposes as

L(b, P ) =
⋃
i∈I

L(bi, Pi),

where the Pi ⊆ P are linearly independent vectors.
An even stronger property is that of unambiguity. [Eilenberg and Schützenberger

1969] and [Ito 1969] independently showed that every semi-linear set M is equivalent
to a semi-linear set

M =
⋃
i∈I

L(bi, Pi)

such that all Pi are linearly independent and L(bi, Pi) ∩ L(bj , Pj) = ∅ for all i 6= j.
Finally, if we are only interested in decreasing the cardinality of a set of period

vectors without introducing new base vectors, we can apply a theorem of [Eisenbrand
and Shmonin 2006]. Given P ⊆ Zd and v ∈ L(0, P ), this theorem states that there
exists Q ⊆ P such that v ∈ L(0, Q) and |Q| ≤ 2d log(4dm), where m is the maximum
absolute value of all constants appearing in P .

4.5. Complementation of semi-linear sets
Closure of semi-linear sets under complement follows from the equivalence between
semi-linear and Presburger-definable sets. However, it is less commonly known that,
using the decompositions of previous section, it is not difficult to give a direct proof of
this result. Due to closure of semi-linear sets under union and intersection, it suffices
to show that the complement of a linear set is semi-linear.

To this end, let M = L(b, P ) ⊆ Zd be a linear set, and with no loss of generality
assume that P is linearly independent. As before, we can view P as a d × n integer
matrix. Let M̃ ⊆ Rd denote the convex hull of M . By the Minkowski-Weyl theorem,
there is a system of linear inequalities A ·x ≥ c defining M̃ . Let the rows of A ·x ≥ c be
{ai · x ≥ ci}1≤i≤m. Then Rd \ M̃ can be obtained as the union over the set of solutions
of all systems of linear inequalities ai · x < ci. It thus remains to show how to define
M̃ \M . For every v ∈ L(b, P ), there is a unique λ ∈ Nn such that v = b + P · λ. Any
w ∈ M̃ \M is therefore obtained asw = b+P ·γ for some γ ∈ Rn with the property that
some component of γ is not integral. Defining C := b+({v ∈ P ·λ∩Zd : λ ∈ [0, 1)n}\0),
we thus have L(C,P ) = M̃\M . In summary, we obtain Zd\M = ((Rd\M̃)∩Zd)∪L(C,P ),
which is a semi-linear set.

4.6. Descriptional complexity
So far, we have only looked at definability, closure and decomposition properties of
semi-linear sets. When manipulating semi-linear sets, in many applications scenarios
we want to keep track of the growth of constants and the number of generators. A
building block is a result of [Pottier 1991] which provides bounds on the constants
of the generators P of the set of non-negative solutions of a homogeneous system of
linear equations A · x = 0, where A is an integer matrix or rank r. Pottier shows that
the largest absolute value ||P || in P is bounded by

||P || ≤ (1 + ||A||1,∞)r.

Bootstrapping from this base case as done in Sections 4.1–4.5 then allows for obtaining
bounds on the effect on the descriptional complexity of Boolean operations and decom-
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Table I. Complexity of Presburger arithmetic

number of quanti-
fier alternations

fixed
number of variables
in quantifier blocks

variable
number of variables
in quantifier blocks

existential
fragment

P-complete
[Scarpellini 1984]

NP-complete
[Borosh and Treybing 1976]

[von zur Gathen and Sieveking 1978]

fixed i > 1
STA(∗, nO(1), i− 1)-complete

[Grädel 1988]
STA(∗, 2nO(1)

, i− 1)-complete
[Haase 2014]

variable STA(∗, 22n
O(1)

, O(n))-complete
[Berman 1980]

positions. Following this simple approach yields in some cases optimal bounds, but not
in all. Rigorous estimations have recently been established by [Chistikov and Haase
2016], and also [Beier et al. 2017] who established the descriptional complexity of the
constructions given by [Ginsburg and Spanier 1964].

5. COMPUTATIONAL COMPLEXITY
A short account on the computational complexity of Presburger arithmetic has already
been given in Section 1. The purpose of this section is to give a full account on the
complexity of the various fragments of Presburger arithmetic together with references
to the literature. Subsequently, we provide a similar overview of the complexity of
decision problems for semi-linear sets.

5.1. Presburger arithmetic
Table I gives an overview over the complexity of Presburger arithmetic, broken down
according to the number of quantifier alternations and the number of variables in ev-
ery quantifier block. The complexity results stated are for formulas beginning with an
existential quantifier, analogous results hold for formulas beginning with a universal
quantifier.

An NP upper bound for the existential fragment can be obtained from NP upper
bounds for integer programming, which were independently established by [Borosh
and Treybing 1976] and [von zur Gathen and Sieveking 1978]. Based on Lenstra’s
polynomial-time algorithm for integer programming in a fixed dimension [Lenstra Jr
1983], [Scarpellini 1984] showed that existential Presburger arithmetic with a fixed
number of variables can be decided in polynomial time. The key observation is that
when fixing the number of variables, one can translate a quantifier-free Presburger
formula in polynomial time into disjunctive normal form [Woods 2015, Prop. 5.1].

For quantified fragments, the complexity is given in terms of the STA complexity
measure. If the number of alternations is fixed, those complexity classes correspond
to standard oracle complexity classes. Presburger arithmetic with a fixed number of
quantifier alternations i > 1 and a fixed number of variables in every quantifier block
is complete for ΣP

i−1, i.e., every level of the polynomial time hierarchy. The reason for
“saving” one oracle call is that, as seen in Table I, in the presence of a fixed number of
variables the existential (and thus universal) fragment of Presburger is in P. If instead
we allow for an arbitrary number of variables in every quantifier block, Presburger
arithmetic becomes complete for ΣEXP

i−1 , i.e., every level of the weak EXP hierarchy. The
first level of this hierarchy is NEXP, the second NEXPNP, etc. Again, we can “save”
one oracle call, the reason being that integer linear programming is fixed-parameter
tractable in the number of variables [Frank and Tardos 1987].
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Recalling the example of the Frobenius problem given in Section 1, we observe that,
regardless of the instance of the Frobenius problem, the number of quantifier alter-
nations and even the number of inequalities in the formula is fixed. If in addition the
number of integers in an instance of the Frobenius problem is fixed, [Kannan 1992]
showed that the Frobenius number can be computed in polynomial time. Observe
that in this case also the number of variables in the corresponding Presburger for-
mula becomes fixed. Kannan’s result led to the more general question of whether short
Presburger arithmetic, i.e. Presburger arithmetic with a fixed number of quantifier al-
ternations, variables and inequalities, is polynomial-time decidable. [Schöning 1997]
showed that already for an ∃x∀y-quantifier prefix, Presburger arithmetic is NP-hard,
so fixing the number of linear inequalities is crucial. Affirmative answers were given
only recently. [Woods 2015] showed that the Π2-fragment of short Presburger arith-
metic is decidable in polynomial time. In contrast, [Nguyen and Pak 2017] showed
that the Σi+2-fragment of short Presburger arithmetic is complete for ΣP

i , already for
instances of quantified integer programming, i.e., short Presburger formulas in which
no disjunction appears. Finally, if we allow for an unbounded number of variables in
every quantifier block, quantified integer programming with i quantifier alternations
becomes complete for ΣP

i [Chistikov and Haase 2017].

5.2. Semi-linear sets
The decision problems relevant to semi-linear sets are the standard decision problems
from formal language theory. The parameters on which the complexity of those deci-
sion problems depends on are the dimension and the encoding of numbers in unary or
binary.

Given a semi-linear set M ⊆ Zd and a point v ∈ Zd, the word problem asks whether
v ∈ M . In general, this problem is NP-complete. The upper bound follows from the
NP upper bound of integer programming [Borosh and Treybing 1976; von zur Gathen
and Sieveking 1978]. An NP lower bound for d = 1 and numbers encoded in binary
can, for instance, be derived from a variant of the classical subset sum problem in
which elements can be chosen multiple times, see e.g. [Haase 2012, p. 70]. If the di-
mension is variable and numbers are encoded in unary, the word problem remains NP-
complete [Kopczynski and To 2010]. Finally, the word problem is decidable in polyno-
mial time if both the dimension is fixed and numbers are encoded in unary [Kopczynski
and To 2010].

The second important decision problem for semi-linear sets is the inclusion problem,
i.e., deciding whether M ⊆ N holds for two given semi-linear sets M,N ⊆ Zd. Obtain-
ing upper bounds for the inclusion problem entails showing upper bounds on the size
of the constants of smallest elements in the set-theoretic difference of two semi-linear
sets. [Huynh 1982] showed that the bit size of the smallest such elements is polyno-
mial, which places the inclusion problem in ΠP

2 . He later gave a simplified proof of this
result [Huynh 1986]. Regarding lower bounds, the inclusion problem is hard for ΠP

2 al-
ready for linear sets in dimension one with numbers encoded in binary [Simon 2018],
and also for linear sets in variable dimension with numbers encoded in unary [Chis-
tikov et al. 2018, Thm. 15]. If both the dimension is fixed and numbers are encoded
in unary, the inclusion problem is decidable in polynomial time [Kopczynski and To
2010].

It should be noted that those complexity results hold for semi-linear sets which are
given explicitly. This is rarely the case, and often only the largest constant in an im-
plicitly given semi-linear set is known. In such situations, the following result can be
helpful: Suppose we are given semi-linear sets M,N ⊆ Zd with largest absolute value
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is m. [Chistikov and Haase 2016] showed that if M \N is non-empty then there is some
v ∈M \N whose largest absolute value is bounded by 2m

O(d2)

.

6. DECIDABLE EXTENSIONS
Even very basic extensions of Presburger arithmetic with additional functions and
predicates render Presburger arithmetic undecidable. Most prominently, Gödel’s in-
completeness theorem implies that the extension of Presburger arithmetic with mul-
tiplication is undecidable, which was shown by [Church 1936]. Many further such un-
decidable extensions are surveyed in the paper by [Bès 2002]. The goal of this section
is to give examples, references to the literature and main ideas underlying decidable
extensions of Presburger arithmetic.

6.1. Büchi arithmetic
When developing his automata-based decision procedure for Presburger arithmetic,
[Büchi 1960] observed that the extension of Presburger arithmetic with a binary pred-
icate Vk for any fixed k ≥ 2 such that Vk(x, y) holds if x is the largest power of k di-
viding y is decidable. The family of such extensions of Presburger arithmetic is known
as Büchi arithmetic. The crucial observation is that, when writing y in base k, Vk(x, y)
holds if the first non-zero digit of y is x. From this observation, it is easy to derive
a finite-state automaton accepting tuples of words in base k such that Vk(x, y) holds,
analogously to the automaton in Figure 2. As outlined in Section 3.2, this in turn
gives a decision procedure for Büchi arithmetic for any fixed k ≥ 2. The converse also
holds: the sets of tuples of natural numbers Nn encoded in base k and accepted by a
finite-state automaton coincides with the sets definable in Büchi arithmetic with the
additional Vk predicate, see e.g. [Bruyère et al. 1994].

Extending Presburger arithmetic with multiple predicates Vk is in general not pos-
sible. If j and k are multiplicatively independent, i.e., ja = kb with a, b ∈ N implies
a = b = 0, then the first-order theory of Presburger arithmetic extended with predi-
cates Vj , Vk becomes undecidable [Villemaire 1992].

6.2. Counting
Another decidable extension of Presburger arithmetic allows for counting the number
of solutions for a given variable in a subformula. Formally, Presburger arithmetic with
counting has an additional unary counting quantifier ∃=xy. A formula ∃=xy ϕ(x, y,z)
evaluates to true for x = a and c ∈ Nn iff

a = #{b ∈ N : ϕ[x/a, b/y, c/z] holds},

i.e., the number of satisfying assignments for y is bound to the variable x, provided
that this number is finite. [Schweikardt 2005] gave a quantifier elimination procedure
for this extension that translates a formula of Presburger arithmetic with counting
to standard Presburger arithmetic. This translation involves a non-elementary blow-
up. However, no harder lower bounds than those of standard Presburger arithmetic
are known. A restriction of the counting quantifier has been studied by [Habermehl
and Kuske 2015]. They considered counting modulo a constant and gave a quantifier-
elimination procedure that runs in triply exponential time, i.e., is not more expensive
than standard Presburger arithmetic.

[Barvinok 1994] gave a polynomial-time algorithm that counts the number points in
polyhedra in fixed dimensions. Building upon this result, [Woods 2015] showed that the
number of solutions of an existential Presburger formula with a fixed number of vari-
ables can be counted in polynomial time, thereby generalising the result of [Scarpellini
1984].
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6.3. Non-linear extensions
In general, extensions of Presburger arithmetic with non-linear functions and pred-
icates almost always lead to undecidability. Nevertheless, a few exceptions exist.
[Weispfenning 1990] gave a quantifier-elimination procedure for an extension of Pres-
burger arithmetic allowing for terms involving rational functions of the form

p(x) +
⌊p1(x)

q1(x)

⌋
+ · · ·+

⌊pk(x)

qj(x)

⌋
for arbitrary univariate polynomials p, pi, qi with integer coefficients. His quantifier-
elimination procedure inherits the triply exponential-time upper bound for standard
Presburger arithmetic. [Gurari and Ibarra 1979] showed NP-completeness of a non-
linear integer programming problem. Given a d × n integer matrix A with row vector
ai and a dimension d vector σ consisting in every component of a rational function ri,
the problem is to find v ∈ Nn and w ∈ N such that ai · v = ri(y) or ai · v = bri(y)c
for all 1 ≤ i ≤ d. This problem is harder than classical integer programming, since
determining whether the quadratic Diophantine equation a ·x+b ·y2 = c has a solution
in the non-negative integers is already NP-hard [Manders and Adleman 1976].

[Robinson 1949] showed that the full first-order theory of the extension of Presburger
arithmetic with a divisibility predicate is undecidable since it allows for defining mul-
tiplication. However, when restricting to the existential fragment, Presburger arith-
metic with a full divisibility relation is still decidable [Lipshitz 1978; Lipshitz 1981],
and known to be NP-hard and in NEXP [Lechner et al. 2015].
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