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Abstract
Automatic structures are structures whose universe and relations can be represented as regular
languages. It follows from the standard closure properties of regular languages that the first-order
theory of an automatic structure is decidable. While existential quantifiers can be eliminated in
linear time by application of a homomorphism, universal quantifiers are commonly eliminated via
the identity ∀x . Φ ≡ ¬(∃x . ¬Φ). If Φ is represented in the standard way as an NFA, a priori this
approach results in a doubly exponential blow-up. However, the recent literature has shown that
there are classes of automatic structures for which universal quantifiers can be eliminated by different
means without this blow-up by treating them as first-class citizens and not resorting to double
complementation. While existing lower bounds for some classes of automatic structures show that a
singly exponential blow-up is unavoidable when eliminating a universal quantifier, it is not known
whether there may be better approaches that avoid the naïve doubly exponential blow-up, perhaps
at least in restricted settings.

In this paper, we answer this question negatively and show that there is a family of NFA
representing automatic relations for which the minimal NFA recognising the language after eliminating
a single universal quantifier is doubly exponential, and deciding whether this language is empty is
ExpSpace-complete.
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1 Introduction

Quantifier elimination is a standard technique to decide logical theories. A logical theory
T admits quantifier elimination whenever for every quantifier free conjunction of literals
Φ(x, y1, . . . , yn) of T there is a quantifier free formula Ψ(y1, . . . , yn) such that T |= ∃x.Φ ↔
Ψ. Universal quantifiers can then be eliminated simply by applying the duality ∀x .Φ ≡
¬(∃x .¬Φ). If the formula Ψ above is effectively computable then T is decidable. For
quantifier elimination procedures, the computationally most expensive step is the elimination
of an existential quantifier, since negating a formula can be performed on a syntactic level.

Automatic structures [11, 12, 2] are a family of first-order structures whose corresponding
first-order theory can be decided using automata-theoretic methods, as an alternative
approach to syntactic quantifier elimination. In their simplest variant, automatic structures
are relational first-order structures whose universe is isomorphic to a regular language
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13:2 Universal Quantification Makes Automatic Structures Hard to Decide

L ⊆ Σ∗ over some alphabet Σ, and whose n-ary relations are interpreted as regular languages
over (Σn)∗. It follows that the set of all satisfying assignments of a quantifier-free formula
Φ(x1, . . . , xm+1) can be obtained as the language L(A) ⊆ (Σm+1)∗ of some finite-state
automaton A. In this setting, eliminating existential quantifiers is easy. In order to obtain a
finite-state automaton whose language encodes the satisfying assignments to ∃xm+1 .Φ, it
suffices to apply the homomorphism induced by the mapping h : (Σm+1) → (Σm) such that
h(u1, . . . , um+1) := (u1, . . . , um) to L(A). This can be performed in linear time, even when
A is non-deterministic. However, if A is non-deterministic then computing a finite-state
automaton whose language encodes the complement of Φ is computationally difficult and may
lead to an automaton with 2Ω(|A|) many states. In particular, due to double complementation,
eliminating a universal quantifier may a priori lead to an automaton with 22Ω(|A)| many states.
Notable examples of automatic structures are Presburger arithmetic [17], the first-order
theory of the structure ⟨N, 0, 1,+,=⟩, and its extension Büchi arithmetic [6, 4, 5]. Tool suites
such as Lash [1], Tapas [15] and Walnut [16] are based on the automata-theoretic approach
and have successfully been used to decide challenging instances of Presburger arithmetic
and Büchi arithmetic from various application domains. Those tools eliminate universal
quantifiers via double complementation.

Yet another approach to deciding Presburger arithmetic is based on manipulating semi-
linear sets [10, 8], which are generalisations of ultimately periodic sets to arbitrary tuples of
integers in Nd. They are similar to automata-based methods in terms of the computational
difficulty of existential projection and complementation: the former is easy whereas the latter
is difficult.

For certain classes of automatic structures, it is possible to avoid eliminating universal
quantifiers via existential projection and negation. For example, it was shown in [7] that
deciding sentences of quantified integer programming ∃x̄1 ∀x̄2 . . . ∃x̄n . A · x̄ ≥ b̄ is complete
for the n-th level of the polynomial hierarchy. The upper bound was obtained by manipulating
so-called hybrid linear sets, which characterise the sets of integer solutions of systems of linear
equations A·x̄ ≥ b̄. A key technique introduced in [7] is called universal projection and enables
directly eliminating universal quantifiers instead of resorting to double complementation
and existential projection. Given S ⊆ Nd+k, the universal projection of S onto the first d
coordinates is defined as

π∀
d(S) :=

{
ū ∈ Nd

∣∣ (ū, v̄) ∈ S for all v̄ ∈ Nk
}
.

It is shown in [7] that if S is a hybrid linear set then π∀
d(S) is a hybrid linear set that

can be obtained as a finite intersection of existential projections of certain hybrid linear
sets. Moreover, the growth of the constants in the description of the hybrid linear set is
only polynomial. Neither syntactic quantifier elimination nor automata-based methods are
powerful enough to derive those tight upper bounds for quantified integer programming.

Another example is a recent paper of Boigelot et al. [3] showing that, in an automata-
theoretic approach for a fragment of Presburger arithmetic with uninterpreted predicates,
a universal projection step can directly be carried out on the automata level without
complementation and only results in a singly exponential blowup.

Those positive algorithmic and structural results are specific to Presburger arithmetic
and leave open the option that it may be possible to establish analogous results for general
automatic structures. The starting point of this paper is the question of whether, given
a non-deterministic finite automaton A whose language L(A) ⊆ (Σd+k)∗ encodes the set
of solutions of some quantifier-free formula Φ, there is a more efficient way to eliminate a
(block of) universally quantified variable(s) than to first complement A, next to perform
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an existential projection step, and finally to complement the resulting automaton again,
especially in the light of the results of [7, 8]. Such a method would have direct consequences
for tools such as Walnut which perform the aforementioned sequence of operations in order
to eliminate universal quantifiers. In particular, Walnut is not restricted to automata
resulting from formulas of linear arithmetic and allows users to directly specify a finite-state
automaton when desired.

For better or worse, however, as the main result of this paper, we show that deciding
whether the universal projection π∀

d(L(A)) of some language regular language L(A) ⊆(
Σd+k

)∗ is empty is complete for ExpSpace. In particular, the lower bound already holds for
d = k = 1, meaning that, in general, even for fixed-variable fragments of automatic structures,
there is no algorithmically more efficient way to eliminate a single universal quantifier than
the naïve one. The challenging part is to show the ExpSpace lower bound, which requires
an involved reduction from a tiling problem. This reduction also enables us to show that
there is a family

(
An

)
n∈N of non-deterministic finite automata such that |An| = O

(
n3)

and
the smallest non-deterministic finite automaton recognising the universal projection of L(An)
has Ω

(
22n)

many states.

2 Preliminaries

2.1 Regular languages and their compositions
For a word w = a1a2 · · · an ∈ Σ∗, we write w[i] to denote its i-th letter ai, and w[i, j] to
denote the infix aiai+1 · · · aj (i ≤ j). We write |w| for the length of w. A proper suffix of w
is any infix w[i, n] for some 1 < i ≤ n.

Regular expressions. A regular expression over the alphabet Σ is a term featuring Kleene
star, concatenation and union operations, as well as ∅ and all symbols from Σ as constants:

E,E′ ::≡ E∗ | E · E′ | E + E′ | ∅ | a for every a ∈ Σ

For notational convenience, we also use sets of symbols A ⊆ Σ as constants, and a k-fold
concatenation Ek for every k ∈ N; we also drop the concatenation dot most of the time.
The language L(E) ⊆ Σ∗ is defined by structural induction, by interpreting constants as
L(∅) := ∅ and L(a) := {a}, and using the standard semantics of the three operations. The
class of languages definable by regular expressions is called regular languages. The size |E| of
a regular expression E is defined recursively as 1 plus the sizes of its subexpressions. For
ρ : Σ → Γ and a regular expression E, ρ(E) is a regular expression over Γ obtained through
substituting every constant a ∈ Σ appearing in E by ρ(a).

Finite-state automata. Regular languages can also be represented by non-deterministic
finite-state automata (nfa). Such an automaton is a tuple A = (Q,Σ, δ, QI, QF), where Q
is a finite non-empty set of states, Σ is a finite alphabet, δ ⊆ Q × Σ × Q is the transition
relation, QI ⊆ Q is the set of initial states, and QF ⊆ Q is the set of final states. A triple
(p, a, q) ∈ Q× Σ ×Q is called a transition and denoted as p a−→ q. A run of A from a state
q0 to a state qn (n ∈ N) on a word w = a1a2 · · · an ∈ Σ∗ is a finite sequence of transitions(
qi−1

ai−→ qi

)
1≤i≤n

such that qi−1
ai−→ qi ∈ δ for every i. A word w ∈ Σ∗ is accepted by A if

there exists a run of A from some qI ∈ QI to qF ∈ QF over w. The language of A is defined
as L(A) := {w ∈ Σ∗ | w is accepted by A}. We define the size of A as |A| := |Q| + |Q|2 · |Σ|.
This definition only depends on Q and Σ and ensures that |A| ≥ |Q| + |δ| · |Σ|. Subsequently,
we will implicitly apply the well-known fact that the number of states of an nfa accepting
the complement of L(A) is bounded by 2|Q|.

CONCUR 2023



13:4 Universal Quantification Makes Automatic Structures Hard to Decide

Below we state, without proofs, a few folklore properties of nfa:

▶ Fact 1 (nfa closed under language union). For any nfa A,B over Γ, there exists an nfa
A ⊕ B of size O(|A| + |B|) such that L(A ⊕ B) = L(A) ∪ L(B).

▶ Fact 2 (nfa closed under inverse language homomorphisms). For any nfa A and a ho-
momorphic mapping ρ : Σ∗ → Γ∗, there exists an nfa ρ−1(A) of size O(|A|) such that
L

(
ρ−1(A)

)
= ρ−1(L(A)).

▶ Fact 3 (nfa closed under concatenation of languages). For any nfa A,B there exists an nfa
A⊙B of size O(|A| + |B|) s.t. L(A ⊙ B) = L(A) · L(B) := {u · v | u ∈ L(A) and v ∈ L(B)}.

▶ Fact 4 (translating regular expressions into nfa). For any regular expression E, there exists
an nfa A(E) such that |A(E)| = O(|E|) and L(A(E)) = L(E) (see [19]).

Filters. A filter is an auxiliary term introduced to simplify the proofs in Section 3, allowing
for a modular design of regular languages. Fix a finite alphabet Σ and let Φ := {⊤,⊥}.
Define homomorphisms ψin, ψout : (Σ × Φ)∗ → Σ∗ by their actions on a single letter

ψin(a, b) := a ψout(a,⊤) := a ψout(a,⊥) := ε .

(output every symbol from Σ) (output only symbols paired with ⊤)

A filter over an alphabet Σ is any language F ⊆ (Σ × Φ)∗. It induces a binary input-output
relation R(F ) ⊆ Σ∗ × Σ∗ between input words u and their subsequences v:

(u, v) ∈ R(F ) def⇐⇒ u = ψin(w) and v = ψout(w) for some w ∈ F .

We define F (u) := {v | (u, v) ∈ R(F )} to be the set of all possible outputs of F on u.

Filtering regular expressions. A filtering regular expression F over alphabet Σ is any regular
expression over Σ × Φ. We write F(w) := L(F)(w). To simplify the notation, we only write
the Σ component of the constants, and underline parts of the expression. A symbol a
appearing in an underlined fragment represents a pair (a,⊤), and in a fragment which is not
underlined a pair (a,⊥). Intuitively, underlined portions correspond to parts of the words
being output. We apply the same notational convention to words w ∈ (Σ × Φ)∗. Additionally,
for ρ : Σ → Γ, we abuse the notation and extend it to the naturally defined homomorphism
of type Σ × Φ → Γ × Φ, which just preserves the coordinate belonging to Φ.

▶ Example 5. Fix A = {a, b, c, . . . , z}. Consider a filtering regular expression F and a word
w, both over A ∪ {␣}:

F := (AA∗ ␣)∗
AA∗ w := nondeterministic␣finite␣automaton .

We have:

F(w) = {nfa} ,

F =
(

(A× {⊤}) · (A× {⊥})∗ · (␣,⊥)
)∗

· (A× {⊤}) · (A× {⊥})∗
,

L(F) ∋ nondeterministic␣finite␣automaton .

▶ Fact 6. For every filtering regular expression F and w, F(w) = L(A(F))(w).
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2.2 Automatic relations

Let Σ be a finite alphabet such that # ̸∈ Σ. We denote by Σ# := Σ∪{#}. Let w1, . . . , wk ∈ Σ∗

such that wi = ai,1ai,2 · · · ai,ℓi
, and ℓ := max{ℓ1, . . . , ℓk}. For all 1 ≤ i ≤ k and ℓi < j ≤ ℓ,

set ai,j := #. The convolution w1 ⊗ w2 ⊗ · · · ⊗ wk of w1, . . . , wk is defined as

w1 ⊗ w2 ⊗ · · · ⊗ wk :=

a1,1
...

ak,1

 a1,2
...

ak,2

 · · ·

a1,ℓ

...
ak,ℓ

 ⊆
(
Σk

#

)∗
.

For R ⊆ (Σ∗)k and L ⊆
(
Σk

#

)∗ define

Rel2Lang(R) := {w1 ⊗ w2 ⊗ · · · ⊗ wk | (w1, w2, . . . , wk) ∈ R} ,
Lang2Rel(L) := {(w1, w2, . . . , wk) | w1 ⊗ w2 ⊗ · · · ⊗ wk ∈ L} .

In this paper, we say that a relation R ⊆ (Σ∗)k is automatic whenever Rel2Lang(R) is regular.
In the sequel, we assume that Rel2Lang(R) is given by some nfa AR = (Q,Σk

# , δ, QI, QF).
Clearly, not every nfa A = (Q,Σk

# , δ, QI, QF) is associated with an automatic relation
R ⊆ Σk since there are a priori no restrictions on the occurrences of the padding symbol “#”.
The language L ⊆ (Σk

# )∗ of all incorrect words that cannot be obtained as a convolution of
words w1, . . . , wk ∈ Σ∗ can be characterized by the following regular expression:

(
Σk

#

)∗ ·
(

{#}k +
∑

1≤i≤k

((
Σi−1

# × {#} × Σk−i
#

)
·
(
Σi−1

# × Σ × Σk−i
#

)))
·
(
Σk

#

)∗
.

This regular expression “guesses” that either a letter consisting solely of k # symbols occurs,
or in some row of a word in

(
Σk

#

)∗ a “#” symbol is followed by a symbol in Σ. The language
of this regular expression can be implemented by an nfa with k + 2 many states. Hence,
the complement L := L of L , characterizing all “good” words, can be recognized by an
nfa with 2k+2 many states. For the sake of readability, we do not parameterize L explicitly
with k; the relevant k will always be clear from the context.

The (existential) projection of R ⊆ (Σ∗)d+k onto the first d components is defined as

π∃
d(R) :=

{
ū ∈ (Σ∗)d

∣∣ (ū, w̄) ∈ R for some w̄ ∈ (Σ∗)k
}
.

The dual of existential projection is universal projection:

π∀
d(R) :=

{
ū ∈ (Σ∗)d

∣∣ (ū, w̄) ∈ R for all w̄ ∈ (Σ∗)k
}
.

It is clear that π∀
d(R) = π∃

d

(
R

)
. We overload the projection notation for languages

π∃
d(L) := Rel2Lang

(
π∃

d(Lang2Rel(L))
)

π∀
d(L) := Rel2Lang

(
π∀

d(Lang2Rel(L))
)
.

In this article, given AR such that Rel2Lang(R) = L(AR) ⊆
(
Σd+k

#
)∗, we are concerned with

the computational complexity of deciding whether π∀
d(R) = ∅, measured in terms of |AR|. In

Sections 3 and 5 we will prove the following.

▶ Theorem 7. Deciding whether π∀
d(R) ̸= ∅ for an automatic relation R ⊆ (Σ∗)d+k with an

associated nfa AR is ExpSpace-complete. The lower bound already holds for d = k = 1.

CONCUR 2023



13:6 Universal Quantification Makes Automatic Structures Hard to Decide

3 Emptiness after universal projection is ExpSpace-hard

3.1 Tiling problems
Let T ⊆fin N4 be a set of tiles with colours coded as tuples of numbers in top–right–bottom–
left order. We define natural projections top, right, bottom, left : N4 → N to access individual
colours of a tile, and let colours(T) := top(T) ∪ right(T) ∪ bottom(T) ∪ left(T).

▶ Example 8 (a tile). A tile t = (2, 4, 3, 3) is drawn as 2
4

3
3 with various auxiliary background

shades corresponding to colour values.

A T-tiling of size (h,w) ∈ N2
+ is any h× w matrix T = [ti,j ]i,j ∈ T h×w. It is valid, whenever

colours of the neighboring tiles match:

bottom(ti,j) = top(ti+1,j) for every 1 ≤ i ≤ h− 1 and 1 ≤ j ≤ w, (1)
right(ti,j) = left(ti,j+1) for every 1 ≤ i ≤ h and 1 ≤ j ≤ w − 1. (2)

See Figure 1 on page 14 for an example of a valid tiling. A T-tiling of width w ∈ N+ is any
tiling in T h×w for some h ∈ N+. We define

T ⋆×w :=
⋃

h∈N+

T h×w .

Additionally, for two distinguished tiles t�, t
�∈ T, let (T, t�, t

�)-tiling be any T-tiling with t�
placed in its top-right corner, and t � in its bottom-left corner.

▶ Problem 9. CorridorTiling
Input: A 4-tuple (T, t�, t

�, n), where
T ⊆fin N4 is a finite set of tiles,
t�, t

�∈ T,
n ∈ N given in unary.

Question: Does there exist a valid (T, t�, t
�)-tiling of width 2n?

By T ⊂ Pfin(N4)×N4 ×N4 ×N+ we denote the set of all valid instances of the above problem.

▶ Fact 10. CorridorTiling (Problem 9) is ExpSpace-hard.

It is part of the folklore of the theory of computation that tiling problems can simulate the
computation of Turing machines, the width of the requested tiling corresponding to the
length of tape the machine is allowed to use. ExpSpace-completeness of a variant similar to
the one above is sketched in [18].

3.2 The reduction
We prove Theorem 7 by a reduction from CorridorTiling. We will show that the
ExpSpace-hardness occurs in the simplest case of universal projection – projecting a binary
relation to get a unary one. Intuitively, for each instance I = (T, t�, t

�, n) of CorridorTiling,
we want to construct an automaton AI such that π∀

1(L(AI)) is not empty if, and only if, I
is a YES-instance. Formally, we provide a family of LogSpace-constructible nfa (AI)I∈T,
each of size O

(
n3)

, over the alphabet (ΣI ∪ {#})2 for some ΣI and representing relation
Lang2Rel(L(AI)) ⊆ (Σ∗

I)2 such that

π∀
1(L(AI)) ̸= ∅ ⇐⇒ there exists a valid (T, t�, t

�)-tiling of width 2n. (3)
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For the rest of this section, we fix an instance I = (T, t�, t
�, n) ∈ T. Due to technical reasons,

we assume that n ≥ 6. Note that every instance (T, t�, t
�, n) with n < 6 can be easily

transformed into (T′, t′
�
, t′�, 6), while preserving the (non)existence of a valid tiling.

In Section 3.3, we define ΣI, specify a language LI ∈ Σ∗
I, and prove that:

▶ Lemma 11. LI ̸= ∅ ⇐⇒ there exists a valid (T, t�, t
�)-tiling of width 2n.

In turn in Section 3.4, we construct in LogSpace an nfa AI such that

▶ Lemma 12. π∀
1(L(AI)) = LI.

This completes the proof of Theorem 7, the correctness of the reduction stemming directly
from Lemmas 11 and 12.

3.3 Word encoding of tilings
Here, we provide ΣI and an encoding encI : T ⋆×2n → Σ∗

I. Then we define LI as an intersection
of six conditions, and prove Lemma 11 by showing that it coincides with the language of
encodings of valid tilings.

Let Nn := N ∩ [0, n]. Additionally, let N⋇k
n := {i ∈ Nn | i ⋇ k} for ⋇ ∈ {<,=, >} and

k ∈ N (to be used in the next section). The alphabet ΣI consists of three groups of symbols –
tiles from T, numbers from Nn, and auxiliary symbols:

ΣI := T ∪Nn ∪ {A, ⟦, ⟧,〈, 〉} .

Above, the symbol A is a mnemonic – it marks places in Section 3.4 where we enforce “for-
all”-type properties. In what follows, we print some symbols in colours (e.g., 3010 t 20103)
to assist in understanding the construction – such designations are auxiliary and are not
reflected in the alphabet. The encoding of runs makes use of the word Combn ∈ N∗

n

Combn := nComb′
n−1 n ,

where the words
(
Comb′

i

)
0≤i≤n

are defined recursively as

Comb′
0 := 0

Comb′
i := Comb′

i−1 iComb′
i−1 for 0 < i ≤ n.

Observe that Combn has length exactly 2n + 1; that property is important in the upcoming
construction.

▶ Example 13. Comb4 is 40102010301020104 and has length 17.

We define the encoding function encI : T ⋆×2n → Σ∗
I in three steps. Let T = [ti,j ]i,j ∈ T h×2n

for some h ∈ N. The tile ti,j in T is represented as

encCellI(T, i, j) := 〈 Combn[1, j] ti,j Combn[j + 1, 2n + 1] A 〉 ,

a single row is encoded as

encRowI(T, i) := ⟦
∏

1≤j≤2n

encCellI(T, i, j) ⟧ ,

and finally, the encoding of the entire tiling is defined as

encI(T ) := A
∏

1≤i≤h

encRowI(T, i) .

CONCUR 2023



13:8 Universal Quantification Makes Automatic Structures Hard to Decide

▶ Example 14. The tiling T = [ti,j ]i,j of size (2, 24) is encoded as

A ⟦〈4 t1,1 0102010301020104 A〉 · · ·〈40102 t1,5 01030· · · 04 A〉 · · ·〈4010201030102010 t1,16 4 A〉⟧ ·
· ⟦〈4 t2,1 0102010301020104 A〉 · · ·〈40102 t2,5 01030· · · 04 A〉 · · ·〈4010201030102010 t2,16 4 A〉⟧.

The word above is written in two lines to make the correspondence to tiling more apparent.

Languages of encodings

Define the language of encodings of valid tilings of width 2n with t�, t
�in the correct corners

ValidEncI :=
{

encI(T )
∣∣ T is a valid (T, t�, t

�)-tiling of width 2n
}
.

In order to express the notion of an encoding of a valid tiling in a more tangible way, below we
define languages Cond1

I, . . . , Cond6
I, which – as we prove in Lemma 15 – jointly characterise

encodings. The first three of them are easily definable with automata of size O(n), the
next two guarantee an appropriate width of the encoding, while the last one enforces in a
nontrivial way that the vertical colour match.

▶ Condition 1. Language Cond1
I is given by the regular expression

E1
I :=

(
⟦〈 nTN∗

n A〉
(
〈N∗

n TN∗
n A 〉

)∗
〈N∗

n T n A〉⟧
)∗

.

Intuitively, encodings consist of rows bounded by ⟦ and ⟧; each row comprised of cells
delimited by 〈 and 〉; the first cell begins with the number n followed by a tile, while last
one ends with a tile, n and A. As |E1

I| = O(n), by Fact 4 the language Cond1
I is recognised

by an nfa B1
I := A

(
E1
I

)
of size O(n).

▶ Condition 2. The language Cond2
I is defined by the regular expression

E2
I := ⟦

(
〈N∗

n TN∗
n A〉

)∗
〈N∗

n t�N
∗
n A〉⟧ Σ∗

I ⟦〈N∗
n t

�N∗
n A〉

(
〈N∗

n TN∗
n A〉

)∗
⟧ .

Trivially, this requires the first row of a purported tiling to end with t�, and the last row to
begin with t �. As in Condition 1, Cond2

I is recognised by an nfa B2
I := A

(
E2
I

)
of size O(n).

▶ Condition 3. Let Q = colours(T) and B3
I = (Q,ΣI, δ, Q,Q), where δ has transitions

i
t−→ j for every i, j ∈ Q and t ∈ T s.t. left(t) = i and right(t) = j,

i
a−→ i for every i ∈ Q and a ∈ ΣI \ (T ∪ {⟧}),

i
⟧−→ j for every i, j ∈ Q.

We set Cond3
I := L

(
B3

I

)
; it contains encodings where tile colours match horizontally.

▶ Condition 4 (each cell contains a Combn). The definition of Cond4
I uses a filtering regular

expression F4
I :

F4
I := 〈N∗

n TN∗
n A 〉Σ∗

I

Cond4
I :=

{
w ∈ Σ∗

I

∣∣ Combn A ∈ F4
I(v) for every proper suffix v of w s.t. v[1] = 〈

}
▶ Condition 5 (prefix of a cell and first symbols of following cells’ suffixes form a Combn).

F5
I := 〈N∗

n TNn N
∗
n A 〉

(
〈N∗

n TNn N
∗
n A 〉

)∗
〈N∗

n TNn N
∗
n A 〉⟧ Σ∗

I

Cond5
I :=

{
w ∈ Σ∗

I

∣∣ Combn A ∈ F5
I(v) for every proper suffix v of w s.t. v[1] = 〈

}
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▶ Condition 6 (tile colours match vertically). Let ▼t := {t′ ∈ T | top(t′) = bottom(t)} be the
set of tiles with the top colour matching to the bottom of a tile t. Define

F6
I :=

∑
t∈T

(
〈N∗

n t N∗
n A 〉

(
〈N∗

n TN∗
n A 〉

)∗ ⟧ ·

· ⟦
(
〈N∗

n TN∗
n A 〉

)∗ 〈N∗
n ▼t N

∗
n A 〉

(
〈N∗

n TN∗
n A 〉

)∗ ⟧ Σ∗
I

)
.

The expression above was typeset in two lines only to highlight the correspondence between
cells in two consecutive rows. Define the language Cond6

I as

Cond6
I :=

{
w ∈ Σ∗

I

∣∣ Combn A ∈ F6
I(v) for every proper suffix v of w such that

v[1] = 〈 and v[j] = ⟦ for some j
}

Intuitively, requiring ⟦ to appear in v filters out suffixes of the last row.

Define LI := A
⋂

1≤i≤6 Cond i
I. To prove Lemma 11, it suffices to show the following:

▶ Lemma 15. LI = ValidEncI

Proof. The inclusion LI ⊇ ValidEncI is trivial.
Inclusion LI ⊆ ValidEncI. Take any u ∈ LI. Due to Condition 1, it has the form
A

∏
1≤i≤h ⟦ vi ⟧, where each vi ∈ (ΣI\{⟦, ⟧})∗. We will show that ⟦ vi ⟧ ∈ Range(encRowI( ·))

for all i. Fix an arbitrary i. Again due to Condition 1, vi has the form∏
1≤j≤wi

(〈 pi,j ti,j si,j A 〉) ,

where wi ∈ N, pi,j , si,j ∈ N∗
n, pi,1 = si,wi

= n, and ti,j ∈ T. Due to Condition 5, we have
that all si,j are nonempty and

pi,1 si,1[1] si,2[1] si,3[1] · · · si,wi
[1] = Combn . (4)

This implies that wi = 2n. By Condition 5 and Equation (4) we get that pi,j = Combn[1, j],
and now Condition 4 implies that si,j = Combn[j + 1, 2n + 1], so ⟦ vi ⟧ is a valid encoding
of a row of length 2n. Hence u encodes a tiling T := [ti,j ]i,j ∈ Th×2n . Property (2) in the
definition of a valid tiling is now trivially implied by Condition 3, and we only need to
show (1). Fix arbitrary pair of tiles ti,j , ti+1,j which are vertical neighbours. Observe that
pi,jsi+1,x = Combn ⇐⇒ x = j. Therefore, by Condition 6, bottom(ti,j) = top(ti+1,j), thus
T is a valid T-tiling, and – by Condition 2 – a valid (T, t�, t

�)-tiling. ◀

3.4 Construction of the automaton AI

Let ΣI,# := ΣI ∪ {#}. Here, we define the nfa AI over Σ2
I,# and prove Lemma 12, which

states that π∀
1(L(AI)) = LI. The construction we present in this section, however, does not

require the full generality of the setting of automatic structures:
Lang2Rel(L(AI)) only holds for words of the same length, i.e., AI rejects words with #;
we only use a subset of the alphabet: ΣI ×Nn ⊆ Σ2

I,#.
For this reason, we begin with a simplifying Lemma 16, which allows us to focus only on
words satisfying above properties. Let ρI : (ΣI ×Nn)∗ → Σ∗

I be a homomorphism given by
ρI(a, ·) := a. Additionally, let

ρ∀
I(L) :=

{
w ∈ Σ∗

I

∣∣ ρ−1
I (w) ⊆ L

}
.
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▶ Lemma 16 (simplification). For any nfa A′
I over ΣI ×Nn, there exists an nfa AI over

Σ2
I,# such that π∀

1(L(AI)) = ρ∀
I(L(A′

I)).

Proof. Take any A′
I over ΣI ×Nn. Let

E1 :=
(
Σ2

I

)∗(ΣI × {#})+ +
(
Σ2

I

)∗({#} × ΣI)+
(u ⊗ v such that |u| ̸= |v|)

E2 :=
(
Σ2

I

)∗(ΣI × (ΣI \Nn))
(
Σ2

I

)∗
(words with letter from Σ2

I \ ΣI × Nn)

AI := A′
I ⊕ A(E1) ⊕ A(E2) .

By definition, a word w belongs to π∀
1(L(AI)) whenever for all v the word w ⊗ v belongs to

L(AI). By construction, L(AI) contains all w ⊗ v where |v| ≠ |w| (E1) or where v is using a
symbol from ΣI \Nn (E2). Hence, the only words which can be missing from L(AI) come
from L(A′

I). This implies that π∀
1(L(AI)) = ρ∀

I(L(A′
I)). ◀

Therefore, we only have to provide A′
I such that ρ∀

I(L(A′
I)) = LI. The construction is

modular, based on six nfa corresponding to Conditions 1–6:

▶ Lemma 17 (modular design). For any six nfa (Ci
I)1≤i≤6 over ΣI ×Nn, there exists an

nfa A′
I of size O

( ∑
1≤i≤6|Ci

I|
)

over ΣI ×Nn such that

ρ∀
I(L(A′

I)) = A
⋂

1≤i≤6
ρ∀
I

(
L

(
Ci
I

))
.

Proof. Define

H := ({A} ×Nn \ {1, 2, . . . , 6}) (ΣI ×Nn)∗

A′
I := A((A, 1)) ⊙ C1

I ⊕ A((A, 2)) ⊙ C2
I ⊕ · · · ⊕ A((A, 6)) ⊙ C6

I ⊕ A(H) .

Observe that

Aw ∈ ρ∀
I(L(A′

I)) ⇐⇒ ρ−1
I (Aw) ⊆ L(A′

I) ⇐⇒ ({A} ×Nn) ρ−1
I (w) ⊆ L(A′

I) ⇐⇒
⇐⇒ ∀i ∈ Nn . (A, i) ρ−1

I (w) ⊆ L(A′
I) ,

but trivially

L
(

A((A, j)) ⊙ C
j
I

)
∩ (A, i) ρ−1

I (w) = ∅ for any i ̸= j

L(A(H)) ∩ (A, i) ρ−1
I (w) = ∅ for any i.

Therefore, Aw ∈ ρ∀
I(L(A′

I)) if, and only if, ρ−1
I (w) ⊆ ρ∀

I

(
L

(
Ci
I

))
for all i, as required. ◀

By definition of LI, it only remains to construct automata Ci
I such that ρ∀

I

(
L

(
Ci
I

))
= Condi

I

for 1 ≤ i ≤ 6. The construction is easy for Conditions 1–3:

Ci
I := ρ−1

I

(
Bi

I

)
for i ∈ {1, 2, 3}

as ρ∀
I

(
L

(
ρ−1
I (A)

))
= L(A) for any nfa A. Observe that the remaining Conditions 4–6 all

speak about “every proper suffix” satisfying some simple regular property. We handle that
in a general way. For L ⊆ (ΣI ×Nn)∗, define

L∀suf(L) :=
{
w

∣∣ v ∈ ρ∀
I(L) for all proper suffixes v of w

}
▶ Lemma 18 (recognising “for all proper suffixes”). For any nfa A over ΣI ×Nn, there exists
an nfa AllSuf(A) of size O(|A|) such that

ρ∀
I(L(AllSuf(A))) = L∀suf(L(A)) .
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Proof. Fix any nfa A = (Q,ΣI ×Nn, δ, QI, QF). We define AllSuf(A) which guesses the
suffix to verify

AllSuf(A) := (Q ∪ {s},ΣI ×Nn, δ ∪ δ′, {s}, QF ∪ {s})

for some fresh state s /∈ Q, and δ′ containing transitions s (a,0)−−−→ s for a ∈ ΣI and s
(a,n)−−−→ q

for a ∈ ΣI, n ∈ N>0
n , q ∈ QI. Additionally, let τ be a homomorphism such that τ(a) := (a, 0).

Inclusion “⊆”. Take any w ∈ ρ∀
I(L(AllSuf(A))). Let v be any proper suffix of w. Take any

v′ ∈ ρ−1
I (v). We need to show that v′ ∈ L(A). The word w can be written as uav, for |u| ≥ 0

and |a| = 1. Consider a word w′ = τ(u)(a, 1)v′. By definition of ρ∀
I, w′ ∈ L(AllSuf(A)).

Let r be an accepting run of AllSuf(A) over w′. By construction, the run stays in state s
while reading τ(u) and goes to some q ∈ QI upon reading (a, 1). Therefore, the remaining
suffix of r is an accepting run of A over v′.
Inclusion “⊇”. Fix w ∈ L∀suf(L(A)). Take any w′ ∈ ρ−1

I (w). We will show that w′ ∈
L(AllSuf(A)). Let u′(a, k)v′ := w′ be such that u′ is the maximal prefix arising as τ(u)
for some u (possibly empty). Note that k ̸= 0. By assumption, v′ ∈ L(A), so there exists an
accepting run r2 of A over v′ starting in some q ∈ QI. By construction, there exists a run r1
from s to q over u′(a, k) in AllSuf(A). Hence the run r1r2 accepts w′. ◀

To handle conditions “beginning with 〈” and “containing ⟦” appearing as antecedents of
implications, we proceed in the vein of the equivalence a → b ≡ ¬a ∨ b. Let

G¬〈 := (ΣI \ {〈}) Σ∗
I G¬⟦ := (ΣI \ {⟦})∗

.

▶ Lemma 19. For i ∈ {4, 5, 6}, given nfa Ĉi
I satisfying ρ∀(L

(
Ĉi
I

))
={

w
∣∣ Combn A ∈ Fi

I(w)
}

, one can construct Ci
I of size O

(
|Ĉi

I|
)

such that ρ∀
I

(
L

(
Ci
I

))
= Condi

I.

Proof. Fix Ĉ4
I, Ĉ

5
I, Ĉ

6
I as in the statement of the lemma. We define Ci

I as

C4
I := AllSuf

(
Ĉ4
I ⊕ ρ−1

I

(
A(G¬〈)

))
C5
I := AllSuf

(
Ĉ5
I ⊕ ρ−1

I

(
A(G¬〈)

))
C6
I := AllSuf

(
Ĉ6
I ⊕ ρ−1

I

(
A(G¬〈 + G¬⟦)

))
.

The above cases are similar; w.l.o.g. let us focus on C4. Observe that

ρ∀(L
(
Ĉ4
I ⊕ ρ−1

I

(
A(G¬〈)

)))
= ρ∀(L

(
Ĉ4
I

))
∪ L

(
G¬〈

)
=

{
w

∣∣ Combn A ∈ Fi
I(w)

}
∪ L

(
G¬〈

)
,

which directly corresponds to Condition 4, as required. ◀

The essential element needed to define nfa Ĉi
I as in Lemma 19 is an nfa for the language

{CombnA}. First, we define Combn as the intersection of languages of n + 1 regular
expressions, then show how that can be concisely represented by an automaton Cn of size
O

(
n2)

such that ρ∀
I(L(Cn)) = {CombnA}.

▶ Definition 20. We define n+ 1 regular expressions Ei over ΣI

E0 := N>1
n

(
0N>1

n

)∗

Ei := N>i
n

((
N<i

n

)∗
i
(
N<i

n

)∗
N>i

n

)∗
for 0 < i < n

En := n
(
N<n

n

)∗
n

▶ Lemma 21. {Combn} =
⋂

0≤i≤n L(Ei).
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Proof. It is easy to prove the inclusion “⊆” by unravelling the definition of Combn.
Inclusion “⊇”. Take any w ∈

⋂
1≤i≤n L(Ei). We will show that w = Combn.

▷ Claim 22. For 0 ≤ k ≤ n− 1, we have
⋂

1≤i≤k L(Ei) = L
(
N>k

n

(
Comb′

k N
>k
n

))∗

We prove the claim by induction. The base case is trivial. Fix a word

w ∈ L
(
N>k

n

(
Comb′

k N
>k
n

))∗ ∩ L(Ek+1) .

It has the form w = a1 Comb′
k a2 Comb′

k · · · Comb′
k am for some m ≥ 2 and a1, a2, . . . , am ∈

N>k
n . But since w ∈ L(Ek+1), every other symbol ai is equal k + 1 and m is odd. Thus

w = a1 Comb′
k (k + 1) Comb′

k︸ ︷︷ ︸
Comb′

k+1

· · · Comb′
k (k + 1) Comb′

k︸ ︷︷ ︸
Comb′

k+1

am

We conclude by noticing that L(En) ∩ L
(
N

>(n−1)
n

(
Comb′

n−1 N
>(n−1)
n

))∗
= {Combn}. ◀

Let us define

Cn := ρ−1
I (A(E0)) ⊙ A((A, 0)) ⊕ ρ−1

I (A(E1)) ⊙ A((A, 1)) ⊕ · · · ⊕ ρ−1
I (A(En)) ⊙ A((A, n)) .

▶ Lemma 23. ρ∀
I(L(Cn)) =

(⋂
0≤i≤n L(Ei)

)
A.

Proof. Inclusion “⊆”. Take any w = uA ∈ ρ∀
I(L(Cn)), and i ∈ Nn. We prove that u ∈

L(Ei). By definition, ρ−1
I (uA) ⊆ L(Cn). Fix a homomorphism τ(a) = (a, 0). Note that

τ(u)(A, i) ∈ L(Cn). This can be accepted only by the ρ−1
I (A(Ei)) ⊙ A((A, i)) component,

thus u ∈ L(A(Ei)) = L(Ei), as required.
Inclusion “⊇”. Take any w = uA ∈

(⋂
0≤i≤n L(Ei)

)
A. Take any u′(A, i) ∈ ρ−1

I (uA). Since
u ∈ L(Ei), u′ ∈ ρ−1

I (L(Ei)), and u′(A, i) ∈ L
(
ρ−1
I (A(Ei)) ⊙ A((A, i))

)
, as required. ◀

▶ Definition 24 (nfa Ĉi
I). Fix i ∈ {4, 5, 6}, nfa Cn = (Q(1),Σ ×Nn, δ

(1), Q
(1)
I , Q

(1)
F ) (of size

O
(
n2)

) and A
(
Fi
I

)
= (Q(2),Σ × Φ, δ(2), Q

(2)
I , Q

(2)
F ) (of size O(n)).

Define Ĉi
I := (Q,Σ ×Nn, δ, QI, QF) of size O

(
n3)

, where

Q := Q(1) ×Q(2), QI := Q
(1)
I ×Q

(2)
I , QF := Q

(1)
F ×Q

(2)
F ,

and the transition relation is

δ :=
{

(p, q) (a,α)−−−→ (r, s)
∣∣∣ q (a,⊤)−−−→ s ∈ δ(2) ∧ p

(a,α)−−−→ r ∈ δ(1)
}

∪{
(p, q) (a,α)−−−→ (p, s)

∣∣∣ q (a,⊥)−−−→ s ∈ δ(2) ∧ p ∈ Q(1)
}
.

Intuitively, Ĉi
I runs Cn over the fragments of the input which were underlined by Fi

I.

▶ Fact 25. w ∈ L
(
Ĉi
I

)
if, and only if, ∃v ∈ L

(
ρ−1
I

(
Fi
I

))
. ψin(v) = w ∧ ψout(v) ∈ L(Cn).

To finish the construction, we need to prove that

▶ Lemma 26. For i ∈ {4, 5, 6}

ρ∀(L
(
Ĉi
I

))
=

{
w

∣∣ Combn A ∈ Fi
I(w)

}
.
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As the proofs for i ∈ {4, 5, 6} are analogous, we focus on the hardest one, and then only
comment how it can be adapted for i ∈ {4, 5}.

Proof (i = 6).
A. Inclusion “⊆”. Take any w ∈ ρ∀(L

(
Ĉ6
I

))
. Define

U :=
{
u ∈ L

(
F6
I

) ∣∣ ψin(u) = w
}

Note that if U = ∅, then F6
I(w) = ∅, so by Fact 25 L

(
Ĉ6
I

)
= ∅, and ρ∀(L

(
Ĉ6
I

))
= ∅, a

contradiction. Therefore, U ̸= ∅, and w ∈ L
(
ψin

(
F6
I

))
, so it has the form

〈 p t s A 〉β ⟧ ⟦〈 p1 t1 s1 A 〉〈 p2 t2 s2 A 〉 · · · 〈 pk tk sk A 〉⟧ γ

for some k ∈ N, p, pi, s, si ∈ N∗
n, t, ti ∈ T, γ ∈ (ΣI \ {⟦, ⟧})∗ and γ ∈ Σ∗

I. Furthermore,
|U | = k and it contains the following underlined words u1, . . . , uk ∈ (ΣI × Φ)∗:

u1 = 〈 p t s A 〉β ⟧ ⟦〈 p1 t1 s1 A 〉〈 p2 t2 s2 A 〉 · · · 〈 pk tk sk A 〉⟧ γ

u2 = 〈 p t s A 〉β ⟧ ⟦〈 p1 t1 s1 A 〉〈 p2 t2 s2 A 〉 · · · 〈 pk tk sk A 〉⟧ γ
...

uk = 〈 p t s A 〉β ⟧ ⟦〈 p1 t1 s1 A 〉〈 p2 t2 s2 A 〉 · · · 〈 pk tk sk A 〉⟧ γ

Consider two cases, depending on the validity of the following assertion

∃u ∈ U . ψout
(
ρ−1
I (u)

)
⊆ L(Cn)

Case A.1: such u exists. Take any such u ∈ U . Observe that ψout(u) ∈ ρ∀
I(L(Cn)) =

{CombnA}. Hence, ψin(u) = w, ψout(u) = CombnA, and u ∈ L
(
F6
I

)
. Therefore, CombnA ∈

F6
I(w), as required.

Case A.2: such u does not exist. Therefore, for every u ∈ U , there is some vu ∈ ρ−1
I (u)

such that ψout(vu) /∈ L(Cn). Fix any family (vu)u∈U of such words. Let αu be the position
of the last underlined symbol in u. Fix a word w′ ∈ ρ−1

I (w) such that

w′[i] =
{
ψout(vu[i]) if i = αu for some u
(w[i], 0) otherwise

.

Observe that w′ is properly defined, as positions αu are pairwise different (corresponding to
the last letters of s1, s2, . . . , sk). Since ρI(w′) = w, from assumption w ∈ ρ∀(L

(
Ĉ6
I

))
we have

that w′ ∈ L
(
Ĉ6
I

)
. By Fact 25, we obtain v ∈ L

(
ρ−1
I

(
F6
I

))
such that

ψin(v) = w′ ∧ ψout(v) ∈ L(Cn)

However, ρI(ψout(v)) = ρI(ψout(vu)) for some u ∈ U and last symbols of ψout(v) and ψout(vu)
are identical. Since by construction Cn ignores the component Nn of its alphabet ΣI ×Nn

for all letters but the last one, we get that

ψout(v) ∈ L(Cn) ⇐⇒ ψout(vu) ∈ L(Cn) .

We conclude that ψout(v) /∈ L(Cn), a contradiction.
B. Inclusion “⊇”. Take any w such that CombnA ∈ F6

I(w). Using definition of F6
I(w), fix

v ∈ L
(
F6
I

)
such that ψin(v) = w and ψout(v) = CombnA. We have to show ρ−1

I (w) ⊆ L
(
Ĉ6
I

)
.

Take any w′ ∈ ρ−1
I (w). Let u ∈ (ΣI × Nn × Φ)∗ be the unique word such that ψin(u) = w′

and ρI(u) = v. Observe that ψout(w′) ∈ ρ−1
I (ψout(w′)) ⊆ L(Cn), thus w′ ∈ L

(
Ĉ6
I

)
, as

required. ◀
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Proof (i ∈ {4, 5}). The proof is analogous to the case i = 6. As the cases are distinguished
by the filter Fi

I being used, the only differences are related to the shape of words matched by
ψin

(
Fi
I

)
. In particular, the set U for i ∈ {4, 5} is now a singleton containing ui:

u4 = 〈 p t s A 〉γ (i = 4)

u5 = 〈 p1 t s
′
1 s1 A 〉〈 p2 t s

′
2 s2 A 〉 · · ·〈 pk−1 t s

′
k−1 sk−1 A 〉〈 pk t s

′
k A 〉⟧ γ (i = 5)

The rest of the proof only requires substituting F6
I with F4

I or F5
I . ◀

4 NFA of doubly exponential size after universal projection

From the lower bounds established in Section 3.4, it is now easy to construct a family(
A(Tinc,t

�
,t �,n)

)
n∈N of nfa, each of size O

(
n3)

, such that the smallest nfa after a universal
projection step has doubly-exponentially many states. Indeed, let

Tinc :=

2
2

5
5 , 2

2
0

2 , 2
3

3
2 ,

5
0

5
5 , 3

3
3

1 ,
5

4
4

5 , 1
4

4
4 , 3

3
4

4




∪

0
0

0
0 , 1

0
1

0 ,
0

1
1

0 , 1
1

0
1




t� := 2
3

3
2 t �:= 5

4
4

5

Intuitively, the colours 0, 1 vertically represent the counter bits, and horizontally encode
the carryover bit. The only valid (Tinc, t�, t

�)-tiling of width n simulates incrementing an
(n − 2)-bit binary counter from 0 to 2(n−2) − 1; see Figure 1 for an example with n = 5.
Thus, after a universal projection step, the resulting nfa accepts a single word of length
doubly exponential in n.

2
2

5
5

2
2

0
2

2
2

0
2

2
2

0
2

2
3

3
2

5
0

5
5

0
0

0
0

0
0

0
0

0
1

1
0

3
3

3
1

5
0

5
5

0
0

0
0

0
1

1
0

1
1

0
1

3
3

3
1

5
0

5
5

0
0

0
0

1
0

1
0

0
1

1
0

3
3

3
1

5
0
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Figure 1 The unique valid (Tinc, t�, t �)-tiling of width 5.

▶ Proposition 27. The nfa for π∀
1
(
L

(
A(Tinc,t

�
,t �,n)

))
has size Ω

(
22n)

.
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5 Emptiness after universal projection is in ExpSpace

We now consider algorithmic upper bounds for deciding whether the language of an automatic
relation R ⊆ (Σ∗)d+k after a universal projection step is non-empty, measured in terms of
the size of the associated nfa AR, which yields the upper bound of Theorem 7.

Define a homomorphism h : (Σd+k
# )∗ → (Σd

#)∗ by

h(a1, . . . , ad, ad+1, . . . , ad+k) := (a1, . . . , ad).

Given an nfa B over Σd+k
# such that S ⊆ (Σ∗)d+k is automatic via B, it is clear that

we can compute in linear time an nfa B′ with the same number of states as B such that
L(B′) = h(L(B)). The homomorphism h acts almost like existential projection, but in
general, we do not have that π∃

d(S) is automatic via B′. For instance, suppose that

w =
[
a
a

] [
b
a

] [
#
c

] [
#
a

]
∈ L(B) .

Then h(w) = aa## ̸∈ L because of the trailing # symbols. To remove them, we define

Strip(L) :=
{
w

∣∣∣ there exists v ∈ (
{
#
}d)∗ such that wv ∈ L

}
.

It is then the case that π∃
d(S) is automatic via Strip(L(B′)) ∩ L . Note that an nfa for

Strip(L) can be computed in linear time from an nfa for L without changing the set of
states by making all states accepting that can reach a final state via a sequence of “{#}d”
symbols.

Recall that π∀
d(R) = π∃

d

(
R

)
, consequently an automatic presentation of π∀

d(R) is given by(
Strip

(
h

(
L(AR)

))
∩ L

)
∩ L .

Assuming Q is the set of states of AR, and recalling that L ⊆ (Σd
#)∗ is given by an nfa

with 2d+2 many states, it can easily be checked that the number of states of an nfa whose
language gives the universal projection of R is bounded by 2(2|Q|+d+2)+d+2.

With those characterisations and estimations at hand, the ExpSpace upper bound stated
in Theorem 7 can now easily be established.

▶ Proposition 28. Deciding whether π∀
d(R) ̸= ∅ is in ExpSpace, measured in terms of the

size of its associated nfa AR.

Proof. For an ExpSpace algorithm, we first construct an NFA B = (Q,Σd
# , δ, q0, F ) whose

language is
(
Strip

(
pd(L(AR))

)
∩ L

)
. We have |Q| ≤ 2|QR|+d+2, where QR is the set of

states of AR, and hence B can be constructed in exponential space. It remains to show that
non-emptiness of L(B) ∩ L can be decided in exponential space.

Clearly, we cannot explicitly construct an nfa for this language. Let A = (S,Σd
# , δ , s0, F )

be the the nfa for L , we can however non-deterministically guess a word in L(B) ∩ L(A )
letter by letter as follows. We keep track of a configuration of the form (Q′, s) ∈ 2Q × S,
which initially is ({q0}, s0). Then we repeatedly non-deterministically guess some a ∈ Σd

#

and update (Q′, s) to (δ(Q′, a), δ (s, a)) until we reach a configuration (Q′, s) such that
Q′ ∩ F = ∅ and s ∈ F . Clearly, the word obtained by this sequence of letters is in L(B) and
L(L ). The overall membership in ExpSpace is then a consequence of Savitch’s theorem
and the observation that the length of the shortest word in L(B) ∩ L is bounded by
2(2|Q|+d+2)+d+2. ◀

CONCUR 2023



13:16 Universal Quantification Makes Automatic Structures Hard to Decide

6 Conclusion

In this paper, we studied the computational complexity of eliminating universal quantifiers
in automatic structures. We showed that, in general, this is a computationally challenging
problem whose associated decision problem is ExpSpace-complete. Our result further
reinforces the intuition already stemming from [13] that, in general, the alternation of
quantifiers requires “complex” automata.

It would be interesting to understand whether it is possible to identify natural sufficient
conditions on regular languages for which a universal projection step does not result in a
doubly-exponential blow-up and only leads to, e.g., polynomial or singly exponential growth.
Results of this kind have been obtained in model-theoretic terms for structures of bounded
degree [14, 9], but we are not aware of a systematic study of questions of this kind on the
level of regular languages.
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