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This is (essentially) a follow-up talk about two topics Émilie mentioned in her beautiful talk:
Cobhman’s theorem and using decidability to prove theorems in combinatorics on words.

A logician’s point of view.

Presburger (1929). The theory of (N,+) is decidable.

Gödel (1931). The theory of (N,+, ·) is undecidable.

A classical research program in logic. Study expansions of (N,+) by fragments of
multiplication.

Putman (1958). The theory of (N,+, {n2 : n ∈ N}) is undecidable.

A closely connected program. Study expansions of (R, <,+,N) by fragments of
multiplication.
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Cobhman’s theorem and using decidability to prove theorems in combinatorics on words.

A logician’s point of view.

Presburger (1929). The theory of (N,+) is decidable.
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A strong version of Cobham’s theorem.



Cobham’s theorem (1969). Let k, ℓ ≥ 2 be two multiplicatively independent integers. A set
X ⊆ N is both k-recognizable and ℓ-recognizable if and only if it is ultimately periodic.

A set X ⊆ N is k-recognizable if the language consisting of the base-k representations of the
elements of X is accepted by a finite automaton.

Examples.

▶ kN is k-recognizable,

▶ {n ∈ N : s2(n) is even } is 2-recognizable, where s2(n) is the binary digit sum -
Thue-Morse set.
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A set X ⊆ Nn is k-recognizable if the language consisting of the base-k representations of the
elements of X is accepted by a finite automaton.

Semenov (1977). Let k , ℓ ∈ N≥2 be multiplicatively independent. A set X ⊆ Nn is both
k-recognizable and ℓ-recognizable if and only if it is semilinear.

Ginsburg-Spanier (1966). A subset of Nn is semilinear if and only if it is definable in (N,+).

Büchi arithmetic. For k ∈ N≥2, let Vk(x) : N → kN be the function that maps x to the
largest power of k dividing x .

Büchi(1960)-Bruyère(1985). Let k ∈ N≥2 and X ⊆ Nn. Then X is k-recognizable if and
only if X is definable in (N,+,Vk). Thus, the theory of (N,+,Vk) is decidable. In particular,
for each k-recognizable X ⊆ Nn, the theory of (N,+,X ) is decidable.

Cobham-Semenov restated. Let k, ℓ ∈ N≥2 be multiplicatively independent. A set X ⊆ Nn

is definable in both (N,+,Vk) and (N,+,Vℓ) if and only if it is definable in (N,+).
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H.-Schulz (2022). Let k, ℓ ∈ N≥2 be multiplicatively independent, and let X ⊆ Nm and
Y ⊆ Nn be such that

▶ X is k-recognizable, but not semilinear,

▶ Y is ℓ-recognizable, but not semilinear.

Then the theory of (N,+,X ,Y ) is undecidable.

H.-Schulz restated. Let k , ℓ ∈ N≥2 be multiplicatively independent, and let X ⊆ Nm and
Y ⊆ Nn be such that

▶ X is definable in (N,+,Vk), but not in (N,+),

▶ Y is definable in (N,+,Vℓ), but not in (N,+).

Then the theory of (N,+,X ,Y ) is undecidable.

Proof of Cobham-Semenov.
Suppose X ⊆ Nn is definable in both (N,+,Vk) and (N,+,Vℓ), but not in (N,+). Then the
theory of (N,+,X ,X ) is undecidable. However, then the theory of (N,+,X ) is undecidable.
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Villemaire (1992). Let k , ℓ ∈ N≥2 be multiplicatively independent. The theory of
(N,+,Vk ,Vℓ) is undecidable.

Bès (1996). Let k , ℓ ∈ N≥2 be multiplicatively independent, and let Y be definable in
(N,+,Vℓ), but not in (N,+). Then the theory of (N,+,Vk ,Y ) is undecidable.

In both cases (N,+,Vk ,Vℓ) and (N,+,Vk ,Y ) define multiplication. Hence undecidability
follows from Gödel’s theorem that the theory of (N,+, ·) is undecidable.
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(N,+)Vk Vℓ
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early as 1985, and it has been restated in the literature many times.
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This is kind of unfortunate. Even the theory of (N,+, 2N, 3N) includes many non-trivial
number-theoretic statements about 2 and 3.

Corollary of Baker’s theorem on linear forms. For every m ∈ N, there exists C (m) such
that if n1, n2 ∈ N with 2n1 − 3n2 = m, then n1, n2 ≤ C .

In (N,+, 2N, 3N):

∀u∃v∀x ∈ kN∀y ∈ ℓN (x ≥ v ∨ y ≥ v) → |x − y | > u.

What does that mean?

You probably can’t automatically prove theorems worth a Fields medal.

Open question. What fragments of the theory of (N,+, 2N, 3N) are decidable?
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For simplicity, let k = 2 and ℓ = 3. So consider (N,+, 2N, 3N).

Let λ : N → 2N map x to the unique element 2m ∈ 2N with 2m ≤ x < 2m+1.

For y ∈ 2N, define S(y) to be the set of all x ∈ 3N such that λ(x − λ(x)) = y .

In words: S(y) is the set of all powers of 3 for which y is the second largest power of 2 that
appears in the binary representation of x .

For example: 27 = 16 + 8 + 2 + 1. So 27 ∈ S(8).

Fact. For all y ∈ 2N, S(y) is finite. However, for all m, n ∈ N there is y ∈ 2N such that y > m
and |S(y)| > n.
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Main Lemma. Let m, n ∈ N, let Z1, . . . ,Zm be a partition of {1, . . . , n}. Then there are
s ∈ N>0 and t1 < · · · < tn such that for i = 1, . . . ,m

S(2s+i ) ∩ [3t1 , 3tn ] = {3tj : j ∈ Zi}.

Z1 = 1, 3, 5,

Z2 = 2, 6, 7,

Z3 = 4

3t1 3t2 3t3 3t4 3t5 3t6 3t7

2s+1

2s+2

2s+3

▶ Proof of Main Lemma just uses density of 2−N3N in R>0.

▶ This allows us to code/interpret arbitrary large finite subsets of N2.

▶ Such theories are known to be undecidable, as the halting problem or the tiling problem
can be encoded in such theories.
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Schulz (2022). (N,+, kN, ℓN) does not define multiplication.

Definition. A set X ⊆ Z has zero natural density if

lim sup
n→∞

|X ∩ {−n,−n + 1, . . . , n − 1, n}|
2n + 1

= 0.

The set X is piecewise syndetic if there is b ∈ N such that there are arbitrarily long intervals
of Z where the gaps in X are bounded by b.

Schulz (2022). (‘Friedman-Miller for Presburger’) Let E ⊆ Z be such that for every m ∈ N
and every h : Zm → Z definable in (Z, <,+), the image h(Em) has zero natural density. Then
every subset of Z definable in (Z, <,+,E )# is either piecewise syndetic or has zero natural
density.

Schulz (2022). Let E be the union 2N ∪ 3N, and let f : Zm → Z be definable in (Z, <,+).
Then the image f (En) has zero natural density.

Folklore. The set of square-free integers is not piecewise syndetic and does not have zero
natural density.
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Combinatorics on words.



We observed that {n ∈ N : s2(n) is even } is 2-recognizable, where s2(n) is the binary digit
sum. Thus the function f : N → {0, 1} given by

n 7→

{
0 if s2(n) is even

1 otherwise.

is definable in (N,+,V2).

The word f (0)f (1)f (2) . . . is the Thue-Morse sequence.

Jeff Shallit’s idea. Use decision procedure for (N,+,V2) to decide statements about the
Thue-Morse sequence.

Example. To check that the Thue-Morse sequence in not eventually periodic, we have to
decide

(N,+,V2) |= ∀p (p > 0) →
(
∀i ∃j j > i ∧ f (j) ̸= f (j + p)

)
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Different words.

The characteristic Sturmian word with slope a is the infinite
{0, 1}-word ca = ca(0)ca(1)ca(2) . . . such that for all n ∈ N

ca(n) = ⌊a(n + 1)⌋ − ⌊an⌋ − ⌊a⌋.

Example. Let a = 1/φ, where φ is the golden ration. Then ca starts with 0100101001.This
word is also called the Fibonacci word:

S0 := 0, S1 := 01,S2 := 010,S3 := 01001,S4 := 01001010,S5 := 0100101001001 . . .

Goal. Use decidability to prove theorems about Sturmian words.

Problem. No Sturmian word with irrational slope is definable in (N,+,Vk) for any k .

Solution. Replace k-ary representations by different non-standard representations.
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A continued fraction expansion [a0; a1, . . . , ak , . . . ] is an expression of the form

a0 +
1

a1 +
1

a2+
1

a3+
1
. . .

Let a be a real number with continued fraction expansion [a0; a1, . . . , ak , . . . ].

Set q−1 := 0 and q0 := 1, and for k ≥ 0,

qk+1 := ak+1 · qk + qk−1.

Example. 1/φ = [0; 1, 1, . . . ] and
√
2− 1 = [0; 2, 2, . . . ] and

√
3− 1 = [0; 1, 2, 1, 2, . . . ].

So for a = 1/φ, we get that qk = Fk , where Fk is the k-th Fibonacci number.

Zeckendorf representation (1972). Let N ∈ N and Fk be the k-th Fibonacci number. Then
N can be written uniquely as

N =
n∑

k=1

bk+1Fk ,

where bk ∈ {0, 1} and if bk+1 = 1, then bk = 0.
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Example.

F−1 = 0,F0 = 1,F1 = 1,F2 = 2,F3 = 3,F4 = 5, F5 = 8,...

Zeckendorf representation of 9 is 8 + 1 and not 5 + 3 + 1.

Ostrowski (1918). Every natural number N can be written uniquely as

N =
n∑

k=0

bk+1qk ,

where bk ∈ N such that b1 < a1, bk ≤ ak and, if bk = ak , bk−1 = 0.
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Let Va : N → N be the function that maps x ≥ 1 with Ostrowski representation bn . . . b1 to the
least qk with bk+1 ̸= 0, and 0 to 1.

H.-Terry (2016). Let a be quadratic. The first-order logical theory FO(N,+,Va) is decidable.

H.-Ma-Oei-Schaeffer-Schulz-Shallit (2021). The first-order logical theory of

{(N,+,Va) : a ∈ (0, 1) \Q}

is decidable. That is: it is decidable whether statements hold in all structures of the form
(N,+,Va).

Proof Strategy. Show that these structures are uniformly ω-automatic. Uses general adder in
Ostrowski numeration systems due to Baranwal, Schaeffer and Shallit.
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The characteristic Sturmian word with slope a is the infinite
{0, 1}-word ca = ca(0)ca(1)ca(2) . . . such that for all n ∈ N

ca(n) = ⌊a(n + 1)⌋ − ⌊an⌋ − ⌊a⌋.

Fact. Let n ∈ N≥1. Then the following are equivalent:

▶ the n-th digit of the characteristic Sturmian word with slope a is 1.

▶ the a-Ostrowski representation of n ends with an odd number of 0’s.

Corollary. The set
{n ∈ N : ca(n) = 1}

is definable in (N,+,Va).

H.-Ma-Oei-Schaeffer-Schulz-Shallit (2021). The theory TSturmian of

{(N,+, 0, 1, n 7→ ca(n)) : a ∈ (0, 1) \Q }

is decidable.
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Let Lc be the language of Na := (N,+, 0, 1, n 7→ ca(n)).

Consider the Lc -sentence φ

∀p (p > 0) →
(
∀i ∃j j > i ∧ c(j) ̸= c(j + p)

)
We observe that

Na |= φ if and only if ca is not eventually periodic.

Thus

TSturmian |= φ if and only if all Sturmian words are not evenutually periodic.

The decision procedure for TSturmian allows us to check that no Sturmian word is eventually
periodic.
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Given a word w ∈ {0, 1}∗, let wR be the reverse of w . We say w is a palindrome if w = wR .

Consider the following Lc -formula ψ(i , n):

∀j(j ≤ n → c(i + j) = c(i + n − j)).

Then for i , n ∈ N

Na |= ψ(i , n) if and only if ca(i) . . . ca(i + n) is a palindrome.

Thus

TSturmian |= ∀n > 0∃i ψ(i , n)
if and only if

every characteristic Sturmian word contains palindromes of every length.
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For w ∈ {0, 1}∗, let w be the {0, 1}-word obtained by replacing each 1 in w by 0 and each 0 in
w by 1. We say v is an antisquare if v = ww .

Consider the following Lc -formula χ(i , n):

∀j(j ≤ n → c(i + j) ̸= c(i + n + 1 + j)).

Then for i , n ∈ N

Na |= χ(i , n) if and only if ca(i) . . . ca(i + 2n) is an antisquare.

Thus

TSturmian |= ∃m∀i∀n (χ(i , n) → n ≤ m)

if and only if

every characteristic Sturmian word contains finitely many antisquares.
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An implementation: Pecan

▶ Try Pecan at http://reedoei.com/pecan

▶ Git: https://github.com/ReedOei/Pecan

Pecan improves on Walnut by Mousavi, another automated theorem prover for deciding
combinatorial properties of automatic words, by using Büchi automata instead of finite
automata.

This difference enables Pecan to handle uncountable families of sequences, allowing us quantify
over all Sturmian words.

We used Pecan to re-prove theorems from papers about Sturmian words (papers as recent as
2020) and have established first new results. Currently working to prove a conjecture of Jason
Bell.

http://reedoei.com/pecan
https://github.com/ReedOei/Pecan


Max Final
Name Quant. At. Runtime States Edges States Edges

Mirror invariant ∃ 1 8.1 1440 16840 1129 9666
Unbordered ∃3 2 0.5 275 1156 92 410
Cube ∃ 4 0.7 936 5956 126 561
Least period ∀ 4 2605.2 352577 6098198 577 4161
Max unb. subf. ∀ 4 26.4 25200 196575 585 4345
Palindrome ∃2 4 5.1 1934 12337 922 6274
Period ∃2 5 64.1 5853 103886 1660 17570
Recurrent ∀∃ 5 272.6 61713 960207 34 212
Special factor ∃3∀ 8 1361.8 17738 103274 4594 25349
Factor Lt (idx) ∃∀2 11 702.7 1057221 22348882 2204 25026
Ev. periodic ∃2∀∃2 12 216.6 78338 1001075 1 0
Reverse factor ∃∀2 12 842.0 1408050 22780414 1440 16840
Antipalindrome ∃2∀3 13 242.2 78396 1668960 200 834
Antisquare ∀3 13 1844.3 2542937 31570114 136 539
Square ∀3 13 2138.0 1908657 23683717 155 747
(01)∗|(10)∗ ∀ 16 77.9 5409 72739 103 456



▶ Of course, Pecan can also be used to produce part of a proof rather than just proving
first-order statements.

▶ Decision procedure is more general than what is presented here. For example, we can
check whether a given statement holds for a dense subset of Sturmian words.

▶ We can also check whether statements hold for all elements in certain subsets of irrational
numbers:

1. the set of all irrational a such that the terms in the continued fraction expansion of a are
powers of 2,

2. the set of all irrational a such that the terms in the continued fraction expansion of a are not
in some fixed finite set, and

3. the set of all irrational a such that all even terms in their continued fraction expansion are 1.

What does that mean?

While you probably can’t automatically prove theorems worth a Fields medal, there are
interesting non-trivial mathematical theorems Pecan can handle for you.
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