
10
10

6

Worlds and Beyond: Efficient Representation and Processing of
Incomplete Information

Lyublena Antova, Christoph Koch, and Dan Olteanu

Lehrstuhl f̈ur Informationssysteme
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Abstract

We present a decomposition-based approach to manag-
ing incomplete information. We introduceworld-set decom-
positions (WSDs), a space-efficient and complete represen-
tation system for finite sets of worlds. We study the prob-
lem of efficiently evaluating relational algebra queries on
world-sets represented by WSDs. We also evaluate our tech-
nique experimentally in a large census data scenario and
show that it is both scalable and efficient.

1 Introduction

Incomplete information is commonplace in real-world
databases. Classical examples can be found in data inte-
gration and wrapping applications, linguistic collections, or
whenever information is manually entered and is therefore
prone to inaccuracy or partiality.

There has been little research so far into expressiveyet
scalablesystems for representing incomplete information.
Current techniques can be classified into two groups. The
first group includes representation systems such asv-tables
[14] andor-set relations[15] which are not strong enough
to represent the result of any relational algebra query within
the same formalism. In v-tables the tuples can contain both
constants and variables, and each combination of possible
values for the variables yields a possible world. Relations
with or-sets can be viewed as v-tables, where each variable
occurs only at a single position in the table and can only
take values from a fixed finite set, the or-set of the field oc-
cupied by the variable. The so-calledc-tables[14] belong to
the second group of formalisms. They extend v-tables with
conditions specified by logical formulas over the variables,
thus constraining the possible values. Although c-tables are
a strong representation system, they have not found appli-
cation in practice. The main reason for this is probably that
managing c-tables directly is rather inefficient. Even very
basic problems such as deciding whether a tuple is in at least

one world represented by the c-table are intractable [2].
As a motivation, consider two manually completed

forms that may originate from a census and which allow
for more than one interpretation (Figure 1). For simplic-
ity we assume that social security numbers consist of only
three digits. For instance, Smith’s social security number
can be read either as “185” or as “785”. We can represent
the available information using a relation with or-sets:

(TID) S N M
t1 { 185, 785} Smith { 1, 2}
t2 { 185, 186} Brown { 1, 2, 3, 4}

It is easy to see that this or-set relation represents2 · 2 ·
2 · 4 = 32 possible worlds.

Given such an incompletely specified database, it must
of course be possible to access and process the data. Two
data management tasks shall be pointed out as particularly
important, the evaluation of queries on the data anddata
cleaning[16, 13, 17], by which certain worlds can be shown
to be impossible and can be excluded. The results of both
types of operation turn out not to be representable by or-
set relations in general. Consider for example the integrity
constraint that all social security numbers be unique. For
our example database, this constraint excludes 8 of the 32
worlds, namely those in which both tuples have the value
185 as social security number. It is impossible to repre-
sent the remaining 24 worlds using or-set relations. This is
an example of a constraint that can be used for data clean-
ing; similar problems are observed with queries, e.g., the
query asking for pairs of persons with differing social secu-
rity numbers.

What we could do is store each world explicitly using
a table called aworld-set relationof a given set of worlds.
Each tuple in this table represents one world and is the con-
catenation of all tuples in that world (see Figure 2).

The most striking problem of world-set relations is their
size. If we conduct a survey of 50 questions on a popula-
tion of 200 million and we assume that one in104 answers
can be read in just two different ways, we get2106

worlds.
Each such world is a substantial table of 50 columns and
2 · 108 rows. We cannot store all these worlds explicitly in



Name:


Marital Status:


Social Security Number:


Name:


Marital Status:


Social Security Number:


(1) single
 (2) married


(3) divorced
 (4) widowed


(1) single
 (2) married


(3) divorced
 (4) widowed


Figure 1. Two completed survey forms.

t1.S t1.N t1.M t2.S t2.N t2.M

185 Smith 1 186 Brown 1
185 Smith 1 186 Brown 2
185 Smith 1 186 Brown 3
185 Smith 1 186 Brown 4
185 Smith 2 186 Brown 1

...
785 Smith 2 186 Brown 4

Figure 2. World-set relation containing only
worlds with unique social security numbers.

a world-set relation (which would have1010 columns and
2106

rows). Data cleaning will often eliminate only some of
these worlds, so a DBMS should manage those that remain.

This paper aims at dealing with this complexity and pro-
poses the new notion ofworld-set decompositions (WSDs).
These are decompositions of a world-set relation into sev-
eral relations such that their product (using the product op-
eration of relational algebra) is again the world-set relation.

Example 1.1 The world-set represented by our initial or-
set relation can also be represented by the product

t1.S

185
785

×
t1.N

Smith
×

t1.M

1
2

×
t2.S

185
186

×
t2.N

Brown
×

t2.M

1
2
3
4

Example 1.2 In the same way we can represent the result
of data cleaning with the uniqueness constraint for the social
security numbers as the product of Figure 3.

t1.S t2.S

185 186
785 185
785 186

×
t1.N

Smith
×

t1.M

1
2

×
t2.N

Brown
×

t2.M

1
2
3
4

Figure 3. WSD of the relation in Figure 2.
One can observe that the result of this product is exactly

the world-set relation in Figure 2. The presented decompo-

sition is based on theindependencebetween sets of fields,
subsequently calledcomponents. Only fields that depend on
each other, for examplet1.S andt2.S, belong to the same
component. Since{t1.S, t2.S} and {t1.M} are indepen-
dent, they are put into different components.

In practice, it is often the case that fields or even tu-
ples carry the same values in all worlds. For instance, in
the census data scenario discussed above, we assumed that
only one field in 10000 has several possible values. Such a
world-set decomposes into a WSD in which most fields are
in component relations that have precisely one tuple.

We will also consider a refinement of WSDs,WSDTs,
which store information that is the same in all possible
worlds once and for all in so-calledtemplate relations.

Example 1.3 The world-set of the previous examples can
be represented by the WSDT of Figure 4.

Template S N M
t1 ? Smith ?
t2 ? Brown ?

t1.S t2.S
185 186
785 185
785 186

×
t1.M

1
2

×

t2.M
1
2
3
4

Figure 4. WSD with a template relation.

WSDTs combine the advantages of WSDs and c-tables.
In fact, WSDTs can be naturally viewed as c-tables whose
formulas have been put into anormal formrepresented by
the component relations, and null values ‘?’ in the template
relations represent fields on which the worlds disagree. In-
deed, each tuple in the product of the component relations
is a possible value assignment for the variables in the tem-
plate relation. The following c-table with global condition
Φ is equivalent to the WSDT in Figure 4.

T S N M
x Smith y

z Brown w

Φ = ((x = 185 ∧ z = 186) ∨ (x = 785 ∧ z = 185) ∨

(x = 785 ∧ z = 186)) ∧ (y = 1 ∨ y = 2) ∧

(w = 1 ∨ w = 2 ∨ w = 3 ∨ w = 4)

The technical contributions of this paper are as follows.

• We formally introduce WSDs and WSDTs and study
some of their properties. Our notion is a refinement
of the one presented above and allows to represent
worlds over multi-relation schemas which contain re-
lations with varying numbers of tuples. WSD(T)s can
represent any finite set of possible worlds over rela-
tional databases and are therefore a strong representa-
tion system forany relational query language.

• A practical problem with WSDs and WSDTs is that a
DBMS that manages such representations has to sup-
port relations of arbitrary arity: the schemata of the
component relations of a decomposition depend on the



data. Unfortunately, DBMS (e.g. PostgreSQL) in prac-
tice often do not support relations beyond a fixed arity.

For that reason we present refinements of the notion
of WSDs, theuniform WSDs (UWSDs), and their ex-
tension by template relations, theUWSDTs, and study
their properties as representation systems.

• We show how to process relational algebra queries
over world-sets represented by UWSDTs. For illus-
tration purposes, we discuss query evaluation in the
context of the much more graphic WSDs.

We also develop a number of optimizations and tech-
niques for normalizing the data representations ob-
tained by queries to support scalable query processing
even on very large world-sets.

• We describe a prototype implementation built on top
of the PostgreSQL RDBMS. Our system is called
MayBMS and supports the management of incomplete
information using UWSDTs.

• We report on our experimental evaluation of UWSDTs
as a representation system for large finite sets of pos-
sible worlds. Our experiments show that UWSDTs al-
low highly scalable techniques for managing incom-
plete information. We found that the size of UWSDTs
obtained as query answers or data cleaning results re-
mains close to that of a single world. Furthermore, the
processing time for queries on UWSDTs is also com-
parable to processing just a single world and thus a
classical relational database.

• For our experiments, we develop data cleaning tech-
niques in the context of UWSDTs. To clean data of in-
consistent worlds we chase a set of equality-generating
dependencies on UWSDTs, which we briefly describe.

WSDs are designed to cope with large sets of worlds,
which exhibit local dependencies and large commonalities.
Note that this data pattern can be found in many applica-
tions. Besides the census scenario, our technical report [4]
describes two further applications: managing inconsistent
databases using minimal repairs [7, 9] and medicine data.

A fundamental assumption of this work is that one wants
to managefinite sets of possible worlds. This is justified
by previous work on representation systems starting with
Imielinski and Lipski [14], by recent work [12, 3, 8], and
by current application requirements. Our approach can
deal with databases with unresolved uncertainties. Such
databases are still valuable. It should be possible to do
data transformations that preserve as much information as
possible, thus necessarily mapping between sets of possi-
ble worlds. In this sense, WSDs represent acompositional
frameworkfor querying and data cleaning. A different ap-
proach is followed in, e.g., [7, 10], where the focus is on
finding certain answersof queries on incomplete and in-
consistent databases.

Related Work. The probabilistic databases of [12, 11] and
the dirty relations of [3] are examples of practical repre-
sentation systems that are not strong for relational algebra.
Such formalisms close the possible worlds semantics using
clean answers [3] and probabilistic-ranked retrieval [12].
We show in [4] how a simple probabilistic WSD exten-
sion can represent the probabilistic databases of [12] and
the dirty relations of [3].

In parallel to our approach, [19, 8] propose ULDBs
that combine uncertainty and a low-level form of lineage
to model any finite world-set. Like the dirty relations of
[3], ULDBs represent a set of independent tuples with al-
ternatives. Lineage is then used to represent dependencies
among alternatives of different tuples and thus is essential
for the expressive power of the formalism.

As both ULDBs and WSDs can model any finite world-
set, they inherently share some similarities, yet differ inim-
portant aspects. WSDs support efficient algorithms for find-
ing a minimal data representation based on relational fac-
torization. Differently from ULDBs, WSDs allow depen-
dencies at the level of tuple fields, not only of tuples. This
causes, for instance, or-set relations to have linear represen-
tations as WSDs, but (in general) exponential representa-
tions as ULDBs. As reported in [8], resolving tuple depen-
dencies, i.e., tracking which alternatives of different tuples
belong to the same world, often requires to compute ex-
pensive lineage closure. Additionally, query operations on
ULDBs can produce inconsistencies and anomalies, such as
erroneous dependencies and inexistent tuples. In contrast,
WSDs share neither of these pitfalls. As no implementation
of ULDBs was available at the time of writing this docu-
ment, no experimental comparison of ULDBs and WSDs
could be established. ULDB encodings of the examples in
this section are given at the MayBMS project homepage [5].

2 Preliminaries

We use the named perspective of the relational model
with the operations selectionσ, projection π, product
×, union ∪, difference −, and attribute renamingδ
(cf. e.g. [1]). A relational schemais a tuple Σ =
(R1[U1], . . . , Rk[Uk]), where eachRi is a relation name
andUi is a set of attribute names. LetD be a set of do-
main elements. Arelation over schemaR[A1, . . . , Ak] is a
set of tuples(A1 : a1, . . . , Ak : ak) wherea1, . . . , ak ∈ D.
A relational databaseA over schemaΣ is a set of relations
RA, one for each relation schemaR[U ] from Σ. Some-
times, when no confusion of database may occur, we will
useR rather thanRA to denote one particular relation over
schemaR[U ]. By the size of a relationR, denoted|R|, we
refer to the number of tuples inR. For a relationR over
schemaR[U ], let S(R) denote the setU of its attributes
and letar(R) denote the arity ofR.



A productm-decompositionof a relationR is a set of
non-nullary relations{C1, . . . , Cm} such thatC1 × · · · ×
Cm = R. The relationsC1, . . . , Cm are calledcomponents.
A productm-decomposition ofR is maximalif there is no
productn-decomposition ofR with n > m.

A set ofpossible worlds(or world-set) over schemaΣ is
a set of databases over schemaΣ. Let W be a set of struc-
tures,rep be a function that maps fromW to world-sets of
the same schema. Then(W, rep) is astrong representation
systemfor a query language if, for each queryQ of that lan-
guage and eachW ∈ W such thatQ is applicable to the
worlds in rep(W), there is a structureW ′ ∈ W such that
rep(W ′) = {Q(A) | A ∈ rep(W)}. Obviously,

Lemma 2.1 If rep is a function from a set of structuresW
to the set of all finite world-sets, then(W, rep) is a strong
representation system for any relational query language.

3 World-Set Decompositions

In order to use classical database techniques for storing
and querying incomplete data, we develop a scheme for rep-
resenting a world-setA by a single relational database.

Let A be a finite world-set over schemaΣ =
(R1, . . . , Rk). For eachR in Σ, let |R|max = max{|RA| :
A ∈ A} denote the maximum cardinality of relation
R in any world of A. Given a worldA with RA =
{t1, . . . , t|RA|}, let tRA be the tuple obtained as the con-
catenation (denoted◦) of the tuples ofRA in an arbitrary
order padded with a special null value⊥ 6∈ D up to arity
ar(R) · |R|max,

tRA := t1 ◦ · · · ◦ t|RA| ◦ (⊥, . . . . . . . . . . . . ,⊥
︸ ︷︷ ︸

ar(R)·(|R|max−|RA|)

).

Then tupletA := tRA
1

◦· · ·◦tRA
k

encodes all the information
in world A. The “dummy” tuples with⊥-values are only
used to ensure that the relationR has the same number of
tuples in all worlds inA.

By a world-set relationof a world-setA, we denote the
relation{tA | A ∈ A}. This world-set relation has schema
{R.ti.Aj | R[U ] ∈ Σ, 1 ≤ i ≤ |R|max, Aj ∈ U}. Note
that in defining this schema we useti to denote the position
(or identifier) of tupleti in tRA and not its value.

Given the above definition that canonically turned ev-
ery world in a tuple of a world-set relation, computing the
initial world-set is an easy exercise. In order to have ev-
ery world-set relation define a world-set, let a tuple ex-
tracted from sometRA be in RA iff it does not contain
any occurrence of the special symbol⊥. That is, we map
tRA = (a1, . . . , aar(R)·|R|max

) to RA as

tRA 7→ {(aar(R)·k+1, . . . , aar(R)·(k+1)) | 0 ≤ k < |R|max,

aar(R)·k+1 6= ⊥, . . . , aar(R)·(k+1) 6= ⊥}.

Observe that although world-set relations are not unique
as we have left open the ordering in which the tuples of
a given world are concatenated, all world-set relations of
a world-setA are equally good for our purposes because
they can be mapped invariantly back toA. Note that for
each world-set relation a maximal decomposition exists, is
unique, and can be efficiently computed [6].

Definition 3.1 Let A be a world-set andW a world-set re-
lation representingA. Then aworld-setm-decomposition
(m-WSD)of A is a productm-decomposition ofW .

Somewhat simplified examples of world-set relations
and WSDs over a single relationR (thus “R” was omitted
from the attribute names of the world-set relations) were
given in Section 1. Further examples can be found in Sec-
tion 4. It should be emphasized that with WSDs we can
also represent multiple relational schemata and even com-
ponents with fields from different relations.

It immediately follows from our definitions that

Proposition 3.2 Any finite set of possible worlds can be
represented as a world-set relation and as a1-WSD.

Corollary 3.3 (Lemma 2.1) WSDs are a strong represen-
tation system for any relational query language.

As pointed out in Section 1, this is not true for or-set
relations. For the relatively small class of world-sets that
can be represented as or-set relations, the size of our repre-
sentation system is linear in the size of the or-set relations.
As seen in the examples, our representation ismuch more
space-efficient than world-set relations.
Adding Template Relations. We now present our refine-
ment of WSDs with so-calledtemplate relations. A tem-
plate stores information that is the same in all possible
worlds and contains special values ‘?’ /∈ D in fields at which
different worlds disagree.

Let Σ = (R1, . . . , Rk) be a schema andA a fi-
nite set of possible worlds overΣ. Then, the database
(R0

1, . . . , R
0
k, {C1, . . . , Cm}) is called anm-WSD with

template relations (m-WSDT) of A iff there is a WSD
{C1, . . . , Cm,D1, . . . ,Dn} of A such that|Di| = 1 for
all i and if relationDi has attributeRj .t.A and valuev in
its uniqueRj .t.A-field, then the template relationR0

j has a
tuple with identifiert whoseA-field has valuev.

Of course WSDTs again can represent any finite world-
set and are thus a strong representation system for any rela-
tional query language. Example 1.3 shows a WSDT for the
running example of the introduction.
Uniform World-Set Decompositions.In practice database
systems often do not support relations of arbitrary arity
(e.g., WSD components). For that reason we introduce
next a modified representation of WSDs calleduniform



R0 S N M
t1 ? Smith ?
t2 ? Brown 3

C FID LWID VAL
(R, t1, S) 1 185
(R, t2, S) 1 186
(R, t1, S) 2 785
(R, t2, S) 2 185
(R, t1, S) 3 785
(R, t2, S) 3 186
(R, t1, M) 1 1
(R, t1, M) 2 2

F FID CID
(R, t1, S) C1

(R, t1, M) C2

(R, t2, S) C1

W CID LWID
C1 1
C1 2
C1 3
C2 1
C2 2

Figure 5. A UWSDT corresponding to the
WSDT of Figure 4.

WSDs. Instead of having a variable number of component
relations, possibly with different arities, we store all values
in a single relationC that has a fixed schema. We use
the fixed schema consisting of the three relation schemata
C[FID ,LWID ,VAL], F [FID ,CID ],W [CID ,LWID ],
whereFID is a triple1 (Rel ,TupleID ,Attr) denoting the
Attr -field of tupleTupleID in database relationRel .

Given a WSD{C1, . . . , Cm} with schemataCi[Ui], we
populate the corresponding UWSD as follows.

• ((R, t,A), s, v) ∈ C iff, for some (unique)i, R.t.A ∈
Ui and the field of columnR.t.A in the tuple with ids
of Ci has valuev.

• F := {((R, t,A), Ci) | 1 ≤ i ≤ m, R.t.A ∈ Ui},

• (Ci, s) ∈ W iff there is a tuple with identifiers in Ci.

Intuitively, the relationC stores each value from a com-
ponent together with its corresponding field identifier and
the identifier of the component-tuple in the initial WSD
(columnLWID of C). The relationF contains the map-
ping between tuple fields and component identifiers, andW
keeps track of the worlds present for a given component.

In general, the VAL column in the component relation C
must store values for fields of different type. One possibility
is to store all values as strings and use casts when required.
Alternatively, one could have one component relation for
each data type. In both cases the schema remains fixed.

Finally, we add template relations to UWSDs in com-
plete analogy with WSDTs, thus obtaining the UWSDTs.

Example 3.4 We modify the world-set represented in Fig-
ure 3 such that the marital status int2 can only have the
value 3. Figure 5 is then the uniform version of the WSDT
of Figure 4. HereR0 contains the values that are the same
in all worlds. For each field that can have more than one

1That is, FID really takes three columns, but for readability we keep
them together under a common name in this section.

possible value,R0 contains a special placeholder, denoted
by ‘?’. The possible values for the placeholders are defined
in the component tableC. In practice, we can expect that
the majority of the data fields can take only one value across
all worlds, and can be stored in the template relation.

Proposition 3.5 Any finite set of possible worlds can be
represented as a1-UWSD and as a1-UWSDT.

It follows again that UWSD(T)s are a strong representa-
tion system forany relational query language.

4 Queries on Decompositions

In this section we study the query evaluation problem for
WSDs. As pointed out before, UWSDTs are a better repre-
sentation system than WSDs; nevertheless WSDs are sim-
pler to explain and visualize and the main issues regarding
query evaluation are the same for both systems.

The goal of this section is to provide, for each relational
algebra queryQ, a queryQ̂ such that for a WSDW,

rep(Q̂(W)) = {Q(A) | A ∈ rep(W)}.

Of course we want to evaluate queries directly on WSDs
usingQ̂ rather than process the individual worlds usingQ.

When compared to traditional query evaluation, the eval-
uation of relational queries on WSDs poses new challenges.
First, since decompositions in general consist of several
components, a querŷQ that maps from one WSD to another
must be expressed as a set of queries, each of which defines
a different component of the output WSD. Second, as cer-
tain query operations may cause new dependencies between
components to develop, some components may have to be
merged (i.e., part of the decomposition undone using the
product operation×). Third, the answer to a (sub)queryQ0

must be represented within the same decomposition as the
input relations; indeed, we want to compute a decomposi-
tion of world set{(A, Q0(A)) | A ∈ rep(W)} in order
to be able to resort to the input relations as well as the re-
sult ofQ0 within each world. Consider for example a query
σA=1(R) ∪ σB=2(R). If we first computeσA=1(R), we
must not replaceR by σA=1(R), otherwiseR will not be
available for the computation ofσB=2(R). On the other
hand, ifσA=1(R) is stored in a separate WSD, the connec-
tion between worlds ofR and the selectionσA=1 is lost and
we can again not computeσA=1(R) ∪ σB=2(R).

We say that a relationP is a copy of another relationR
in a WSD if R andP have the same tuples in every world
represented by the WSD. For a componentC, an attribute
R.t.Ai of C and a new attributeP.t.B, the functionext
extendsC by a new columnP.t.B that is a copy ofR.t.Ai:

ext(C,Ai, B) := {(A1 : a1, . . . , An : an, B : ai) |

(A1 : a1, . . . , An : an) ∈ C}



Then copy(R,P ) executesC := ext(C,R.ti.A, P.ti.A)
for each componentC and eachR.ti.A ∈ S(C).

Figure 6 presents implementations of the relational alge-
bra operations selection (of the formσAθc or σAθB , where
A andB are attributes,c is a constant, andθ is a compari-
son operation,=, 6=, <, ≤, >, or≥), and relational product
on WSDs. In each case, the input WSD isextendedby the
result of the operation. The operations projection, union,
difference, and renaming are defined in [4].

Let us now have a closer look at the evaluation of re-
lational algebra operations on WSDs. For this, we use as
running example the 7-WSD of Figure 7 representing a set

algorithm select[Aθc] // computeP := σAθcR

begin
copy(R, P );
for each1 ≤ i ≤ |P |max do begin

let C be the component ofP.ti.A;
for each tC ∈ C do

if not (tC .(P.ti.A) θ c) then begin
tC .(P.ti.A) := ⊥
for eachA′ such thatP.ti.A

′ ∈ S(C) do
tC .(P.ti.A

′) := ⊥;
end

end
end

algorithm select[AθB] // computeP := σAθBR

begin
copy(R, P );
for each1 ≤ i ≤ |P |max do begin

let C be the component ofP.ti.A;
let C′ be the component ofP.ti.B;
if (C 6= C′) then

replace componentsC, C′ by C := C × C′;
for each tC ∈ C do

if not (tC .(P.ti.A) θ tC .(P.ti.B)) then begin
tC .(P.ti.A) := ⊥
for eachA′ such thatP.ti.A

′ ∈ S(C) do
tC .(P.ti.A

′) := ⊥;
end

end
end

algorithm product // computeT := R × S

begin
for each1 ≤ j ≤ |S|max and componentC do begin

for eachR.ti.A ∈ S(C) do
C := ext(C, R.ti.A, T.tij .A);

end;
for each1 ≤ i ≤ |R|max and componentC do begin

for eachS.tj .A ∈ S(C) do
C′ := ext(C′, S.tj .A, T.tij .A);

end
end

Figure 6. Evaluating selection and product
operations on WSDs.

of eight worlds over the relationR. Because of space limi-
tations and our attempt to keep the WSDs readable, we con-
sistently show in the following examples only the WSDs of
the result relations.

Selection with conditionAθc. In order to compute a selec-
tion P := σAθc(R), we first compute a copyP of relation
R and subsequently drop tuples ofP that do not match the
selection condition.

Dropping tuples is a fairly subtle operation, since tuples
can spread over several components and a component can
define values for more than one tuple.

Thus a selection must not delete tuples from component
relations, but should mark fields as belonging to deleted tu-
ples using the special value⊥. To evaluateσAθc(R), our
selection algorithm of Figure 6 checks for each tupleti in
the relationP andtC in componentC with attributeP.ti.A
whethertC .(P.ti.A)θc. In the negative case the tupleP.ti
is marked as deleted in all worlds that take values fromtC .
For that,tC .(P.ti.A) is assigned value⊥, and all other at-
tributesP.ti.A

′ of C referring to the same tupleti of P are
assigned value⊥ in tC . This assures that if we later project
away the attributeA of P , we do not erroneously “reintro-
duce” tupleP.ti into worlds that take values fromtC .

Example 4.1 Figure 8 shows the answers toσC=7(R) and
σB=1(R). Note that the resulting WSDs should contain
both the query answerP and the original relationR, but
due to space limitations we only show the representation of
P . One can observe that for both results in Figure 8 we ob-
tain worlds of different sizes. For example the worlds that
take values from the first tuple of the second component re-
lation in Figure 8 (a) do not have a tuplet1, while the worlds
that take values from the second tuple of that component re-
lation containt1.

Selection with conditionAθB. The main added difficulty
of selections with conditionsAθB as compared to selec-
tions with conditionsAθc is that it creates dependencies be-
tween two attributes of a tuple, which do not necessarily
reside in the same component.

As the current decomposition may not capture exactly
the combinations of values satisfying the join condition,
components that have values forA andB of the same tuple
are composed. After the composition phase, the selection
algorithm follows the pattern of the selection with constant.

Example 4.2 Consider the queryσA=B(R), whereR is
represented by the 7-WSD of Figure 7. Figure 9 shows the
query answer, which is a 4-WSD that represents five worlds,
where one world has three tuples, three worlds have two tu-
ples each, and one world has one tuple.

Product. The productT := R × S of two relationsR and
S, which have disjunct attribute sets and are represented by



R.t1.A
1
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×
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×
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7

Figure 7. 7-WSD representing a a set of 8 worlds.

P.t1.A
1
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×
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(a)P := σC=7(R) applied to the WSD of Figure 7.

P.t1.A
1
2

×
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1 0 ⊥
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×
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⊥

×
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(b) P := σB=1(R) applied to the WSD of Figure 7.

Figure 8. Selections P := σC=7(R) and P := σB=1(R) with R from Figure 7.

P.t1.A P.t1.B P.t1.C P.t2.A P.t2.B
1 1 0 ⊥ ⊥
⊥ ⊥ ⊥ ⊥ ⊥
⊥ ⊥ ⊥ 4 4
2 2 7 4 4
2 2 7 ⊥ ⊥

×
P.t2.C

0
×

P.t3.A P.t3.B
6 6

×
P.t3.C

7

Figure 9. P = σA=B(R) with R from Figure 7.
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d f
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(a) WSD of two relationsR andS.

t11.A t12.A
1 1
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t11.B t12.B t21.A t22.A

3 3 5 5
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a a
b b

×
t11.D t21.D t12.C t22.C

c c e e
d d f f

×
t12.D t22.D

g g
h h

(b) WSD of their productR × S.

Figure 10. The product operation R × S.

a WSD requires that the product relationT extends a com-
ponentC with |S|max (respectively|R|max) copies of each
column ofC with values ofR (respectivelyS). Addition-
ally, theith (jth) copy is namedT.tij .A if the original has
nameR.ti.A or S.tj .A.

Example 4.3 Figure 10 (b) shows the WSD for the prod-
uct of relationsR andS represented by the WSD of Fig-
ure 10 (a). To save space, the relationsR andS have been
removed from Figure 10 (b), and attribute names do not
show the relation name “T ”.

Projection. A projectionP = πU (R) on an attribute set
U of a relationR represented by the WSDC is translated
into (1) the extension ofC with the copyP of R, and (2)
projections on the components ofC, where all component
attributes that do not refer to attributes ofP in U are dis-
carded. Before removing attributes, however, we need to

propagate⊥-values, as discussed in the following example.

Example 4.4 Consider the 3-WSD of Figure 11 (a) repre-
senting a set of two worlds forR, where one world contains
only the tuplet1 and the other contains only the tuplet2. Let
P ′ represent the first two components ofR, which contain
all values for the attributeA in both tuples. The relationP ′

is not the answer toπA(R), because it encodes one world
with both tuples, and the information from the third com-
ponent ofR that only one tuple appears in each world is
lost. To compute the correct answer, we progressively (1)
compose the components referring to the same tuple (in this
case all three components), (2) propagate⊥-values within
the same tuple, and (3) project away the irrelevant attributes.
The correct answerP is given in Figure 11 (b).

Despite the component merging done by the projection,
the size of the answer does not grow exponentially, because
of attribute pruning and propagation of⊥-values.



R.t1.A
a

×
R.t2.A

b
×

R.t1.B R.t2.B
c ⊥
⊥ d

(a) WSD for R.

P.t1.A P.t2.A
a ⊥
⊥ b

(b) WSD for P.

Figure 11. Projection P := πA(R).

Union. The algorithm for computing the unionT := R ∪
S of two relationsR andS works similarly to that for the
product. Each componentC containing values ofR or S is
extended such that in each world ofC all values ofR andS
become also values ofT .
Renaming. The operationδA→A′(R) renames attributeA
of relationR to A′ as follows. For each tuplet of R, let
C be the component that has the attributeR.t.A. Then we
rename this attribute toR.t.A′ asC := δR.t.A→R.t.A′(C).
Difference. To compute the difference operationT := R−
S we scan the components of the two relationsR andS.
For the worlds where a tuplet from R does not appear in
S, t becomes a tuple ofT ; otherwise we place⊥-values to
denote thatt is not in these worlds ofT .
Normalizing WSDs. The normalization of a WSD is the
process of finding an equivalent WSD that takes the least
space among all its equivalents. Examples of not normal-
ized WSDs are non-maximal WSDs or WSDs defining in-
valid tuples (i.e., tuples that do not appear in any world).
Note that removing invalid tuples and maximizing world-set
decompositions can be performed in polynomial time [6].

Example 4.5 The WSD of Figure 8 (a) has only⊥-values
for P.t2.C. This means that the tuplet2 of P is absent (or
invalid) in all worlds and can be removed. The equivalent
WSD of Figure 12 shows the result of this operation. Simi-
lar simplifications apply to the WSD of Figure 8 (b), where
tuplest2 andt3 are invalid.

P.t1.A
1
2

×
P.t1.B P.t1.C
⊥ ⊥
2 7

×
P.t3.A

6
×

P.t3.B
6

×
P.t3.C

7

Figure 12. Normalization of WSD of Fig-
ure 8 (a).

Example 4.6 The 4-WSD of Figure 9 admits the equivalent
5-WSD, where the third component is decomposed into two
components. This non-maximality case cannot appear for
UWSDTs, because all but the first component contain only
one tuple and are stored in the template relation, where no
component merging occurs.

5 Experimental Evaluation

The literature knows a number of approaches to repre-
senting incomplete information databases, but little work

has been done so far on expressive yet efficient represen-
tation systems. An ideal representation system would allow
a large set of possible worlds to be managed using only a
small overhead in storage space and query processing time
when compared to a single world represented in a conven-
tional way. In the previous sections we presented the first
step towards this goal. This section reports on experiments
with a large census database with noise represented as a
UWSDT.
Setting. The experiments were conducted on a 3GHz/2GB
Pentium machine running Linux 2.6.8 and PostgreSQL 8.0.
Datasets. The IPUMS 5% census data (Integrated Pub-
lic Use Microdata Series, 1990) [18] used for the experi-
ments is the publicly available 5% extract from the 1990 US
census, consisting of 50 (exclusively) multiple-choice ques-
tions. It is a relation with 50 attributes and 12491667 tuples
(approx. 12.5 million). The size of this relation stored in
PostgreSQL is ca. 3 GB. We also used excerpts represent-
ing the first 0.1, 0.5, 1, 5, 7.5, and 10 million tuples.
Adding Incompleteness. We added incompleteness as fol-
lows. First, we generated a large set of possible worlds by
introducing noise. After that, we cleaned the data by re-
moving worlds inconsistent with respect to a given set of
dependencies. Both steps are detailed next.

We introduced noise by replacing some values with or-
sets2. We experimented with different noise densities:
0.005%, 0.01%, 0.05%, 0.1%. For example, in the 0.1%
scenario one in 1000 fields is replaced by an or-set. The
size of each or-set was randomly chosen in the range
[2,min(8, size)], wheresize is the size of the domain of
the respective attribute (with a measured average of 3.5 val-
ues per or-set). In one scenario we had far more than2624449

worlds, where 624449 is the number of the introduced or-
sets and 2 is the minimal size of each or-set (cf. Figure 13).

We then performed data cleaning using 12 equality gen-
erating dependencies, representing real-life constraints on
the census data. Note that or-set relations are not expressive
enough to represent the cleaned data with dependencies.

To remove inconsistent worlds with respect to given de-
pendencies, we adapted the Chase technique [1] to the con-
text of UWSDTs. We explain the Chase by an example.
Consider the dependency WWII = 1⇒ MILITARY != 4
that requires people who participated in the second world
war to have completed their military service. Assume now
the dependency does not hold for a tuplet in some world
and let C1 and C2 be the components definingt.WWII
and t.MILITARY, respectively. First, the Chase computes
a componentC that defines botht.WWII andt.MILITARY.
In caseC1 andC2 are different, they are replaced by a new
componentC = C1 × C2; otherwise,C is C1. The Chase
removes then fromC all inconsistent worldsw, i.e., worlds

2We consider it infeasible both to iterate over all worlds in secondary
storage, or to compute UWSDT decompositions by comparing the worlds.



Density 0.005% 0.01% 0.05% 0.1%
Initial #comp 31117 62331 312730 624449
After #comp 30918 61791 309778 612956
chase #comp>1 249 522 2843 10880

|C| 108276 217013 1089359 2150935
|R| 12.5M 12.5M 12.5M 12.5M

After #comp 702 1354 7368 14244
Q1 #comp>1 1 4 40 158

|C| 1742 3625 19773 37870
|R| 46600 46794 48465 50499

After #comp 25 56 312 466
Q2 #comp>1 0 1 8 9

|C| 93 269 1682 2277
|R| 82995 83052 83357 83610

After #comp 38 76 370 742
Q3 #comp>1 0 0 0 0

|C| 89 202 1001 2009
|R| 17912 17936 18161 18458

After #comp 1574 3034 15776 30729
Q4 #comp>1 11 28 127 557

|C| 4689 9292 48183 94409
|R| 402345 402524 404043 405869

After #comp 3 10 53 93
Q5 #comp>1 3 10 53 93

|C| 1221 5263 33138 50780
|R| 150604 173094 274116 393396

After #comp 97 189 900 1888
Q6 #comp>1 0 0 0 0

|C| 516 1041 4993 10182
|R| 229534 230113 234335 239488

Figure 13. UWSDTs characteristics for 12.5M
tuples.

wherew.WWII = 1 andw.MILITARY = 4. Repeating these
steps iteratively for each dependency on a given UWSDT
yields a UWSDT satisfying all dependencies.

Q1 := σYEARSCH=17∧CITIZEN=0(R)

Q2 := πPOWSTATE,CITIZEN,IMMIGR(σCITIZEN<>0∧ENGLISH>3(R))

Q3 := πPOWSTATE,MARITAL,FERTIL(σPOWSTATE=POB

(σFERTIL>4∧MARITAL=1(R)))

Q4 := σFERTIL=1∧(RSPOUSE=1∨RSPOUSE=2)(R)

Q5 := δPOWSTATE→P1
(σPOWSTATE>50(Q2)) ⊲⊳P1=P2

δPOWSTATE→P2
(σPOWSTATE>50(Q3))

Q6 := πPOWSTATE,POB(σENGLISH=3(R))

Figure 14. Queries on IPUMS census data.
Figure 13 shows the effect of chasing our dependencies

on the 12.5 million tuples and varying placeholder density.
As a result of merging components, the number of com-
ponents with more than one placeholder (#comp>1) grows
linearly with the increase of placeholder density, reaching
about 1.7% of the total number of components (#comp) in
the 0.1% case. A linear increase is witnessed also by the
chasing time when the number of tuples is also varied.
Queries. Six queries were chosen to show the behavior of
relational operators combinations under varying selectivi-

ties (cf. Figure 14). QueryQ1 returns the entries of US cit-
izens with PhD degree. The less selective queryQ2 returns
the place of birth of US citizens born outside the US that
do not speak English well. QueryQ3 retrieves the entries
of widows that have more than three children and live in
the state where they were born. The very unselective query
Q4 returns all married persons having no children. Query
Q5 uses queryQ2 andQ3 to find all possible couples of
widows with many children and foreigners with limited En-
glish language proficiency in US states with IPUMS index
greater than 50 (i.e., eight ‘states’, e.g., Washington, Wis-
consin, Abroad). Finally, queryQ6 retrieves the places of
birth and work of persons speaking English well.

Figure 13 describes some characteristics of the answers
to these queries when applied on the cleaned 12.5M tu-
ples of IPUMS data: the total number of components
(#comp) and of components with more than one placeholder
(#comp>1), the size of the component relationC, and the
size of the template relationR. One can observe that the
number of components increases linearly with the place-
holder density and that compared to chasing, query evalua-
tion leads to a much smaller amount of component merging.

Figure 15 shows that all six queries admit efficient and
scalable evaluation on UWSDTs of different sizes and
placeholder densities. For accuracy, each query was run ten
times, and the median time for computing and storing the
answer is reported. The evaluation time for all queries but
Q5 on UWSDTs follows very closely the evaluation time
in the one-world case. The one-world case corresponds to
density 0% in our diagrams, i.e., when no placeholders are
created in the template relation and consequently there are
no components. In this case, the original queries (that is,
not the rewritten ones) of Figure 14 were evaluated only on
the (complete) template relation.

An interesting issue is that all diagrams of Figure 15
show a substantial increase in the query evaluation time
for the 7.5M case. As the jump appears also in the one-
world case, it suggests poor memory management of Post-
gres in the case of large tables. We verified this statement by
splitting the 12.5M table into chunks smaller than 5M and
running queryQ1 on those chunks to get partial answers.
The final answer is represented then by the union of each
UWSDT relation from these partial answers.

Although the evaluation of join conditions on UWSDTs
can require theoretically exponential time (due to the com-
position of some components), our experiments suggest that
they behave well in practical cases, as illustrated in Fig-
ures 15 (c) and (e) for queriesQ3 andQ5 respectively. Note
that the time reported forQ5 does not include the time to
evaluate its subqueriesQ2 andQ3.

In summary, our experiments show that UWSDTs be-
have very well in practice. We found that the size of
UWSDTs obtained as query answers remains close to that
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Figure 15. The evaluation time for queries of Figure 14 on UWSD Ts of various sizes and densities.

of one of their worlds. Furthermore, the processing time
for queries on UWSDTs is comparable to processing one
world. The explanation for this is that in practice there are
rather few differences between the worlds. This keeps the
mapping and component relations relatively small and the
lion’s share of the processing time is taken by the templates,
whose sizes are about the same as of a single world.
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