
Query Processing over Uncertain Data

Nilesh Dalvi
Troo.ly Inc.

Dan Olteanu
University of Oxford

SYNONYMS

Query Processing over Probabilistic Data

DEFINITION

An uncertain or probabilistic database is defined as a probability distribution
over a set of deterministic database instances called possible worlds.

In the classical deterministic setting, the query processing problem is to
compute the set of tuples representing the answer of a given query on a given
database. In the probabilistic setting, this problem becomes the computation
of all pairs (t, p), where the tuple t is in the query answer in some random world
of the input probabilistic database with probability p.

SCIENTIFIC FUNDAMENTALS

Representation of Uncertain Data

All aspects of query processing over uncertain data, and in particular its com-
plexity and existing techniques, highly depend on data representation. Since
it is prohibitively expensive to explicitly represent the extremely large set of
all possible worlds of a probabilistic database, one has to settle for succinct
data representations. Three such representations of increasing expressiveness
are discussed next [34].

In tuple-independent (TI) databases, the tuples are independent probabilis-
tic events. A TI database of n tuples represents the probabilistic database that
is the powerset of the input set of n tuples and thus has 2n possible worlds.
In block-independent-disjoint (BID) databases, the tuples are partitioned into
blocks such that tuples within the same block are disjoint events and tuples
from different blocks are independent. A BID database represents all possi-
ble worlds with at most one tuple from each block. In probabilistic conditional
(PC) databases, the tuples are associated with propositional formulas over inde-
pendent random variables. Each total assignment ψ of these random variables
defines a world consisting of those tuples whose formulas are satisfied by ψ. The

1



probability of the world is the product of the probabilities of the assignments of
the random variables in ψ. A TI databases is a PC database where each tuple
is associated with a distinct Boolean random variable. Also, a BID database is
a PC database where each relation is made up of blocks of tuples such that the
formulas of the tuples within a block are mutually exclusive and the formulas
of the tuples from different blocks are over disjoint sets of variables.

PC databases can represent the answers of any relational query over PC
databases. The formula associated with an answer tuple t is called the lineage
of t and explains which tuples must be present in the input database in order
for t to be in the query answer. Given two tuples with formulas φ1 and φ2, their
join is a tuple with lineage φ1 ∧ φ2, their union is a tuple with lineage φ1 ∨ φ2,
and their difference is a tuple with lineage φ1 ∧ ¬φ2.

In contrast to BID and TI databases, PC databases are complete in the
sense that they can represent any probabilistic database. However, the for-
malism defined by conjunctive queries over BIDs is complete. Despite their
restricted nature, TI databases are practical; for instance, inference in Markov
Logic Networks can be reduced to relational query processing over TI databases.

Prime examples of TI databases are the Google Knowledge Vault [8] and
NELL (Never Ending Language Learner, http://rtw.ml.cmu.edu/rtw/) knowl-
edge bases, of BID databases are the Google Squared tables [10], and of PC
databases are the answers and their lineage for relational queries on probabilis-
tic databases in any of the above formalisms.

Complexity of Query Processing

The data complexity of queries over probabilistic databases represented as TI,
BID, or PC databases is #P-hard. This high computational complexity is al-
ready witnessed for simple join queries on TI databases, since the computation
of marginal probabilities may require to enumerate all possible worlds. Several
classes of relational queries, e.g., non-repeating conjunctive queries [5], their
ranking version [27] and extension with negation [12], unions of conjunctive
queries [7], and aggregate queries [30] exhibit an interesting dichotomy property:
the data complexity of every query in any of these classes over TI databases is
either polynomial time or #P-hard. Beyond relational queries and TI databases,
hardness and tractability results have been shown, e.g., for XML queries over
Recursive Markov Chains and their restrictions [3, 24], for graph queries over
probabilistic RDF graphs [25], for event queries over Markovian streams [29],
and for conjunctive queries over graphical models [31].

Query Processing Techniques

To overcome the high complexity of probabilistic query processing, two avenues
of research have been pursued [34]. The first avenue is to identify tractable
queries, i.e., queries computable in polynomial time, and develop efficient pro-
cessing techniques for this subset. Techniques for tractable queries developed

2



in the context of the MystiQ [5] and SPROUT [11] probabilistic database sys-
tems show performance for tractable queries over probabilistic databases close
to that for queries over classical deterministic databases. The second avenue is
to develop techniques that approximate the probabilities of the query answers.
In many applications, probabilities are only needed to rank the query answers
and approximate probabilities may suffice for ranking. Even when probabilities
are returned to the user, it is often desirable to improve performance by sacri-
ficing precision. In addition to MystiQ and SPROUT, Trio [36], Orion [32], and
MayBMS [17] also employ approximate techniques for hard queries.

An orthogonal classification considers whether the probabilistic inference
task is performed inside or outside the database engine. In-database techniques
cast the inference task as query processing in deterministic databases. Out-
database techniques rely on specialized inference methods beyond the capa-
bilities of a database engine, e.g., knowledge compilation techniques. Prime
examples of systems using out-database techniques are Trio, MayBMS, and
PrDB [31], whereas MystiQ, Orion, and MCDB use in-database techniques;
SPROUT uses in-database techniques for classes of tractable queries and out-
database techniques for hard queries. The two types of techniques can also
be combined: In-database approaches are first applied to tractable subproblems
and then out-database approaches are used for the remaining hard subproblems.

We next highlight several techniques for relational query processing over
probabilistic databases. We leave aside processing techniques for complex queries
such as nearest neighbors and skyline queries as they represent a topic on their
own [4]. We also only refer to a few approaches to probabilistic ranking and
refer the reader to a recent monograph for in-depth treatment [18].

In-database techniques

In-database techniques are used for exact evaluation of tractable queries in tuple-
independent probabilistic databases, e.g., using safe plans [6] as discussed below,
and also for approximate evaluation of hard queries, e.g., computing lower and
upper bounds on answer probabilities via dissociation of input probabilistic
events [14] or running Monte Carlo simulations that aggregate the query answers
over several possible worlds sampled from complex probabilistic models [20].

Such techniques extend standard operators in relational plans to compute
both tuples and their probabilities. Examples of extended operators are the
independent join operator, which multiplies the probabilities of the tuples it
joins under the assumption that they are independent, and the independent
project operator, which computes the probability of an output tuple t as 1 −
(1− p1) · · · (1− pn) where p1, . . . , pn are the probabilities of all tuples that are
input to the operator and project into t, again assuming that these tuples are
independent. The selection operator retains the tuples that satisfy its condition,
along with their probabilities.

For a given relational query, not all of its query plans with extended op-
erators compute the probabilities correctly since the independence assumption
for the input to these operators may not hold. If the plan does compute the

3



probabilities correctly for any input database, then it is called a safe query plan.
Safe plans are easily added to a relational database engine, either by small mod-
ifications to the relational operators or even without any change in the engine
by simply rewriting the SQL query to add aggregates that manipulate the prob-
abilities explicitly. If a query admits a safe plan, then its data complexity is
polynomial time because any safe plan can be computed in polynomial time in
the size of the input database by simply evaluating its operators bottom-up.
Consequently, #P-hard queries cannot admit a safe plan. For the class of non-
repeating conjunctive (select-project-join) queries, the selection, independent
join, and independent project operators are complete since the tractable queries
are precisely those that admit safe plans [5]. For TI databases under functional
dependencies, hard queries may become tractable and computable using safe
plans [26].

A variant of this technique is to decouple the computation of answer tuples
from the computation of their probabilities, and to use different query plans
for the two computation tasks. This is motivated by the observation that safe
plans, while necessary for correct probability computation, can be suboptimal
for computing the answer tuples [26]. This approach first computes the answer
tuples and a relational encoding of their lineage using an optimized query plan,
and then it uses the safe plan over the lineage to compute the probabilities of
the answer tuples.

Safe plans can be extended to cope with richer classes of queries. Plans
for tractable unions of conjunctive query terms use an inclusion-exclusion (IE)
operator to compute their probabilities as a function of the probabilities of
conjunctions of subsets of the query terms [7]. Safe plans with an additional
disjoint project operator can compute non-repeating conjunctive queries over
BID databases [28]. This operator sums up the probabilities of all the input
tuples that project into the same output tuple.

Out-database techniques

Out-database query processing techniques are more general than in-database
ones. They work for arbitrary relational queries and probabilistic data repre-
sentations beyond TI databases.

An important class of out-database techniques draws on connections be-
tween probabilistic query processing and knowledge compilation. They compile
the lineage of answer tuples into decision diagrams, e.g., Ordered Binary De-
cision Diagrams (OBDDs) and Deterministic Decomposable Negation Normal
Forms (d-DNNFs), that admit linear-time probability computation. While in
general the compilation can take time exponential in the number of random
variables in the lineage, it takes polynomial time for several known classes
of tractable queries on tuple-independent databases, e.g., the tractable non-
repeating queries with negation [12], the non-repeating inversion-free unions of
conjunctive queries [34], and queries with inequalities [21].

4



Recall that lineage is a propositional formula Φ over Boolean1 random vari-
ables x1 to xn. The idea behind lineage compilation is to recursively apply the
following two steps in the given order:

1. If Φ = ψ1 ∨ · · · ∨ ψm or Φ = ψ1 ∧ · · · ∧ ψm such that ψ1 to ψm are pair-
wise independent or mutually exclusive, then the probability of Φ can be
computed from the probabilities of ψ1 to ψm in linear time. This step pre-
cisely captures the operators independent/disjoint project/join operators
used by safe plans.

2. If the previous step is not applicable (such as for hard queries), then we
apply Shannon expansion (DPLL) on any variable xi in Φ: Φ is equivalent
to a disjunction of two mutually-exclusive expressions xi∧Φxi∨¬xi∧Φ¬xi ,
where Φxi and Φ¬xi are Φ where xi is set to true and false, respectively.
The probability of Φ is the sum of the probabilities of the two mutually-
exclusive formulas, where Φxi

and Φ¬xi
have at least one variable (xi) less

than Φ.

We exhaustively repeat these two steps until we reach the Boolean constants
true or false. Since at each compilation step we can compute in linear time the
probability of the formula using the probabilities of the child subformulas, the
algorithm runs in time linear in the number of steps. The order of variables
xi in Shannon expansion steps drastically influences the number of compilation
steps, which can be at most exponential in the number of variables [34].

If the compilation is stopped at any time before reaching a Boolean constant,
we obtain lower and upper bounds on the true probability; the more compila-
tion steps we run, the tighter the probability interval becomes and thus the
smaller the approximation error, with the new probability interval included in
the previous one. In this sense, this is an anytime approximation algorithm [11].

This lineage compilation approach has been applied to slightly different set-
tings, e.g., top-k query evaluation in the presence of non-materialised views [9],
sensitivity analysis and explanation for queries [22], and lifted to lineage of
queries with aggregates expressible in the formalism of provenance semimod-
ules [1]. ProApproX evaluates queries on probabilistic XML, where the lineage
of the query answer is compiled using the first step only [33]. When this step
cannot be applied anymore, ProApproX resorts to Monte Carlo approaches on
the subformulas. Top-k queries can be evaluated by incrementally approximat-
ing the probabilities of the results using the above anytime algorithm until the
lower bounds of k tuples are greater than the upper bounds of the remaining
tuples [34].

A further out-database approach that has been coupled with the above com-
pilation approach is model-based approximation [11]: Given a lineage formula
Φ, we can derive two formulas ΦL and ΦU such that the satisfying assignments
of ΦL are also of Φ, and those of Φ are also of ΦU . This implies that the prob-
ability of ΦL is less than or equal to that of Φ, which is less than or equal to

1The extension to multi-valued variables is straightforward.

5



that of ΦU . The benefit of this approach is immediate if the bounds ΦL and
ΦU admit probability computation in polynomial time and can be derived in
polynomial time from Φ.

The first step from the above lineage compilation is also used for computing
tractable non-repeating queries with negation [12] and so-called inversion-free
unions of conjunctive queries [21]. The processing of such a query critically
draws on the observation that the traces of the compilation for subqueries of
the input query are OBDDs, whose variable orders are compatible, depths are
linear in the database size, and widths only depend on the number of relations
in the query. Boolean operations (conjunction, disjunction, negation) on these
OBDDs yield OBDDs with the same properties.

In contrast to the lifted approach using inclusion-exclusion that reasons at
the query level, the above lineage compilation variants, which rely on grounding
the query to its lineage, are limited in that they cannot compute in polynomial
time all tractable unions of conjunctive queries [2].

A common out-database probability approximation technique exploits decades-
old seminal work on Monte Carlo algorithms including Fully Polynomial-Time
Randomized Approximation Schemes (FPRAS) for model counting of proposi-
tional formulas in disjunctive normal form [23, 35]. MystiQ and MayBMS use
adaptations of such approximations to probabilistic inference: They repeatedly
choose at random a possible world and computes the truth value of query lin-
eage. The probability is then approximated by the frequency with which the
lineage was true. A common expectation that users have from database man-
agement systems is that simple queries run fast and complex queries run slower.
Monte Carlo algorithms do not fulfill this expectation because they make no
distinction between simple and complex queries. An approach matching the
expected behavior would identify simple (tractable) queries and process them
at peak performance, while for more complex (hard) queries its performance
should degrade smoothly.

HISTORICAL BACKGROUND

The quest for understanding the complexity of probabilistic query processing
began two decades ago as a study on query reliability [15], where the Boolean
query R(x), S(x, y), R(y) was shown to be hard for #P via a reduction from
model counting for positive bipartite formulas in disjunctive normal form. A
solid body of work starting a decade later showed complexity dichotomies for
various classes of queries.

Query lineage and PC databases draw on c-tables, a formalism for incomplete
information put forward three decades ago [19]. It has been formally investigated
more recently in the context of provenance semirings [16] and semi-modules [1].
Intensional query semantics was first used in probabilistic databases by Fuhr
and Rölleke [13].

MystiQ pioneered in-database techniques for exact query processing on TI
databases. SPROUT pioneered in- and out-database techniques based on lin-

6



eage compilation [11]. Reminiscent of lifted inference in AI, follow-up work lifts
compilation to first-order lineage [9].

A detailed account to query processing on uncertain relational and XML
data is given in several recent research monographs [34, 18, 4, 24].

KEY APPLICATIONS

Probabilistic databases have a very diverse set of applications [34]. They arise
naturally in data integration settings owing to approximate schema and data
mappings. Automated information extraction and classification using machine
learned models also generate probabilistic facts that can be naturally repre-
sented using a probabilistic database. Data cleaning, which involves resolving
inconsistencies in data as well as inferring missing values, is another source of
uncertainty; likewise, data generated by physical devices that succumb to faults
and measurement errors, which is common in scientific databases and sensor
networks. In all of these settings, probabilistic databases allow to represent
the underlying uncertainties in a unified, consistent way and enabling ad-hoc
querying over the uncertain data.

CROSS REFERENCES

Uncertain Data Models; Data Complexity of Query Evaluation;
[outside database work] Model Counting; #P Complexity Class;

Recommended Reading

[1] Y. Amsterdamer, D. Deutch, and V. Tannen. Provenance for aggregate
queries. In PODS, pages 153–164, 2011.

[2] P. Beame, J. Li, S. Roy, and D. Suciu. Counting of query expressions:
Limitations of propositional methods. In ICDT, pages 177–188, 2014.

[3] M. Benedikt, E. Kharlamov, D. Olteanu, and P. Senellart. Probabilistic
XML via Markov Chains. PVLDB, 3:770–781, 2010.

[4] L. Chen and X. Lian. Query Processing over Uncertain Databases. Synthe-
sis Lectures on Data Management. Morgan & Claypool Publishers, 2012.

[5] N. Dalvi and D. Suciu. Efficient query evaluation on probabilistic databases.
VLDB J., 16:523–544, 2007.

[6] N. N. Dalvi and D. Suciu. Efficient query evaluation on probabilistic
databases. In VLDB, pages 864–875, 2004.

[7] N. N. Dalvi and D. Suciu. The dichotomy of probabilistic inference for
unions of conjunctive queries. J. ACM, 59(6), 2012.

7



[8] X. Dong, E. Gabrilovich, G. Heitz, W. Horn, N. Lao, K. Murphy,
T. Strohmann, S. Sun, and W. Zhang. Knowledge Vault: A Web-scale
approach to probabilistic knowledge fusion. In SIGKDD, pages 601–610,
2014.

[9] M. Dylla, I. Miliaraki, and M. Theobald. Top-k query processing in prob-
abilistic databases with non-materialized views. In ICDE, pages 122–133,
2013.

[10] R. Fink, A. Hogue, D. Olteanu, and S. Rath. SPROUT2: A squared query
engine for uncertain web data. In SIGMOD, pages 1299–1302, 2011.

[11] R. Fink, J. Huang, and D. Olteanu. Anytime approximation in probabilistic
databases. VLDB J., pages 823–848, 2013.

[12] R. Fink and D. Olteanu. Dichotomies for queries with negation in proba-
bilistic databases. ACM Trans. Database Syst., 41(1):4, 2016.

[13] N. Fuhr and T. Rölleke. A probabilistic relational algebra for the integration
of information retrieval and database syst. TOIS, 15:32–66, 1997.

[14] W. Gatterbauer and D. Suciu. Oblivious bounds on the probability of
boolean functions. TODS, 39(1):5, 2014.

[15] E. Grädel, Y. Gurevich, and C. Hirsch. The complexity of query reliability.
In PODS, pages 227–234, 1998.

[16] T. J. Green, G. Karvounarakis, and V. Tannen. Provenance semirings. In
PODS, pages 31–40, 2007.

[17] J. Huang, L. Antova, C. Koch, and D. Olteanu. MayBMS: a probabilistic
database management system. In SIGMOD, pages 1071–1074, 2009.

[18] I. F. Ilyas and M. A. Soliman. Probabilistic Ranking Techniques in Re-
lational Databases. Synthesis Lectures on Data Management. Morgan &
Claypool Publishers, 2011.

[19] T. Imieliński and W. Lipski, Jr. Incomplete information in relational
databases. J. ACM, 31:761–791, 1984.

[20] R. Jampani, F. Xu, M. Wu, L. L. Perez, C. Jermaine, and P. J. Haas.
The Monte Carlo Database System: Stochastic analysis close to the data.
TODS, 36(3):18, 2011.

[21] A. K. Jha and D. Suciu. Knowledge compilation meets database theory:
Compiling queries to decision diagrams. Theory Comput. Syst., 52(3):403–
440, 2013.

[22] B. Kanagal, J. Li, and A. Deshpande. Sensitivity analysis and explanations
for robust query evaluation in probabilistic databases. In SIGMOD, pages
841–852, 2011.

8



[23] R. M. Karp, M. Luby, and N. Madras. Monte-Carlo approximation algo-
rithms for enumeration problems. J. Algorithms, 10:429–448, 1989.

[24] B. Kimelfeld and P. Senellart. Probabilistic XML: Models and complexity.
In Advances in Prob. Db. for Uncertain Inf. Mgt., pages 39–66. 2013.

[25] X. Lian and L. Chen. Efficient query answering in probabilistic RDF
graphs. In SIGMOD, pages 157–168, 2011.

[26] D. Olteanu, J. Huang, and C. Koch. SPROUT: Lazy vs. eager query plans
for tuple-independent probabilistic databases. In ICDE, pages 640–651,
2009.

[27] D. Olteanu and H. Wen. Ranking query answers in probabilistic databases:
Complexity and efficient algorithms. In ICDE, pages 282–293, 2012.

[28] C. Ré, N. N. Dalvi, and D. Suciu. Query evaluation on probabilistic
databases. IEEE Data Eng. Bull., 29(1):25–31, 2006.

[29] C. Ré, J. Letchner, M. Balazinksa, and D. Suciu. Event queries on corre-
lated probabilistic streams. In SIGMOD, pages 715–728, 2008.

[30] C. Ré and D. Suciu. The trichotomy of having queries on a probabilistic
database. VLDB J., 18(5):1091–1116, 2009.

[31] P. Sen, A. Deshpande, and L. Getoor. PrDB: managing and exploiting rich
correlations in probabilistic databases. VLDB J., 18(5):1065–1090, 2009.

[32] S. Singh, C. Mayfield, S. Mittal, S. Prabhakar, S. E. Hambrusch, and
R. Shah. Orion 2.0: native support for uncertain data. In SIGMOD,
pages 1239–1242, 2008.

[33] A. Souihli and P. Senellart. Optimizing approximations of DNF query
lineage in probabilistic XML. In ICDE, pages 721–732, 2013.

[34] D. Suciu, D. Olteanu, C. Ré, and C. Koch. Probabilistic Databases. Synthe-
sis Lectures on Data Management. Morgan & Claypool Publishers, 2011.

[35] V. V. Vazirani. Approximation Algorithms. Springer, 2001.

[36] J. Widom. Trio: A system for integrated management of data, accuracy,
and lineage. In CIDR, pages 262–276, 2005.

9


