SPROUT\(^2\): A Squared Query Engine for Uncertain Web Data

Robert Fink\(^1\), Andrew Hogue\(^2\), Dan Olteanu\(^1\), Swaroop Rath\(^1\)

\(^1\)Department of Computer Science, University of Oxford, Oxford, OX1 3QD, UK \(^2\)Google Inc., New York, NY, USA

Query Answering in SPROUT

Query evaluation in two steps (logically distinct but possibly intertwined):

1. Compute the tuples in the query result together with their lineage
 The lineage of a result tuple \(t \) is a propositional formula over the tuples in the input database and says which input tuples must be present in order for the query to return \(t \).

2. Compute the probabilities of result tuples by incremental lineage compilation:
 - Independent or \((e \land v\) or syntactically independent) \(P((e \lor v)) = 1 - (1 - P(e))(1 - P(v)) \)
 - Independent \((e \land v)\) or syntactically independent \(P((e \lor v)) = P(e)P(v) + P(e)P(v)P(e)P(v) \)
 - Shannon expansion \((v) \text{ is a variable in } e\) \(P((e \lor v)) = P(e)P(v) + P(e)P(v)P(e)P(v) \)

Example: Relational division query "Which supplier stocks all products?"

Novel Techniques for Exact and Approximate Probability Computation

- Incremental decomposition of lineage into d-trees using the above three rules
- After each decomposition step, compute rough lower and upper bounds on the probabilities of the residual formulas at the leaves of the decomposition tree
 - Approach 1: Lower bound is the largest probability of a clause in \(e \); Upper bound is the sum of probabilities of all clauses in \(e \).
 - Approach 2: Compute read-once formulas, whose probabilities represent lower and upper bounds.
 - Using the bounds at the leaves, compute lower and upper bounds for the whole lineage
 - Stop when the desired precision is reached or the time budget is exhausted
 - Underlying idea: Leaves deeper in the d-tree contribute little to the overall probability mass, hence a good approximation can be found quickly

Complete decomposition

- Corresponds to exact probability computation
- Can be done in polynomial time for tractable query & data instances
 - propositional languages
 - relational algebra queries without repeating symbols and with read-once lineage
 - a class of conjunctive queries with inequality \((\cdot \neq \cdot)\) joins

Partial decomposition

- Corresponds to approximate probability computation with error guarantees
- Applicable for hard query and data instances

Example: Efficient computation of bounds that are read-once formulas

- Left: original formula; middle: lower bound; right: upper bound
- Lower/Upper bounds obtained by setting the marked literals to false/true

New Book on Probabilistic Databases