Key Features of DAGger

- It considers the **possible worlds semantics for uncertain data**
 - natural semantics for incomplete and probabilistic databases.
 - the input is a probability distribution over a set of possible worlds, where each world defines a set of input objects.
 - the output is equivalent to clustering within each world and defines probability distributions for objects belonging to clusters.
- It allows for **arbitrary correlations**, which are:
 - used in results to queries in probabilistic databases,
 - obtained by structuring text using Conditional Random Fields,
 - enforced by experts and learned from data in Bayesian Networks and Markov Logic Networks.
- If correlations are ignored, the output can be arbitrarily off from the true clustering result.
- It can **compute exact and approximate probabilities with error guarantees** for the clustering output.

DAGger’s Approach

- The **uncertainty and correlations in the input data** are represented symbolically in a language of probabilistic events.
- **Clustering events** are captured within the same formalism.
- This formalism supports a wide range of tasks:
 - probability computation for clustering events,
 - sensitivity analysis and explanation of clustering output,
 - different clustering algorithms, e.g., \(k \)-medoids, Markov clustering.
- All clustering events are represented within one event network:
 - Common expressions are represented only once.
 - Yields a highly repetitive and interconnected structure due to the combinatorial nature of clustering.
 - For \(k \)-medoids and Markov clustering, the events have the same structure at each step, and at any iteration step are expressions over the events at the previous clustering iteration.
 - Compute the probability of all events by bulk-compiling an entire event network into one decision tree.
 - Only the current root-to-leaf path of this decision tree is kept at any one time, while exploring it depth-first.
 - **Anytime approximation with error guarantees** can be achieved by exploring small fragments of the decision tree.

State-of-the-art techniques (e.g. UK-means, UKmedoids, MMVar):

- do not support the possible worlds semantics,
- lack support for correlations and assume probabilistic independence,
- use deterministic cluster medoids or expected means, and
- can only compute clustering based on expected distances.

In many cases, the output is a hard clustering that assigns each object to one cluster, like in deterministic \(k \)-medoids or \(k \)-means.

\(k \)-Medoids Clustering of Certain Data

1. **(Initialization)** Initially choose an object as medoid for each cluster.
 - Given: objects \(o_1, \ldots, o_n \), and clusters \(C_1, \ldots, C_k \).
2. **(Assignment)** Assign object to the cluster of the closest medoid.
 - “closest” defined using any distance metric, e.g., Euclidean distance, Manhattan distance or Minkowski distance.
3. **(Update)** Choose new medoid for each cluster.
4. Repeat phases 2 and 3 for a number of iterations, or until fixpoint reached.

Language of Probabilistic Events

- Propositional events over independent Boolean random variables.
- Construct that can succinctly express **real values conditioned on propositional formulas**:
 - \(\Phi \land \Psi \) expresses that the value \(v \in \mathbb{R} \) is conditioned by the formula \(\Phi \in \mathbb{B} \):
 - if \(\Phi \) then \(v \) else 0.
 - Sums of if-then-else expressions: \(\Phi_1 \land \Psi_1 + \ldots + \Phi_n \land \Psi_n \)
 - Comparisons of such sums: \(\Phi_1 \land \Psi_1 + \ldots + \Phi_n \land \Psi_n \leq \Phi_1 \land \Psi_1 + \ldots + \Psi_m \land \Psi_m \)

This language allows for succinct encoding – **independently of the number of possible variable assignments** – of sums of distances from an object to any other object in a cluster, conditioned on the uncertainty of these objects.

\(k \)-Medoids Clustering of Uncertain Data

Our approach is a realisation of \(k \)-medoids clustering on uncertain data.

- It is equivalent to performing \(k \)-medoids clustering in each possible world of the input, yet avoids the explicit enumeration of possible worlds.
- The probability that an object belongs to a cluster is the sum of probabilities of those worlds in which this event occurs.
- Each object belongs to each cluster or is medoid with a certain probability.

Examples of clustering queries:

- **membership**: does a given object belong to a given cluster?
- **medoid**: is a given object the medoid of a given cluster?
- **co-occurrence**: are given objects clustered together?

Membership event \(m \Phi | o_i \in C_j \) for object \(o_i \) and cluster \(C_j \) at step \(t \geq 1 \):

\[
\Phi | o_i \in C_j = o_i \land | \bigcup_{1 \leq k \leq n, k \neq i} (1 - d_i(o_k, o_i) + \Phi | o_k \in C_j)
\]

Medoid event \(m \Phi | C_j = o_i \) for object \(o_i \) and cluster \(C_j \) at step \(t \geq 1 \):

\[
\Phi | o_i = c_j \land \bigwedge_{1 \leq k \leq n} (\Phi | o_k \in C_j \land (\Phi | o_k \in C_j) \leftarrow d_i(o_k, o_i) + \Phi | o_k \in C_j)
\]

Legend:

- \(\Phi o_i \) is the event that object \(o_i \) exists.
- \(d_i(o_k, o_i) \) is the distance function between objects.
- \(\Phi C_j \) is the total distance-sum of \(o_i \) to the objects in \(C_j \) at step \(t \).

Exact and Approximate Probability Computation

Partial example of an event network with five layers encoding, highly interconnected events for clusters \(C_0 \) and \(C_1 \).

- **Compilation of event network into decision tree using Shannon expansion**: \(\Phi = \Phi_0 \land x_0 \land \ldots \land \Phi_4 \land x_4 \) This means that: \(P(\Phi) = P_0 \cdot P(\Phi_0) \cdot (1 - P_0) \cdot P(\Phi_4) \)
- If \(\Phi \) is the network, then the restrictions \(\Phi_0 \) and \(\Phi_4 \) are obtained by masking in \(\Phi \) those nodes that become true or false.
- Repeated application of Shannon expansion eventually masks nodes in the network and adds the probability of the variable assignments (x or -x) to the probability mass of these nodes.

Approximate probability computation strategies decide how to invest (eagerly, lazily, or hybrid) the error budget while exploring the decision tree.

Experimental Evaluation with \(k \)-Medoids Clustering of Uncertain Data

- **naive** means \(k \)-medoids in each possible world.
- **types of correlations considered**: **positive**, **mutex** (block-independent disjoint); **conditional independence**.