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Abstract—A paramount challenge in probabilistic databases
is the scalable computation of confidences of tuples in query
results. This paper introduces an efficient secondary-storage
operator for exact computation of queries on tuple-independent
probabilistic databases. We consider the conjunctive queries
without self-joins that are known to be tractable on any tuple-
independent database, and queries that are not tractable in
general but become tractable on probabilistic databases restricted
by functional dependencies.

Our operator is semantically equivalent to a sequence of
aggregations and can be naturally integrated into existing re-
lational query plans. As a proof of concept, we developed an
extension of the PostgreSQL 8.3.3 query engine called SPROUT.
We study optimizations that push or pull our operator or parts
thereof past joins. The operator employs static information, such
as the query structure and functional dependencies, to decide
which constituent aggregations can be evaluated together in one
scan and how many scans are needed for the overall confidence
computation task. A case study on the TPC-H benchmark reveals
that most TPC-H queries obtained by removing aggregations can
be evaluated efficiently using our operator. Experimental evalu-
ation on probabilistic TPC-H data shows substantial efficiency
improvements when compared to the state of the art.

I. INTRODUCTION

Applications in data cleaning, data integration, and scientific

databases call for systems for managing probabilistic data [3],

[2], [5], [14], [1], [10], [15], [9], [16].

In this paper we study the following problem: Given a

query Q and a probabilistic database D, compute the distinct

possible tuples in the result ofQ onD together with their exact

confidences. Conceptually, a probabilistic database represents

a set of possible worlds, each containing a relational database,

and the query is evaluated in each world individually. The

confidence in a tuple t is the sum of the probabilities of all

those possible worlds in which t is part of the query result.

Dalvi and Suciu’s work on the evaluation of conjunctive

queries on tuple-independent probabilistic databases [7] shows

that the class of conjunctive queries can be partitioned into

“easy” queries (with polynomial-time data complexity) and

“hard” (#P-complete) queries. Their method of processing the

easy queries without self-joins uses so-called safe plans to

compute both the answer tuples and their confidences [5]. Safe

plans are a restricted class of query plans in that their join

orders adhere to the hierarchical structure of the query and

employ excessive duplicate elimination in temporary results.

This paper shows that the restrictions imposed by safe plans

are not necessary and any query plan can be used to compute

the answer tuples. For computing the confidences, we define

a new operator that can blend in any relational query plan and

is governed by optimizations specific to sequences of standard

aggregations. As we will see later, the safe plans correspond

to particular eager plans in our framework, where confidence

computation is performed after each join and projection. We

however enable the search space for query plans beyond the

eager ones and allow, for instance, lazy plans that compute

confidences only at the very end in the plan. The decision on

which plans to use solely depends on the optimizer. As a proof

of concept, we developed SPROUT (Scalable PROcessing of

Uncertain Tables), an extension of the PostgreSQL 8.3.3 query

engine with our new operator for confidence computation

(http://www.comlab.ox.ac.uk/projects/SPROUT/).

We illustrate our operator using a tuple-independent proba-

bilistic version of TPC-H, where we associate each tuple with

a distinct Boolean random variable and accept any probability

distribution over these variables. Fig. 1 gives a TPC-H-like

database, where the random variables associated with tuples

are given in the V -columns and their probabilities (for the

“true” assignment) in the P -columns. Let Q be a query asking

for the dates of discounted orders shipped to customer ’Joe’,

πodate(σcname=′Joe′,discount>0(

Cust 1ckey Ord 1okey,ckey Item)).

The answer to a query on a probabilistic database can be

represented by a relation pairing possible result tuples with

propositional formulas over the random variables. For a given

tuple, its formula captures the set of worlds in which that

tuple occurs in the query result. For conjunctive queries, it

is known that these formulas, in the form of a DNF, can be

efficiently computed (just like the overall representation). This

technique is directly employed or at least implicit in a number

of approaches [5], [3], [1].

In our example, the answer consists of one distinct tuple

produced by combining the first tuple of Cust and the first tuple

of Ord with either the first or the second tuple of Item (Fig. 1).

These combinations lead to the formula x1y1z1 ∨ x1y1z2,

which admits the simpler factored form x1y1(z1∨z2). We call

this factored form one-occurrence form (1OF), because each

input variable occurs at most once. We can efficiently compute

the probability of 1OF formulas by mapping AND into product

and OR into probability computation of independent events.

For any tuple-independent probabilistic database, the formulas

associated with distinct answer tuples of any easy query

without self-joins can be brought into 1OF [11].

http://www.comlab.ox.ac.uk/projects/SPROUT/


Cust

ckey cname V P

1 Joe x1 0.1
2 Dan x2 0.2
3 Li x3 0.3
4 Mo x4 0.4

Ord

okey ckey odate V P

1 1 1995-01-10 y1 0.1
2 1 1996-01-09 y2 0.2
3 2 1994-11-11 y3 0.3
4 2 1993-01-08 y4 0.4
5 3 1995-08-15 y5 0.5
6 3 1996-12-25 y6 0.6

Item

okey discount ckey V P

1 0.1 1 z1 0.1
1 0.2 1 z2 0.2
3 0.4 2 z3 0.3
3 0.1 2 z4 0.4
4 0.4 2 z5 0.5
5 0.1 3 z6 0.6

Q
odate Vc Vo Vi

1995-01-10 x1 y1 z1

1995-01-10 x1 y1 z2

Fig. 1. Tuple-independent probabilistic TPC-H-like database and answer to query Q (Pc, Po, Pi omitted).

Given a relational encoding of such DNF formulas, our

operator needs a few scans to turn them into 1OF and simul-

taneously compute their probabilities. It essentially makes use

of the structure of the query which coincides with the nesting

structure of the 1OF formula. Such structures are called query

signatures throughout the paper. The query signature in our

example is (Cust∗(Ord∗Item∗)∗)∗ and states the many-to-

many relationships between Ord and Item, and between Ord

1 Item and Cust. These relationships are directly derived from

the join conditions of the query. They hold between the tuples

of the input tables and thus between their associated variables.

Using this query signature, we first sort the answer tuples

by (odate,Vc,Vo,Vi) and then use one scan to compute the

probabilities of the pairs OL=(Ord,Item) and subsequently one

scan for the pairs (Cust,OL).

The query Q can also be evaluated using safe plans [5].

Similarly to query signatures, safe plans capture the structure

of the queries. Fig. 2 gives the safe plan for Q as produced by

MystiQ [5]. The standard operators are extended to compute

both the answer tuples and their probabilities. A join of

two tuples also multiplies their probabilities. The projection

requires that all duplicate tuples are pairwise independent

in order to compute the probability of distinct tuples. This

constraint can be guaranteed for easy queries (without self-

joins) by careful yet restrictive join orderings, which may

lead to suboptimal query plans. For instance, the safe plan

for Q requires an unselective join of the two largest tables

Ord and Item first, and also five rather expensive projections.

The projection done after the aforementioned unselective join,

which is needed for duplicate removal, accounts in general for

most of the processing time. If Item would be joined first with

the few selective tuples of Cust, then we would obtain two

non-independent duplicate answer tuples (as shown in Fig. 1)

and the plan fails. In contrast, SPROUT chooses a better (lazy)

query plan, which first joins Cust with Ord, then with Item, and

computes the tuple confidences at the end. We experimentally

observed that for queries similar to Q, lazy plans perform

orders of magnitude faster that the safe plans.

Consider now a slightly changed scenario where the table

Item has no ckey attribute (as it is the case in real TPC-H),

and the query Q loses the join condition o.ckey = l.ckey.

This new query Q′ has now the pattern of the prototypical

hard query: Table Ord joins with two tables Cust and Item

on different attributes ckey and okey and in general Ord can

arbitrarily pair tuples from Cust and Item. If both attributes

ckey and okey of Ord would be involved in a join with one

πind
odate

1ckey

πind
odate,ckey

1ckey,okey

πind
odate,ckey,okey

Ord

πind
ckey,okey

σdiscount>0

Item

πind
ckey

σcname=′Joe′

Cust

Fig. 2. Safe plan for query Q.

of the two tables, then the query would become easy. More

precisely, the necessary and sufficient condition for a query

(without self-joins) to be easy is that for any two join attributes

that occur in the same table and are not in the outermost

projection list, one of them must participate in all joins of the

other. Because of this property, such queries are also called

hierarchical [6]. We can check that Q is hierarchical: ckey

participates in both joins, whereas okey participates only in

one join. In contrast, Q′ is non-hierarchical, because each of

the two join attributes of Ord participates in a different join.

The non-hierarchical query Q′ can be, however, computed

efficiently on restricted databases, such as databases where

the functional dependency (FD) okey → ckey holds. This

restriction is in fact natural and already holds on TPC-H data,

because okey is a key in Ord. Moreover, under this FD, the

two queries Q and Q′ have the same answer.

Functional dependencies are very effective in taming non-

hierarchical queries and even in improving the efficiency of

hierarchical queries. We develop a new method that rewrites

(possibly non-hierarchical) queries into Boolean hierarchical

queries under given FDs. The operator for confidence com-

putation can then use the signature of the latter to efficiently

process the answer of the former. Our experiments on TPC-H

data show that the existing TPC-H FDs enable efficient eval-

uation of five (out of 9) non-hierarchical queries, and reduce

the number of necessary scans for confidence computation in

case of hierarchical queries. For instance, if okey and ckey are

keys in Ord and Cust, respectively, then the query Q′ has the

signature (Cust(Ord Item∗)∗)∗ and the distinct tuples and their

confidences can be computed in only one scan after sorting

the answer tuples.



The main contributions of this paper are as follows.

• We introduce a new approach to exact confidence com-

putation for conjunctive queries without self-joins on

tuple-independent probabilistic databases. This approach

is based on a close connection between query signatures

and a particular factored form (1OF) of formulas over

input random variables that are associated with distinct

answer tuples. The probability of 1OF formulas can be

computed in time linear in the number of their variables.

• We extend the frontier of queries computable in poly-

nomial time by exploiting semantic knowledge about

the databases in the form of functional dependencies.

Such schema information is natural and ubiquituous

in real database scenarios. To accommodate functional

dependencies in a principled way, we define a method

for rewriting queries into Boolean hierarchical ones. The

signature of the latter can then be used to process the

former. As evidenced by the set of TPC-H queries,

or their conjunctive subqueries, this rewriting technique

substantially extends the class of practical queries for

which efficient exact evaluation techniques are known.

• We extend the query engine of PostgreSQL 8.3.3 with a

new low-level query operator for probability computation.

This operator turns DNF formulas into 1OF and computes

their probabilities on the fly.

• We experimentally show the efficiency of our query en-

gine on 18 out of the 22 TPC-H queries. (The remaining

queries remain outside the thus extended class of tractable

queries.) In particular, our plans can outperform the safe

plans of MystiQ by up to two orders of magnitude.

The paper is structured as follows. We first define tuple-

independent probabilistic databases, hierarchical queries, and

query signatures. Then, we discuss query rewritings and how

to compute good signatures given functional dependencies.

The semantics, optimizations, and evaluation of our secondary

storage operator for confidence computation are then intro-

duced, followed by a discussion on the structure of the TPC-

H benchmark queries in the light of our query processing

techniques, and by our experimental findings.

II. PRELIMINARIES

A. Tuple-independent Probabilistic Databases

Let X be a finite set of (independent) Boolean random

variables. A tuple-independent probabilistic table Rrep is a

relation of schema (A, V, P ) with functional dependencyA→
V P , and two distinguished columns V and P such that the

values in V are from X and the values in P are numbers

in (0, 1]. A probabilistic database D is a set of probabilistic

tables and represents a set of possible worlds. Each possible

world is identified by a truth assignment of all variables from

X. There is a one-to-one correspondence between possible

worlds and database instances. To obtain one instance, fix a

truth assignment f . Under f , the instance of each probabilistic

table Rrep is the set of tuples ~a such that (~a, x, p) ∈ Rrep and

ckey

ckey,okey Cust(ckey,..)

Ord(ckey,okey,..) Item(ckey,okey,..)

Fig. 3. Tree representation of the hierarchical query Q.

f(x) is true. The probability of that world is

Pr[f ] =
∏

(~a,x,p)∈Rrep,Rrep∈D

{

p . . . f(x) true

1 − p . . . f(x) false

We will use probabilities of Boolean formulas over the

variables from X. The probability of a formula φ is

Pr[φ] =
∑

f :f implies φ

Pr[f ]

where f can be thought of as the formula
(

∧

x∈X:f(x) true

x
)

∧
∧

x∈X:f(x) false

¬x.

Clearly, if (~a, x, p) ∈ Rrep then the probability that tuple ~a

is in R is Pr[x] = p. Summing up the probabilities of pos-

sible worlds satisfying such formulas is impractical because

there are exponentially many worlds. Computing Pr[φ] is #P-
complete in general and the essential goal of this paper is

to develop and study large classes of queries for which the

computation of Pr[φ] can be done efficiently for the formulas

φ constructed during query evaluation.

B. Hierarchical Conjunctive Queries without Self-joins

We consider conjunctive queries without self-joins (i.e., any

relation name appears at most once) written in form πAσφq,

where A is the projection list, φ is a conjunction of atomic

formulas comparing attributes with constants, and q is a join

query of the form R1 ⊲⊳ . . . ⊲⊳ Rn. For simplicity, we assume

that the join attributes have the same name in the joined tables.

This class of queries can be partitioned into hierarchical

queries, which admit polynomial-time evaluation on tuple-

independent probabilistic databases, and non-hierarchical

queries, which are #P-complete in general [5].

Definition II.1. A Boolean conjunctive query is hierarchical

if for any two join attributes that occur in the same table, one

of them participates in all joins of the other.

In case of non-Boolean queries, the attributes that occur in

joins and in the projection list (A) are not used for deciding

the hierarchical property. Section IV develops a rewriting

framework that can transform non-Boolean (and possibly non-

hierarchical) queries into equivalent Boolean hierarchical ones.

Hierarchical queries admit tree representations, where the

leaves are tables and the inner nodes are join attributes

occurring in all their descendant nodes. In case of a relational

product of hierarchical subqueries, the root is the empty set.



signature (query tree q) = τ (q, ∅)

τ (inner node Ā(q1, . . . , qn), L) = ite(L = Ā,

τ (q1, Ā) ◦ . . . ◦ τ (qn, Ā))

τ (leaf node R(Ā), L) = ite(L = Ā, R)

ite (Cond, t) = if Cond then t else (t)∗

Fig. 4. Deriving query signatures from hierarchical queries.

Example II.2. Fig. 3 gives the tree representation of the

Boolean version of the query from the Introduction. The

attribute ckey is the root. If we remove ckey from either Ord

or Item, we obtain a non-hierarchical query. The safe plan of

Fig. 2 has the same overall structure as the tree of Fig. 3. 2

C. Query Evaluation on Probabilistic Databases

Conceptually, queries are evaluated in each world individ-

ually. Given a query Q and a probabilistic database D, the

confidence in an answer tuple t is the probability of t being

in the result of Q on the worlds of D, or equivalently,

Pr[t ∈ Q(D)] =
∑

f : t in world f of Q(D)

Pr[f ].

The evaluation of query operators on a probabilistic

database follows the standard semantics [8], where the

columns for variables and probabilities are copied along in

the answer tuples. These columns store relationally a DNF

formula over Boolean random variables: In the answer to

our query from the Introduction, the columns for variables

store the formula x1y1z1 ∨ x1y1z2. We denote the expression

associated with t by φt,Q,D (or φt,Q if D is clear from the

context). If Q is Boolean, we write φQ as a shorthand for

φ(true),Q. The following result is folklore.

Proposition II.3. For any query Q, probabilistic database D,

and a distinct tuple t in Q(D), Pr[t ∈ Q(D)] = Pr[φt,Q,D].

III. QUERY SIGNATURES AND FACTORED NORMAL FORM

We capture the tree structure and the one/many-to-one/many

relationships between the tables of hierarchical queries in a so-

called query signature (called variable order type in [11]).

Definition III.1. Syntactically, a query signature is

• a table name R or

• of the form α∗, where α is a signature, or

• a concatenation αβ of two signatures α and β.

The equivalence between signatures (α∗)∗ and α∗ is trivial

and is considered implicit in the remainder of the paper.

The function signature of Fig.4 computes the signature of

a hierarchical Boolean query using pattern matching on its

tree structure. While traversing the tree top-down, we keep in

L the join attributes of the parent node (which includes the

attributes of its ancestors); initially, L = ∅. For a table R(Ā),
we create a signature R or R∗. The former case occurs when

Ā represents the parent variables, and thus there is one tuple

per distinct Ā-value. Otherwise, there may be several tuples

per distinct Ā-value, and hence the exponent (*). In case of

an inner node, we recursively compute the signatures for the

children and then concatenate them. Note that Ā = ∅ covers

the case of unconnected hierarchical subqueries.

Example III.2. The signature of our query from the Intro-

duction is (Cust∗(Ord∗Item∗)∗)∗, which follows the nesting of

its tree representation (see Fig.3) and specifies many-to-many

relationships using (*): The tables Ord and Item join on a

subset of their attributes and hence in general there is a many-

to-many relationship between them, and, by similar arguments,

there is a many-to-many relationship between Cust and the

join result of Ord and Item. Because in general there may be

several pairings of Cust-tuples and (Ord 1 Item)-tuples, we
add (*) to the previous signature. Of course, in case ckey and

okey are keys, then the above signature can be simplified by

turning many-to-many into one-to-many relationships, and our

signature becomes (Cust(Ord Item∗)∗)∗. 2

Definition III.3. Let a signature s and a query tree t for

a hierarchical query Q, and let a set of table names T =
{α1, . . . , αn} that occur in Q. A minimal cover of T in s

is the signature of the minimal subtree in t that contains all

tables of T .

Example III.4. Let the signature s = (Cust∗(Ord∗Item∗)∗)∗

for our query Q. The minimal cover of {Ord, Item} in s is

(Ord∗Item∗)∗, and of {Cust,Ord} in s is s itself. 2

The signature of a hierarchical query q is particularly useful

for turning the formula φQ into a factored form, called one-

occurrence normal form (1OF), where each variable of φQ
occurs exactly once.

Proposition III.5 ([11]). A DNF expression φ can be turned

into 1OF according to a signature

• X if φ is in one variable that occurs in the table X;

• α∗ if there exist DNF expressions φ1, . . . , φn that can be

factored according to α, partition the clauses of φ, and

use disjoint sets of variables;

• αβ if there exist DNF expressions φ1 and φ2 that can be

factored according to α and β, respectively, use disjoint

sets of variables, and φ = (φ1) ∧ (φ2).

Example III.6. The expression φQ,D associated with Q

and D of Fig.1 can be factored according to signature

(Cust(Ord Item∗)∗)∗: x1y1z1 ∨ x1y1z2 = x1(y1(z1 ∨ z2)),
where x1 is a variable of Cust, y1 is a variable of Ord, and

z1 and z2 are variables of Item. The signature states that one

tuple (and thus variable) in Cust is paired with several pairs of

one tuple in Ord and several tuples in Item. For our database

D, we have the special case of one Cust-tuple paired with on

pair of one Ord-tuple and two Item-tuples. 2

Proposition III.7 ([11]). Given a hierarchical Boolean query

Q and a probabilistic databaseD, the expression φQ,D can be

factored into 1OF according to the signature of Q in PTIME.

We later present in this paper an efficient secondary-storage

algorithm for bringing φQ,D into 1OF.



IV. REWRITING UNDER FUNCTIONAL DEPENDENCIES

An important property of tuple-independent probabilistic

databases is that a functional dependency holds in the database

if and only if it holds in each of the represented worlds. We can

thus consider the notion of functional dependencies (fds) with

the usual meaning. The closure CLOSUREΣ(A) of a set of

attributes A under a set of fds Σ is defined in the normal way.

For example, CLOSURE{A→D;BD→E}(ABC) = ABCDE.

We will consider the following simplification of queries.

Definition IV.1 (FD-reduct). Given a set of fds Σ and a

conjunctive query of the form

Q = πA0
(σφ(R1(A1) ⊲⊳ . . . ⊲⊳ Rn(An))

where φ is a conjunction of unary predicates. Then, the

Boolean query

Qfd = π∅(σφ(R1(CLOSUREΣ(A1) − CLOSUREΣ(A0))

⊲⊳ . . . ⊲⊳Rn(CLOSUREΣ(An) − CLOSUREΣ(A0)))

is called the FD-reduct of Q under Σ.

The importance of FD-reducts is twofold. First, non-

hierarchical queries can admit hierarchical FD-reducts and

we can use the latter to answer the former. Second, we

accommodate non-Boolean (possibly non-hierarchical) queries

by rewriting them into hierarchical FD-reducts such that the

signature of the latter can be used to factor the DNF formulas

associated with distinct tuples in the answers to the former.

Remark IV.2. Functional dependencies that hold in tuple-

independent probabilistic databases can be used to decide on

whether a given query admits safe plans [5]. We go further

and use functional dependencies to statically compute or refine

query signatures that capture the structure of the formulas

in the query answer and are effectively used in planning the

number of scans necessary to turn such formulas into 1OF.2

Example IV.3. Consider a slight modification of the guiding

query from the Introduction (ckey is not an attribute of Item)

πcname(Item(okey, discount) ⊲⊳ Ord(okey, ckey, odate) ⊲⊳

Cust(ckey, cname)).

The FD-reduct under the fd Ord: okey→ ckey odate is

π∅(Item(okey, discount, ckey, odate) ⊲⊳ Ord(okey, ckey,

odate) ⊲⊳ Cust(ckey)).

Whereas the latter is a Boolean hierarchical query, the former

is a non-Boolean and non-hierarchical query.

The signature of the latter query is Cust(Ord Item∗)∗ and

can be used to factor the DNF formulas associated with each

bag of duplicates of the former query. 2

The answers of a query and of its FD-reduct are intimately

related, as explained next. Let t be an arbitrary tuple possible

in Ri and let sch′(Ri) = CLOSUREΣ(sch(Ri)) be the

extended schema of Ri obtained by the construction of the

FD-reduct under Σ. Consider two possible worlds A and B
of a tuple-independent probabilistic database. If their query

results each contain tuples that involve t, i.e., t ∈ πsch(Ri)Q
A

and t ∈ πsch(Ri)Q
B, then

σsch(Ri)=t(Q
A) = σsch(Ri)=t(Q

B) = {t′},

i.e. a singleton that extends t by functionally determined

additional values that must be the same in all worlds. This

is due to the tuple-independence property and ensures that if

we extend our representations of the input relations by joining

in the columns that are added by the closure computation, the

modified query on the altered database will return the same

result in each possible world as the original query on the

original database. We do not actually need to carry out this

rewriting of query and database to be able to apply our efficient

query evaluation technique. If the FD-reduct is hierarchical,

then the operator that will be presented in Section V uses

its signature to efficiently and correctly evaluate the original

query on the original database.

The reason for discarding CLOSURE(A0) is to obtain FD-

reducts with more precise signatures. Duplicate tuples in the

answer to non-Boolean queries agree on the A0-values (and

on values that are functionally implied by them). Fixing such

values would correspond to dropping these attributes from the

query and lead to a simplified signature that can be used to

factor the DNF formula associated with each bag of duplicates.

Example IV.4. Consider the following hierarchical query

πokey(Item(ckey, okey, discount) ⊲⊳ Ord(okey, ckey, odate)

⊲⊳ Cust(ckey, cname))

with signature (Cust∗(Ord∗Item∗)∗)∗.

The FD-reduct under the fd Ord: okey→ ckey odate is

π∅(Item(discount) ⊲⊳ Ord() ⊲⊳ Cust())

with signature Cust Ord Item∗. 2

It has remained open whether we have an effective way

of finding hierarchical queries using functional dependencies

if such hierarchical rewritings exist. The answer is in the

affirmative: By always computing the full attribute closure of

the functional dependencies we never miss out on hierarchical

rewritings. The argument is made precise by the chase of

functional dependencies, which stepwise, given an attribute

set A and an fd B → C , adds C to A if B ⊆ A.

Proposition IV.5. Given a query Q and a set of fds Σ over the

relations of Q. If there is a sequence of chase steps that turns

Q into a hierarchical query, then the fixpoint of the chase, i.e.,

the FD-reduct, is hierarchical.

Proof Sketch. This works because a single application of the

chase rule can never turn a hierarchical query nonhierarchical:

Applying fd Ri : A→ B to Rj with A ∈ sch(Ri)∩ sch(Rj)
adds B to sch(Ri) ∩ sch(Rj); thus the attributes of B may

move up the hierarchy but can never invalidate it. The overall

result follows from this argument by induction. 2



JRK(Q, (V, P )) = (Q, (R.V, R.P ))

JαβK(Q, (V, P )) = let (Q2, (V2, P2)) = JβK(Q, (V, P )),

(Q1, (V1, P1)) = JαK(Q2, (V2, P2)),

P
′

1 = (P1 · P2 as P1),

a = attrs(Q) − {P1, V2, P2} ∪ {P ′

1}

in (πa(Q1), (V1, P1))

Jα∗K(Q, (V, P )) = let (Q1, (V1, P1)) = JαK(Q, (V, P )),

V
′ = (min(V1) as V1),

P
′ = (prob(P1) as P1),

a = attrs(Q) − {P1, V1}

in (GRP[a; V ′

, P
′](Q1), (V

′

, P
′))

GRP[a; b](Q) = select distinct a, b from Q group by a

Fig. 5. Semantics of our operator given by translation to SQL.

We also consider rewritings applicable to queries with self-

joins. If the query is of the form

σφ(R(A,C)) ⊲⊳ σψ(ρA→B(R(A,C))) ⊲⊳ Q0

such that φ(A,C) and ψ(B,C) are mutually exclusive, then

we can think of the two partitions of R as different relations

and the query can be treated like one without a self-join.

V. AN OPERATOR FOR PROBABILITY COMPUTATION

We introduce a new query plan operator for efficient

probability computation in case of hierarchical queries on

tuple-independent probabilistic databases. As discussed in Sec-

tion IV, a large class of non-hierarchical queries can directly

benefit from the results of this section.

Given a probabilistic table representing the answer to a

(hierarchical) query on tuple-independent databases, this oper-

ator computes the set of distinct data tuples together with their

exact probabilities. This aggregate function is semantically

equivalent to a sequence of standard distinct and group-by

operators that work on the variable and probability columns of

probabilistic tables. Its salient characteristic is that, although it

is more complex than a simple group-by, it can blend into any

relational query plan and benefit from existing optimizations

concerning aggregations [4], in particular group-by push down

and pull up [17]. The key aspect of this characteristic is

surprisingly simple: In addition to columns for storing proba-

bilities, our tuple-independent data model also defines columns

for storing the Boolean random variables associated with the

input tuples. This characteristic is not shared by the state-of-

the-art approach of MystiQ [5], which works on probabilistic

tables without variable columns and where only restricted

(“safe”) query plans can be used for correct probability

computation. Preserving the variables during query evaluation

is sufficient to understand the relationships between tuples

in the query answer, and it can be exploited for probability

computation [1], [13], [10]. It is also known from incomplete

information databases that variables and their propagation

through queries can ensure the closure of the data model under

various query languages [8], [12]. These important benefits

come in exchange for additional little storage of the variables,

which can be represented as integers.

We next introduce our operator, signature-based optimiza-

tions, and sketch an efficient low-level implementation.

A. Semantics

Fig.5 gives the semantics of our operator by translation to

SQL. For a hierarchical query Q with signature s, the query

returned by the statement

let (Q′, (V, P )) = JsK(Q, ( , ))
in select attrs(Q′)-{V } from Q′

computes the distinct answer tuples and their probabilities.

For simplicity, we assume the existence of an aggregate

function prob that computes the joint probability of indepen-

dent variables of a column (this can be simulated using an

aggregate function product as 1-product(1-P)). For a given

query, the function attrs returns its selection attributes. The

pair (V, P ) stands for the variable and probability columns of

the table encountered last in the bottom-up traversal of the

signature’s tree structure; its initial value is irrelevant.

Our operator allows for any query plan to compute the

answer to Q. All that it needs is the query signature. A

signature R corresponds to queries that are identity on table

R. There are no duplicates and the probabilities are those

already in the tuples. Signatures αβ and α∗ are processed by

propagation and aggregation steps, respectively. A signature

αβ corresponds to a join between tables without duplicates:

Each tuple in Q represents a distinct pair of independent tuples

from α and β. The values in the probability column of α are

multiplied with the values in the probability column of β, and

the variable and probability columns of β are dropped. A sig-

nature α∗ corresponds to queries with projections. Duplicates

can naturally arise in such cases. The signature α can be either

a table name or a composite signature. In both cases, variables

of (input) tables in α may occur several times within a (result)

column, and we aggregate them using the GRP statement. The

special factored form of expressions over the variables encoded

in variable columns ensure that, by aggregating such a variable

column, we partition its variables into disjoint sets. Because

any two distinct variables are independent, we can compute the

probability of each disjoint set as mentioned above. For each

set, we also choose a representative variable: Provided vari-

ables are represented by integers, the representative variable is

simply the one with minimal id. We do not drop the aggregated

variable column because of many-to-many relationships. We

explain using the signature R∗S∗, which states a many-to-

many relationship between tables R and S. We first aggregate

the variable and probability columns of S and compute the

representative variables together with the probability of each

partition. By this, we reduce the many-to-many relationship to

a many-to-one relationship. The representative variables are

needed to further reduce this many-to-one relationship to a

one-to-one relationship by next aggregating the variable and

probability columns of R. After the relationship is reduced to

one-to-one, we apply the case of signature αβ.



Q1= GRP[odate, Cust.V, Cust.P, Ord.V, Ord.P; min(Item.V) as Item.V, prob(Item.P) as Item.P](Q)

Q2= GRP[odate, Cust.V, Cust.P, Item.V, Item.P; min(Ord.V) as Ord.V, prob(Ord.P) as Ord.P](Q1)

Q3= πφ(Q2), where φ = odate, Cust.V, Cust.P, Ord.V, Ord.P·Item.P as Ord.P

Q4= GRP[odate, Cust.V, Cust.P; min(Ord.V) as Ord.V, prob(Ord.P) as Ord.P](Q3)

Q5= GRP[odate, Ord.V, Ord.P; min(Cust.V) as Cust.V, prob(Cust.P) as Cust.P](Q4)

Q6= πφ(Q5), where φ = odate, Cust.V, Cust.P·Ord.P as Cust.P

Q7= GRP[odate; min(Cust.V) as Cust.V, prob(Cust.P) as Cust.P](Q6)

(Cust∗(Ord∗Item∗)∗)∗
Q1→ (Cust∗(Ord∗Item)∗)∗

Q2→ (Cust∗(Ord Item)∗)∗
Q3→ (Cust∗Ord∗)∗

Q4→ (Cust∗Ord)∗
Q5→ (Cust Ord)∗

Q6→ Cust
∗ Q7→ Cust

Signatures of constituent aggregation and propagation steps: Q1[Item
∗]; Q2, Q4[Ord

∗]; Q3[Ord Item]; Q5, Q7[Cust
∗]; Q6[Cust Ord]

Fig. 6. Probability computation and signature transformations through successive aggregations and propagations (Examples V.1 and V.2).

Example V.1. Fig.6 gives the sequence of group-by statements

that define our operator in case of query Q from the Introduc-

tion. This query has the signature (Cust∗(Ord∗Item∗)∗)∗.

We recurse into the signature until we reach Item, and

return (Q, (Item.V, Item.P )). We aggregate Item∗ using the

GRP statement Q1 that removes the duplicate Item-tuples

paired with the same Cust and Ord-tuples. We choose as

a representative of each set of duplicates the one with the

minimal variable (any representative would do). We proceed

similarly for Ord and remove the duplicate Ord-tuples paired

with the same Cust and Item-tuples (Q2). The two aggregation

steps reduce (Ord∗Item∗)∗ to (Ord Item)∗, where the Ord-

tuples and Item-tuples are independent. We now reduce (Ord

Item) to Ord in a propagation step (Q3) that computes the

joint probabilities of Ord-tuples and Item-tuples, stores them

in the probability column of Ord, and drops the variable and

probability columns of Item. We are now left with signature

(Cust∗Ord∗)∗. We proceed similarly to the previous three steps

and reduce this signature first to (Cust∗Ord)∗ (Q4), then to

(Cust Ord)∗ (Q5), and finally to Cust∗ (Q6). As a last step

(Q7), we select the distinct odate-tuples of Q6.

We now check that the GRP statements Q1 to Q7 correctly

compute the probabilities of distinct tuples in the answer to Q.

Fig.1 gives this answer for our toy database (Vc is Cust.V, Vo
is Ord.V, and Vi is Item.V; the probability columns are omitted

in the figure). Query Q1 aggregates on Item, and reduces the

answer to (1995-01-01, x1, 0.1, y1, 0.1, z1, 0.28) over schema

(odate, Cust.V,Cust.P,Ord.V,Ord.P, Item.V, Item.P ), where
z1 was chosen as representative variable for {z1, z2}, and 0.28
is the probability prob({z1, z2}) = 1 − (1 − 0.1) · (1 − 0.2).
Query Q3 is the next to change the answer by dropping

Item.V and Item.P and updating Ord.P to Ord.P ·Item.P . We

hence obtain the tuple (1995-01-01, x1, 0.1, y1, 0.028). Similar

to Q3, Q6 changes this tuple into (1995-01-01, x1, 0.0028).
Finally, we drop x1 and return (1995-01-01, 0.0028).

For the more precise signature (Cust(Ord Item∗)∗)∗, we
only need to generate three instead of five GRP statements

(corresponding to the *’s in the signature). Section IV shows

that under natural assumptions concerning functional depen-

dencies that hold on TPC-H databases, both signatures are

correct for our query and we can thus use the more precise one.

As we show later, a low-level implementation of our operator

can process this complex signature in only one scan. 2

Sequences of aggregation and propagation steps, which

define probability computation operators, can be stated as

transformations of signatures. Given a sequence of steps with

signatures s1, . . . , sn, we denote the probability computation

operator defined by this sequence as [s1, . . . , sn].

Example V.2. Fig.6 gives the overall signature of query Q,

and its decomposition into signatures of each aggregation and

propagation step of our probability computation operator. 2

Theorem V.3. Given any query plan P of a hierarchical query

Q with signature s, the plan [s](P ) computes the probability

of each distinct tuple in the answer to Q.

B. Optimizations

The semantics of our operator already gives an efficient

implementation as a sequence of aggregations (group-by) and

propagation (projection) statements, and suggests a lazy ap-

proach to probability computation, whereby we first compute

the answer tuples and then the probability of the distinct ones.

This approach contrasts with the state-of-the-art method that

can only use eager plans under restrictive join orders [5].

Our framework allows for pulling up or pushing down

probability computation operators in the query plan, thus

adjusting the plan between the two extremes of eager and lazy

plans. These optimizations are governed by rules that exploit

the query signature. Pushing our operator past a join pays off

when it dramatically reduces the size of a join input table

and the join is rather unselective. Pulling it up past a join is

beneficial in case of selective joins. The latter case has also

the advantage that the order of tuples after most joins favours

grouping and thus our operator.

It is, however, not always possible to completely push or

pull a large sequence of aggregations, but rather small groups

of them. To allow for query optimization, we may treat each

simple aggregation of a probability computation operator as a

standalone operator. The signatures offer the right mechanism

to this effect. An operator can be split into several (possibly

overlapping) operators of precise signatures, and, reversely,

several operators can be merged into a single one.

Example V.4. Fig.6 gives a decomposition of the proba-

bility computation operator for query Q into smaller non-
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1ckey

[(Ord Item)∗]
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(a) Eager plan (join order as in Fig. 2) (b) Hybrid plan (join order as in Fig. 2) (c) Lazy plan (better join order)

Fig. 7. Query plans for query Q from the Introduction using signature (Cust∗(Ord∗Item∗)∗)∗.

decomposable operators. Further decompositions are given in

the query plans of Fig. 7. These plans are explained later.

The first two (aggregation) operators Q1 and Q2

can be composed into one operator [Item∗,Ord∗]. If

we add the third (propagation) operator Q3, we obtain

[Item∗,Ord∗, (Item Ord)], or simpler [Item∗Ord∗]. 2

Our optimizations are enabled by the following result.

Proposition V.5. Any subquery of a hierarchical query is

hierarchical.

We can place a probability computation operator on top

of any node n of a plan P for a given query. This operator

requires to be preceeded by a projection on the query’s

selection attributes and all the join attributes needed for the

joins that are not underneath. This ensures that duplicate

elimination and probability computation can be performed

after dropping irrelevant (data) columns.

The signature s of our operator is computed based on the

query signature and the probability computation operators in

the subplan P ′ rooted at n. We start with the query signature

and drop all tables that do not occur in the subplan P ′. In case

P ′ contains probability computation operators, we replace in

s each of their signatures t by the leftmost table name in t

(this is our convention also used in defining the semantics in

Fig. 5). In this process, we only need to look at the operators

nearest to n in each branch of P ′. We are now left with a

signature that captures all aggregations steps (tables with star),

but may specify propagation steps that are not captured by

other operators in P ′. We need to check which of these steps

are valid at node n. A propagation step αβ is valid at n, if P ′

contains all the tables in the minimal cover of the tables of α

and β in the query signature. In case a propagation step is not

valid at n, we need to split the signature s such that it does

not specify that step anymore, i.e., [αβ] is split into [α, β].

After inserting an operator [α1, . . . , αn] at node n, we need

to update all probability computation operators that are its

ancestors in the plan P . The update procedure is the same

as for the operators in the subplan P ′ and their ancestor we

have just inserted: For each ancestor operator, we replace in

its signature each αi by the leftmost table name in αi.

Example V.6. We analyze the plans of Fig.7 for our query

Q from the Introduction. The query signature is that of

the probability computation operator in Plan (c). The key

constraints are ignored here, otherwise the signature would

be refined to [(Cust(Ord Item∗)∗)∗].

At the node n with [(Ord∗Item∗)∗] in Plan (b), the signature

is computed by dropping from the query signature the table

Cust. The propagation step Ord∗Item∗ is also kept because the

subplan rooted at node n contains all the tables in the minimal

cover of {Ord, Item} (which are Ord and Item).

Assume we drop the operator [(Ord Item)∗] in Plan (a);

call this node m. The new signature of the top operator is

obtained from the query signature by replacing Ord∗ by Ord,

Cust∗ by Cust, and Item∗ by Item: (Cust(Ord Item)∗)∗. Let
us now re-insert an operator at node m. Its signature is the

query signature where Cust is dropped: (Ord∗Item∗)∗. We

then perform the substitutions given by the signatures of the

underneath operators and replace Ord∗ by its leftmost table

name (Ord), and replace similarly Item∗ by Item: (Ord Item)∗.
We finally update its ancestor operators (in this case the top

operator) and obtain [(Cust Ord)∗] from [(Cust(Ord Item)∗)∗].

Let us add a new probability computation operator at the

node p immediately after the join on ckey in Plan (c). The

projection to be added on top of this join is πodate,ckey .

We first eliminate Item from the query signature, because

it is not contained in the subplan rooted at p, and obtain

(Cust∗(Ord∗)∗)∗. The propagation step αβ, where α = Cust∗

and β = Ord∗ is not valid at node p because the table Item,

which is in the minimal cover of {Cust,Ord}, is not in the

subplan rooted at p. We thus split the signature into Cust∗ and

Ord∗ and obtain the operator [Cust∗,Ord∗]. Finally, we update

the probability computation operator at the top of Plan (c) by

replacing Cust∗ by Cust and Ord∗ by Ord in its signature:

[(Cust(Ord Item∗)∗)∗]. 2

Just as for traditional algebraic optimization rules, some



placements do not necessarily lead to better query plans. Cost-

based decisions can be made using the host relational database

engine. We let the engine find a good query plan for Q, where

a distinct construct is added to the outermost select clause

of Q and the variable columns are dropped. The Unique

operators in the plan (for Postgres), which implement the dis-
tinct construct, denote places where probability computation

operators can be added.

Example V.7. Fig.7 gives three equivalent plans for our query

Q from the Introduction. Plan (a) is eager and structurally

similar to the safe plan in Fig. 2. The aggregation operators

are pushed down towards the leaves of the plan. Plan (c) is lazy

and follows the translation of Fig.5. Here, the entire probability

computation is done after computing the answer tuples of Q.

Plan (b) is hybrid: It only pushes a part of the aggregations

down to a temporary table, which is expected to have many

duplicate (odate,ckey)-tuples. The probability computation op-

erators on top of the input tables are dropped, given the high

cost associated with their sizes and the low selectivity of the

joins. In TPC-H scenarios, Plan (c) outperforms the other two

due to its different join order: It first joins the very few tuples

of Cust with name ’Joe’ with Ord on the key of Cust-table.

Plans (a) and (b) first perform a join on two large tables. 2

Although we did not explicitly address the improvements

brought by functional dependencies to our optimizations, the

results of Section IV directly apply here: We show there how

to use functional dependencies for inferring simpler Boolean

hierarchical queries and hence more precise signatures. For

instance, under TPC-H functional dependencies, the query

signature of Q becomes (Cust(Ord Item∗)∗)∗ and some of the

operators in the plans of Fig.7 have fewer or no aggregation

or propagation steps; their signatures become trivial (a simple

table name) or simpler, e.g., [Cust∗] becomes [Cust], and

[(Ord∗Item∗)∗] becomes [(Ord Item∗)∗].

C. Execution

The implementation of our probability computation opera-

tor by a sequence of aggregation and propagation steps, as

suggested by the semantics in Fig.5, is not optimal: Each

aggregation and propagation step is done independently of

the others. Our key observation is that some steps can be

grouped and computed in a few sequential scans following

one sorting of the answer tuples. Before accessing the input

table, an operator computes the number of scans required by

the steps, which aggregations and propagations to do in which

scan, and the sort order of the columns of the input table. We

next discuss these issues.

Definition V.8. Given a query signature α.

1scan(α) = (∀β∗ ∈ α(∃ table R ∈ β ∧ 1scan(β))).

A signature has the 1scan property if each of its composite

expressions is made up by concatenating signatures with the

1scan property and at least a table without (*). For signature

α, we denote by #scans(α) one plus the number of its

subexpressions β∗, including itself, without the 1scan property.

1scan compute prob(1scanTree t){
prevSlot = NULL; fetch the first tuple into crtSlot;
foreach node n in t do {

enable n, n.crtP = 0, n.allP = 0;
n.index = index of its column in crtSlot; }

{Compare prevSlot and crtSlot, find leftmost unmatched column i;
propagate prob(t, i, crtSlot);
prevSlot = crtSlot; fetch the next tuple into crtSlot;

} do while (prevSlot 6= NULL)

return t.root.allP;
}

propagate prob(1scanTree n, int i, Slot crtSlot){
foreach child c of n do propagate prob(c, i, crtSlot);
if (n is enabled && n.index ≥ i)

if (n is a leaf node && n.index = i)
n.crtP = 1 - (1 - n.crtP) · (1 - crtSlot[n.index].prob);

else {
foreach child c of n do n.crtP = n.crtP · c.allP;
n.allP = 1 - (1 - n.crtP) · (1 - n.allP);
if (n.index = i) {
foreach descendant d of n do

enable d; d.allP = 0; d.crtP = crtSlot[d.index].prob;
n.crtP = crtSlot[n.index].prob; }

else
disable n and all its descendants; }

}

Fig. 8. Probability computation for queries with 1scan signature (sketch).

Example V.9. The signature (Cust(Ord Item∗)∗)∗ has the

1scan property: It contains the table Cust, and all nested

signatures of the form β∗ contain tables, for instance

(Ord Item∗) contains Ord. On the other hand, the signature

(Cust∗(Ord∗Item∗)∗)∗ does not have the 1scan property, be-

cause it does not contain a table (but only closures on tables

or on composite signatures).

Further examples of 1scan signatures: R∗S∗ (relational

product) and Nation1Supp(Nation2(Cust(Ord Item∗)∗)∗)∗ (the

signature of the conjunctive subquery of TPC-H query 7). 2

This property captures signatures of queries with foreign

key joins, which are natural in cases with one-to-many rela-

tionships between tables (like in TPC-H). It turns out that this

property is sufficient for computing aggregations in one scan.

Proposition V.10. An operator [α] needs #scans(α) scans.

This result extends to sequences of operators, whose signa-

tures cannot be captured into a single signature, by summing

up the number of scans necessary for each of them.

Example V.11. For [(Cust∗(Ord∗Item∗)∗)∗] we need two

scans to turn (Ord∗Item∗)∗ and (Cust∗(Ord∗Item∗)∗)∗ into

1scan signatures. This corresponds to computing [Ord∗] in the

first scan and [Cust∗] in the second scan. A third scan is used

by [(Cust(Ord Item∗)∗)∗], which has the 1scan property. In

contrast, the semantics of our operator suggests five aggrega-

tions and two projections (Fig.6). This can require to sort and

aggregate the answer tuples five times. 2

As it has become evident in the previous example, we first

schedule aggregations so as to obtain a 1scan signature. We

then allocate scans such that the innermost subexpressions β∗



without the 1scan property turn into 1scan signatures.

Our efficient probability computation for hierarchical

queries with 1scan signatures uses a tree representation of sig-

natures, called 1scanTree, where each node corresponds to one

variable column occuring in the query answer. A 1scanTree is

constructed from the hierarchical representation of the query.

Recall that, for a hierarchical query, the nesting structure of

its signatures coincides with its hierarchical representation.

We traverse bottom-up the hierarchical representation and

replace each inner node with one of its children that is a table

name. This is always possible because the signature has the

1scan property and hence each nested subexpression (which

corresponds to a subtree in the hierarchical representation) has

the 1scan property and one table name without star (*).

The sort order of the input to our operator is given by the

columns that hold input data followed by the variable columns

corresponding to the table names in any preorder traversal of

the 1scanTree of its input signature.

Example V.12. The signature (Cust(Ord Item∗)∗)∗ has as

1scanTree the path (Cust,Ord, Item), where Cust is the

root. The sort order for query Q from the Introduction is

(odate, V (Cust), V (Ord), V (Item)).
The 1scanTree of the signature (R1(R2R

∗
3)

∗(R4R
∗
5)

∗)∗ can

be serialized as R1(R2(R3), R4(R5)) with root R1 and two

paths (R1, R2, R3) and (R1, R4, R5). 2

Fig.8 sketches our probability computation algorithm for

1scan signatures, which uses the 1scanTree representation of

the signature and performs one scan over its input table. The

algorithm assumes wlog that the sorting order of the variable

columns is the same as the order in which they appear in

the tuples, and annotates each node in the 1scanTree with the

index of its corresponding variable column in this order. We

run this algorithm independently for each bag of duplicates

(i.e., that have the same values in the data columns).

The core of the algorithm is the procedure propagate prob,

which incrementally updates running probabilities at the

1scanTree nodes in postorder. A partition is defined by a set

of variables that occur in that column and are paired with the

same variables from other columns. Our algorithm keeps track

of current and completed partitions for each variable column

at the corresponding 1scanTree node. On reading an input

tuple, we update three properties of the 1scanTree nodes: The

running probability crtP of the current partition, the running

probability allP of all finished partitions, and an enabling

flag. While within a partition, we incrementally compute its

probability and keep it in crtP. When the end of a partition in a

variable column is reached, the allP value at the corresponding

node is updated with the probabilities of the children and of

the finished partition. The postorder traversal ensures that the

allP values of the descendants of a node are updated before

the allP value at that node.

A partition can re-occur in a variable column, for instance

in case of many-to-many relations between variables in several

columns. We avoid redundant computation by disabling nodes

during the time when old partitions re-occur in their corre-

sponding variable columns. Such nodes are re-enabled when

new partitions of their ancestors are encountered in the input.

When the bag of tuples is finished, the value allP of the

1scanTree root node is the desired exact probability.

Example V.13. Consider the operator [(Cust(Ord Item∗)∗)∗]
on top of a plan for our query Q. The answer tu-

ples are sorted on (odate, V (Cust), V (Ord), V (Item)). We

have one-to-many relations between V (Ord)-variables and

V (Item)-variables, and between V (Cust)-variables and pairs

of (V (Ord), V (Item))-variables. All allP and crtP values are

initially set to 0. While scanning the tuples in the given order,

we encounter distinct V (Item)-variables for the same V (Ord)-
variable (and V (Cust)-variable). With every new V (Item)-
variable, we update node(Item).crtP using the probability

computation formula for independent variables. When a new

V (Ord)-variable is read, we assign crtP to allP in node(Item),

set node(Ord).crtP to node(Ord).crtP×node(Item).allP, and up-

date node(Ord).allP with node(Ord).crtP like for node(Item).

We continue until a new V (Cust)-variable is met and proceed

similar to the case of a new V (Ord)-variable. At the end,

node(Cust).allP contains the desired probability. 2

D. Implementation

The SPROUT prototype has been implemented in Post-

greSQL8.3.3 and has about 2500 lines of code. It is currently

used by the query engine of the probabilistic database man-

agement system MayBMS and is freely available. The major

changes to PostgreSQL we have done so far are the addition to

the SQL query language of an aggregation construct conf() for

probability computation and of a construct for creating tuple-

independent tables from standard tables, a module that creates

query signatures and refines them using the key constraints

existing in the database, and our efficient operator for proba-

bility computation. More information about SPROUT (and a

link to the software repository) is available on the SPROUT

webpage (see the Introduction).

VI. CASE STUDY: TPC-H

We analyzed which of the 22 TPC-H queries can benefit

from our efficient evaluation technique. A complete report of

our findings is available at the SPROUT webpage.

For each TPC-H query, we considered its largest subquery

without aggregations and inequality joins but with the special

conf() aggregation for specifying exact probability computa-

tion for distinct tuples in query answers. We consider two

flavours of each of these queries: A version with original

selection attributes (again, without aggregations), and a version

where we drop keys from the selection attributes. The reason

for the latter version is that the presence of keys in the

selection attributes usually implies the hierarchical property.

Many practical queries, however, do not have keys among

the selection attributes. For such cases, we also investigated

whether we can derive hierarchical queries. This latter version

includes the case of Boolean queries, of course.

Many of these queries are hierarchical in the absence of

the TPC-H key constraints: 13 out of the 22 queries with



the original selection attributes and 8 out of 22 queries with

selection non-key attributes (four queries occur in both sets).

In the presence of the TPC-H key constraints, our approach

can cope with four more queries in each of the two classes.

TPC-H has interesting cases for our techniques to discover

hierarchical FD-reducts. For the queries 2, 11, and 18 we use

the existing TPC-H keys to derive hierarchical FD-reducts.

Query 18 is very similar to our query from the Introduction.

Query 7 is a fairly complex join on six tables, where two of

them are copies of Nation. The self-join causes no problems

because each table copy has distinct tuples. Query 19 has a

disjunction of three hierarchical conjunctions that are mutually

exclusive, which thus select disjoint sets of independent tuples.

Five queries do not admit hierarchical FD-reducts. Queries

5, 8, and 9 involve at least two joins of table Item with different

non-key attributes that do not occur as selection attributes.

Query 13 is a left outer join on customer and orders. Query 22

has subqueries that involve aggregations and inequality joins,

and by removing them, it becomes a simple selection.

VII. EXPERIMENTS

The experiments were conducted on an Athlon-X2(4600+)

64bit/1.8GB/Linux2.6.20/gcc4.1.2/PostgreSQL8.3.3 machine.

TPC-H Data and Queries. Our data set consists of tuple-

independent probabilistic databases obtained from determinis-

tic databases produced by TPC-H 2.7.0 by associating each

tuple with a Boolean random variable and by choosing at ran-

dom a probability distribution over these variables. We report

on experiments with TPC-H scale factor 1 (1GB database size)

and without indices. We evaluated the TPC-H-like queries

mentioned in Section VI: 17 TPC-H queries and the Boolean

variants of 9 of them, without aggregations and inequality joins

but with the conf() aggregation.

Query Engines. We compare our SPROUT engine with Mys-

tiQ [5], which implements the state-of-the-art exact evaluation

technique especially tuned for hierarchical queries. MystiQ is a

middleware that rewrites hierarchical queries into SQL queries

that use aggregations to compute probabilities (as of June

2008). MystiQ was configured to work on tuple-independent

databases (by appropriately setting database configuration files

and dropping the columns for variables). Some of the queries

(1, 4, 12, and the Boolean queries B1, B4, B6, B12, B14,

B15, B16) could not be computed by MystiQ due to a

minor technical problem: Given n events with probabilities

p1, . . . , pn stored in a column P , the probability 1−Πi(1−pi)
of their disjunction is computed as 1 − POWER(10.000,

SUM(log(1.001 - P ))). In case of large n, the latter formula

requires the computation of logarithms of very small numbers

and leads to runtime errors.

For all experiments, we report wall-clock execution times

of queries run in the PostgreSQL8.3.3 psql shell with a warm

cache obtained by running a query once and then reporting

the average runtime over ten subsequent, identical executions.

1. Lazy plans, eager plans, MystiQ plans. We compared

experimentally three different types of query plans for TPC-

H queries: The eager plans that aggregate after each table,
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Fig. 9. Comparison: Lazy, eager, and MystiQ plans (scale factor 1).

including the temporary tables, MystiQ plans, which are also

eager, but with possibly suboptimal join orders, and lazy plans

that use our probability computation operator at the very end.

Fig.9 shows that for the 8 TPC-H-like queries, lazy plans

perform up to two orders of magnitude better than MystiQ’s

plans and about one order of magnitude better than our eager

plans. For each query, the time needed by the lazy plans to

compute the probability of the distinct answer tuples is in-

significant when compared to the time needed to compute and

store on disk the answer tuples without duplicate elimination

but ordered as required by our operator. This is because the

functional dependencies make even large query signatures very

precise, and our operator computes the probability of each

distinct tuple in only one scan of the answer tuples.

We experimentally confirmed the following differences be-

tween lazy, eager, and MystiQ plans. Eagerness, while fun-

damental for safe plans and sometimes quite beneficial in

removing duplicates early on, turns out to be inappropriate

in the TPC-H context, where small relations produced by

selective conditions (like Cust) are joined on keys with large

relations (Item). For instance, query B17 is a join of Item and

a rather small subset of Part on the key pkey of Part. Any eager

plan first computes the probability of each distinct pkey-value

in the very large table Item, although most of these values

do not occur in the selective join partner. A further important

difference concerns the restrictive join orderings in MystiQ

plans for queries with at least three tables (queries 10, 18,

20, and 21). Query 18, similar to our running query from the

Introduction, is a join of Cust, Ord, and Item on ckey and okey,

respectively; and Cust has a very selective condition. MystiQ

plans compute the unselective join on Ord, and Item on okey,

then the probabilities of each distinct ckey-value in the result

of this join, and finally they join the temporary table of the

previous join with a few (precisely one in case of query 18)

Cust-tuples. Query 3 has the same joins as query 18, except

that the key okey is in the projection list, which drops the

restriction on join ordering.

Fig. 10 shows the performance of query evaluation for the

remaining 18 queries that do not admit MystiQ plans or could

not be computed by MystiQ due to runtime errors. The time

needed to compute and store the answer tuples is about two

orders of magnitude larger than the time taken to compute the

distinct tuples and their probabilities using a lazy plan.
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We investigated the behaviour of lazy and eager plans when

the selectivity of selections with constants is varied for the

two queries of Fig.11 by changing the constant ct. Given n

tuples, a selectivity of p means here that p×n tuples satisfy the

selection condition. We observed that lazy plans are preferred

in case p is small. This is because the selections already filter

out most of the tuples and few duplicates are produced by

the last projection. In case of large p, the selections become

irrelevant and the projection operators on top of the joins can

create many duplicates. Removing duplicates early on, before

they are multiplied by the joins, pays off for large p.

2. Lazy plans, eager plans, hybrid plans. We further

conducted a limited analysis of cases where hybrid plans, i.e.,

plans that combine eager and lazy probability computation,

outperform the extremes. The hybrid plans can avoid expensive

and sometimes useless eager aggregation on large tables and

save time by reducing the size of temporary tables. Fig.12

gives the timing for two queries. Both queries have plans that

first avoid eager aggregation on large tables (Item and Psupp),

and then push down aggregations between unselective joins.

3. The effect of functional dependencies (FDs). We experi-

mentally compared the sequential scan and our operator with

and without FDs. Fig.13 suggests that on TPC-H data, our

operator’s performance is very close to that of a sequential

scan if FDs are used, as it only needs one scan and its

computation is mainly I/O bound. In contrast, in the absence

of FDs, it needs considerably more time (from 2 to 100 times

more), which can be explained by the larger number of scans.

Query Eager Lazy Hybrid Eager/Hybrid Lazy/Hybrid

C 71.10s 5.22s 4.02s 17.69 1.3
D 1.16s 0.78s 0.52s 2.23 1.5

C = πckey,name(Cust 1ckey σodate<’1992-01-31’(Ord) 1okey Item)

D = πnkey(Nation 1nkey σacctbal<600(Supp) 1skey Psupp)

Fig. 12. Hybrid versus eager and lazy plans (scale factor 1).

Query 2 7 11 B3

Time for seqscan 0.02s 0.02s 0.09s 0.01s
Time for sorting 0.03s 0.07s 0.12s 0.03s

Our operator (no FDs) 0.20s 0.66s 4.23s 0.05s

Our operator (with FDs) 0.09s 0.02s 0.40s 0.03s
#answer tuples 642 5924 31680 4488
#distinct answer tuples 642 796 29818 1

Fig. 13. Influence of FDs on performance (scale factor 1).

VIII. FUTURE WORK

We see many exciting research directions that can be taken

from here, mostly centered around novel secondary-storage

algorithms for exact and approximate probability computation

for various classes of queries and probabilistic database mod-

els. To date, the algorithms for probability computation in most

available systems are main-memory and deal suboptimally

with the (few) known tractable classes of queries. Additionally,

little is known on which queries admit polynomial-time exact

evaluation on the various proposed data models [6].
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