ENFrame =

Programs + Queries

Probabilistic Data

Highlights on published work (with a bit of vision)

Dan Olteanu
University of Oxford & LogicBlox Inc.

ABSTRACT

This paper overviews ENFrame, a framework for processing
probabilistic data. In addition to relational query process-
ing supported by existing probabilistic database manage-
ment systems, ENFrame allows programming with loops,
assignments, list comprehension, and aggregates to encode
complex tasks such as clustering and classification of data
retrieved via queries from probabilistic databases.

We explain the design choices behind ENFrame, some dis-
tilled from the wealth of work on probabilistic databases and
some new. We also highlight a few challenges lying ahead.

1. MOTIVATION AND SCOPE

Probabilistic data management has gone a long, fruitful
way in the last decade [8]: We currently have a good under-
standing of the space of possible relational and hierarchical
data models and its implication on query tractability; the
community already delivered several open-source systems
that exploit the first-order structure of database queries for
scalable inference, e.g., MystiQ, Trio, and MayBMS to name
very few, and applications in the space of web data manage-
ment, e.g., SPROUT? [3] with more to come in near fu-
ture from Google Knowledge World. Significantly less effort
has been spent on supporting complex data processing be-
yond mere querying, such as general-purpose programming
or even data mining tasks.

There is a growing need for computing platforms that
would allow users to build applications feeding on uncer-
tain data without worrying about the underlying uncertain
nature of such data or the computationally-hard inference
task that comes along with it. For tasks that only need
to query probabilistic data, existing systems do offer a vi-
able solution. For more complex tasks, however, successful
development requires a high level of expertise in probabilis-
tic databases and this hinders the adoption of the exist-
ing technology as well as communication between potential
users and experts. A similar observation has been recently
made in the areas of machine learning [1] and program-
ming languages [4], with the goal of developing a proba-
bilistic programming framework that allows models to be
expressed concisely, yet with random variables and proba-
bilities as first-class citizens. This follows a line of work on,
e.g., marrying first-order logic with Bayes nets in BLOG |[6]
and probabilistic extensions of logic programming [5|.

Copyright is held by the author/owner(s).
BUDA ’14 (SIGMOD/PODS),
ACM .

Sebastiaan J. van Schaik
University of Oxford

The thesis of this paper is that one can build powerful and
useful systems for processing probabilistic data that leverage
aforementioned existing work by the data management com-
munity. ENFrame, our recent probabilistic data processing
framework [9], fits this vision.

Following the design of the MayBMS/SPROUT proba-
bilistic database system, ENFrame adheres to a sound se-
mantics (the possible-worlds semantics) for its whole pro-
cessing pipeline; it exploits where possible the structure of
queries for scalable processing; and it uses a rich language
of probabilistic events to express input correlations, to trace
the correlations introduced during task computation, and
to enable sensitivity analysis, incremental maintenance, and
knowledge compilation-based approaches for approximate
inference. A key property inherited from database systems
principles is that it separates between the physical and log-
ical representations of probabilistic data |7]: Whereas the
physical representation may be that of, e.g., Bayes nets for
some sources and (variants of) probabilistic c-tables for oth-
ers, the users are exposed to a unified relational view of
the underlying data. Finally, the users are oblivious to the
probabilistic nature of the data: They program as if the in-
put data is plain relational, with no uncertainty or layout
intricacy; it is the ENFrame’s job to make sense of the un-
derlying data formats, probabilities, and input correlations,
thus relieving the users from requiring expert knowledge on
inference, query tractability, and probabilistic models and
interpretation of their programs.

ENFrame then adds a programming language with rich
constructs that allow to express complex tasks such as clus-
tering or nearest neighbour classification intermixed with
structured querying: User programs are written in a frag-
ment of Python that so far supports bounded-range loops,
if-then-else statements, list comprehension, aggregates, and
query calls to external database engines. This addition has
non-trivial effects on the other aspects of the system. Firstly,
the event language needed to support such tasks is pow-
erful. While propositional formulas over Boolean random
variables are expressive enough to capture program compu-
tation traces, they can be extremely large and expensive to
manage. ENFrame’s event language extends algebraic for-
malisms based on semirings and semi-modules for probabilis-
tic data [2] that can succinctly encode program events (they
can be exponentially more succinct than equivalent proposi-
tional formulas or Bayesian nets). Secondly, ENFrame needs
to scale up inference of networks of highly interconnected
events. It does so using distributed approximate inference
algorithms that work for a bulk of events at a time.

29

(0, n) = loadData () # list and number of objects
(k, iter) = loadParams () # number of clusters and iterations
M = init () # initialise medoids
for it in range(0,iter): # clustering iterations
InCl = [None] * k # assignment phase

for i in range (0,k):
InCl[i] = [Nonel * n

for 1 in range(0,n):
InC1[i][1] = reduce_and(

Viin 0.n —1:0° = ®(0;) ® 3
MO, = ®(07(0)) ® Br(oy;-- - i M¥ T = ®(0n(h-1)) ® Frro1)

Vit in O..iter — 1 :
Viin 0.k —1:
Vliin 0.n —1:
L AR—1[.. : ; .)
InCly;" = /\.7,:0 I:dlst(o” M) < dist(O', Mijt_l)}

[(dist (0[1]1,M[i]) <= dist(0[1],M[j]1)) for j in range(0,k)])

InCl = breakTies2(InCl)

DistSum = [None] * k # update phase
for i in range (0,k):
DistSum[i] = [None] * n
for 1 in range(0,n):
DistSum[i] [1] = reduce_sum(

[dist (0[1],0[p]) for p in range(O,n) if InCl[i]([p]])

Centre = [None] * k

for i in range (0,k):
Centre[i] = [None] * n

for 1 in range(0O,n):
Centre[i][1] = reduce_and(

[DistSum[i][1] <= DistSum[i][p] for p in range(O,n)])
enforce one medoid per cluster

Centre = breakTiesl (Centre)

M = [Nonel * k
for i in range (0,k):
M[i] = reduce_sum([0[1] for 1 in range(O,n)

each object in exactly one cluster

if Centre[i][1]11)

// Encoding of breakTies2 omitted

Viin 0.k —1:
Vlin 0.n —1:
DistSumj;' = 7"~ 1 InCLiP A T @ dist(0', OP)

Viin 0.k —1:
Vliin 0.n —1:
Centre:t’l = /\;:_01 [DistSum;’l < DistSum;t’p}

// Encoding of breakTiesl omitted

Viin 0.k —1:
Ml = 7;(]1 Centrefg” AO!

Figure 1: k-medoids clustering specified as user program and event program.

2. ENFRAME BY EXAMPLE

Figure |1| shows ENFrame’s user program (left) and the
translation into an event program (right) for k-medoids clus-
tering. We highlight some aspects here and refer to |9] for a
detailed description.

The k-medoids clustering algorithm selects a set of k ini-
tial medoids (cluster centres), then iteratively assigns data
points to the closest medoid and updates the medoids.

On line 3, the data is loaded — either from a database (if
a query is provided), or from an external data source. After
selecting the initial medoids (line 3), the assignment (line
6 onward) and update (line 14 onward) phases are speci-
fied. An object is assigned to a cluster C; if distance to C;’s
medoid is the smallest (line 11). Similarly, an object is se-
lected as a cluster medoid of C; if the sum of distances to
all other objects in the cluster (line 18) is minimal (line 26).

The event program uses conditional values to construct
random variables O; whose outcomes are vectors in the fea-
ture space (line 1): O; is defined as 6; when ®(o;) is true or
undefined otherwise. InCl;' is a Boolean random variable
that mirrors the Boolean variable InC1[i] [1] in the user
program and represents the event that object o; is assigned
to cluster C; in iteration t. DistSumiZgl is a real-valued ran-
dom variable representing all possible sums of distances from
candidate medoid o; to other objects in cluster C;.

All program variables have a probabilistic interpretation
and thus define a probability density function that can be in-
spected by the user. For instance, the user can define a vari-
able stating that two objects belong to the same cluster, or
are likely to co-occur together in clusters. Probability den-
sity functions of program variables can be further processed,
e.g., by a probabilistic DBMS or subsequent programs.

3. OPEN ENDS

Many aspects of ENFrame as described in this paper are
work in progress: The trade-off between the expressiveness
of the user language and efficient processing; which addi-
tional constructs are needed in the event language to sup-
port a library of common data mining tasks; and how to

exploit the program structure (in addition to query struc-
ture) for efficient inference. A better integration of queries
and program constructs is desirable, with relations and pro-
gram data structures (e.g., multi-dimensional arrays) to be
used interchangeably in both programs and queries.

We plan to investigate a functionality-performance trade-
off observed when lifting the fine-grained events obtained
by exhaustive grounding of the user program to their higher
order realisation. For the k-medoids program, all cluster
membership events for a given cluster C; can be lifted to
one higher-order event, which expresses the membership of
all data points to C; and can be compiled into C++ code
for efficiency reasons. Whereas the fine-grained events lead
to large networks and poorer performance of inference, they
support more accurately answer explanation, sensitivity anal-
ysis, and incremental maintenance.

4. REFERENCES

[1] Defense Advanced Research Projects Agency. Probabilistic
programming for advancing machine learning, April 2013.
DARPA-BAA-13-31.

[2] R. Fink, L. Han, and D. Olteanu. Aggregation in
probabilistic databases via knowledge compilation. PVLDB,
5(5), 2012.

[3] R. Fink, A. Hogue, D. Olteanu, and S. Rath. SPROUTZ: A
squared query engine for uncertain web data. In SIGMOD,
2011.

[4] A.D. Gordon, T. A. Henzinger, A. V. Nori, and S. K.
Rajamani. Probabilistic programming. In ICSE, 2014.
Future of Software Engineering track (to appear).

[5] L. De Raedt and A. Kimmig. Probabilistic programming
concepts, December 2013. arXiv 1312.4328.

[6] B. Milch and et al. BLOG: Probabilistic models with
unknown objects. In IJCAI, 2005.

[7] D. Olteanu, L. Papageorgiou, and S. van Schaik. IIgora: An
integration system for probabilistic data. In ICDE, 2013.

[8] D. Suciu, D. Olteanu, C. Ré, and C. Koch. Probabilistic
Databases. Morgan & Claypool, 2011.

[9] S. van Schaik, D. Olteanu, and R. Fink. ENFrame: A
platform for processing probabilistic data. In EDBT, 2014.

