
Query Optimization for Distributed Database Systems
Robert Taylor

Candidate Number : 933597
Hertford College

Supervisor: Dr. Dan Olteanu

Submitted as part of
Master of Computer Science

Computing Laboratory
University of Oxford

August 2010

Acknowledgments

I would like to thank my supervisor Dr Dan Olteanu for his incredible level of
enthusiasm and encouragement throughout the project. I am also very grateful for
the continuous level of feedback and organisation as well as the amount of time
he has devoted to answering my queries. I feel that I now approach complex and
unknown problems with enthusiasm instead of apprehension as I used to. I couldn’t
have had a better supervisor.

Abstract

The query optimizer is widely considered to be the most important component of a
database management system. It is responsible for taking a user query and search-
ing through the entire space of equivalent execution plans for a given user query
and returning the execution plan with the lowest cost. This plan can then be passed
to the executer, which can carry out the query. Plans can vary significantly in cost
therefore it is important for the optimizer to avoid very bad plans. In this thesis we
consider queries in positive relational algrebra form involving the conjunction of
projections, selections and joins.

The query optimization problem faced by everyday query optimizers gets more and
more complex with the ever increasing complexity of user queries. The NP-hard
join ordering problem is a central problem that an optimizer must deal with in or-
der to produce optimal plans. Fairly small queries, involving less than 10 relations,
can be handled by existing algorithms such as the classic Dynamic Programming
optimization algorithm. However, for complex queries or queries involving multi-
ple execution sites in a distributed setting the optimization problem becomes much
more challenging and existing optimization algorithms find it difficult to cope with
the complexity.

In this thesis we present a cost model that allows inter-operator parallelism op-
portunities to be identified within query execution plans. This allows the response
time of a query to be estimated more accurately. We merge two existing centralized
optimization algorithms DPccp and IDP1 to create a practically more efficient al-
gorithm IDP1ccp. We propose the novel Multilevel optimization algorithm frame-
work that combines heuristics with existing centralized optimization algorithms.
The distributed multilevel optimization algorithm (DistML) proposed in this paper
uses the idea of distributing the optimization phase across multiple optimization
sites in order to fully utilize the available system resources.

Contents

1 Introduction 7
1.1 Background and Motivation . 7
1.2 Related Work . 8
1.3 Outline and Contributions . 9

2 Preliminaries 11
2.1 Distributed Database Systems 11

2.1.1 Distributed Database System Architecture 12
2.2 Distributed Query Processing . 12

2.2.1 Catalog . 12
2.2.2 Query Evaluation Techniques 14

2.3 Query Optimization in a Centralized Database system 15
2.3.1 Search Space . 17
2.3.2 Enumeration Algorithms 19
2.3.3 Cost Model . 22

3 Query Optimization Challenges in a Distributed Environment 25
3.1 Search Space Cardinality . 25
3.2 Establishing Query Execution Plan Cost 26

4 Cost Model For Distributed Evaluation 31
4.1 Plan Transformation Phase . 31

4.1.1 Scheduling Phase . 34

5 Centralized Optimization Algorithms 38
5.1 IDP1 : Iterative Dynamic Programming Algorithm for Query Op-

timization . 38
5.1.1 Example : Standard-best plan IDP1 39
5.1.2 Example : Balanced-best plan IDP1 43

5.2 DPccp : Dynamic Programming connected subset complement-
pair Algorithm for Query Optimization 45
5.2.1 Definitions . 45
5.2.2 #csg and #ccp formulas 46
5.2.3 Algorithm Description 46
5.2.4 Enumerating Connected Subsets 47
5.2.5 Example : enumerate-csg 49
5.2.6 Enumerating Complement Subsets 49
5.2.7 Example : enumerate-cmp 51

5.3 IDP1ccp : Iterative Dynamic Programming connected subset-complement
pair Algorithm for Query Optimization 52
5.3.1 Example : IDP1ccp . 55

6 Multilevel Optimization 57
6.1 Multilevel (ML) Framework . 58
6.2 SeqML : Sequential Multilevel Algorithm for Query Optimization 59

6.2.1 Worst Case Time Complexity 62
6.2.2 Example : SeqML . 62

6.3 DistML : Distributed Multilevel Algorithm for Query Optimization 63
6.3.1 Worst Case Time Complexity 66
6.3.2 Example : DistML . 67

7 Implementation 70
7.1 Catalog . 70

7.1.1 Internal Representation 70
7.1.2 File Format . 71

7.2 Join Graph . 74
7.2.1 Internal Representation 74
7.2.2 File format . 74

7.3 Query Execution Plan . 75
7.4 Multilevel Optimization Code 79

8 Experiments 82
8.1 Setup . 82
8.2 Algorithms . 82
8.3 Query Generator . 83
8.4 Design . 85
8.5 Experiment 1: Quality of ML Algorithms with Varying k 86

8.5.1 Chain and Cycle Analysis 86
8.5.2 Clique Analysis . 89
8.5.3 Star Analysis . 90

8.6 Experiment 2 - Algorithm Comparison 91
8.6.1 Chain Analysis . 92
8.6.2 Cycle Analysis . 94
8.6.3 Clique Analysis . 97
8.6.4 Star Analysis . 98

8.7 Summary . 99

9 Conclusions and Future Work 101

A IDP1ccp Component Algorithms 106

B Cost Model Example 108
B.1 Catalog . 108
B.2 Query . 108

C Chain ccp formula proof 109

D Query Generator Design 110

E Algorithm Experimental Comparison 111
E.1 Distributed database with one execution site 111

E.1.1 Chain Queries . 111
E.1.2 Cycle Queries . 112
E.1.3 Clique Queries . 112
E.1.4 Star Queries . 113

E.2 Distributed database with nine execution sites 114
E.2.1 Chain Queries . 114
E.2.2 Cycle Queries . 115
E.2.3 Clique Queries . 115
E.2.4 Star Queries . 116

F Maximum K Values 117

G Plan Quality with Varying K 120
G.1 System with one Execution Site - SeqML - 100-Queries 120
G.2 System with one Execution Site - DistML - 100-Queries 121
G.3 Distributed System with three Execution Sites - DistML - 100-

Queries . 122
G.4 Distributed System with nine Execution Sites - SeqML - 100-Queries123
G.5 Distributed System with nine Execution Sites - DistML - 100-Queries124

1 Introduction

1.1 Background and Motivation

The query optimizer is widely considered to be the most important part of a database
system. The main aim of the optimizer is to take a user query and to provide a
detailed plan called a Query Execution Plan (QEP) that indicates to the executer
exactly how the query should be executed. The problem that the optimizer faces is
that for a given user query there exists a large space of different equivalent QEPs
that each have a corresponding execution cost. The plans are equivalent in the
sense that they return the same result for the user query but the cost of plans may
differ by orders of magnitude. In a centralized database system an estimate of the
number of I/Os performed is typically used as a cost metric for a plan. If the op-
timizer choses a plan with a poor cost the execution can take several days while
another plan may exist that performs the execution in seconds [5].

The optimization problem encompasses the join ordering problem, which has been
proven to be NP-complete [17]. This means that no polynomial time algorithm
currently exists that can find the optimal plan for all sizes of queries in a feasible
time frame. One of the most widely used optimization algorithms in commercial
databases, such as IBM DB2 [11], is based on Dynamic Programming (DP) and
can be seen in Figure 12. However, DP has a worst case time complexity ofO(3n)
and space complexity of O(2n) where n is the number of relations involved in
the query. For complex queries∗ DP would exhaust the available memory and
would take an unfeasible amount of time to return the optimal plan. Unfortunately,
complex queries are being encountered more frequently to meet the increasingly
complex requirements of the users/companies of today.

Companies with offices in different cities find that they must provide access to the
same data from different locations, which leads them to making use of distributed
database systems. Optimizers in these systems face the highly complex problem
of determining the best execution plan in the presence of multiple possible rela-
tion copies located at different sites. The execution site for each operator has to
be determined and the cost of transferring relations between sites has to be in-
cluded in the cost model in addition to the I/Os performed. The optimizer must
also be able to recognise the opportunities for parallelism that arise as a result of
the distributed setting and adjust its cost model to recognise plans that utilize these
possible concurrent execution opportunities. For example, it may be possible to
utilize two different sites in a distributed system to execute different parts of a
∗By the term ’complex queries’ we mean queries that involve a large number (≥ 50) of relations.

7

given query plan concurrently thereby reducing the total execution time. A fairly
simple alteration of the classic DP algorithm was suggested in [9] that enabled it
to be applicable in the distributed database setting. However, the worst case run-
ning time in this case is O(s3 · 3n) where s is the number of execution sites in the
system. For even moderately sized systems using this algorithm to optimize even
fairly simple queries becomes unfeasible.

The main aim of this thesis is to produce a query optimizer that is capable of opti-
mizing large queries (involving ≥ 50 relations) in a distributed setting. We assume
that the distributed setting is homogeneous in the sense that all sites in the system
run the same database management system software [16]. We consider complete
relations to possibly be replicated at different sites in the system. Extending this
assumption to include fragmented relations is left as further work. We wish to pro-
duce an optimizer that is capable of recognising opportunities for inter-operator
parallelism within QEPs. Given a query the optimizer should aim to produce the
plan with the shortest execution time or response time.

1.2 Related Work

Several approaches have been proposed to enumerate over the search space of
equivalent plans for a given user query. These include randomized solutions such as
Iterative Improvement (II) and Simulated Annealing (SA) [23] and heuristic-based
methods such as the minimum selectivity heuristic [19]. This heuristic is described
further in section 2.3.2. Query re-writing [25] and query simplification [12] tech-
niques have also been recently explored where the query graph is restricted in an
attempt to reduce the complexity of the optimization.

Iterative Dynamic Programming (IDP) was proposed in [9] in 2000 to overcome
the space complexity problem of DP. However, DP and IDP do not consider the
query structure or join graph, which consequently leads them to consider cross
products. Cross products are costly and result from joining relations together that
do not have a join condition present. The DPccp algorithm proposed in [21] in
2006 uses the join graph of a query to perform dynamic programming without
considering cross products. DPccp still has the same worst case running time as
DP (in the case where a clique query is being optimized) but in practise it produces
considerable savings in time when optimzing chain and cycle queries.

8

1.3 Outline and Contributions

The contributions of this thesis are as follows.

• We tailor cost models suited for parallel database systems from [7] to be
applicable in the distributed database setting. This involves taking concepts
such as identifying tasks and scheduling and adapting them to be suitable
in our distributed setting. We give a focus on modelling inter-operator par-
allelism, while cost models for parallel database systems typically focus on
exploiting intra-operator parallelism, i.e. using multiple execution sites to
execute a single operator concurrently.

• We combine two existing centralized optimization algorithms DPccp [21]
and IDP1 [9] to produce an improved version of IDP1, which we name
IDP1ccp. It is clear from the experimental results of [9] that this algorithm
was considered and indeed some results were produced. However, DPccp
was produced in 2006 while IDP1 was produced in 2000. In [9] only small
examples of a single chain and a single star query were considered, which
leads me to believe that the authors used a degree of code hardwiring and
did not produce a general algorithm capable of operating over arbitrary join
graphs as IDP1ccp is.

• We propose the novel multilevel (ML) optimization algorithms with the in-
tention of being able to optimize larger queries and queries in larger dis-
tributed settings than IDP1ccp is able to due to limitations on its time com-
plexity.

• The project Java code and experimental data can be found at the following
URL.

http://www.comlab.ox.ac.uk/people/dan.olteanu/projects/distributedoptimization.html

This thesis is organized as follows.

• Section 2 introduces background information on distributed database sys-
tems, distributed query processing and query optimization in a centralized
database system.

• Section 3 highlights the challenges present when implementing a query op-
timizer in distributed database systems.

• Section 4 presents our query execution plan cost model that is capable of
modelling concurrent execution between multiple operators, i.e. inter-operator
parallelism.

9

• In section 5 we present two existing centralized query optimization algo-
rithms DPccp and IDP1 and combine them to produce a third algorithm,
which we name ICP1ccp. This algorithm is then used as a benchmark in
experiments involving our multilevel optimization algorithms.

• Section 6 presents the novel multilevel (ML) optimization algorithms that
have been designed to operate in the event that IDP1ccp cannot operate due
to the time complexity of the algorithm. We propose a sequential ML al-
gorithm (SeqML) and then a distributed ML algorithm (DistML) that uses
multiple optimization sites with the aim of better using the available system
resources for query optimization (and not just query execution).

• Section 7 gives implementation details of the optimization algorithms pre-
sented in this thesis. Here we discuss internal structures and file formats used
for query execution plans, join graphs, the system catalog as well as giving
class diagrams showing the design of the query optimizer.

• In section 8 the experimental results are shown that indicate the comparative
performance of SeqML, DistML and IDP1ccp with regards to plan optimal-
ity.

• Appendix A gives variations of existing algorithms required by the IDP1ccp
algorithm. These variations are small but are important to the algorithm.

• Appendix B gives an example of the file format of a system catalog and a
randomly generated query.

• Appendix C gives a proof of the number of connected components for a
chain query in terms of the number of relations involved in the query.

• Appendix D gives the design of the query generator used to produce queries
for the experiments.

• Appendix E presents experimental results comparing the ML algorithms
with IDP1ccp in the distributed setting containing one execution site and
nine execution sites.

• Appendix F gives the maximum k values that the ML algorithms and IDP1ccp
can take in the experiments (due the existence of an optimization time cap).

• Appendix G gives experimental results for determining the best k parameter
for the ML algorithms in the distributed setting containing one execution
site and nine execution sites. For brevity only the results for 100-Query are
shown.

10

2 Preliminaries

In this section we present some background information regarding distributed database
systems including desirable properties, architectures and query execution tech-
niques. We then discuss some of the conceptual problems encountered when de-
signing a query optimizer for a centralized database system and we present some
of the existing solutions.

2.1 Distributed Database Systems

A distributed relational database is a distributed database consisting of multiple
physical locations or sites and a number of relations. Relations may be replicated
and/or fragmented at different sites in the system. The placement of data in the
system is determined by factors such as local ownership and availability concerns.
A distributed database management system should not be confused with a parallel
database management system, which is a system where the distribution of data is
determined entirely by performance considerations. When every site in the system
runs the same DBMS software the system is called homogenous. Otherwise, the
system is called a heterogenous system or a multidatabase system [16].

Having data distributed across multiple sites is particularly advantageous for large
organizations who have offices and their work force distributed across the world.
As well as offering access to common data from multiple locations, having dis-
tributed data can offer other benefits including improving the availability of data.
For example, by distributing data we avoid the single point of failure scenario
where data resides at a single site that can fail. By replicating data across sev-
eral sites in the event of a site failure there would be more chance of having an
alternative copy of the required relation available. This would allow the service
requesting the relation to continue without being disrupted. Replicating data not
only improves availability but also improves load distribution. By creating copies
of relations that are in high demand we reduce the load on owning sites, which may
have an impact on reducing the number of site failures. By replicating relations to
sites where they are most commonly used network accesses can be reduced, which
can improve the performance for users at those sites.

Two desirable properties that a distributed database management system should
possess are Distributed Data Independence and Distributed Transaction Atomicity.
Distributed Data Independence refers to the fact that a user should be oblivious to
the location of data that they query or manipulate. This also implies that query op-

11

timization in a distributed system should be systematic as in a centralized system
in the sense that the optimzer should use a cost model (incorporating local disk
I/O and network costs) to determine where to fetch data from, where to execute
evaluation operators and in what order. Distributed transaction atomicity refers to
the fact that users should be able to perform transactions in a distributed environ-
ment and these transactions should be atomic. This means that if a user transaction
completes then the results should be visible to all other users of the system and in
the event that the transaction aborts the system should be presented to all users in
the state that existed before the transaction was initiated [16].

2.1.1 Distributed Database System Architecture

Distributed database systems traditionally adopt a client-server architecture con-
sisting of client and server processes. In a client-server architecture there exists a
clean seperation of responsibility between client processes and server processes.
Data is stored at server sites that run server processes that provide access to their
local data to client processes. Client sites run client processes that provide an in-
terface between users and the data residing in the system.

In a collaborating server system we have much the same system configuration as
we have in a peer-to-peer (p2p) network, where each process or node in the system
can act as both a client and server. In this case data is stored at all nodes and it
is possible for a node to receive a transaction request that involves data that is not
stored locally to it. If a node receives a transaction request requiring access to
data stored at other sites the node will collaborate with the appropriate sites until
the transaction is fulfilled or is aborted. An example p2p system consisting of
four sites (s1, s2, s3 and s4) is shown in Figure 1. The system contains the three
relations R1, R2 and R3, some of which are replicated at multiple nodes. In the
event where a transaction request is issued at s1 that involves relations other than
R1, s1 will have to collaborate with other sites in the system in order to carry out
the transaction [16].

2.2 Distributed Query Processing

2.2.1 Catalog

In a centralized database system the catalog is used to primarily store the schema,
which contains information regarding relations, indices and views. The meta-data
stored for relations includes the relation name, attribute names and data types and

12

s1

s2

s3

s4

R1

R2, R3

R1, R3

R1, R3

Figure 1: p2p network

integrity constraints. Various statistics are also stored in the catalog such as the
number of distinct keys in a given attribute and the cardinality of a particular rela-
tion. These statistics aid the query optimizer in estimating the size of intermediate
results of execution plans, which allows the optimizer to determine an estimate of
the cost of plans. Information about the current system state is also made avail-
able in the catalog, including the number of buffer pages in the buffer pool and the
system page size in bytes [16].

In a distributed DBMS the catalog has to store additional information including the
location of relations and their replicas. The catalog must also include system wide
information such as the number of sites in the system along with their identifiers.
An issue that arises in a distributed setting is where to place the catalog in the sys-
tem. Two alternatives include storing the catalog at a single site or replicating it at
all sites. Storing the catalog at a single site introduces a single point of failure in the
system. If the site containing the catalog fails then the entire system cannot access
the catalog, which may cause the entire system to come to a halt. Placing a copy
of the catalog at a single site causes the site to become burdened by many catalog
queries from other sites, which may lead to performance degradation. Creating
replicas of the catalog at each site eliminates the single point of failure problem
and also reduces the network communication required as all sites do not have to
access the catalog remotely. However, in a system where catalog updates are fre-
quent, much time may be invested in synchronising the catalog replicas, which may
degrade system performance [8].

13

2.2.2 Query Evaluation Techniques

When considering the evaluation of query operators in a distributed setting we need
to consider not only the I/O cost on local disk but also the network costs, which
have a significant contribution to the overall query execution cost. Any cost model
used in a distributed setting must also take into account the site that issues the
query Sq so that we include the cost of shipping the result from the site at which it is
materialized to Sq. In the following discussion we consider the case where relations
are stored completely at sites and are not fragmented, as this is the approach taken
in this thesis. In this case performing selections and projections is straight forward
as we simply use centralized implementations of these algorithm on a relation at a
particular site and then ship the results to Sq if necessary [16].

When considering the join between two relations R1 and R2 in a distributed set-
ting there are a number of situations that must be taken into consideration when
determining the most efficient means of carrying out the join. Situations involving
possible shipping of complete relations between sites are discussed below. Tech-
niques that aim to reduce the network useage when performing cross site joins
include the use of Semi-joins and Bloomjoins. These techniques were not consid-
ered in this thesis and are left for further work. Details of these techniques can be
found in [16] for the interested reader.

• If both relations are present at the same site the join can be performed entirely
at the local site. As communication costs are more expensive than disk costs
in general it is likely that this approach will result in a plan with the least
cost.

• If both relations R1 and R2 reside at different sites, S1 and S2 respectively,
the join can be performed at either site. If one of these sites S1 happens to be
the site at which the query was issued, henceforth known as the query site, it
is likely that the optimal query plan will involve shipping R2 from S2 to S1
and performing the join at S1. However, consider the situation where R2 is
very large,R1 is very small and the result of joiningR1 andR2 is very small.
In this case the optimal plan may involve shipping R1 to S2 and performing
the join at S2. The small result would then be returned to the query site.

• It is also possible to choose a join site S that does not contain either of the
relations. This would involve shipping both relations to S. In the event
where S is the query site the cost of shipping the result to the query site is
saved. This is particularly useful in the event where the result of a join is
much larger than the size of the input relations. In the event where S is not

14

the query site this approach may have little benefit and most likely will result
in a plan with a poor cost. However, when a join between two relations is
part of a larger query this approach can be benefical, as discussed in Section
4.

When a relation R is shipped between different sites the tuples in R are sent across
the network using a network protocol such as UDP or TCP [6]. A network protocol
is capable of sending a maximum data payload size with each unit of communica-
tion. For example, when using UDP with IPv4 the unit of communication is the
UDP datagram, which has a maximum data payload size of 65,507 bytes. Assume
that the size of tuples in R are much less than 65,507 bytes. If we transmit R a
tuple at a time the maximum size of a datagram is not utilized fully. This causes an
unneccessarily large number of messages to be sent. Instead of sending tuples one
at a time tuples can be sent in blocks. This technique is called row blocking and
is used by almost all distributed database systems [8]. As well as fully utilizing
the underlying network protocol transmission unit row blocking has an additional
advantage that it contributes to maintaining a smooth rate of execution of queries.
If a site is using received tuples as the pipelined input to a join the rate of process-
ing will be determined by the rate at which tuples are received. If the block size
is small the receiver may perform the join using tuples from a received message
and then have to wait for further tuples to arrive in order to continue evaluating
the join. This causes idle periods at the execution site. Ideally the join would be
continuously supplied with input tuples until the join operation was completed. By
having larger block sizes the receiver can buffer tuples that can be processed while
waiting to receive further messages.

2.3 Query Optimization in a Centralized Database system

When a user issues a query in a centralized DBMS the optimizer must produce
a detailed Query Execution Plan (QEP) that can be passed to the executer. The
executer can then follow this plan to carry out the evaluation of the query and
return the results to the user. A typical SQL user query is shown in Figure 2. In this
query the user is specifying that they wish to receive the price of all items ordered
by the customer named ’Joe’. The relations involved in the query are named in
the FROM clause as Cust, Item and Ord that store information about customers,
items and orders respectively. The output attributes are specified in the SELECT
clause and the join conditions are specified in the WHERE clause. Join conditions
are predicates that take tuples t from the cartesian product of two input relations
and maps them into the boolean set S = {true, false}, where the elements of S

15

indicate whether or not t will be present in the output [19]. For example, if we
have a join R1 ./a=b R2, only tuples from R1 × R2 where R1.a = R2.b will be
present in the output. Here, R1.a denotes the attribute named a from relation R1.
In this thesis we consider only the equi-join operation, that is only join conditions
that contain an equality between attributes.

SELECT price FROM Cust AS C, Item AS I, Ord AS O
WHERE C.ckey1 = O.ckey2

AND O.okey2 = I.okey3
AND C.name = ’Joe’

Figure 2: SQL Query

An optimizer can combine selectivity information from the system catalog with an
SQL query in order to produce a join graph representation of the given query. The
selectivity σ of a join R1 ./a=b R2 is defined as the ratio of the number of result
tuples nt1,2 to the cardinality of the cartesian product of R1 and R2 i.e.

σ(R1 ./a=b R2) =
nt1,2

|R1 ×R2|
.

A join graph consists of a number of vertices, representing relations, and edges,
representing join conditions. An edge between vertices v1 (representing relation
R1) and v2 (representing R2) indicates that a join condition exists between R1 and
R2. Edges are annotated with the join condition and associated selectivity. An
example join graph constructed from the query above can be seen in Figure 3. In
this example, the selectivity forCust ./ckey1=ckey2 Ord obtained using the system
catalog is 0.01. Four common structures of join graphs are chain, cycle, star and
clique, which can be seen in Figures 4-7.

For each user query there can exist a large number of equivalent plans that produce
the same result but which have different execution costs. The cost of a plan is
estimated using a cost model that is based upon examining the number of times
the disk is accessed during execution of the plan. The problem that the optimizer

Cust Ord Item
ckey1=ckey2 (0.01) okey2=okey3 (0.0005)

Figure 3: Join Graph

16

Figure 4: Chain Query

Figure 5: Star Query

Figure 6: Cycle Query Figure 7: Clique Query

faces is that equivalent plans can have costs that vary by orders of magnitude so
choosing the wrong plan can result in a user having to wait days for a result instead
of seconds [5]. Ideally the query optimizer would use an enumeration algorithm
to enumerate over the entire search space and find the plan with the lowest cost.
However, in practise the expectation of an effective optimizer is often just to avoid
very poor plans.

2.3.1 Search Space

The search space considered during query optimization consists of the set of equiv-
alent plans that produce the result to a given user query. QEPs take the form of a
binary tree consisting of relational operator nodes. The leaf nodes represent an
access method to a relation while inner nodes represent query evaluation operators
such as selections (σ), projections (π) and joins (./). The output of these oper-
ators can either be materialized or pipelined. When an operator is annotated as
materialized this indicates that the result of the operator will be written to disk as
a temporary relation. However, if a relation is annotated as pipelined this means
that each tuple from the operator is maintained in memory and passed to the input
of parent operator as they become available. The flow of data in a plan is from the
leaves up to the final operation at the root. A plan is said to be left deep if the inner
child of a join node is always a base relation, as depicted in Figure 8. Similarly a
plan in which the outer child of every join node is a base relation is referred to as

17

right deep. Otherwise a plan is known as bushy.

Typically QEPs are constructed in two phases. The initial stage involves creating
the basic algebraic binary tree structure, which imposes an ordering on the base
relations and the operations on the base relations. The second stage then adds more
detail to the algebraic tree by specifying physical implementation details such as
join algorithms, e.g Sort Merge Join (SMJ), and intermediate result output methods
(materialized or pipelined). An example of an algebraic plan for the evaluation of
the SQL query in Figure 2 is shown in Figure 8 and an example of a completed plan
with physical annotations can be seen in Figure 9. A query executer can follow a
QEP by performing the operations specified as a result of performing a post order
traversal on the tree.

πprice

./ckey2=ckey1

πokey2,ckey2

./okey2=okey3

πckey2,okey2

Ord

πokey3,price

σdiscount>0

Item

πckey1

σname=‘Joe‘

Cust

Figure 8: Algebraic Plan

π<pipe>price

./<pipe>ckey2=ckey1 (SMJ)

π<pipe>okey2,ckey2

./<pipe>okey2=okey3 (SMJ)

π<pipe>ckey2,okey2

Ord

π<mat>okey3,price

σ<mat>discount>0

Item

π<mat>ckey1

σ<mat>name=‘Joe‘

Cust

Figure 9: Physical Plan

Let us consider the size of the search space given a basic user query Q involving
joining the relations R1, R2, ..., Rn+1. n join operations are required to join n+ 1
relations implying that query execution plans for Q will take the form of a binary
tree with n inner join nodes and n+1 leaf nodes corresponding to the relations. The
commutativity property of the join operation results in the search space consisting
of all structures of binary trees and for each tree structure we can permute the
relation leaf nodes. The number of unique binary trees containing n+ 1 leaf nodes
is (2n)!

(n+1)!n! [10] and the number of permutations of relations for each tree structure

is (n+1)!. The resulting size of the algebraic search space is therefore (2n)!
n! . Figure

10 shows the possible binary tree structures for a query involving 3 relations and
Figure 11 shows the possible permutations produced for a single tree structure for

18

the relations A, B and C.

./

./

. .

.

./

. ./

. .

Figure 10: Binary tree structures

./

./

A B

C

./

./

A C

B

./

./

B A

C

./

./

B C

A

./

./

C A

B

./

./

C B

A

Figure 11: Permutations of leaves for a single tree structure

The size of the algebraic space acts as a lower bound to the space of physical plans,
where the choice of implementation algorithms for operators causes the space to
increase. For a query involving 10 relations the search space contains at least
17,643,225,600 plans [13], which may be too large to enumerate in a brute force
manner in a feasible time frame.

2.3.2 Enumeration Algorithms

Enumeration algorithms typically fall into one of three catergories - exhaustive
search, heuristic-based or randomized.

• Exhaustive Search algorithms have exponential worst case running time
and exponential space complexity, which can lead to an algorithm requiring
an infeasible amount of time to optimize large user queries, i.e. queries in-
volving more than about 10 relations. Since exhaustive algorithms enumer-
ate over the entire search space the algorithm will always find the optimal
plan based upon the given cost model. However, the problem of finding the
best plan is NP-complete, which implies that a polynomial time algorithm to
find the best plan for queries of all sizes is unlikely to be found [9].

The traditional dynamic programming (DP) enumeration algorithm, shown
in Figure 12, is a popular exhaustive search algorithm, which has been used
in a number of commercial database management systems including IBM
DB2 [11]. As with other exhaustive search algorithms DP has an expo-
nential worst case running time and space complexity of O(3n) and O(2n)

19

respectively [14, 22]. Let C(p) denote the cost of a subplan rooted at the
QEP node p. The principle of optimality states that if two plans differ only
by a single subplan rooted at p then the plan with the lowest C(p) will also
have a lower complete plan cost [4]. The DP algorithm uses the principle of
optimality to build the optimal plan by considering joining optimal subplans
in a bottom up fashion. The algorithm initially finds the best access method
for each relation (lines 1-5). All possible plans consisting of 2 relations are
then built by using the best access methods as building blocks. The func-
tion joinP lans used in line 11 creates a new join node with its parameters
as children. These plans are then pruned, using the pruneP lans function,
to leave the plan with the lowest cost for each combination of 2-relation
plans. All possible 3-relation plans are then constructed by considering join-
ing optimal 2-relation plans with the optimal access plans. In general when
building optimal subplans involving k relations the building block join pairs
that are used are the optimal subplans of size i and the optimal subplans of
size k− i for all 0 < i < k (lines 6-15). For a query involving n relations
the best plan is built after n passes [13].

The finalizeP lans function uses heuristics to place other relational oper-
ators other than joins (e.g. selections and projections) along with material-
ized/pipelined annotations onto the obtained plans. In some instances the
pruneP lans function cannot prune all plans for a given relation combina-
tion as the plans are said to be ’incomparable’. Incomparable plans arise as a
result of plans that possess an interesting order [18] i.e. plans that are sorted
in some manner. Even though an interesting order plan p may have a higher
execution cost than another plan q, for a particular relation combination, the
sorted property of p may reduce the execution time of a future join opera-
tion. This implies that we cannot discard plans with interesting orders even
if they do not have the lowest plan cost. Plans involving all query relations
are comparable as there are no future join operations to add to the plan hence
the final prune can be performed disregarding interesting orders to obtain the
single best plan (line 17-18).

• Heuristic-based algorithms were proposed with the intention of addressing
the exponential running time problem of exhaustive enumeration algorithms.
Heuristic-based algorithms follow a particular heuristic or rule in order to
guide the search into a subset of the entire search space. Typically these
algorithms have polynomial worst case running time and space complexity
but the quality of the plans obtained can be orders of magnitude worse than
the best possible plan.

20

Algorithm DYNAMIC-PROGRAMMING(R = {R1, R2, ..., Rn})
Input: The set of relations (R = {R1, R2, ..., Rn} involved in the query.
Purpose: To build the optimal plan from optimal subplans using Dynamic Programming.
Output: The optimal query execution plan.

1 � Produce optimal plans consisting of 1 relation.
2 for i← 1 to n do {
3 opt-plan({Ri})← ACCESS-PLANS({Ri})
4 PRUNE-PLANS(opt-plan ({Ri}))
5 }
6 for i← 2 to n do {
7 � Produce optimal subplans consisting of i relations.
8 for all S ⊂ R such that |S| = i do {
9 opt-plan(S)← ∅

10 for all O ⊂ S where O 6= ∅ do {
11 opt-plan(S)← opt-plan(S)∪

JOIN-PLANS(opt-plan(O), opt-plan(S \O))
12 PRUNE-PLANS(opt-plan(S))
13 }
14 }
15 }
16 FINALIZE-PLANS(opt-plan (R))
17 PRUNE-PLANS(opt-plan (R))
18 return opt-plan(R)

Figure 12: Traditional Dynamic Programming Enumeration Algorithm

The Minimum Selectivity algorithm is an example of a heurstic-based algo-
rithm. In Minimum Selectivity we create a skeleton left deep plan T with
void gaps where the relation leaves should be located. Let the relations
placed into this skeleton plan be denoted as Rused and the remaining re-
lations involved in the query be denoted as Rrem. Initially Rrem contains all
relations involved in the query. The relation R1 with the smallest cardinality
is chosen first and placed into the lower left hand leaf of the tree. When
a relation is added into T it is removed from the Rrem set and added into
the Rused set. Let I denote the intermediate result of evaluating the largest
complete subtree of T . While Rrem is non empty we continue to choose a
relation Ri ∈ Rrem such that σ(I ./ Ri) = min{σ(I ./ Rj)|Rj ∈ Rrem}
and add it to the lowest available relation position in the tree[19]. The mo-

21

tivation behind using this heuristic is that most good plans have small in-
termediate results. A number of other heuristics that have been proposed
include greedy heuristics [15, 20] and the Iterative Dynamic Programming
(IDP) variants [9], which are discussed further in section 5.

• Randomized algorithms consider the search space as a set of points each of
which correspond to a unique QEP. A set of movesM is defined as a means to
transform one point in space into another i.e. a move allows the algorithm to
jump from a point in space to another. If a point p can be reached from a point
q using a move m ∈ M then we say that an edge exists between p and q. A
number of randomized algorithms exist such as Iterative Improvement (II)
[24, 1], Simulated Annealing (SA) [23, 1], 2-Phase Optimization(2PO)[24]
and genetic algorithms [2].

In II we select a randomly chosen starting point in space. Neighbours are
then randomly chosen until a solution point is found that has a lower cost
than the current point. We move to this new point and repeat the process.
Once a local minimum is found we determine if this local minimum has a
lower cost than any previously found local minima. If so, we record the point
along with its cost. We then start the process again by choosing a new initial
starting point to explore from. After a set time the local minimum with the
lowest cost is returned. This algorithm can return plans with much higher
costs than the global optimal solution in situations where the solution space
contains many local minima. SA addresses this problem by allowing moves
that increase the cost of a plan. These moves are allowed with a given prob-
ability. This reduces the chance of the algorithm becoming trapped in local
minima whose cost is much greater than that of the global minima. II is very
good at exploring a large part of the solution space and finding local minima
quickly whereas SA is very good at covering a smaller neighbourhood of the
solution space in greater detail. 2PO combines II and SA by first applying II
to discover many local minima. The local minimum with the lowest cost is
then chosen and SA is applied with this initial point.

2.3.3 Cost Model

In order to allow an optimizer to be able to find an ’optimal’ plan it is essential that
the optimizer incorporates the use of a cost model that accurately estimates system
resources used for individual operators and complete plans. In a centralized DBMS
cost models are based upon determining the number of pages that are read from or
written to disk. We make the assumption that system memory is not large enough

22

to store complete relations therefore the dominant operations that will contribute
to the execution time of a plan are disk I/O events. In this thesis we consider SPJ
queries, i.e. queries involving selections, projections and join operators. Below we
discuss the cost of the selection, projection and Sort-Merge Join operators.

Selection operators take the form σp(R) where R is a relation and p is a predicate
that indicates whether or not a particular tuple ofR should be included in the result.
In the event where no index exists on relationRwe have to perform a complete scan
ofR and determine whether each tuple satisfies the selection predicate. The cost of
performing a selection in the absence of indices is therefore the cost to read relation
R from disk plus the cost to write the result to disk. If R consists of M pages then
the cost to read R is simply M I/Os. In order to determine the output cardinality
the selectivity of the selection would have to be determined. The selectivity of the
selection operator can be established by consulting with the system catalog. The
catalog stores statistics such as the size of relations present in the system and the
number of distinct values that occur in a given field of a particular relations. The
catalog can then provide estimates on the result sizes of operators by using these
statistics. For example, consider the equality selection σa=x(R), which requires the
tuples in R whose a attribute value equals x. By assuming a uniform distributed
of values in the selection attribute the size of the result can be estimated to be |R|da
where da is the number of distinct values occuring in a and |R| is the total number
of tuples present in R [16].

Projection operators take the form πl(R) where l is a subset of attributes belonging
to the schema of R. By default when issuing SQL queries any duplicates that
occur in the output as a result of performing a projection are not eliminated. When
duplicates are not eliminated the cost of performing a projection is equal to the cost
of scanning R plus the cost of writing out the result. As with selections the cost of
scanning R is simply M I/Os. Let the size of a tuple in R be bR bytes (assuming
fixed size tuples) and the size of a tuple containing only the attributes l to be bl
bytes. The number of output pages can then be estimated by the following.

Cπl(R) = dM × bl
bR
e

In total the number of I/Os required to perform a projection without duplicate elim-
ination is M + Cπl(R).

The Sort-Merge join algorithm comprises of two phases - the sorting phase and
the merging phase. Let us consider the case where the Sort-Merge join algorithm

23

is being used to evaluate R1 ./a=b R2, where R1 consists of M pages and R2

consists of N pages. In the sorting phase each relation is sorted on their join
attribute. In this case R1 would be sorted on attribute a to produce the sorted
relation S1 and similarly R2 would be sorted on attribute b to produce the relation
S2. Unnecessary sorting can be avoided if it is recognised that a relation or both
relations are already sorted on their join attribute. Assuming that external merge
sort is the sorting algorithm used the sorting phase involves MlogM + NlogN
I/Os.

As a result of the sorting phase tuples will be grouped together into partitions in
each relation S1 and S2 by common join attributes values. This means that if we
have a partition p ⊆ S1 all tuples t ∈ p will have a common a value. We can avoid
enumerating all tuples in the cross product by identifying qualifying partitions pairs
(p, q) where p ⊆ S1 and q ⊆ S2 such that for all t ∈ p and all s ∈ q t.a = s.b
where t.a denotes the value of attribute a in tuple t. The merging phase involves
scanning through S1 and S2 looking for qualifying partitions pairs (p, q) and then
outputting the result of p× q to the output file. If we assume that S2 partitions are
scanned at most once or partition pages are stored in the buffer pool the merging
phase requires N + M I/O accesses [16]. The total number of I/O accesses using
Sort-Merge join (without considering the cost to write out the result) is therefore
given as follows.

CSMJ(R1 ./ R2) = MlogM +NlogN +M +N

The number of I/Os required to write the output of a join to disk can be estimated
using the following formula [19].

Coutput(R1 ./ R2) =
σR1,2 × |R1| × |R2| × tR1,2

pb

Here, σR1,2 denotes the selectivity of the join between R1 and R2, tR1,2 denotes
the resulting tuple size in bytes and pb denotes the size of a page in bytes. The total
cost of SMJ, including materializing the result, is therefore given by CSMJ(R1 ./
R2) + Coutput(R1 ./ R2). The Sort-merge join algorithm is given in [16].

The cost of an entire plan can be obtained by summing the cost of individual opera-
tors encountered as a result of performing a post-order traversal of the plan.

24

3 Query Optimization Challenges in a Distributed Envi-
ronment

In this section we highlight the main conceptual problems encountered when de-
signing an optimizer for a homogenous distributed database. The first problem
relates to the size of the search space. We saw in section 2.3.1 that the size of
the search space in a centralized system becomes huge with even moderately sized
queries†. In a distributed database the existance of relation copies at multiple sites
and the number of execution sites contribute to making the search space even larger.
The second problem emphasises the necessity of identifying inter-operator paral-
lelism opportunities within a given plan in order to be able to determine the mini-
mum possible total execution time of the plan accurately.

3.1 Search Space Cardinality

The problem of finding the optimal query execution plan in a centralized database
system is an NP hard problem. The size of the physical plan search space for a
query involving n+ 1 relations in the centralized case has a lower bound of (2n)!

n! ,
as this is size of the algebraic plan space (section 2.3.1). In a distributed setting
the search space will be considerably larger as we have the opportunity to execute
joins at any site and use any available copies of relations residing at different sites.
We now derive a lower bound on the algebraic search space cardinality |S| of a
query involving n + 1 relations in the worst case in the distributed setting. The
worse case consists of all system relations being present at all sites. We proceed by
considering three levels on annotations on plans. The first level consists of plans
with join and relation nodes without any site annotations. An example of plans in
this level can be seen in Figure 11. The next level of plans contain site annotations
at leaf nodes only (e.g as in Figure 13) and the final level consists of complete plans
with all node site annotations (e.g as in Figure 14). In Figure 14©Si→Sj denotes
a ship node where data is shipped from Si to Sj.

The number of unique plans with n + 1 relation leaves is given by (2n)!
n! (section

2.3.1). This corresponds to the number of plans in level 1. In a distributed setting
we have the additional opportunity of using a relation from any resident site. Let
s be the number of sites present in the system. Then for each tree structure in
level 1 it is possible to obtain sn+1 tree instances in level 2 by considering all
combinations of relation resident sites. An example of level 2 plans can be seen in

†queries that involve more about 10-15 relations

25

./

./

AS1 BS1

CS1

./

./

AS1 BS1

CS2

./

./

AS1 BS2

CS1

./

./

AS1 BS2

CS2

./

./

AS2 BS1

CS1

./

./

AS2 BS1

CS2

./

./

AS2 BS2

CS1

./

./

AS2 BS2

CS2

Figure 13: Combination of leaf sites for a single permutation tree structure

Figure 13, where the system contains 2 sites S1 and S2. For each tree instance in
level 2 we can then consider the locations at which the joins are carried out. By
performing all combinations of join locations of the n joins for each tree instance
in level 2 we obtain sn unique level 3 plans. The total number of level 3 plans
correspond to the lower bound on the number of plans in a distributed setting and
is given by the following formula.

|S| ≥ (2n)!

n!
sn+1sn =

(2n)!

n!
s2n+1

If we consider the case where we wish to optimize a query involving 10 relations
in a small system containing only two sites the number of plans in the search space
will be at least 3.7× 1016!

3.2 Establishing Query Execution Plan Cost

In a centralized DBMS the cost of a plan is determined by aggregating individual
operator I/O estimations. Using the number of I/Os as a cost metric is a good
indication of the total execution time or response time of the plan. It is important to
have a cost model that closely reflects the actual execution cost of plans otherwise
it may be the case that good plans are dismissed erroneously by the optimizer
while enumerating through the search space. When considering the cost model
in a distributed DBMS it is not enough just to consider the I/O cost. The cost of
sending relations between sites via the network has a significant contribution to the
overall execution time and should also be included in the cost model. The network
transmission rate would therefore have to be available to the optimizer. However,

26

./S1

./S1

AS1 BS1

CS1

./S1

./S2

©S1→S2

AS1

©S1→S2

BS1

CS1

./S2

./S1

AS1 BS1

©S1→S2

CS1

./S2

./S2

©S1→S2

AS1

©S1→S2

BS1

©S1→S2

CS1

Figure 14: Combination of join sites for a single permutation tree structure

the network transmission rate is dependent on the network traffic and therefore can
fluctuate over time. It is possible to make an optimistic assumption that the network
traffic is low and use the baseline transmission rate of the network. However, in
cases where network traffic varies significantly the optimizer would have to have a
means of monitoring network traffic in order to determine the network transmission
rate at runtime.

In a distributed DBMS there exists the possibility of executing parts of an execu-
tion plan in parallel. There are two main sources of parallelism - intra-operator
and inter-operator. Intra-operator parallelism refers to the situation where a single
operator is executed by multiple processors concurrently. This is only possible in
situations where relations are fragmented across sites. Inter-operator parallelism
is the term given to the case where two operators are executed concurrently. This
includes the data-dependent case where two operators adopt a pipelining producer-
consumer relationship and also the data-independent case where two operators in-
dependently execute concurrently. As well as sources of parallelism there are also
deterrents of parallelism, which include resource contention and data dependen-
cies. Resource contention refers to the situation where multiple processes wish to
access the same resource. Data dependencies exist when an operator is required to
wait for its input operators to complete before it is able to proceed [4]. As men-
tioned previously, in a centralized setting the response time of a given execution
plan can be estimated by considering resource consumption i.e disk useage. How-

27

ever, in a distributed setting a consequence of the existence of parallel execution
opportunities is that resource consumption does not give a good indication of the
plan response time. This is illustrated in the following example.

./S2

./S2

©S1→S2

./S1

AS1 BS1

CS2

DS2

Figure 15: Sequential plan

./S2

©S1→S2

./S1

AS1 BS1

./S2

CS2 DS2

Figure 16: Parallel plan

Figure 17: Parallel-Sequential Plan Example

The following notation is used throughout this example.

• s : the plan in Figure 15.

• p : the plan in Figure 16.

• yi : the number of disk I/Os performed by plan i where i ∈ {p, s}

• x : the number of pages transfered over the network.

• td : the time required to read/write a page to disk.

• tn : the time required to transfer a page from one site to another across the
network.

• a and b : factors used to produce the resource consumption metric.

• CRC(l) : The cost of plan l in terms of the resource consumption metric.

• CT (l) : the cost of plan l in terms of response time.

• h : the subplan AS1 ./S1 BS1.

Consider establishing the cost of the plans given in Figure 17 using a cost metric
based on resource consumption. For this we require two factors a and b to con-
vert the number of I/Os and network page transfers respectively into a common
comparable result. These factors could possibly be based on an expense that is
related to using the particular resource. The formulas for the resource consump-
tion cost of each plan can be seen below (1 and 2). Note that both plans involve

28

transferring the same amount of data between sites hence we have the common xb
term present. Suppose that the subplan AS1 ./S1 BS1 performs less I/Os than the
subplan C ./ D. We consider the situation where inequality 4 holds i.e. where
CRC(s) < CRC(p). A cost model based on resource consumption would deter-
mine that plan s was a better execution plan than p as s uses less resources.

CRC(s) = ays + xb (1)

CRC(p) = ayp + xb (2)

CRC(h) = ayh (3)

CRC(s) < CRC(p) < CRC(s) + CRC(h) (4)

Inequality 4 implies the following.

ys < yp < ys + yh (5)

The cost of each plan based on a response time cost model is shown below. To
determine the cost of a plan we simply multiply the number of I/Os and network
page transmissions by the time taken to read/write a page and transmit a page
respectively.

CT (s) = ystd + xtn

CT (h) = yhtd

CT (p) = yptd + xtn − CT (h)

= yptd + xtn − yhtd
= (yp − yh)td + xtn

< ystd + xtn (by 5)

= CT (s)

In plan p it is possible to perform A ./ B and C ./ D concurrently as the joins
are performed at different sites S1 and S2. This implies that the cost of plan
p will consist of the maximum amount of time required to complete both joins
AS1 ./S1 BS1 and CS2 ./S2 DS2 in addition to the network transfer time and
the final join time. The response time of p can therefore be obtained by taking
the minimum time (CT (h)) away from the sequential execution time of p. In this

29

particular example we find that even though plan s has a lower resource consump-
tion cost (CRC(s) < CRC(p)) plan p has a lower cost with respect to response
time (CT (p) < CT (s)). In this thesis we focus on the problem of identifying the
plan with the lowest response time hence any cost model has to be able to identify
possible parallelism opportunities within a given plan and produce the minimum
response time accordingly. As we shall see in section 4 this problem is an instance
of the NP-hard precedence constrained scheduling problem.

30

4 Cost Model For Distributed Evaluation

In the previous section we discussed some of the main conceptual problems en-
countered when building an optimizer for a distributed DBMS. One issue high-
lighted was that determining the response time of a query plan in a distributed
database system is considerably more complex than in a centralized system be-
cause of the opportunity for parallelism. A cost model for a distributed system
must accurately model the sources and deterrents of parallelism in order to pro-
duce an accurate estimate of the response time for a given plan. In this thesis we
focus on modelling data independent inter-operator parallelism and as a result we
make the assumption that intermediate results are always materialized. We con-
sider both parallelism deterrents resource contention and operator dependencies in
our model. We consider only plans that consist of join, receive, send and relation
scan operators. In order to reduce the complexity of the model we assume that
each site in the system consists of a single processor that is only capable of per-
forming a single operation at a time. The solution proposed here involves the plan
transformation phase and the scheduling phase.

4.1 Plan Transformation Phase

In the plan transformation phase we transform the given plan into a form that allows
data dependencies and some degree of resource contention to be modelled. We first
identify connected subsections of a given plan that contain operators annotated
with the same execution site. By grouping operators with a common execution site
into tasks we are able to more easily identify resource contention and dependencies.
The goal of the plan transformation phase is to break a plan into a set of tasks and
to model dependencies between tasks using a task tree. The task tree can then be
used in the subsequent scheduling phase to ascertain the response time. The task
tree used in this paper is a variation of the task tree described in [7], which was
used to model parallelism between operations in a parallel database system.

Let us illustrate the plan transformation phase using an example. Suppose we are
presented with the problem of determining the response time of the plan given in
Figure 18. Notice that each node is annotated with a site identifier, i.e. the IP
address. We first need to identify tasks that consist of operators with a common
execution site. By considering a number of operators as a single task we reduce the
complexity of the subsequent scheduling phase. Tasks can be identified by iterating
over the given plan using a post order traversal and placing delimiters (�) between
operators using the rules specified below. Delimiters are used to signal where a

31

./163.1.88.1F.F2=G.F3

./163.1.88.1D.F6=E.F5

./163.1.88.1B.F3=C.F3

RCV 163.1.88.1

SEND163.1.88.0

./163.1.88.0A.F2=B.F2

A163.1.88.0 B163.1.88.0

./163.1.88.1C.F5=D.F4

C163.1.88.1 D163.1.88.1

RCV 163.1.88.1

SEND163.1.88.2

./163.1.88.2E.F1=F.F1

E163.1.88.2 F 163.1.88.2

G163.1.88.1

Figure 18: Example plan

task begins and ends.

• If the current node is a SEND or RCV operator place a delimiter inbetween
this node and the child node.

• If the current node is a ./ operator and the site of at least one child node does
not match the site of this node then place a delimiter between this node and
each child node.

• If the current node is a ./ operator and one of the child nodes is a RCV node
then place a delimiter between this node and each child.

The operator tree obtained as a result of applying these rules to the plan in Figure
18 can be seen in Figure 19. The motivation for the delimiter placement rules
regarding the SEND and RCV operator is as follows. Most network transmission
protocols use acknowledgement based Automatic Repeat Request (ARQ) protocols
[6]. During the transmission process these protocols enforce that both the sender
and receiver remain active until the transmission is complete. By dedicating a
task to RCV and dedicating a separate task to SEND we can stipulate that these
tasks must start and end at the same time. This stipulation is an example of a task

32

./163.1.88.1F.F2=G.F3

./163.1.88.1D.F6=E.F5

�

./163.1.88.1B.F3=C.F3

�

RCV 163.1.88.1

�

SEND163.1.88.0

�

./163.1.88.0A.F2=B.F2

A163.1.88.0 B163.1.88.0

�

./163.1.88.1C.F5=D.F4

C163.1.88.1 D163.1.88.1

�

RCV 163.1.88.1

�

SEND163.1.88.2

�

./163.1.88.2E.F1=F.F1

E163.1.88.2 F163.1.88.2

G163.1.88.1

Figure 19: Plan with delimiters

dependency. It would not be possible to have a single task involving a SEND and
RCV operation as they occur at different sites. In the event where we have a join
operation that has two child operators annotated with the same site as itself we can
consider the join along with its children as a single task.

A join cannot be performed until its input is available. Consider the case where we
have a task tk containing a join operator o and we have tasks tkouter and tkinner
containing the outer and inner child of o respectively. We say that there exists a task
dependency between tk and tkouter and tk and tkinner. This dependency stipulates
that tasks tkouter and tkinner must be executed before the execution of tk can begin.
However, no such task dependency exists between tkouter and tkinner. We also

33

have a similar situation involving a SEND task tkSEND and the task containing its
child tkchild, i.e. we cannot send data before the data is made available to the SEND
operator. In this case there exists a task dependency between tkSEND and tkchild.
We can present tasks along with their dependencies in a task tree, where nodes
represent tasks and edges represent dependencies between tasks. A task cannot
be executed until all children tasks have been completed. The only exception to
this case involves tasks containing SEND (tkSEND) and RCV operators (tkRCV).
tkSEND is a child of tkRCV but these tasks must be executed concurrently. This
is indicated in the task tree by the presence of the ‖ symbol between tasks. The
task tree obtained from the plan in Figure 19 is shown in Figure 20. Each task
node in the task tree is labelled with an identifier integer, an execution site and the
response time required to complete the task. By ensuring the tasks contain only
operators of common execution sites we reduce the complexity of the problem of
finding the response time of individual tasks to that of the centralized database
system case.

The response time of a particular task can be given by the sum of the response times
for each operator residing in the task. In order to determine the response time cost
(CT) of an individual operator we consider the number of I/Os nI/O performed
and the number of bytes nb sent across the network. Assume that we have system
specific time constants td and tn that specify the time taken to read/write a disk
page and the time taken to send a byte across the network respectively. Using
these constants we can estimate the total response time of each operator o by the
following equation.

CT (o) = nI/O · td + nb · tn (6)

Each task from Figure 20 is shown along with their respective cost in Figure
1.

4.1.1 Scheduling Phase

Once the plan transformation phase is complete we are faced with the problem of
scheduling a task tree containing m tasks {tk1, ..., tkm} on s sites. Let the site
function ζ(tki) give the site at which a particular task tki is to be executed. Then
each task tki is required to be executed only at ζ(tki) and each site is considered
only able to execute a single task at a time. Tasks are considered to be pre-emptive,
i.e. every task tki must be executed for a period of t(tki) to completion once

34

©163.1.88.1
9 (0.076)

©163.1.88.1
5 (0.36)

©163.1.88.1
3 (0.087)

‖
©163.1.88.0

2 (0.087)

©163.1.88.0
1 (1.888)

©163.1.88.1
4 (1.473)

©163.1.88.1
8 (0.143)

‖
©163.1.88.2

7 (0.143)

©163.1.88.2
6 (1.304)

Figure 20: Task tree obtained from the plan in Figure 19.

execution of the task begins. Here t(tki) denotes the duration of the execution of
the task tki. The task tree specifies precedence constraint information between
tasks that indicates the order in which tasks must be executed. We wish to obtain
a schedule S = {e1, e2, ..., em} of m entries of the form ei = (tki, ts, tf). There
exists an entry in the schedule for each task detailing the start ts and finish tf time.
Clearly tf − ts should equal t(tki) for all schedule entries. Once the schedule is
obtained the response time is equal to the maximum tf value of all elements in S.
This problem is an instance of the NP-hard multiprocessor precedence constrained
scheduling problem [3] and hence no algorithm has been discovered to obtain the
optimal schedule in polynomial time.

The process of determining the cost of an execution plan is performed frequently
by the enumeration algorithm during optimization. By adopting a scheduling algo-
rithm that is optimal but that has a high time complexity the enumeration algorithm
would become unusable. Instead of investing considerable effort into obtaining
perfect schedules we opt for a more practical solution that produces good sched-
ules with a worst case running time of O(m2).

We create s bins b1, b2, ..., bs where bin bi stores schedule entries for tasks intended
to execute at site si. Schedule entries can be placed anywhere in the appropriate
bin where a sufficient space in time exists and where precedence constraints are not
violated. A post order traversal of the task tree is conducted to ensure that tasks are
visited in an order conforming with the existing precedence constraints. When a
task tki is encountered a schedule entry ei is created for the task, which is placed in
the bin corresponding to site ζ(tki). The position at which ei is inserted into the bin
is determined primarily on the maximum tf value (tfmax) of the schedule entries

35

Task Number Task Duration
9 ./163.1.88.1F.F2=G.F3

./163.1.88.1D.F6=E.F5 G163.1.88.1

0.076

5 ./163.1.88.1B.F3=C.F3 0.36

3 RCV 163.1.88.1 0.087

2 SEND163.1.88.0 0.087

1 ./163.1.88.0A.F2=B.F2

A163.1.88.0 B163.1.88.0

1.888

4 ./163.1.88.1C.F5=D.F4

C163.1.88.1 D163.1.88.1

1.473

8 RCV 163.1.88.1 0.143

7 SEND163.1.88.2 0.143

6 ./163.1.88.2E.F1=F.F1

E163.1.88.2 F 163.1.88.2

1.304

Table 1: Tasks

of the children tasks of ti. If ti has no children then ei can be placed at the first
available space of bi. Otherwise ei must be placed at an available start time ts such
that ts ≥ tfmax. In the event where we encounter a pair of tasks corresponding to
a SEND-RCV pair each schedule entry is placed in their corresponding bin at the
same first available position (for both sites) after the maximum finish time of the
child of the SEND task schedule entry. For example, tasks 7 and 8 in Figure 21
correspond to a SEND-RCV pair of tasks. Even though task 7 (SEND task) can be
executed immediately after task 6 the receiving site is busy executing task 4 and so
is not available to receive. Task 7 must therefore be pushed later in the schedule to
a time where the receiving site is available.

Response time is considered to be the most important measure of the cost of a plan
in this thesis. However, in the situation where we are presented with two plans
with equal response time the system utilization should be taken into account. The
system utilization factor gives an indication of the amount of system resources that
are used by a given plan. Let ttotal be the sum of the durations of individual tasks

36

in a schedule. If there are s sites in the system and the plan has a response time of
tresp the system utilization factor (µ) for plan p is given as follows.

µ(p) =
ttotal
s · tresp

(7)

The plan with the lower system utilization factor is favourable and is determined
to have a lower cost with respect to the response time cost model. The final sched-
ule of the task tree in Figure 1 can be seen in Figure 21. From this schedule we
can deduce that the response time of the original plan in Figure 18 is about 2.41
seconds and the utilization factor is 0.767. In terms of the schedule diagram the
utilization factor is the ratio of the total area occupied by tasks to the total available
area.

163.1.88.2

163.1.88.1

163.1.88.0

 0 0.5 1 1.5 2 2.5

time

1 2

4 8 3 5 9

6 7
1

2

3

4

5

6

7

8

9

Figure 21: Schedule produced from task tree in Figure 20

37

5 Centralized Optimization Algorithms

In the previous section we presented a cost model capable of producing the re-
sponse time of a given plan. This cost model will be used in conjunction with the
enumeration algorithms presented in this and the following section. In this section
we present the DPccp (Dynamic programming connected subset complement pair)
optimization algorithm [21] that applies dynamic programming to the join graph of
a query in order to enumerate over the minimal number of joins possible without
considering cross products. DP (Figure 12) and DPccp have the same worst case
running time ofO(s3 · 3n) but in practise DPccp can cause considerable savings in
optimization time when optimizing chain and cycle queries. DPccp is used as part
of the multilevel optimization algorithms proposed in the next section.

We also present the Iterative Dynamic Programming algorithm IDP1 [9] that com-
bines heuristics with dynamic programming in order to overcome the space com-
plexity problem of DP. We combined this algorithm with DPccp to produce the
IDP1ccp algorithm. This algorithm was considered in [9] but at the time of pub-
lication in 2000 DPccp had not yet been produced. Consequently, only the opti-
mization of small simple queries was considered in [9], which presumably allowed
the authors to create a version of IDP1ccp using a degree of code hardwiring. We
feel that it is important to present the general IDP1ccp algorithm as in practise
it can produce considerable optimization time savings when compared with IDP1.
IDP1ccp is used as a benchmark to the multilevel optimization algorithms proposed
in this paper.

Throughout this section and the next we use the following chain query involving
the relationsR1,R2,R3 andR4 to demonstrate each of the optimization algorithms
presented.

R1 R2 R3 R4

R1.F1=R2.F1

(0.005)

R2.F1=R3.F2

(0.02)

R3.F1=R4.F1

(0.015)

Figure 22: Example Join Graph

5.1 IDP1 : Iterative Dynamic Programming Algorithm for Query Op-
timization

The main drawback of the DP algorithm (section 2.3.2) is that a large enough query
will cause the algorithm to completely fill the available main memory. In this event

38

the optimizing program may crash or the operating system may suffer from high
disk paging causing performance to degrade significantly. In practise the size of
the query that leads to this situation is fairly small, which means that DP is not a
suitable enumeration algorithm to use when the optimization of fairly large (involv-
ing > 20 relations) queries is required. The Iterative Dynamic Programming (IDP)
class of enumeration algorithms was proposed to primarily address this space com-
plexity issue of DP. IDP combines dynamic programming with a greedy heuristic
in order to overcome the memory restriction. Multiple variants of IDP exists but
we choose to present the standard best plan variant of IDP1 below as this gives the
fundamental principles of IDP. We then give the balanced best row IDP1 algorithm
as this proved to give the best quality plans during the experiments in [9].

Consider the situation where we wish to optimize a query involving the relations
R = {R1, R2, ..., Rn} in a centralized database system. Let us assume that the
memory available is sufficient only to store all plans up to k-way plans after prun-
ing, i.e. access plans, 2-way plans, 3-way plans, ..., k-way plans, where k < n.
If DP was the enumeration algorithm used we would progress to the stage where
k-way plans are built and then exhaust the available memory by attempting to con-
struct k+ 1-way plans. Instead of creating k+ 1-way plans IDP1 breaks out of the
dynamic programming phase and applies a greedy heurstic in order to choose the
k-way plan P with the lowest value with respect to an evaluation function eval [9].
All plans in the optPlan structure that contain any relation involved in P are then
removed from memory. From this point onwards in the algorithm P is considered
to be an access method for a temporary relation T . Let the set of relations involved
in T be denoted by RT . The dynamic programming phase is then entered again
with the available relations ({T } ∪ R) − RT . The process of performing DP and
then breaking out to perform a greedy heurstic continues until the relation set R
has a size no more than k. In this case there is enough memory to carry out the
DP phase to completion where the final plan is produced. In a centralized system
IDP1 has a time complexity of O(nk). In a distributed setting consisting of s sites
IDP1 has a time complexity of O(s3 · nk) and space complexity of O(s · nk + s3)
[9].

5.1.1 Example : Standard-best plan IDP1

Consider the example where we wish to use IDP1 to optimize the query in Figure
22. Assume that the available memory can hold all plans up to 3-way plans and no
more, i.e. k = 3. An example of the retained plans in the optPlan structure after
pruning for the first DP phase can be seen in Figure 23. Once the 3-way plans are

39

R1 R2 R3 R4

./

R1 R2

./

R1 R3

./

R1 R4

./

R2 R3

./

R2 R4

./

R3 R4

./

./

R1 R2

R3

./

./

R1 R3

R4

./

./

R2 R3

R4

./

R4 ./

R1 R2

Figure 23: Stored plans in first DP phase

produced we greedily choose the 3-way plan P with the lowest eval cost. Let P
correspond to the plan in Figure 24 and let the relations R1, R2 andR3 be replaced
by the temporary relation T . All plans containing a relation involved in P are then
removed from memory. In this instance this includes all plans except for P and
the access method R4. The newly considered access plans are shown in Figure
25 along with an example of the final result obtained from the second DP phase.
By substituting the plan P for T we obtain the final plan in terms of the original
relations (shown in Figure 26).

T = ./

./

R1 R2

R3

Figure 24: Chosen plan using greedy
heurstic with eval function

T R4

./

T R4

Figure 25: Second DP phase

./

./

./

R1 R2

R3

R4

Figure 26: Plan obtained using standard-
best plan IDP1

./

./

R1 R2

./

R3 R4

Figure 27: Optimal plan

40

Consider the situation where the optimal plan is the bushy plan shown in Figure 27.
Due to the value of k this optimal plan can never be encountered using the standard
IDP1 algorithm in this situation. In the balanced IDP1 variant the building block
plans have a size restriction placed upon them that makes it possible for bushy
plans to be produced regardless of the k value. The criteria governing the size of
building block plans is as follows [9].

• The selection subplans must contain an even number of relations.

• The selection subplans must contain a number of relations≤ dd2e, where d is
the number of access relations available at the start of the current DP phase.

In the final DP phase where the number of relations remaining is ≤ k we simply
use the value of k for the size of building blocks. In the best row variant when we
determine the plan P with the lowest eval value instead of just choosing plan P
as the optPlan entry for T we copy all plans involving the same relations as P into
the optPlan entry for T . This means that in the case where interesting orders occur
we do not simply choose to keep the plan with the lowest eval value, which means
that we have a greater chance of obtaining the optimal result. The balanced-best
row IDP1 algorithm is shown below.

41

Input: The set of relations R = {R1, R2, ..., Rn} involved in the query and
the maximum building block size k > 1.

Output: The best query execution plan found.

Algorithm IDP1(R = {R1, R2, ..., Rn}, k)
1 for i← 1 to n do {
2 opt-plan({Ri})← ACCESS-PLANS({Ri})
3 PRUNE-PLANS(opt-plan ({Ri}))
4 }
5 toDo ← R
6 while |toDo| > 1 do {
7 b← BALANCED-PARAMETER(|toDo|, k)
8 for i← 2 to b do {
9 for all S ⊂ R such that |S| = i do {

10 opt-plan(S)← ∅
11 for all O ⊂ S where O 6= ∅ do {
12 opt-plan(S)← opt-plan(S)∪

JOIN-PLANS(opt-plan(O), opt-plan(S −O))
13 PRUNE-PLANS(opt-plan(S))
14 }
15 }
16 }
17 find P,N with P ∈ opt-plan(N), N ⊂ toDo, |N | = b such that

eval(P) = min{ eval(P ′) |P ′ ∈ optP lan(W),W ⊂ toDo, |W | = b}
18 generate new symbol: T
19 opt-plan({T })← opt-plan(N)
20 toDo← toDo−N ∪ {T }
21 for all O ⊂ N do {
22 delete(opt-plan(O))
23 }
24 }
25 FINALIZE-PLANS(opt-plan (R))
26 PRUNE-PLANS(opt-plan (R))
27 return opt-plan(R)

42

Input: The number of relations d and maximum block size k.
Output: The balanced block parameter.

Algorithm BALANCED-PARAMETER(d, k)
1 b← d
2 if b > k do {
3 b← ceil(b2)
4 if b ≡ 1mod 2 do {
5 b← b− 1
6 }
7 b← min(b, k)
8 }
9 return b

5.1.2 Example : Balanced-best plan IDP1

Again, consider the example where the available memory is only able to store all
k-way plans up to k = 3. We choose the balanced parameter b = 2 as it is the
maximum even value that is ≤ dn2 e where n = 4. Instead of building all plans
up to 3-way plans in the first DP phase, as standard-best plan IDP1 does, we only
build up to 2-way plans. An example of the contents of the optPlan structure can
be seen in Figure 28.

R1 R2 R3 R4

./

R1 R2

./

R1 R3

./

R1 R4

./

R2 R3

./

R2 R4

./

R3 R4

Figure 28: Stored plans in first DP phase

We then choose the plan with the lowest eval value, which from the previous case
was the plan P containing R1 and R2. All plans involving either of these relations
are removed from memory and the temporary relation T is used to represent P .
The relations waiting to be optimized are now T , R3 and R4, which implies that
the balanced parameter for the second DP phase is 2. The possible contents of
the optPlan structure after the second DP phase (after pruning) is shown in Figure
29.

We then choose the 2-way plan with the lowest eval value. Let P ′ be this plan
involvingR3 andR4. We remove all plans from memory containing either of these

43

T R3 R4

./

T R3

./

T R4

./

R3 R4

Figure 29: Stored plans in second DP phase

relations and then we add the temporary relation S in place of P ′. The final DP
phase will then only contain the temporary relations T and S. The possible final
plan (in terms of temporary relations) can be seen in Figure 30. The final plan
involving the base relations can be seen in Figure 31.

./

T S

Figure 30: Plan obtained using balanced-
best plan IDP1

./

./

R1 R2

./

R3 R4

Figure 31: Final plan involving base rela-
tions

44

5.2 DPccp : Dynamic Programming connected subset complement-
pair Algorithm for Query Optimization

Both DP and IDP consider a query as a set of relations R = {R1, R2, ..., Rn}
and as a result they consider all possible combinations of joins (in keeping with the
principle of optimality). This type of enumeration is suitable when presented with a
query possessing a clique join graph. However, in the event where we are presented
with a chain or cycle query this enumeration can cause many cross products to be
considered. Cross products are an expensive operation and are rarely found in the
optimal plan hence we would like to enumerate over only combinations of relations
without considering cross products. This kind of enumeration is provided by the
DPccp algorithm [21], which we discuss below.

5.2.1 Definitions

Consider a query involving the relations R = {R1, R2, ..., Rn} that has a join
graph G = (V,E) and let S be a subset of R. Then S gives rise to a subgraph
SG = (V ′, E′) of G containing vertices V ′ = {v1, ..., v|S|}, where each ver-
tex corresponds to a relation in S. The edge set E′ of SG is given by the set
{(v1, v2) | v1, v2 ∈ V ′, (v1, v2) ∈ E}. We say that S is a connected subset if it
induces a connected subgraph SG. The number of connected subsets/subgraphs of
a query involving n relations is denoted as #csg(n).

Let S1 and S2 be nonempty connected subsets of R that induce the connected
subgraphs S1G and S2G. We say that (S1, S2) is a csg-cmp-pair if the following
holds.

• S1 ∩ S2 = ∅

• ∃v1 ∈ S1G and ∃v2 ∈ S2G such that (v1, v2) ∈ E.

The term cmp in the name csg-cmp-pair is an abbreviation of complement, which
emphasises that the two sets S1 and S2 are disjoint [21]. Let cpp denote the set of
csg-cmp-pairs. Note that if (S1, S2) ∈ ccp then (S2, S1) ∈ cpp. Let the size of the
set ccp be denoted by #ccp. Note that #cpp includes symmetric pairs. This value
provides a lower bound on the number of joins that should be considered during
the enumeration process. In the following section we give formulas for the number
of connected subgraphs (#csg(n)) and the number of csg-cmp-pairs (#ccp(n))
for the join graph structures chain, cycle, star and clique.

45

5.2.2 #csg and #ccp formulas

In this section we present the formulas for #csg(n) and #ccp(n) as given in [21].
They can be seen in Figure 32. Notice that for star and clique queries #ccp(n)
is exponential with n, while chain and cycle queries have a #ccp(n) given by a
polynomial with degree 3. Let us consider the example where we wish to enumer-
ate over csg-cmp-pairs of a chain and clique query involving 10 relations. #ccp
for a chain query is 330, while #ccp for a clique query is 57002. The DP algo-
rithm (Figure 12) enumerates over the same number of plans (equal to #ccp for a
clique query) regardless of the query structure. This implies that by using the DP
algorithm with a chain query we enumerate over 56672 cross products that will not
be present in the optimal plan. The DPccp algorithm ensures that the enumeration
lower bound of #ccp(n) is met for all join graphs and hence we do not consider
any unnecessary cross products.

Join Graph Structure #csg(n) #ccp(n)

Chain n(n+1)
2

n3−n
3
†

Cycle n2 − n+ 1 n3 − 2n2 + n

Star 2n−1 + n− 1 (n− 1)2n−2

Clique 2n − 1 3n − 2n+1 + 1

Figure 32: #csg and #ccp formulas

5.2.3 Algorithm Description

The DPccp algorithm enumerates all unique csg-cmp-pairs in such a manner as to
be compatible with dynamic programming. This means that when we consider the
csg-cmp-pair (S1, S2) then the csp-cmp-pairs consisting of subsets of S1 and S2
will have already been considered. With this enumeration criteria met the DPccp
algorithm simply enumerates over all csg-cmp-pairs (S1, S2) and considers the
possible joins between the best plans of S1 and S2. The algorithm is shown below.
Note that the access-plans, prune-plans, join-plans and finalize-plans have the same
implementation used by the classic DP algorithm (Figure 12). In the event where
we wish this algorithm to be applicable in the distributed setting we perform the
simple alterations to these methods as suggested in [9].

†The #ccp formula in [21] for chain graph is incorrect. The proof of the formula given here can
be seen in Appendix C.

46

Input: Connected join graph G consisting of vertices V = {v1, v2, ..., vn}
and edges E.

Output: The best query execution plan found (without considering cross products).

Algorithm DPCCP(G)
1 for i← 1 to n do {
2 opt-plan({vi})← ACCESS-PLANS({vi})
3 PRUNE-PLANS(opt-plan ({vi}))
4 }
5 ENUMERATE-CSG(G,A)
6 for all S1 ∈ A do {
7 ENUMERATE-CMP(G,S1, B)
8 for all S2 ∈ B do {
9 S ← S1 ∪ S2

10 opt-plan(S)← opt-plan(S) ∪ JOIN-PLANS(opt-plan(S1), opt-plan(S2))
11 opt-plan(S)← opt-plan(S) ∪ JOIN-PLANS(opt-plan(S2), opt-plan(S1))
12 PRUNE-PLANS(opt-plan ({S}))
13 }
14 B ← ∅
15 }
16 FINALIZE-PLANS(opt-plan (V))
17 PRUNE-PLANS(opt-plan (V))
18 return opt-plan(V)

The DPccp algorithm adopts the same first phase (lines 1-4) and final phase (lines
16-18) as DP. The main difference occurs in the second phase (lines 5-15). Note
that we enumerate through the unique csg-cmp-pairs so it is necessary to explore
the joining of plans of subgraphs in both available orders (lines 10 and 11). We now
proceed by explaining how to enumerate through the set of connected subgraphs,
i.e. the enumerate-csg procedure description, and then we discuss how to generate
all complement subgraphs for a given connected subgraph, i.e. the enumerate-cmp
procedure description.

5.2.4 Enumerating Connected Subsets

Let us make the following notation. Let G = (V,E) be a given join graph. For
v ∈ V the neighbourhood N of v is defined as follows.

N (v) = {v′ | (v, v′) ∈ E}

47

For a given connected subset S that induces the connected subgraph SG = (V ′, E′)
the neighbourhood of S is defined as follows.

N (S) = (∪v∈V ′N (v))− V ′

Consider a connected subset S and the setsN ⊆ N (S). Then S∪N is a connected
subset. This indicates that a possible method of generating all connected subsets is
as follows. First we identify each individual vertex {vi} as a connected subgraph.
We can then enumerate through all N ′ ⊆ N ({vi}) and recursively explore the
connected subsetN ′∪{vi}. The main problem with this method is that we consider
duplicates. In order to overcome this problem each vertex in the join graph is
numbered using breadth first numbering starting from any vertex. Let the vertices
in the join graphG be the set V = {v1, v2, ..., vn}, where vertex vi is the ith vertex
encountered using a breadth first vertex enumerator starting from v1. Then to avoid
duplicates only subsets S obtained by recursively exploring the neighbourhood of
{vi} are considered such that all vertices in S have indices > i. In order to enforce
this restriction we require the following notation Bi = {vj | j ≤ i} [21]. The
enumerate-csg algorithm is given below.

Input: Connected join graph G consisting of vertices V = {v1, v2, ..., vn}
and edges E. A stores the output therefore A holds the set of all
connected subgraphs of G after the algorithm terminates.

Precondition: Vertices in G are numbered in a breadth first manner.
Output: Obtains all subsets of V that form a connected subgraph of G.

Algorithm ENUMERATE-CSG(G,A)
1 for i← ndown to 1 do {
2 A← A ∪ {{vi}}
3 ENUMERATE-CSG-REC(G, {vi}, Bi, A)
4 }

48

Input: Connected join graph G consisting of vertices V = {v1, v2, ..., vn}
and edges E. S is a set of vertices that contain the current subgraph state.
X is the prohibited set of vertices that cannot be explored further. This set
enables duplicates to be avoided.
A is used to store connected subgraphs of G.

Precondition: Vertices in G are numbered in a breadth first manner.
Output: Recursively obtains all subsets of V that form a connected subgraph of G.

Algorithm ENUMERATE-CSG-REC(G,S,X,A)
1 N ← N (S) − X
2 for all S′ ⊆ N , S′ 6= ∅, enumerate subsets first {
3 A← A ∪ {S ∪ S′}
4 }
5 for all S′ ⊆ N , S′ 6= ∅, enumerate subsets first {
6 ENUMERATE-CSG-REC(G, S ∪ S′, X ∪N , A)
7 }

5.2.5 Example : enumerate-csg

In Figure 33 we can see a partial trace of the enumerate-csg algorithm. We show
the recursive calls of the Enumerate-Csg-Rec procedure and values of the variables
N and A. We only show the final two loops of Enumerate-Csg (when n = 2 and
n = 1) as this gives a good indication as to how duplicates are avoided. When
the Enumerate-Csg-Rec procedure is provided with the {R1} vertex set we see
that we have no restriction on the exploration of neighbours. This is due to the
prohibited vertex set B1 being trivally equal to {R1}. We can therefore produce
all connected subsets containing the vertex R1. However, when the Enumerate-
Csg-Rec procedure is provided with {R2} we see that the prohibited vertex set Bi
is non trivial and is equal to {R1, R2}. This prevents any exploration involving
the vertex R1. As a result all connected subsets involving R2 are found except the
subset {R1, R2}, which is produced by the recursive exploration from vertex R1

instead.

5.2.6 Enumerating Complement Subsets

In order to generate all csg-cmp-pairs we first need to generate all connected sub-
sets S1. Then for each S1 we need to produce all complement subsets S2. The
concept of producing complements given a particular subset S1 is the same as the

49

A← A ∪ {R1}
Enumerate-Csg-Rec(G, {R1}, {R1}, A)

N ← {R2}
A← A ∪ {R1, R2}
Enumerate-Csg-Rec(G, {R1, R2}, {R1, R2}, A)

N ← {R3}
A← A ∪ {R1, R2, R3}
Enumerate-Csg-Rec(G, {R1, R2, R3}, {R1, R2, R3}, A)

N ← {R4}
A← A ∪ {R1, R2, R3, R4}
Enumerate-Csg-Rec(G, {R1, R2, R3, R4}, {R1, R2, R3, R4}, A)

N ← ∅

A = {{R1}, {R1, R2}, {R1, R2, R3}, {R1, R2, R3, R4}}

A← A ∪ {R2}
Enumerate-Csg-Rec(G, {R2}, {R1, R2}, A)

N ← {R3}
A← A ∪ {R2, R3}
Enumerate-Csg-Rec(G, {R2, R3}, {R1, R2, R3}, A)

N ← {R4}
A← A ∪ {R2, R3, R4}
Enumerate-Csg-Rec(G, {R2, R3, R4}, {R1, R2, R3, R4}, A)

N ← ∅

A = {{R1}, {R1, R2}, {R1, R2, R3}, {R1, R2, R3, R4}, {R2}, {R2, R3}, {R2, R3, R4}}

Figure 33: Partial Enumerate-Csg trace

50

concept of producing connected subsets on a restricted graph. This indicates that
we are able to reuse the enumerate-csg-rec procedure with the correct parameters
in order to obtain all complements of a given connected subset. As with enumer-
ating all connected subsets we use the breadth first numbering to avoid generating
duplicate pairs. This is done by restricting the complements S2 to contain only
vertices vj such that j > i where i is the index of any vertex in S1 [21]. Given a
connected subset S1 denote min(S1) = min({i | vi ∈ S1}). The enumerate-cmp
algorithm is given below.

Input: Connected join graph G consisting of vertices V = {v1, v2, ..., vn}
and edges E. S is a connected subset of G.
A is used to store results.

Precondition: Vertices in G are numbered in a breadth first manner.
Output: Obtains all connected subsets H such that (S, H) is a csg-cmp-pair.

Algorithm ENUMERATE-CMP(G,S,A)
1 X ← Bmin(S) ∪ S
2 N ← N (S) − X
3 for all vi ∈ N by descending i {
4 A← A ∪ {{vi}}
5 ENUMERATE-CSG-REC(G,{vi}, X ∪ (Bi ∩N), A)∗

6 }

In the algorithm above we are concerned with identifying the neighbours of S that
have indices greater than the minimum index of vertices in S. We iterate over the
neighbours meeting this criteria and output each vertex as a singleton complement
subset. We then explore the neighbourhood around these vertices recursively us-
ing the enumerate-csg-rec procedure with the restriction set X ∪ (Bi ∩ N). This
restriction set prevents commutative duplicates from being obtained [21].

5.2.7 Example : enumerate-cmp

We show the example of using the enumerate-cmp procedure to generate all con-
nected components of the connected subgraph {R2, R3}. The trace of the algo-
rithm can be seen below. Note that only a single connected component subset
is produced ({R4}). There is of course another connected component subset of
{R2, R3}, namely {R1}. This csg-cmp-pair will be part of the csg-cmp-pairs pro-
duced in DPccp when the enumerate-cmp procedure is given the input {R1}.
∗Typo from [21] corrected here.

51

enumerate-cmp(G, {R2, R3}, A)
X ← {R1, R2} ∪ {R2, R3} = {R1, R2, R3}
N ← {R1, R4} − {R1, R2, R3} = {R4}
A← A ∪ {{R4}}
enumerate-csg-rec(G,{R4}, {R1, R2, R3, R4}, A)

N ← ∅

A = {{R4}}

Figure 34: Short Example : Enumerate-cmp

5.3 IDP1ccp : Iterative Dynamic Programming connected subset-complement
pair Algorithm for Query Optimization

In section 5.1 we presented the IDP1 algorithm that combines greedy heuristics
with dynamic programming in order to reduce the running time and space com-
plexity of DP, while still producing good plans. In the previous subsection we dis-
cussed the DPccp algorithm that is capable of optimizing a query using dynamic
programming by enumerating over the minimal number of connected subsets of
the given join graph. In this section we present an improved version of the IDP1
algorithm that amalgamates the results from [9] and [21]. The resulting algorithm
has a practically superior running time to IDP1 although the worst case running
time is still the same (in the situation where a clique query is being optimized). We
give this new version of IDP1 the name IDP1ccp to indicate that the algorithm is a
result of merging IDP1 and DPccp together. IDP1ccp is shown below.

52

Input: Connected join graph G consisting of vertices V = {v1, v2, ..., vn},
which correspond to the relations R = {R1, R2, ...Rn}, and edges E.
The maximum building block size k.

Output: The best query execution plan found (without considering cross products).

Algorithm IDP1CCP(G, k)
1 for i← 1 to n do {
2 opt-plan({Ri})← ACCESS-PLANS({Ri})
3 PRUNE-PLANS(opt-plan ({Ri}))
4 }
5 J ← ∅
6 while |V | > 1 do {
7 b← BALANCED-PARAMETER(|V |, k)
8 ENUMERATE-CSG’(G,A, b− 1)
9 for all S1 ∈ A do {

10 ENUMERATE-CMP’(G,S1, B, b)
11 for all S2 ∈ B do {
12 S ← S1 ∪ S2
13 if |S| = b do {
14 J ← J ∪ {S}
15 }
16 opt-plan(S)← opt-plan(S) ∪ JOIN-PLANS(opt-plan(S1), opt-plan(S2))
17 opt-plan(S)← opt-plan(S) ∪ JOIN-PLANS(opt-plan(S2), opt-plan(S1))
18 PRUNE-PLANS(opt-plan ({S}))
19 }
20 B ← ∅
21 }
22 find P,N with P ∈ opt-plan(N), N ∈ J such that

eval(P) = min{ eval(P ′) |P ′ ∈ optP lan(W),W ∈ J}
23 generate new symbol: T
24 opt-plan({T })← {P}
25 H ← MERGE-VERTICES(G,N, T)

53

26 A← ∅
27 ENUMERATE-CSG(H , A)
28 for all O ⊂ A do {
29 delete(opt-plan(O))
30 }
31 J ← ∅
32 }
33 FINALIZE-PLANS(opt-plan (V))
34 PRUNE-PLANS(opt-plan (V))
35 return opt-plan(R)

Instead of supplying the relations set R = {R1, R2, ..., Rn} as input (as done with
IDP1) we supply the join graph G. The first phase (lines 1-4) and final phase (lines
33-35) are the same as used in most optimization algorithms described so far in this
thesis. We no longer have a toDo set as in IDP1 that stored relations waiting to be
involved in plans. Instead we use the vertices of the join graph G as an indication
of the remaining relations as there exists a one-to-one correspondence between the
vertices in V and the relations involved in the query R.

In the second phase of balanced-best plan IDP1 we generate all 2-way, 3-way,,
b-way plans, break out of the DP loop and choose the best b-way plan P . Here,
the parameter b is obtained by applying the procedure balanced-parameter (from
section 5.1) to the number of remaining relations and the k value. Let the relations
involved in P be denoted by R′. All plans involving relations r ∈ R′ are then
deleted from memory and P is then considered to be an access plan for a new
temporary relation T . The set of relations being optimized is then updated by
removing all relations in R′ and adding T . The concept with IDP1ccp is the same
except that we use the procedures enumerate-csg and enumerate-cmp to generate
the required csg-cmp-pairs instead of enumerating all possible subsets. However,
we do not wish to obtain all csg-cmp-pairs. We are only concerned with generating
pairs (S1, S2) such that |S1| + |S2| = b, i.e. we only want to produce plans up
to b-way plans. It is therefore necessary to alter the enumerate-csg, enumerate-
csg-rec and enumerate-cmp procedures to seize the recursive exploration once a
certain size of subset has been obtained. The changes are minimal and the altered
procedures enumerate-csg’, enumerate-csg-rec’ and enumerate-cmp’ can be seen
in Appendix A.

The structure J is used to store all enumerated connected subsets containing b
vertices. Once we produce all b sized connected subsets we break out of the DP
phase and choose the best plan P of the connected subsets in J . We then consider
P as an access method of the temporary relation T as before. The next step (line

54

25) involves updating the available relations for future DP phases. We need to
remove relations involved in P and add T . We no longer have a set of relations R
to update but instead have the graph G to update. Updating the relations therefore
involves merging all vertices corresponding to relations involved in P into a single
temporary vertex named T . This merging process is carried out by the merge-
vertices procedure. Once we have removed the subgraph H we then have to delete
all plans involving relations in H . This is achieved by using enumerate-csg with
H to enumerate all connected subsets of H . For every connected subset h ∈ H we
delete the optPlan entries for h.

Input: Connected join graph G consisting of vertices V = {v1, v2, ..., vn},
which correspond to the relations R = {R1, R2, ...Rn}, and edges E.
The set of vertices N that will be replaced by the symbol T .

Purpose: Replaces N in G by a single vertex T and resets dangling edge
references.

Output: The graph resulting from removing the vertices and edges between these vertices.

Algorithm MERGE-VERTICES(G,N, T)
1 V ← V −N ∪ T
2 E′ ← {(a, b) | a ∈ N, b ∈ N, (a, b) ∈ E}
3 for all (a, b) ∈ {(c, d) | c ∈ N (N), d ∈ N, (c, d) ∈ E} do
4 b← T
5 }
6 for all (a, b) ∈ {(c, d) | d ∈ N (N), c ∈ N, (c, d) ∈ E} do
7 a← T
8 }
9 return (N,E′)

5.3.1 Example : IDP1ccp

Let us consider applying IDP1ccp with k = 2 to the chain join graph G = (V,E)
shown in Figure 22. Since |V | = 4 the chosen building block size b for the first
DP phase will be 2 as this is the largest even value that is less than d |V |2 e = 2.
We proceed by considering the access plans for the relations R1, R2,R3, R4 and
then considering the 2-way plans that can be created from these access plans. An
example of the plans that could be stored in the optPlan structure after the first DP
phase is shown in Figure 35.

Assume that the chosen plan after the first DP phase is the plan involving the rela-
tions R2 and R3 as given in Figure 36. The join graph is then updated by merging

55

R1 R2 R3 R4

./

R1 R2

./

R2 R3

./

R4 R3

Figure 35: Stored plans in first DP phase
(b=2)

T = ./

R2 R3

Figure 36: Chosen plan using greedy heurstic
with eval function

the vertices corresponding to R2 and R3 into a new vertex for the temporary rela-
tion T . The resulting join graph can be seen in Figure 37.

R1 T R4

Figure 37: Join Graph after merge phase

We then proceed into the second DP phase with the query relations R1, T and R4.
As with the first DP phase, the building block size b is chosen to be 2. As a result,
a possible example of the access plans and 2-way plans stored in the optPlans
structure is shown in Figure 38. Let the plan with the lowest eval value be the plan
involving the relations R4 and T (shown in Figure 39).

R1 T R4

./

R1 T

./

R4 T

Figure 38: Stored plans in second DP phase
(b=2)

S = ./

R4 T

Figure 39: Chosen plan using greedy heurstic
with eval function

After performing another merge phase we create the temporary relation vertex S.
The resulting join graph is shown in Figure 40. The number of vertices in the join
graph is now equal to k therefore in the third DP phase we can produce the final
plan. The final plan obtained in terms of temporary relations is shown in Figure
41.

The final plan in terms of base relations can be obtained by substituting opti-
mized plans for the temporary relations to produce the final plan (shown in Figure
42).

56

R1 S

Figure 40: Join Graph after 2nd merge phase

./

R1 S

Figure 41: Final Plan in terms of temporary relations

./

R1 S

⇒ ./

R1 ./

R4 T

⇒ ./

R1 ./

R4 ./

R2 R3

Figure 42: Final plan obtained by IDP1ccp

6 Multilevel Optimization

In the previous section we discussed some existing optimization algorithms, namely
IDP1 and DPccp, which we combined to produce the improved algorithm IDP1ccp.
When presented with a join graph with a structure similiar to that of a chain or cycle
query the time savings of using IDP1ccp over IDP1 can be significant. However,
as identified in [9] most of the work exerted by IDP1 is in the first dynamic pro-
gramming phase. This can be problematic when presented with large queries or
queries in a distributed setting involving a moderate number‡ of execution sites.
For example, we find that clique queries involving 100 relations in a centralized
system cannot be optimized within 30 seconds using IDP1ccp. Also, in a dis-
tributed system consisting of nine execution sites, clique queries involving ≥ 20
relations cannot be optimized within 30 seconds (section 8) when using IDP1ccp.
Ideally we would like to have an optimization algorithm that is able to produce
good plans even with larger queries or queries in a distributed setting involving a
large number of execution sites.

In this section we present a novel class of optimization algorithms to address the
shortcomings of IDP1ccp. The primary aim of the algorithms suggested here is to

‡By moderate we mean 5-10.

57

be able to optimize queries that IDP1ccp would not be able to in an optimization
time. We begin by presenting the general structure of the class of algorithms,
which we name Multilevel optimization algorithms. We then proceed by giving
a sequential version which is then extended into a distributed version that better
utilizes the available resources of a distributed system.

6.1 Multilevel (ML) Framework

When designing an optimization algorithm we would ideally like to use pure dy-
namic programming and no heuristics as this ensures that we obtain the optimal
plan with respect to the incorporated cost model. However, this is not practical
for even moderate sized queries or queries involving relations stored at a moder-
ate number of sites. We are therefore faced with the tradeoff of sacrificing plan
quality in order to obtain plans for large queries in a reasonable time. The mul-
tilevel optimization framework suggested here combines heuristics and dynamic
programming but opts to use heuristics early in order to reduce the time spent on
the first DP phase, which is in contrast to IDP1.

In the multilevel optimization framework, shown below, we initially use a heuris-
tic to identify a connected subgraph containing no more than k vertices (line 3).
We then remove this subgraph and merge the vertices to obtain a new temporary
relation T . The subgraph that was removed is then optimized using a centralized
optimization algorithm (line 6). k acts as an upper bound on the number of relations
that the centralized optimization algorithm can optimize in a feasible time frame.
We store the best plan obtained by this optimization in the optPlans structure for T .
This process is repeated until we arrive at a graph containing ≤ k vertices. In this
case we have no need to apply the heuristic as the centralized algorithm is capable
of optimizing the remaining graph. At this stage we have a number of optimized
plans stored in opt-plan that may contain temporary relations. In the final phase we
build the final plan by performing a series of temporary relation plan substitutions,
where optimized plans P for temporary relations T are substitued in place of the
existence of T in any optimal subplans. We term this class of algorithms Multilevel
as the algorithms consist of a number of different levels, each of which involve a
subset of relations being grouped together and optimized completely. IDP1ccp is
not considered to be a Multilevel algorithm as at each phase we only perform a
partial optimization while considering the complete set of relations.

58

Input: Connected join graph G = (V,E) and the maximum optimization unit size k.
Output: An optimized query plan for G.

Algorithm ML-FRAMEWORK(G, k)
1 opt-plans ← ∅
2 while |V | > k do {
3 S ← HEURISTIC(G, k)
4 generate new symbol: T
5 H ← MERGE-VERTICES(G,S, T)
6 O ← OPTIMIZE(H)
7 opt-plans(T)← O
8 }
9 generate new symbol: J

10 O ← OPTIMIZE(G)
11 opt-plans(J)← O
12 return BUILD-FINAL-PLAN(J)

The Multilevel Framework algorithm is shown above, which describes the general
structure of the multilevel algorithms. The worst case running time and space
complexity of the ML-framework algorithm are dependent on the time and space
complexity of the heuristic and centralized optimization algorithm used.

6.2 SeqML : Sequential Multilevel Algorithm for Query Optimiza-
tion

The sequential multilevel optimization algorithm (SeqML) proposed here adopts
the ML framework as detailed above. The heuristic used in SeqML is the min-
intermediate-result heuristic, which aims to reduce the size of intermediate results
as done with the minimum selectivity heuristic proposed in [19]. The centralized
optimization algorithm used is the DPccp algorithm as described in the previous
section. Letmat(P) denote the materialization site of plan P , i.e. the site at which
plan P produces the results. The SeqML algorithm is given below.

59

Input: The query join graph G = (V,E) and the maximum optimization unit size k.
Output: An optimized query plan for G.

Algorithm SEQ-ML(G, k)
1 opt-plans ← ∅
2 while |V | > k do {
3 S ← MIN-INTERMEDIATE-RESULT(G, k)
4 generate new symbol: T
5 H ← MERGE-VERTICES(G,S, T)
6 O ← DPCCP(H)
7 opt-plans(T)← O
8 add T to catalog with resident site mat(O).
9 }

10 generate new symbol: J
11 O ← DPCCP(G)
12 opt-plans(J)← O
13 return SEQ-BUILD-FINAL-PLAN(J)

The min-intermediate-result procedure is very similar to the minSel heuristic, dis-
cussed in section 2.3.2, in that it aims to reduce the size of intermediate results. The
min-intermediate-result procedure operates as follows. We initially begin with two
sets of vertices V and S where V is the vertex set of the join graphG = (V,E) and
S is empty. We first choose the edge (v1, v2) with the highest selectivity (lowest
σ value) and add the vertices v1 and v2 to S. We then consider the vertices in the
neighbourhood of S and add the vertex in N (S) such that the intermediate result
obtained is the lowest possible. We repeat this process of picking a vertex from the
neighbourhood that results in the lowest intermediate result until |S| = k. The min-
intermediate-result procedure makes use of the intermediate-result procedure(S,v),
which gives an estimate of the size of intermediate result produced when joining a
plan involving relations in S and v. It does this by multiplying all existent edges
(s, v) such that s ∈ S and multiplying this conjunctive selectivity by the cardinali-
ties of S and C. The min-intermediate-result algorithm is shown below.

60

Input: The query join graph G = (V,E) and the maximum optimization unit size k.
Output: A subset of vertices that meets the minimum intermediate result heuristic.

Algorithm MIN-INTERMEDIATE-RESULT(G, k)
1 find A,B ∈ V such that

σ(A,B) = min{σ((a′, b′)) | (a′, b′) ∈ E}
2 S ← {A,B}
3 while |S| < k do {
4 N ← N (S)
5 find C ∈ N such that

INTERMEDIATE-RESULT(S,C) = min{INTERMEDIATE-RESULT(S,C ′) |C ′ ∈ N}
6 S ← S ∪ {C}
7 }
8 return S

Line 8 of SeqML specifies that when we obtain an optimized plan O for a given
connected subset S the subsequent temporary relation T is added to the catalog
with resident site given as mat(O). This implies that the final plan is built in a
bottom up fashion, where the optimization results of earlier levels affect the results
of subsequent levels.

The Seq-build-final-plan algorithm is shown below, which details how we ob-
tain the final plan in terms of the original relations. We simply begin with the
plan produced in the final level and continue to substitute optimized plans for
temporary relations until the plan only consists of input relations. The replace-
child(parent,T ,P) procedure is used to replace the child node T of node parent
with the plan P .

Input: The symbol J corresponding to the optimized plan of the final level.
Output: The overall query execution plan in terms of the original relations.

Algorithm SEQ-BUILD-FINAL-PLAN(J)
1 P ← opt-plans(J)
2 for all nodes n ∈ P do {
3 P ′ ← opt-plans(n)
4 if P ′ 6= ∅ do {
5 REPLACE-CHILD(PARENT(n), n, P ′)
6 }
7 }
8 return P

61

6.2.1 Worst Case Time Complexity

Let us derive the worst case time complexity of SeqML. Given a join graph con-
taining n relation vertices we will iterate over l = d n

k−1emany optimization levels.
In the optimization levels we perform the min-intermediate result heuristic, which
has a time complexity of O(n2). We also use the merge procedure in each of the
levels, where the time complexity of this procedure is O(k). The worse case time
complexity of DPccp has been given previously (section 5) asO(s3 ·3n) where s is
the number of execution sites in the system. Since we perform DPccp on subgraphs
containing at most k vertices this time complexity will contribute by O(s3 · 3k) at
each level. This implies that the worst case time complexity of SeqML can be
given by the following.

= O(l · (k + n2 + s3 · 3k)

= O(d n

k − 1
e · (k + n2 + s3 · 3k))

= O(
n3

k
+
n

k
· s3 · 3k)

6.2.2 Example : SeqML

Let us consider the join query in Figure 22 with the resident site information given
in Figure 43. We assume that there are three execution sites in the system S1, S2
and S3. Also, assume that the query site is S1.

Relation Resident Sites
R1 S1
R2 S1, S2
R3 S2, S3
R4 S2

Figure 43: Example Resident Site Information

Let the value of k be 2. In this situation the min-intermediate-result heuristic sim-
ply equates to choosing the edge with the lowest selectivity. In this case the chosen
edge corresponds to the edge betweenR1 andR2. We extract the subgraph contain-
ing these relations (Figure 44) for optimization and merge them into the temporary
relation T to obtain the graph shown in Figure 45.

62

R1 R2

R1.F1=R2.F1

(0.005)

Figure 44: Extracted Join Graph: Level 1

T R3 R4

R2.F1=R3.F2

(0.02)

R3.F1=R4.F1

(0.015)

Figure 45: Join Graph: Level 2

After optimizating the join graph in Figure 44 it is likely that the best plan involves
joining R1 and R2 at S1 as this involves the least number of I/Os and no network
communication. This plan is shown in Figure 46. The resident site of the temporary
relation T is considered to be S1 as this is the materialization site of the optimized
plan. We then proceed as before by applying the min-intermediate-result heuristic
to the join graph in Figure 44. This involves extracting the join graph containing
the relations R3 and R4 as the edge between them has the minimum selectivity.
The extracted graph can be seen in Figure 48 and the remaining graph can be seen
in Figure 49 (with the new temporary relation S). As R3 and R4 are both present
at S2 the optimal plan will consist of joining these relations at S2. This plan can be
seen in Figure 47.

./S1

RS11 RS12

Figure 46: Optimized Plan from level 1

./S2

RS23 RS24

Figure 47: Optimized Plan from level 2

R3 R4

R3.F1=R4.F1

(0.015)

Figure 48: Extracted Join Graph: Level 2

T S
R2.F1=R3.F2

(0.02)

Figure 49: Join Graph: Level 3

Assume that the cardinalities of T and S are such that the final optimized plan
will involve sending S to S1 and performing the join between T and S at S1. The
optimized plan P is shown in Figure 50. The final plan is obtained by substituting
previously optimized subplans into P and is given in Figure 51.

6.3 DistML : Distributed Multilevel Algorithm for Query Optimiza-
tion

In this section we explore the possibility of distributing the optimization process
so that we can make full use of the available system resources. The main idea
of the distributed ML algorithm (Dist-ML) is to produce an optimization task on

63

./S1

T S1 RCVS1

SENDS2

SS2

Figure 50: Optimized Plan for final level

./S1

./S1

RS11 RS12

RCVS1

SENDS2

./S2

RS23 RS24

Figure 51: Final Plan

each level and send this task to an optimization site, which can then perform the
optimization. Here we make the distinction between an optimization site and an
execution site. An optimization site is used solely to optimize tasks. An execution
site refers to sites that are capable of executing query operators. However, it is
possible to consider a distributed system consisting of s sites where each site fulfills
the role of an optimization site and an execution site.

The main advantage gained from distributing the optimization is that many opti-
mization tasks may be able to be optimized concurrently by multiple different sites,
thereby causing a linear speed up in optimization time given by the number of op-
timization sites. However, if we try to convert the sequential algorithm SeqML
directly into a distributed algorithm we encounter the problem that the optimiza-
tion in level imay depend on the result of the optimization in level i−1 (for i > 1).
However, these dependencies do not always arise. Let SGi = (Vi, Ei) denote the
subgraph chosen for merging by the heuristic in level i. Let the temporary relation
that replaces SGi be Ti. When Ti /∈ Vi+1 we have no dependency between levels
i and i + 1. The existence of dependencies means that it would not be possible
to perform the optimizations concurrently at different sites. In SeqML we are re-
quired to wait for an optimization to finish so that we can allocate the resident site
of the new corresponding temporary relation T to the materialization size of the
produced plan P (lines 6-8 in SeqML). In DistML we hypothesize that an opti-
mized plan P , involving the relations with a combined resident site set of RS, will
have a materialization site s such that s ∈ RS. Here, RS is the union of the resi-
dent sites of each relation that is to be involved in the plan P . This means that the
choice of the materialization site of P is delayed and is made by the optimization
step in the following optimization level. Once an optimization task is submitted
it is now possible to proceed immediately to the next optimization level using the
resident site set RS for the temporary relation T .

64

Let the optimization site to which the optimization task involving T is allocated be
denoted by sopt. LetRS denote the possible resident sites of T . At sopt we store the
|RS| optimal plans that materialize the result of T at each execution site s ∈ RS.
When all optimization tasks for all levels are finished we then build the final plan
as follows. We request the optimal plan for the final level with materialization
site equal to the query site from the appropriate optimization site. We then take
this plan and identify any containing temporary relations T . These relations have
execution site annotations determined by the optimization phase. We then request
the plan P with mat(P) equal to the chosen site for T from the optimization site
responsible for the optimization of the temporary relation. In this sense the sites
allocated to subplans corresponding to temporary relations are determined in a top-
down fashion, as opposed to the bottom-up fashion used in SeqML. The algorithms
Dist-ML and Dist-build-final-plan are given below.

Note that in the case where we are optimizing plans for a centralized database
system SeqML and DistML produce the same plans (when given equal k values).
Hence, in the event where the number of optimization tasks > 1 and the number of
optimization sites > 1 theoretically we always have an advantage of using DistML
over SeqML.

Input: The query join graph G = (V,E) and the maximum optimization unit size k.
The set of optimization site identifiers C.

Output: An optimized query plan for G.

Algorithm DIST-ML(G, k,C)
1 optimized ← ∅
2 waiting-to-be-optimized ← ∅
3 plan-sites ← ∅
4 while |V | > k do {
5 S ← MIN-INTERMEDIATE-RESULT(G, k)
6 generate new symbol: T
7 H ← MERGE-VERTICES(G,S, T)
8 SUBMIT(H, T , C)
9 add T to catalog with resident sites ∪v∈HRS(v).

10 }
11 generate new symbol: J
12 SUBMIT(G,J , C)
13 return DIST-BUILD-FINAL-PLAN(J)

65

Input: The symbol J of the optimized plan of the final level.
Output: The overall query execution plan in terms of the original relations.

Algorithm DIST-BUILD-FINAL-PLAN(J)
1 wait while waiting-to-be-optimized 6= ∅
2 c← plan-sites(J)
3 P ← c.PLAN(J , query-site)
4 for all nodes n ∈ P do {
5 if n ∈ optimized do {
6 REPLACE-CHILD(PARENT(n), n, c.PLAN(n, n.site))
7 }
8 }
9 return P

As with SeqML we use the min-intermediate-result heuristic and the DPccp cen-
tralized optimization algorithm. The DistML procedure makes use of the submit
procedure, shown below, which is responsible for keeping track of available opti-
mization sites and issuing optimization tasks to them. Here, c.DPccp indicates that
the optimization is carried out using DPccp at the optimization site c.

Input: The query join graph G = (V,E), a symbol T to be assigned to the optimized
plan of G and the set of optimization site identifiers.

Purpose: Allocates the task of optimizing the join graph G to an optimization site
and executes the optimization.

Algorithm SUBMIT(G, T , C)
1 waiting-to-be-optimized ← waiting-to-be-optimized ∪ {T }
2 choose c ∈ C
3 plan-sites(T)← c
4 c.DPCCP(G)
5 waiting-to-be-optimized ← waiting-to-be-optimized − {T }
6 optimized ← optimized ∪{T }

6.3.1 Worst Case Time Complexity

In the worst case DistML only has one optimization site available to it thereby
making it equivalent to SeqML in terms of running time. This implies that DistML
has the same worse case running time as SeqML of O(n

3

k + n
k · s

3 · 3k).

66

6.3.2 Example : DistML

In the DistML example we encounter the same join graph levels as in the SeqML
example. However, we do not wait for the T plan or S plan to be optimized so that
we can assign the temporary relations a resident site equal to the materialization
site of the plan. Instead, we assign the resident site (RS) of the temporary relations
as follows.

RS(T) = RS(R1) ∪RS(R2) = {S1, S2}
RS(S) = RS(R3) ∪RS(R4) = {S2, S3}

We have the following optimization tasks to assign to optimization sites.

R1 R2

R1.F1=R2.F1

(0.005)

Figure 52: Optimization Task 1 : Level 1

R3 R4

R3.F1=R4.F1

(0.015)

Figure 53: Optimization Task 2 : Level 2

T S
R2.F1=R3.F2

(0.02)

Figure 54: Optimization Task 3 : Final Level

In the event where the distributed system contains 3 or more optimization sites
sopt it is possible for these optimization tasks to be optimized concurrently thereby
theoretically reducing the running time by a linear factor of sopt. When an opti-
mization site receives a task it saves optimized plans materialized at the union of
all relation resident sites unless the task corresponds to the final level. In the case
where an optimization site receives the final level task it only saves the plan that
materializes the result at the query site. Assume that we have three optimization
sites in the system. The plans stored at each of the three sites are shown in Figures
55-57.

67

./S1

T S1 RCVS1

SENDS2

SS2

Figure 55: Plan stored at optimization site 1

./S1

RS11 RS12

./S2

RCVS2

SNDS1

RS11

RS22

Figure 56: Plans stored at optimization site 2

The final level plan, stored at optimization site 1, is materialized at S1 as this is
the query site. Let P denote a plan at optimization site 2 or 3 and let RS(P)
denote the union of all resident sites of all relations involved in P . Then |RS(P)|
plan versions are required to be stored at the optimization site, where each plan is
materialized at each site in RS(P). The tasks do not necessarily get optimized in
any particular order. They are generated sequentially but it could be the case that
a later task takes less time to complete than an earlier task. For example, it could
actually be the case that optimization task 3 gets optimized before the other tasks.
When all tasks are optimized we need to build the final plan. We begin with the
plan from the top level (Figure 55) and request the plans that fit in place of the
temporary relations from the optimization sites. Note that the site annotations of
temporary relations must coincide between levels. The final plan can be seen in

./S2

RS23 RS24

./S3

RS33 RCVS3

SNDS2

RS24

Figure 57: Plans stored at optimization site 3

68

Figure 58. Note that in this case this plan corresponds to the plan obtained by the
SeqML algorithm.

./S1

./S1

RS11 RS12

RCVS1

SENDS2

./S2

RS23 RS24

Figure 58: Final Plan

69

7 Implementation

In the previous section we discussed the novel multilevel optimization algorithms
SeqML and DistML. In this section we give implementation details of the opti-
mization algorithms SeqML and DistML. We also discuss the implementation of
structures used by these classes such as join graphs, query execution plans and the
system catalog. The implementation details for DPccp and IDP1ccp are not given
here as the code is almost exactly as the algorithms given in section 5. The opti-
mization algorithms discussed in this thesis were implemented in Java and the total
code line count of the project was just above 10000. The project code can be found
at the following URL.

http://www.comlab.ox.ac.uk/people/dan.olteanu/projects/distributedoptimization.html

7.1 Catalog

7.1.1 Internal Representation

As discussed in section 2, the system catalog is stored in the same way as all other
data in a database system, i.e. in a table. In this thesis we focus on query opti-
mization and do not consider implementing any part of the query executer. This
means that the underlying mechanism to create, query and modify the system cat-
alog is not available as we do not have a means of creating or manipulating actual
relations. Instead of storing the catalog as a table we maintain the entire catalog
in memory. This is sufficient for our current requirements as we do not consider
systems with more than 100 relations and hence the catalog will not monopolize
main memory.

The internal representation can be seen in Class Diagram 1. We can see that the
Catalog class maintains several system wide variables that indicate the size of a
disk page, the execution sites in the system and the time to transfer data across the
network and to/from disk. The catalog also maintains a RelationEntry for each re-
lation present in the system. The RelationEntry class maintains information about
relations, such as their name, cardinality, tuple size etc. The sites at which the rela-
tion is available are also stored here along with the Schema. The Schema consists
of a number of fields along with their corresponding DomainType. We fix the do-
main types to be one of four classes (A,B,C or D) where each type has their own
size in bytes and number of different possible values.

70

<!DOCTYPE Catalog [
<!ELEMENT Catalog (CatalogEntry+)>
<!ELEMENT CatalogEntry (RelationEntry,FieldsEntry)>
<!ELEMENT RelationEntry (RelationName,NumberOfTuples,ResidentSites)>
<!ELEMENT FieldsEntry (DomainType,FieldName)>
<!ELEMENT ResidentSites (IPaddress+)>
<!ELEMENT IPaddress (#PCDATA)>
<!ELEMENT RelationName (#PCDATA)>
<!ELEMENT NumberOfTuples (#PCDATA)>
<!ELEMENT DomainType (#PCDATA)>
<!ELEMENT FieldName (#PCDATA)>
]>

Figure 59: Catalog file format

7.1.2 File Format

We provide a flat file format for the catalog to allow catalogs to be saved to disk
and later reused. A DTD indicating the format of this file is given in Figure 59 and
a short catalog instance can be seen in XML format in Figure 60. An example of
a compressed version of a catalog file used in the system can be seen in Appendix
B.1. The file consists of a list of pairs of lines (l1, l2). l1 contains a relation
name, the cardinality, the size of each tuple in bytes and the list of resident sites.
This corresponds to the RelationEntry element shown in Figure 59. We make the
assumption that all relations have fixed length tuples, although the model could
easily be adapted to allow for variable length tuples. The second line l2 consists of
a list of field entries, where each entry specifies the domain type of the field and the
name of the field. This corresponds to the FieldsEntry element in Figure 59.

71

<Catalog>
<CatalogEntry>

<RelationEntry>
<Name> A </Name>
<NumberOfTuples> 1020 </NumberOfTuples>
<TupleSize> 42 </TupleSize>
<Resident Sites>

<IP Address> 163.1.88.0 </IP Address>
<IP Address> 163.1.88.1 </IP Address>

</Resident Sites>
</RelationEntry>
<FieldsEntry>

<DomainType> B </DomainType>
<Name> A. F1 </Name>

</FieldsEntry>
<FieldsEntry>

<DomainType> C </DomainType>
<Name> A.F2 </Name>

</FieldsEntry>
</CatalogEntry>

</Catalog>

Figure 60: Short Example Catalog

72

Catalog
pageSize : int
bufferSize : int
ioTimeConstantForPage : double
networkTimeToSendAByte : double
relationEntries : Map<String, RelationEntry>
systemSites : List<Site>
addRelation(name:String, numTuples:double,tupleSizeBytes:int,sites:Set<Site>):void
addField(relationName:String, field:String, type:DomainType):void
addSite(ip:String):void
getRelationCardinality(relationName:String):double
getSchema(relationName : String) : Schema
populate(sitesFilename:String,relationsFilename:String):void

RelationEntry
name : String
cardinality : double
tupleSizeBytes : int
residentSites : Set<Site>
schema : Schema
addField(name:String, field:Field):void
getSchema() : Schema

Schema
fields : Map<String, Field>
addField(name:String, field:Field):void
getField(name:String):Field
getNumberOfFields():int

Field
name : String
type : DomainType
getName() : String
getType() : DomainType

DomainType
enum Type {A,B,C,D}
type : Type
getSizeInBytes(t : Type) : int
getDomainCardinality(t : Type) : int

A : 2, B : 10
C : 15, D: 8

A : 9, B : 91
C : 401, D: 501

Class Diagram 1 : System Catalog

73

7.2 Join Graph

7.2.1 Internal Representation

Join graphs are used in our system to represent queries. The internal representation
of a join graph consists of a JoinGraph class containing a single graph attribute
of type Map<String, Map<String, JoinInfo>>. The String keys r1 and r2 corre-
spond to the names of relations and the JoinInfo value encapsulates the join selec-
tivity and join condition of the join between relations r1 and r2. When presented
with the names of two relations we are able to find any join information present in
constant time (assuming that the appropriate number of hash buckets is used and
that there is a uniform distribution of keys). We are also able to check if a given
edge is present in the join graph in constant time under these assumptions. How-
ever, this representation requires the JoinInfo entry to be stored twice, once for the
edge (v1, v2) and once for the edge (v2, v1). Note that we only store the reference
and not the object twice.

7.2.2 File format

In order to save a query to disk we provide a flat file representation of the query,
which is almost identical to the internal representation. The first line of the file
contains a list of space separated strings that correspond to the names of relations
involved in the query. Each line l after the first line stores adjacency list of vertices
for each vertex. The format of the file is shown by the DTD in Figure 61 and a
short instance of this DTD can be seen in Figure 62. This is a very small example
of a join graph containing two relations A and B that have a single join condition
between them. A compressed version of a join graph file used in the system can be
seen in Appendix B.2.

74

<!DOCTYPE JoinGraph [
<!ELEMENT JoinGraph (Relation+, AdjacencyList+)>
<!ELEMENT Relation (RelationName)>
<!ELEMENT AdjacencyList (VertexName, AdjacentVertex+)>
<!ELEMENT AdjacentVertex (VertexName,JoinCondition)>
<!ELEMENT JoinCondition (FieldName, FieldName, Selectivity)>
<!ELEMENT RelationName (#PCDATA)>
<!ELEMENT VertexName (#PCDATA)>
<!ELEMENT FieldName (#PCDATA)>
<!ELEMENT Selectivity (#PCDATA)>
<!ELEMENT FieldName (#PCDATA)>
]>

Figure 61: Join graph file format

7.3 Query Execution Plan

Class diagram 3 shows the design of the classes used to represent a Query Ex-
ecution Plan. We adopt the composite design pattern to create the tree structure
that represents the plan. The abstract class PlanNode is used to provide common
functionality such as calculating output number of pages, total output bytes etc. It
also enforces the interface regarding child manipulation to fit the composite pat-
tern. The nodes that can be present in a query execution plan consist of JoinNode,
RelationNode, SendNode, ReceiveNode and the DelimiterNode. As described in
section 4 the purpose of the DelimiterNode is to isolate areas of a plan that belong
to the same scheduling task.

The Plan class adopts the adapter design pattern by wrapping around the root
PlanNode and providing methods to determine the cost of the plan. When the
getCost() method is called on a Plan object a TaskTree object is created. During
the initialization of a TaskTree the supplied Plan is cloned and the delimiter nodes
are added to the appropriate locations within the cloned Plan to identify tasks. The
cost of each task is then evaluated and stored in the task’s duration field. The re-
sulting task tree is then passed to a Scheduler, that performs the post order traversal
of the tree and creates the final schedule. The main field of the Scheduler class is
the schedule field, which has the type Map<Site, List<ScheduleEntry>>. Each
site has an associated list of schedule entries, which are stored in this structure. A
Schedule Entry simply consists of a task with an interval denoting when the task
is scheduled to begin and finish. The classes involved in Scheduler component can

75

be seen in Class Diagram 2.

<JoinGraph>
<Relation>

<Name> A </Name>
</Relation>
<Relation>

<Name> B </Name>
</Relation>
<AdjacencyList>

<VertexName> A </VertexName>
<AdjacentVertex>

<VertexName> B </VertexName>
<JoinCondition>

<FieldName> A. F1</FieldName>
<FieldName> B.F2</FieldName>
<Selectivity> 0.01 </Selectivity>

</JoinCondition>
</AdjacentVertex>

</AdjacencyList>
<AdjacencyList>

<VertexName> B </VertexName>
<AdjacentVertex>

<VertexName> A </VertexName>
<JoinCondition>

<FieldName> B.F2 </FieldName>
<FieldName> A. F1 </FieldName>
<Selectivity> 0.01 </Selectivity>

</JoinCondition>
</AdjacentVertex>

</AdjacencyList>
< /JoinGraph>

Figure 62: Short Example Join graph

76

Scheduler
taskTree : TaskTree
schedule : Map<Site, List<ScheduleEntry»
finishTime : double
taskDurationSum : double
getFinishTime() : double
getSystemUtilizationFactor() : double
schedule() : void

ScheduleEntry
task : Task
interval : Interval

TaskTree
root: PlanNode
setRoot(planNode : PlanNode): void
getRoot() : PlanNode
calculateCost() : void
visit(j : JoinNode) : void
visit(r : RelationNode) : void
visit(s : SendNode) : void
visit(r : ReceiveNode) : void
visit(d : DelimiterNode) : void

TaskNode
plan : Plan
parent : TaskNode
children : List<TaskNode>
id : int
duration : double
addChild(t : TaskNode) : void
getChildAt(idx : int) : TaskNode
getNumberOfChildren() : int
getSite() : Site
getDuration() : double

PlanVisitor

visit(j : JoinNode) : void
visit(r : RelationNode) : void
visit(s : SendNode) : void
visit(r : ReceiveNode) : void
visit(d : DelimiterNode) : void

Class Diagram 2 : Scheduler Component

<<realizes>>

77

Plan
root: PlanNode
setRoot(planNode : PlanNode): void
getRoot() : PlanNode
static join(s:Site, o:Plan, i:Plan, g:JoinGraph):Plan
shipTo(s : Site) : void
getCost() : PlanCost
getScheduler() : Scheduler

PlanNode
site : Site
parent : PlanNode
outputCardinality : double
outputTupleSizeInBytes : int
getTotalOutputBytes() : int
getNumberOfOutputPages() : double
getNumberOfChildren() : int
getChildAt(idx : int) : PlanNode
setChildAt(idx : int, newChild : PlanNode)
accept(c : CostPlanVisitor) : Pair<Double,Double>

RelationNode
name : String
getNumberOfChildren() : int
getChildAt(idx : int) : PlanNode
setChildAt(idx : int, newChild : PlanNode)
accept(c : CostPlanVisitor) : Pair<Double,Double>
getName() : String

JoinNode
outer : PlanNode
inner : PlanNode
joinCondition : JoinCondition
getJoinCondition() : JoinCondition
getNumberOfChildren() : int
getChildAt(idx : int) : PlanNode
setChildAt(idx : int, newChild : PlanNode)
accept(c : CostPlanVisitor) : Pair<Double,Double>

UnaryNode
child : PlanNode
getNumberOfChildren() : int
getChildAt(idx : int) : PlanNode
setChildAt(idx : int, newChild : PlanNode)

SendNode

accept(c : CostPlanVisitor) : Pair<Double,Double>

ReceiveNode

accept(c : CostPlanVisitor) : Pair<Double,Double>

DelimiterNode

accept(c : CostPlanVisitor) : Pair<Double,Double>

Class Diagram 3 : Query Execution Plan

78

Client

Svr_1 Svr_2 Svr_3 Svr_4 Svr_n
...

Figure 63: DistML Setup

7.4 Multilevel Optimization Code

Class Diagram 4 shows the structure of the multilevel optimization component.
The abstract class MultilevelOptimizer enforces that SeqML and DistMLClient im-
plement the optimize and buildFinalPlan methods. It also provides an implementa-
tion of the common method calcInterResults that implements the min-intermediate-
result heuristic. The SeqML class provides the implementation of the sequential
multilevel algorithm and the DistMLClient class provides the implementation that
coordinates the running of the distributed multilevel algorithm. The SeqML class
provides the protected optimizeTask method that applies DPccp to the given sub-
graph. This method takes a flag, which indicates to DPccp whether or not the query
site should be taken into account when optimizing the query. In the final level of
the ML algorithms we require that the result is materialized at the query site but in
intermediate levels this is not the case. When the flag is set to true DPccp chooses
the plan in its final phase in a greedy manner, whereas when the flag is set to false
the plan that is materialized at the query site is chosen.

In order to execute the distributed multilevel algorithm we need to create the re-
quired overlay network structure containing a single client (DistMLClient) and
n optimization sites (DistMLServer) that take on the role of servers (shown in
Figure 63). The client site is the site that received the query and wishes to ex-
ecute the DistML algorithm. The overlay network is created using Java Remote
Method Invocation (RMI) as it provides a simple means to program using multiple
sites in a network without burdening the programmer with network programming
details. Each optimization site executes an instance of the DistMLServer class,

79

which implements the Optimizer interface. RMI allocates a global identifer to the
Optimizer object running on each server. This identifier is a URL of the form
’rmi://ipAddress:p/handle’, where handle is a name given to the object whose ref-
erence is available on port p at IP address ipAddress. In this case we use the handle
OptimizerServer at each optimization site.

When the DistMLClient code is run the optimization task produced at each level of
the algorithm is passed into the TaskPool object. The TaskPool stores a queue of
tasks that are waiting to be optimized as well as a queue of optimization sites that
are currently not being used to optimize a task. The main responsibility of the task
pool object is to allocate tasks to optimization sites that are free while considering
load balancing. We do not wish to overload a small number of servers with opti-
mization task requests as this may increase the likelihood of a server failure. Using
a queue of available sites helps to avoid the overloading of servers.

DistMLServers receive a reference to the task pool so that they can indicate to it
when they have completed optimizing their task. The TaskPool can then mark the
temporary result corresponding to the task as completed in the optimized structure.
This structure has a type ConcurrentHashMap<String, boolean>, which maps the
name of the temporary result to a flag indicating whether or not it has been opti-
mized. Note that it is necessary to use a concurrent hash map as many optimization
sites may indicate to the task pool that they have completed their task at the same
time. When the DistMLClient has issued all optimization tasks to the TaskPool
it then waits until all tasks have been optimized. It can find this information by
checking the ConcurrentHashMap structure to see if all tasks are mapped to ’true’.
Once all tasks have been completed DistMLClient will build the final plan. This
involves pulling the optimized plans for the temporary relation T from the sites
that optimized T . The optimization sites that optimized a task corresponding to
the temporary relation T are stored in the TaskPool object.

80

MultilevelOptimizer
joinGraph: JoinGraph
nextStubIdentifier: String
optimize(k : int): Plan
buildFinalPlan(): Plan
calcInterResults(s : Set<String>, d : double, n : String) : double

SeqML
opt-plans: Map<String, Plan>
optimize(k : int): Plan
buildFinalPlan(): Plan
optimizeTask(g : JoinGraph, b : boolean) :Plan

DistMLClient
optimized: ConcurrentHashMap<String, boolean>
optTaskPool: OptimizationTaskPool
prevStubs: List<RelationEntry>
optimize(k : int): Plan
buildFinalPlan(): Plan
receivedAllResults() : boolean

TaskPool
optimized: ConcurrentHashMap<String, boolean>
submitRequests : Queue<Task>
planSites : Map<String, Optimizer>
free : Queue<Optimizer>
optimizerPool : Thread
run() : void
submit(t : Task) : void
bindOptimizers() : void
pullPlan(id : String, site : Site) : Plan
synchronized signalComplete(s : String, o : Optimizer) : void

ResultCollector

pullPlan(id : String, site : Site) : Plan
synchronized signalComplete(s : String, o : Optimizer) : void

Optimizer

optimize(t : Task, r : ResultCollector) : void
pushPlan(id : String, site : Site) : Plan

DistMLServer
finalPlans : Map<String, List<Plan»
dpccpOptimizer : DPccpOptimizer
optimize(t : Task, r : ResultCollector): void
pushPlan(id : String, site : Site) : Plan

DPccpOptimizer
resultCollector : ResultCollector
task : Task
run() : void

Class Diagram 4 : Multilevel Algorithms

<<realizes>>

<<realizes>>

81

8 Experiments

8.1 Setup

All experiments were performed on identical machines with the following cpu in-
formation - 64-bit AMD Athlon(tm) Dual Core Processor 4600+. The operating
system used was Fedora with kernal version-2.6.29.6. The available memory was
1.94GB.

8.2 Algorithms

The algorithms used in our experiments are the sequential multilevel algorithm,
named SeqML (section 6.2), the distributed multilevel algorithm, named DistML
(section 6.3), and the improved iterative dynamic programming algorithm, named
IDP1ccp (section 5.3). In SeqML we are given a query join graph G and a value k.
We apply the min-intermediate-result heuristic until we obtain a subgraph SG that
contains k relations. We then remove SG and replace it with a single temporary
relation T to produce a new join graph G′ containing k − 1 less relation vertices
than before. SG is then optimized using the centralized optimization algorithm
DPccp (section 5.2) and the obtained plan is saved under the T entry. We repeat
the process of applying the heuristic to obtain a subgraph SG, replacing the SG
with a temporary relation and optimizing SG until the join graph contains less than
or equal to k relation vertices. When we reach this final level we apply DPccp to
the join graph for a final time to obtain the optimized plan in terms of the temporary
relations. From this plan we subtitute saved plan entries until we obtain the final
plan in terms of the original relations.

DistML is very similar to SeqML in the sense that they both apply the min-intermediate-
result heuristic and optimize a subgraph at each level. The main difference is that
DistML makes use of a number of optimization sites that perform the DPccp op-
timizations possibly concurrently. To allow this concurrent processing we have
had to adopt a heuristic when indicating to upper levels where temporary relations
are materialized. We take the union of all sites of relations involved in a sub-
graph and indicate that T is a resident at all of these sites. This is in constract to
SeqML where we wait for a subgraph to be optimized and then specify that the
corresponding temporary relation T is resident at the materialization site of the op-
timized plan. In the worst case the optimized plan of an upper level will disagree
with the location of T with the level directly below, which will cause an additional
ship node to be added to the plan. This can be the cause of optimality compromises

82

in the overall plan. Given the same value of k DistML and SeqML will produce the
same plan when the system contains only one execution site, i.e. in a centralized
database system.

IDP1ccp takes as input the join graph G of a query and a parameter k. Let the
balanced value of k be denoted by b (see section 5.3). We perform the first dynamic
programming phase by generating access plans, 2-way plans, ..., b-way plans. We
then apply a greedy heuristic and choose a b-way plan P with the lowest cost. Any
plan saved in memory that involves any relation of P is removed from memory
and we denote the plan P by T . We then calculate the new balanced value based
on k and the number of remaining relations waiting to be involved in the plan. We
continue to apply the DP phase and the greedy heuristic until we arrive at the final
plan involving ≤ k temporary relations. We then substitute the temporary relation
plans into the last obtained plan to produce the final plan in terms of base relations.
For large queries and large k values the time required for the first DP phase can be
debilitating.

8.3 Query Generator

In order to perform experiments involving IDP1ccp and the ML algorithms it is
necessary for us to be able to generate a set of queries in join graph form. However,
we cannot produce queries without having relations to refer to. We therefore have
to generate a system catalog before generating queries. Consider the experimental
case where we have a distributed setting consisting of se execution sites and where
the maximum number of relations involved in a query is n. The minimum number
of relation entries required to be present in the catalog must therefore be n. We
build the catalog by randomly generating a name for a relation and then randomly
assigning it a cardinality given by the probabilities in Table 2.

Probability Cardinality
5% 1000-10000
40% 10000-100000
25% 100000-1000000
30% 1000000-10000000

Table 2: Relation Cardinality Probabilities

The next step is to populate the relation entry with fields. Each relation entry is
assigned between 5 and 10 fields according to a uniform probability distribution.
As with [12], we assign each field a domain according to the probabilities in Table

83

3. The size of each domain and the size in bytes can also be seen in Table 3. The
final addition to each relation entry is the resident sites of the relation. We first
choose randomly how many sites the relation should be available at using 1+U
where U is a discrete random variable taking values from 0 to se − 1. We then
proceed by picking the required number of sites at random and allocating them to
the given relation entry.

Domain Type Probability Domain Size Bytes
A 5% 9 2
B 50% 91 10
C 30% 401 15
D 15% 501 8

Table 3: Field Domain Probabilities

A query generator has been implemented to randomly generate queries of a partic-
ular join graph structure and of a particular size. The query generator is capable of
generating queries of any size and of the type chain, cycle, clique, star or mixed.
To create a mixed join graph we could randomly place join conditions between
relations thereby creating arbitrary join graphs. This is likely to produce queries
that would not be representative of real life queries. Instead, we make mixed join
graphs by fusing component join graph structures (chain, cycle, clique and star)
together as follows. We require a mixed join graph containing n relations. We ran-
domly choose a value between 1 and n inclusive, say x. We then randomly choose
a join graph component structure, where each structure has an equal chance of
0.25 of being chosen. A join graph of the structure conforming with the chosen
component containing x relations is then randomly created. We then have n − x
relations left to include in the join graph G. We repeat the process to produce an-
other component c. A join edge is then added between a random vertex in G and a
random vertex in c. We repeat these steps until a join graph containing n relations
is created. Class diagram 5 in Appendix D shows the query generator component
classes.

Once a join structure is generated we then need to produce a completed join graph
by adding join information onto edges. Our initial approach to randomly gener-
ating join conditions between two relations R1 and R2 was to randomly pick two
fields R1.F i and R2.F j for equality and calculate the selectivity as follows. Let
dom(Fi) denote the number of possible unique values of the domain type of at-
tribute Fi.

84

σ(R1, R2) =
1

max(dom(Fi), dom(Fj))

This led to the same problem as in [12] where intermediate results would com-
monly contain very small fractions of a tuple, which would be scaled up by sub-
sequent joins. In practise we do not encounter intermediate results with fractions
of tuples. To overcome this problem and to obtain more realistic queries we adopt
the same solution as in [12], which is to randomly embed chains of key-foreign
key pair join conditions within join graphs. We assign join information by visit-
ing each vertex in order of decreasing degree and decreasing relation size within
classes of the same degree. When at a vertex we consider each neighbour and as-
sign the join condition randomly with probability 0.1 or as a key-foreign key pair
with probability 0.9.

8.4 Design

The aim of our experiments is to determine the effectiveness of the ML algorithms
and to identify situations in which it is more appropriate to apply an ML algorithm
over IDP1ccp and vice versa. In order to be able to compare the algorithms we
propose an optimization time cap of 30 seconds, which all runs of algorithms must
comply with. The maximum k values that allow each algorithm to run in under
30 seconds are shown in Appendix F. We experiment with queries involving 20,
40, 60, 80 and 100 relations in distributed settings containing 1, 3 and 9 execution
sites. In the case of DistML we use 10 optimization sites. We experiment with
queries consisting of chain, cycle, star and clique join graphs. Mixed join graphs
are not considered as determining appropriate k values for the ML algorithms is a
non trivial task and is left as further work.

Let us consider the setting where we have se execution sites, a join graph of type
t and queries containing n relations. We have 20 randomly generated queries for
each of the possible settings arising from picking se ∈ {1, 3, 9}, t ∈ {Chain,Cycle,
Star, Clique} and n ∈ {20, 40, 60, 80, 100}. In the first experiment we aim to dis-
cover the best value of the paramater k to use for each algorithm for each of the
possible settings just described. The best k value for a possible setting S will be
the value that results in the lowest averaged scaled cost of the 20 plans for a partic-
ular setting. This means that we optimize each of the 20 queries for all k values up
to the maximum value. For a given query we scale the costs of plans obtained for
each k value so that the minimum plan cost is 1. We then average all scaled results

85

for each of the 20 queries to produce the averaged scaled cost of each k value for
all 20 queries. This will give us an indication if there is a k value that results in a
universally low plan cost (for our 20 randomly generate queries).

In experiment 2 we use the k values discovered from experiment 1 to compare
the IDP1ccp, DistML and SeqML algorithms by the optimality of the plans they
produce. We again use averaging of 20 queries to present the scaled cost of plans
produced by the algorithms for a particular setting. The main aim of experiment
2 is to identify situations in which is it benefical to use a particular optimization
algorithm over another one.

8.5 Experiment 1: Quality of ML Algorithms with Varying k

In this section we present the experimental results for experiment 1, where we wish
to determine the value of k that results in the ML algorithms returning the plan with
the lowest cost. Let x-query denote a query involving x relations. The graphs on
the following page show the SeqML averaged scaled cost for the 80-query and
100-query for the different query types (chain, cycle, star or clique).

8.5.1 Chain and Cycle Analysis

The first observation to make is that in all chain and cycle graphs there exists values
of k that result in the ML algorithms producing plans that are orders of magnitude
more costly than the optimal plan. Also, note that there exist values of k that give
plans with a very low cost. A possible reason for the peaks in cost is as follows.
Let us consider the number of optimization levels l and the number of relations nf
involved in the final level of the ML algorithms. The number of levels can be given
by the following equation, where n is the number of relations in the query and k is
the size of subqueries.

l = d n

k − 1
e (8)

The size of the final level nf is given by the following equation.

nf = n− (l − 1)(k − 1) (9)

86

 1

 10

 100

 1000

 10000

 100000

 2 4 6 8 10 12 14 16 18

S
c
a
le

d
 C

o
s
t

Size of sub-query (k)

SeqML, Chain Query, 3 Execution Sites, 80 Relations

Chain

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 2 4 6 8 10 12 14 16 18

S
c
a
le

d
 C

o
s
t

Size of sub-query (k)

SeqML, Chain Query, 3 Execution Sites, 100 Relations

Chain

Graph 1 : SeqML - Chain 80-Query, 3 Execution Sites Graph 2 : SeqML - Chain 100-Query, 3 Execution Sites

Graph 3 : SeqML - Cycle 80-Query, 3 Execution Sites Graph 4 : SeqML - Cycle 100-Query, 3 Execution Sites

Graph 5 : SeqML - Clique 80-Query, 3 Execution Sites Graph 6 : SeqML - Clique 100-Query, 3 Execution Sites

 1

 10

 100

 1000

 10000

 2 4 6 8 10 12 14 16

S
c
a
le

d
 C

o
s
t

Size of sub-query (k)

SeqML, Cycle Query, 3 Execution Sites, 80 Relations

Cycle

 1

 10

 100

 1000

 10000

 2 4 6 8 10 12 14 16

S
c
a
le

d
 C

o
s
t

Size of sub-query (k)

SeqML, Cycle Query, 3 Execution Sites, 100 Relations

Cycle

 1

 1.5

 2

 2.5

 3

 3.5

 2 2.5 3 3.5 4 4.5 5 5.5 6

S
c
a
le

d
 C

o
s
t

Size of sub-query (k)

SeqML, Clique Query, 3 Execution Sites, 80 Relations

Clique

 1

 1.5

 2

 2.5

 3

 2 2.5 3 3.5 4 4.5 5 5.5 6

S
c
a
le

d
 C

o
s
t

Size of sub-query (k)

SeqML, Clique Query, 3 Execution Sites, 100 Relations

Clique

87

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 2 3 4 5 6 7 8

S
c
a

le
d
 C

o
s
t

Size of sub-query (k)

SeqML, Star Query, 3 Execution Sites, 80 Relations

Star

 1

 10

 100

 1000

 10000

 100000

 1e+06

 2 3 4 5 6 7 8

S
c
a

le
d
 C

o
s
t

Size of sub-query (k)

SeqML, Star Query, 3 Execution Sites, 100 Relations

Star

Graph 7 : SeqML - Star 80-Query, 3 Execution Sites Graph 8 : SeqML - Star 100-Query, 3 Execution Sites

In some events where the final level is restricted to containing only a small number
of relations/temporary relations the optimizer has little choice but to choose a poor
plan. For example, consider the case where we have a distributed setting with 3
execution sites and where we wish to optimize a chain query involving 100 rela-
tions. In Graph 2 we can see a large spike in cost where k = 7. When k = 7
we perform 17 levels and have a final level containing just 4 relations. With each
level in the algorithm we perform a heurstic, which can be the cause of plan quality
degradation. The small size of the final level imposes a restriction on the optimizer,
which reduces the optimization options available. Similarly when n = 80 k values
of 7 and 8 lead the final level to containing just 2 and 3 temporary relations respec-
tively. This again accounts for the spikes at k = 7 and k = 8 in the Graph 1. Cycle
queries also exhibit this behaviour. An example, of this can be seen in Graph 4 for
k = 15. Using equation 9 we can see that when k = 15 the final level contains just
2 relations, which can cause a very poor plan to be produced.

Let us now turn our attention to the case of finding promising values of k. We wish
to be able to reduce the number of levels, while restricting the optimizer as little
as possible in the final level. Consider the 100-query chain case. Some values of
k that give a large final level are 14 and 16. In Graph 2 we can see that k = 14
actually gives the plan with the lowest cost for all k values from 2-18. However,
k = 16 does not give such a good plan. This is an indication that the ML algorithms
do not possess the property of graceful degradation, where the performance of the
algorithm declines monotonically with a decrease in k. However, by choosing
some large enough k values we can obtain very good plans. An example of this
can be seen particularly in the case where we consider a cycle 100-Query in a
system containing a single execution site. When we make k large enough to just

88

 1

 10

 100

 1000

 10000

 100000

 1e+06

 10 20 30 40 50 60 70

S
c
a

le
d
 C

o
s
t

Size of sub-query (k)

SeqML, Cycle Query, 1 Execution Sites, 100 Relations

Cycle

Figure 64: Cycle 100-Query, SeqML in a centralized system

past 50 we start to obtain some very good plans as shown in Figure 64.

Note that in a distributed setting consisting of 3 execution sites k values up to
18 were tested for chain queries while k values only up to 16 were tested for cy-
cle queries. This is as a result of obeying the optimization time cap of 30 sec-
onds.

8.5.2 Clique Analysis

It is clear from looking at Graph 5 and Graph 6 that the ML algorithms arrive
at better plans as k increases. When the optimized query execution plans were
inspected it was found that the intermediate results quickly became very small,
which is due to the high number of join conditions available. Consider the second
optimization level in the case where we have an 80-Query with k = k′. The
temporary relation T present in the second level will contain k′ relations and the
number of relations total in level 2 will be 80 − k′ + 1. Let the edge e be the
edge between T and any other relation r in the second level. Since the query
is of a clique form e will have k′ conjunctive join conditions. The selectivity of
this overall join edge is calculated by multiplying selectivities of these conjunctive
join conditions therefore as k increases the join condition becomes more selective.
For larger values of k the optimizer has more flexibility to find the joins that will
result in producing a low intermediate result very quickly. Figure 65 shows the
schedule of the plan produced for the clique 20-query when k = 2. Note that

89

some of the tasks are large (e.g. 1, 5, 9) and consist of a set of sequential joins
at a single site. With a larger k value of 7 not only do we obtain a join condition
that is more selective quickly but as we can see from Figure 66 the optimizer has
more flexibility to take advantage of inter-operator parallelism. The best choice of
k for clique queries is the largest possible in accordance with the optimization time
cap.

163.1.88.2

163.1.88.1

163.1.88.0

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

time

1 2 1
2

2
0

2
8

1
1

1
3

1
4

1
9

2
1

2
2

2
7

2
9

3
0

3
5

4 3 5 6

8 1
6

2
4

3
2

7 9 1
0

1
5

1
7

1
8

2
3

2
5

2
6

3
1

3
3

3
4

Figure 65: 20-Query Clique Schedule, k=2

8.5.3 Star Analysis

It can be seen from Graph 7 and Graph 8 that as k increases the ML algorithms
produce increasingly worse plans. Since all relations in a star query must join with
the centre relation the plans for join queries are sequential in nature. By using the
min-intermediate-result heuristic the intermediate results build up with the number
of relations added into the query plan. By increasing k we produce better and better
subplans that keep intermediate results low at the early stage of the plan. However,
by using the min-intermediate-result heuristic we effectively save the worse for
last, where the intermediate results are large and hence where it makes the biggest
impact on the cost. Let p2 be the plan obtained for the star 80-query with k = 2
and let p7 denote the plan obtained when k = 7. We noticed that subplans rooted

90

163.1.88.2

163.1.88.1

163.1.88.0

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

time

1 2 1
6

2
4

4
4

1
5

1
7

1
8

3
6

2
3

2
5

2
6

5
6

3
5

3
7

3
8

4
3

4
5

4
6

5
5

5
7

5
8

6
3

8 2
8

7 9 1
0

4
0

5
2

2
7

2
9

3
0

3
9

4
1

4
2

5
1

5
3

5
4

4 1
2

3 5 6 4
8

1
1

1
3

1
4

2
0

6
0

1
9

2
1

2
2

3
2

3
1

3
3

3
4

4
7

4
9

5
0

5
9

6
1

6
2

Figure 66: 20-Query Clique Schedule, k=7

at about 5 joins lower down from the root contained lower intermediate results for
p7. However, the cost of the remaining 5 or so joins became very expensive due
to the low remaining selectivities and large cardinality of base relations involved.
When k = 2 the final 5 or so joins were less expensive as some small relations
still remained due to being overlooked by the min-intermediate-result heuristic.
Recall that we choose the first edge according to selectivity information alone and
we do not consider the cardinality of adjacent relations in this initial choice. We
only consider cardinalities after the first choice. We can therefore deduce that the
min-intermediate-result heuristic is not well suited to star queries and we should
choose k = 2 for further experiments involving star queries with the ML algo-
rithms.

8.6 Experiment 2 - Algorithm Comparison

In this section we present the results from our second experiment, which com-
pares the scaled optimality of the plans found by SeqML (Red in graphs), DistML
(Green) and IDP1ccp (Blue). The best plan found by any algorithm is given the
scaled cost of 1 and the other plans produced by the remaining algorithms have
their cost scaled in accordance with the best plan. We present the results when

91

considering a distributed system consisting of three execution sites. The results
when considering a distributed system containing one execution site and nine exe-
cution sites can be found in Appendix E.

8.6.1 Chain Analysis

The comparison graphs for chain queries can be seen in Graphs 9-13. In graph 9
we can see that all algorithms produce the same plan. In this case all algorithms
use DPccp because of the small size of the query (20 relations), i.e. the ML algo-
rithms only have a single level and IDP1ccp only has a single DP phase. Graph 10
shows the optimization for 40-Query. Clearly we can see that IDP1ccp produces a
plan that is orders of magnitude better than the ML algorithms. This may indicate
that the min-intermediate-result heuristic is not as successful as IDP1ccp in identi-
fying relations that should be grouped together to produce subplans of the overall
query.

In Graph 11 we can see that the algorithms produce plans that have roughly the
same cost. SeqML narrowly has the smallest cost and IDP1ccp narrowly has the
highest cost. By observing Graphs 11-13 we can see that IDP1ccp’s performance
degrades significantly when compared with the ML algorithms. This is due to it
being forced to use smaller and smaller k values, to comply with the time cap,
as the size of the query being optimized increases. When optimizing 20-Query
IDP1ccp used a k value of 20 but when optimizing 60-Query it is reduced to using
k = 9. As shown in the experimental results in [9] the quality of IDP1 degrades as
k decreases.

In Graph 12, where 80-Query is being optimizer, we can see that IDP1ccp now
produces the plan with the worst cost (about 5 times worse than the plan produced
by DistML). The cost of the plan produced by SeqML is about 4 times worse than
DistML. Again, the reason for the degradation in the performance of SeqML is due
to the lower k value. SeqML is only able to use k values up to 18, while DistML
can use values up to 25. SeqML choses to use k = 17 as this results in 5 levels
of optimization and will produce a final level containing 16 (temporary) relations
thereby giving the optimizer a significant amount of freedom in the final level. As
DistML has access to more resources, i.e. 10 optimization sites, it will choose a k
value of 21 as this results in only 4 optimization levels and a final level containing
20 (temporary) relations. DistML allows the optimizer to have more freedom in
the final level and has less levels, which contributes to it producing better results
than SeqML. This trend continues into Graph 13, where IDP1ccp produces a plan
with a cost that is orders of magnitude worse than the plan produced by DistML.

92

SeqML similarly produces a very poor plan as a result of a restriction on k due to
the time cap.

 0.5

 1

20

S
c
a
le

d
 C

o
s
t

Query Size

Optimality Comparison of Optimization Algorithms

SeqML
DistML

IDP1ccp

 1

 100

40

S
c
a
le

d
 C

o
s
t

Query Size

Optimality Comparison of Optimization Algorithms

SeqML
DistML

IDP1ccp

 0.5

 1

 1.5

60

S
c
a
le

d
 C

o
s
t

Query Size

Optimality Comparison of Optimization Algorithms

SeqML
DistML

IDP1ccp

Graph 9 : Chain, 20-Query Graph 10 : Chain, 40-Query Graph 11 : Chain, 60-Query

 1

 2

 3

 4

 5

 6

80

S
c
a

le
d

 C
o
s
t

Query Size

Optimality Comparison of Optimization Algorithms

SeqML
DistML

IDP1ccp

 1

 100

100

S
c
a

le
d

 C
o
s
t

Query Size

Optimality Comparison of Optimization Algorithms

SeqML
DistML

IDP1ccp

Graph 12 : Chain, 80-Query Graph 13 : Chain, 100-Query

93

8.6.2 Cycle Analysis

The comparison graphs for cycle queries can be seen in Graphs 14-18. The out-
come shown in Graph 14 is the same as in Graph 9 where all algorithms equate to
DPccp due to the small size of query and small number of execution sites. In Graph
15 we can see that IDP1ccp produces the best plan while DistML and SeqML pro-
duce plans with cost factors of 22 and 134 respectively (note the log scale). The
k value chosen by SeqML is 15 as it results in 3 optimization levels and produces
a final level containing 12 (temporary) relations. This k value results in the maxi-
mum final level size possible. However, if we look at the average scaled cost of the
20 queries with varying k (Figure 67) we can see that a better k value would have
been 17.

 1

 10

 100

 1000

 2 4 6 8 10 12 14 16 18 20

S
c
a
le

d
 C

o
s
t

Size of sub-query (k)

SeqML, Cycle Query, 3 Execution Sites, 40 Relations

Cycle

Figure 67: Scaled average cost of 20 queries involving 40 relations

When observing the results of varying k with 40-Query we found that the majority
of graphs had a similar area around k = 15 as shown in Figure 68. However, 1
out of the 20 queries had a huge spike at k = 15 that has dominated the average.
This graph is shown in Figure 69. This indicates that even though 15 is a promis-
ing value for k it does not always give plans with very good costs for all possible
cycle queries involving 40 relations. The reason for this may be that the ML algo-
rithm incorrectly groups some relations together using the min-intermediate-result
heuristic in a level that results in a particularly expensive subplan, which becomes
detrimental to the final plan.

We can see a similar situation in Graphs 16 and 17. In Graph 17 DistML performs
particularly poorly by producing plans that are over 40 times worse than IDP1ccp.

94

 20

 40

 60

 80

 100

 120

 2 4 6 8 10 12 14 16 18 20

S
c
a

le
d
 C

o
s
t

Size of sub-query (k)

SeqML, Cycle Query, 3 Execution Sites, 40 Relations

Cycle

Figure 68: Scaled cost of plans for a single query (Query 8) with varying k

After investigating the cause of this we discovered that out of the 20 queries 8
queries resulted in comparable plan costs, 7 queries resulted in DistML producing
better plans than IDP1ccp and 5 queries resulted in DistML producing worse plans
than IDP1ccp. The main problem was that in one of the cases where DistML pro-
duced a worse plan than IDP1ccp the cost of this plan was over 1000 times that of
the corresponding IDP1ccp plan, which has had a significant impact on the aver-
age cost. This would indicate that in a small number of cases the heuristic used by
DistML to overcome the site dependency between optimization levels can induce
plans whose cost is considerably far from the cost of the optimal plan.

In Graph 18 we can see that IDP1ccp has produced a plan that is more than 8 times
worse than the plan produced by DistML. IDP1ccp has gone from using k = 20 for
20-Query to k = 5 for 100-Query, which is cause of the performance degradation.
SeqML produces a plan with a worse cost than DistML for a similar reason.

95

 0

 5000

 10000

 15000

 20000

 25000

 30000

 2 4 6 8 10 12 14 16 18 20

S
c
a

le
d
 C

o
s
t

Size of sub-query (k)

SeqML, Cycle Query, 3 Execution Sites, 40 Relations

Cycle

Figure 69: Scaled cost of plans for a single query (Query 20) with varying k

 0.5

 1

20

S
c
a

le
d

 C
o
s
t

Query Size

Optimality Comparison of Optimization Algorithms

SeqML
DistML

IDP1ccp

 1

 100

40

S
c
a

le
d

 C
o
s
t

Query Size

Optimality Comparison of Optimization Algorithms

SeqML
DistML

IDP1ccp

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

60

S
c
a

le
d

 C
o
s
t

Query Size

Optimality Comparison of Optimization Algorithms

SeqML
DistML

IDP1ccp

Graph 14 : Cycle, 20-Query Graph 15 : Cycle, 40-Query Graph 16 : Cycle, 60-Query

Graph 17 : Cycle, 80-Query Graph 18 : Cycle, 100-Query

 10

 20

 30

 40

80

S
c
a
le

d
 C

o
s
t

Query Size

Optimality Comparison of Optimization Algorithms

SeqML
DistML

IDP1ccp

 1

 2

 3

 4

 5

 6

 7

 8

 9

100

S
c
a
le

d
 C

o
s
t

Query Size

Optimality Comparison of Optimization Algorithms

SeqML
DistML

IDP1ccp

96

8.6.3 Clique Analysis

Graphs 19-24 show the scaled plan costs of applying the ML algorithms and IDP1ccp
to clique queries. The first point to observe is that for queries involving ≥ 60 rela-
tions IDP1ccp could not finish within the time cap even for the minimim k value of
2. We only show the results for the ML algorithms in these cases. The complexity
of IDP1ccp is such that only the k value of 2 could be used for queries involving
less than 60 relations. By using k = 2 we reduce the opportunities of inter-operator
parallelism and have a considerable number of DP phases where we use a greedy
heuristic. This contributed to IDP1ccp producing the plan with the worst cost in the
case of 20-Query and 40-Query. In all cases SeqML and DistML have very similar
results, where in some cases DistML produces plans with slightly better cost. This
again is due to DistML being able to use slightly larger values of k.

 0.5

 1

 1.5

20

S
c
a

le
d

 C
o
s
t

Query Size

Optimality Comparison of Optimization Algorithms

SeqML
DistML

IDP1ccp

 0.5

 1

 1.5

 2

 2.5

40

S
c
a

le
d

 C
o
s
t

Query Size

Optimality Comparison of Optimization Algorithms

SeqML
DistML

IDP1ccp

 1

60

S
c
a

le
d

 C
o
s
t

Query Size

Optimality Comparison of Optimization Algorithms

SeqML
DistML

Graph 19 : Clique, 20-Query Graph 20 : Clique, 40-Query Graph 21 : Clique, 60-Query

Graph 22 : Clique, 80-Query Graph 23 : Clique, 100-Query

 1

80

S
c
a
le

d
 C

o
s
t

Query Size

Optimality Comparison of Optimization Algorithms

SeqML
DistML

 1

100

S
c
a
le

d
 C

o
s
t

Query Size

Optimality Comparison of Optimization Algorithms

SeqML
DistML

97

8.6.4 Star Analysis

Graphs 24-28 show the algorithm comparisons for the experiments involving star
queries. When optimizing 20-Query (Graph 24) IDP1ccp produces the best plan,
with SeqML and DistML producing plans with a cost about 3.5 times higher. In
Graph 25 we can see that IDP1ccp has produced the plan with a cost that is orders
of magnitude greater than that produced by SeqML. Similarly, DistML has also
produced a plan that has a cost that is orders of magnitude greater than the plan
produced by SeqML. As with the cycle 80-Query case some queries produced by
DistML were extremely poor due to a bad site choice for some temporary relations,
which caused the average cost to be extremely poor. However, this is not the case
for 60-Query, 80-Query and 100-Query where SeqML and DistML produce very
similar results, while IDP1ccp produces plans with a very high cost. In Graph 28
IDP1ccp produces a plan with a cost that is over 10000 times worse than the plans
produced by the ML algorithms.

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

20

S
c
a

le
d

 C
o
s
t

Query Size

Optimality Comparison of Optimization Algorithms

SeqML
DistML

IDP1ccp

 1

 100

 10000

40

S
c
a

le
d

 C
o
s
t

Query Size

Optimality Comparison of Optimization Algorithms

SeqML
DistML

IDP1ccp

 1

 100

 10000

60

S
c
a

le
d

 C
o
s
t

Query Size

Optimality Comparison of Optimization Algorithms

SeqML
DistML

IDP1ccp

Graph 24 : Star, 20-Query Graph 25 : Star, 40-Query Graph 26 : Star, 60-Query

Graph 27 : Star, 80-Query Graph 28 : Star, 100-Query

 1

 100

 10000

 1e+06

80

S
c
a
le

d
 C

o
s
t

Query Size

Optimality Comparison of Optimization Algorithms

SeqML
DistML

IDP1ccp

 1

 100

 10000

100

S
c
a
le

d
 C

o
s
t

Query Size

Optimality Comparison of Optimization Algorithms

SeqML
DistML

IDP1ccp

98

8.7 Summary

From experiment 1 we can see that the ML algorithms do not exhibit graceful per-
formance degradation when optimizing chain and cycle queries. This means that
as the optimization problem becomes more complex, i.e. the queries increase in
size, the performance of the ML algorithms do not decrease monotonically. How-
ever, for large enough values of k we can produce plans that have a very low cost.
For example, it was found that when considering a centralized database setting k
values of just above 50 resulted in the ML algorithms producing very good plans
when optimizing chain and cycle 100-Query. In general, we can identify possible
promising k values for chain and cycle queries by considering values of k that lead
to the final level involving large numbers of relations and by aiming to reduce the
number of levels. The most extreme case of this of course is when we optimize
the entire query in a single level, which would be the case were we have the mini-
mum number of levels and the maximum final level size. This would result in the
optimal result being produced if it was feasible to do so.

The best values of k to use for the ML algorithms for clique queries are the highest
possible given the available optimization time cap. This gives the optimizer greater
flexibility at early levels, which can result in very small intermediate results being
obtained very quickly. However, star queries are quite the opposite. By using the
min-intermediate-result heuristic with star queries with high k values we inadver-
tently leave joins involving larger relations with less selective join conditions until
last. In star queries all relations have to join with the central relation, which means
that the plan is sequential in nature where intermediate results get larger and larger
(generally) as we traverse from the leaves to the root of the plan. By leaving larger
relations to be joined last we produce very expensive final joins, which is detrimen-
tal to the entire cost of the plan. The very small intermediate results obtained in
clique query plans due to the high number of conjunctive join conditions prevents
this problem from occurring with clique queries.

In general, experiment 2 seems to indicate that both ML algorithms and IDP1ccp
have strengths in different situations. IDP1ccp seems to use a heuristic that, when
combined with phases of DP, produce better results for smaller queries than the ML
algorithms. However, when IDP1ccp becomes unable to cope with larger queries
or a distributed setting containing 3+ sites the ML algorithms produce significantly
better plans. For example, in the case where we have nine execution sites (Ap-
pendix E.1.4), IDP1ccp is only able to produce plans for chain 20-40 queries and
cycle 20-Query, while the ML algorithms are capable of producing plans for all
sized queries for all query types. However, the k values used by the ML algorithms

99

are pushed down in larger distributed settings, which causes the quality of the plans
produced to degrade.

In some cases the concurrent execution provided by DistML allows higher k val-
ues to be used, which can result in DistML obtaining better plans than SeqML.
Examples of this can be seen in Graph 13 and Graph 18 where DistML produces
considerably better plans than SeqML for the 100-Query chain and cycle queries.
In the case of the chain query DistML is able to use a k value up to 24, while Se-
qML can only use a value up to 17. DistML chooses to use a k value of 21 as this
produces a final level with 20 relations. If we look at the Appendix F we can see
that this value of k corresponds to DistML obtaining particularly good plans but
due to the time cap it is out of reach for SeqML.

100

9 Conclusions and Future Work

Determining the cost of a query execution plan (QEP) and searching through the
vast space of possible equivalent plans for a given user query makes the task of
query optimization in a distributed setting very challenging. The problem of de-
termining the minimum possible response time of a query can be addressed by
scheduling subcomponents of a QEP. This allows opportunities for inter-operator
parallelism to be identified thereby resulting in a more accurate estimate of cost
being obtained for a plan. In order for this schedule to be upheld a query executer
would have to be adapted to include scheduling signals. This would involve a site
notifying other sites when it is x% through a particular task so that other sites could
begin their tasks at roughly the correct scheduled time. When dealing with very
large relations the overhead of scheduling signals would become negligible.

Future work on the cost model used in this thesis would be required to produce a
cost model that is capable of handling pipelining between operators, i.e. where one
operator feeds its output tuples directly into a parent operator when they become
available without writing them to disk. In this case we primarily mean pipelining
between operators executing at different execution sites. It is likely that pipelining
in a distributed system would cause multiple sites to be tied up, which would lead
to less sites being available to take advantage of inter-operator parallelism. If we
extended the system to allow fragments of relations to be replicated at multiple sites
in the system then it would be necessary to extend the cost model further to handle
intra-operator parallelism. Additional further work would involve determining the
impact of using the improved cost model presented in this thesis against using cost
models used in previous papers that are based only on resource consumption. It
is likely that the improvement in quality of the plans produced by the cost model
proposed in this thesis, particularly in large distributed systems, would be signifi-
cant.

The size of the search space of equivalent plans has the impact that the performance
of current enumeration algorithms begins to degrade significantly even for moder-
ate sized systems containing about 8-10 execution sites. We found that IDP1ccp
could barely optimize any queries in the given optimization time cap in a system
containing nine execution sites. For smaller distributed systems, it was found that
IDP1ccp is suitable for optimizing small to moderate sized chain and cycle queries
(containing between 0 and 60 relations). However, for larger queries the quality of
IDP1ccp degraded significantly as the size of the k parameter was reduced. In these
situations the ML algorithms, particularly DistML, produced much better quality
plans than IDP1ccp. In some situations DistML was able to produce much better

101

plans than SeqML. This was due to DistML being able to use larger k values as
a result of utilizing multiple optimization sites concurrently. This provides an in-
dication that in order to optimize large queries it is necessary to use the available
resources in the system and distribute the optimization process and not just the
execution process.

It was found that the ML algorithms occasionally produced plans that were sig-
nificantly worse than the optimal plan. This is likely to be caused by the min-
intermediate-result heuristic occasionally grouping relations together into subqueries
that are unsuitable. In general, having many levels and small final levels was iden-
tified as being the cause of some very poor plans being produced. Further work
could include finding a heuristic that causes the performance of the ML algorithms
to degrade gracefully.

In general if we wish to be able to optimize plans in a distributed system it is ad-
visable to use IDP1ccp for smaller queries, expecially for chain and cycle queries.
When the size of queries becomes large or the distributed setting contains between
3-9 sites the ML algorithms should be used as they out performed IDP1ccp in this
setting. There is still much work to be done to produce a distributed optimization
algorithm capable of optimizing very large queries in large distributed systems.
However, we believe that the ML algorithm framework and cost model presen-
tated in this thesis provide a stepping stone in the right direction to achieve this
goal.

102

References

[1] A. G. Arun Swami. Optimization of large join queries. In ACM SIGMOD
Conf Management of Data, Chicago, Ill, pages 8–17, 1988.

[2] K. Bennett, M. C. Ferris, and Y. E. Ioannidis. A genetic algorithm for
database query optimization. In In Proceedings of the fourth International
Conference on Genetic Algorithms, pages 400–407. Morgan Kaufmann Pub-
lishers, 1991.

[3] C.-T. Y. Chih Yen, S. Tseng. Scheduling of precedence constrained tasks on
multiprocessor systems. In Algorithms and Architectures for Parallel Pro-
cessing, ICAPP 95, pages 379–382, 1995.

[4] S. Ganguly, W. Hasan, and R. Krishnamurthy. Query optimization for parallel
execution. In SIGMOD Conference, pages 9–18, 1992.

[5] Y. E. Ioannidis. Query optimization. In ACM Computing Surveys, pages
103–114, 1996.

[6] K. W. R. James F. Kurose. Computer Networking: A Top-Down Approach
Featuring the Internet. Addison Wesley, 2009.

[7] H. L. Kian-Lee Tan. On resource scheduling of multi-join queries in parallel
database systems. Information Processing Letters, pages 189–195, 1993.

[8] D. Kossmann. The state of the art in distributed query processing. ACM
Computing Surveys, 32:422–469, 2000.

[9] D. Kossmann and K. Stocker. Iterative dynamic programming: A new class
of query optimization algorithms. ACM Transactions on Database Systems,
25, 2000.

[10] O. P. L. R. Graham, D. E. Knuth. Concrete Mathematics: A Foundation for
Computer Science, 2nd ed. Addison Wesley, 1994.

[11] C. S. Mullins. Tuning db2 sql access paths, Jan 2003.
http://www.ibm.com/developerworks/data/library/techarticle/0301mullins/0301mullins.html.

[12] T. Neumann. Query simplification: Graceful degradation for join-order op-
timization. In C. Binning and B. Dageville, editors, SIGMOD-PODS09 :
Compilation Proceedings of the International Conference on Management of
Data 28th Symposium on Principles of Database Systems, pages 403–414,
Providence, USA, June 2009. Association for Computing Machinery (ACM),
ACM.

103

[13] D. Olteanu. Query optimization, Hilary Term 2009-
2010. http://www.comlab.ox.ac.uk/teaching/materials09-
10/databasesystemsimplementation/dsi11.ppt.

[14] K. Ono and G. M. Lohman. Measuring the complexity of join enumeration
in query optimization. In D. McLeod, R. Sacks-Davis, and H.-J. Schek, edi-
tors, 16th International Conference on Very Large Data Bases, August 13-16,
1990, Brisbane, Queensland, Australia, Proceedings, pages 314–325. Mor-
gan Kaufmann, 1990.

[15] F. P. Palermo. A database search problem. Information Systems COINS IV,
J.T. Tou, Ed, Plenum Press, New York, NY, pages 67–101, 1974.

[16] G. Ramakrishnan. Database Management Systems, Third Edition. McGraw-
Hill, 2003.

[17] W. Scheufele, G. Moerkotte, and S. A. Constructing optimal bushy process-
ing trees for join queries is np-hard (extended abstract). Technical report,
Universität, Mannheim, 1996.

[18] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, I. A. Lorie, and T. G.
Price. Access path selection in a relational database management system.
In ACM SIGMOD International Conference on Management of Data., pages
23–34, 1979.

[19] M. Steinbrunn, G. Moerkotte, and A. Kemper. Heuristic and randomized
optimization for the join ordering problem. VLDB Journal, 6:191–208, 1997.

[20] A. Swami. Optimization of large join queries: Combining heuristics and
combinatorial techniques. In ACM SIGMOD Conference on Management of
Data, Portland, OR, pages 367–376, 1989.

[21] G. M. Thomas Neumann. Analysis of two existing and one new dynamic
programming algorithm for the generation of optimal bushy join trees without
cross products. In Proceedings of the 32nd international conference on Very
large data bases, pages 930–941. VLDB Endowment, 2006.

[22] B. Vance and D. Maier. Rapid bushy join-order optimization with cartesian
products. In In Proc. of the ACM SIGMOD Conf. on Management of Data,
pages 35–46, 1996.

[23] E. W. Yannis E. Ioannidis. Query optimization by simulated annealing. In
ACM SIGMOD Conf Management of Data, San Francisco, Calif, pages 9–22,
1987.

104

[24] Y. C. K. Yannis E. Ioannidis. Randomized algorithms for optimizing large
join queries. In ACM SIGMOD Conf Management of Data, Atlantic City, NJ,
pages 312–321, 1990.

[25] C. Z. Yingying Tao, Qiang Zhu and W. Lau. Optimizing large star-schema
queries with snowflakes via heuristic-based query rewriting. In Proceedings
of the 2003 conference of the Centre for Advanced Studies on Collaborative
research, pages 279–293, Toronto, Canada, 2003. IBM Press.

105

Appendix

A IDP1ccp Component Algorithms

The main alterations made to the DPccp utility algorithms involve restricting the
size of connected subsets produced. This is done by specifying the maximum size
of connected subsets allowed using a parameter k. In enumerate-csg-rec the re-
cursion step is halted if the size of the current connected subset is equal to the
maximum allowed size−1. Similarly in enumerate-cmp we only produce comple-
ment connected subsets whose size combined with the given subset s is equal to
the maximum allowed size.

Input: Connected join graph G consisting of vertices V = {v1, v2, ..., vn}
and edges E. A is used to store connected subgraphs of G.
k is the maximum block size.

Precondition: Vertices in G are numbered in a breadth first manner.
Output: Obtains all subsets of V that form a connected subgraph of G.

such that |V | ≤ k.

Algorithm ENUMERATE-CSG’(G,A, k)
1 for i← n down to 1 do {
2 A← A ∪ {{vi}}
3 ENUMERATE-CSG-REC’(G, {vi}, Bi, A, k)
4 }

106

Input: Connected join graph G consisting of vertices V = {v1, v2, ..., vn}
and edges E. S is a set of vertices that contain the current subgraph state.
X is a set of vertices that cannot be explored further from subgraph S.
A is used to store connected subgraphs of G. k is the maximum block size.

Precondition: Vertices in G are numbered in a breadth first manner.
Output: Recursively obtains all subsets of V that form a connected subgraph of G

such that |V | ≤ k.

Algorithm ENUMERATE-CSG-REC’(G,S,X,A, k)
1 N ← N (S) − X
2 for all S′ ⊆ N , S′ 6= ∅, |S′| ≤ min(k − |S|, |N |) enumerate subsets first {
3 A← A ∪ {S ∪ S′}
4 }
5 for all S′ ⊆ N , S′ 6= ∅, |S′| ≤ min(k − |S|, |N |) enumerate subsets first {
6 ENUMERATE-CSG-REC’(G, S ∪ S′, X ∪N , A, k)
7 }

Input: Connected join graph G consisting of vertices V = {v1, v2, ..., vn}
and edges E. S is a connected subgraph of G.
A is used to store results. k indicates maximum block size.

Precondition: Vertices in G are numbered in a breadth first manner.
Output: Obtains all connected subgraphs H such that (S, H) is a csg-cmp-pair

and where |S|+ |H| = k.

Algorithm ENUMERATE-CMP’(G,S,A, k)
1 X ← Bmin(S) ∪ S
2 N ← N (S) − X
3 for all vi ∈ N by descending i {
4 A← A ∪ {{vi}}
5 ENUMERATE-CSG-REC’(G,{vi}, X ∪ (Bi ∩N), A, k − |S|)
6 }

107

B Cost Model Example

B.1 Catalog

A 28937 88 163.1.88.0
B A.F1 A A.F2 D A.F3 C A.F4 C A.F5 D A.F6 B A.F7 B A.F8 B A.F9
B 92882 91 163.1.88.0
B B.F1 C B.F2 C B.F3 D B.F4 B B.F5 B B.F6 D B.F7 C B.F8
C 77574 80 163.1.88.1
C C.F1 D C.F2 B C.F3 B C.F4 B C.F5 C C.F6 D C.F7 B C.F8
D 25000 105 163.1.88.1
C D.F1 B D.F2 B D.F3 C D.F4 C D.F5 B D.F6 C D.F7 C D.F8
E 68548 74 163.1.88.2
D E.F1 D E.F2 B E.F3 B E.F4 B E.F5 D E.F6 B E.F7 B E.F8
F 40000 70 163.1.88.2
C F.F1 C F.F2 B F.F3 C F.F4 C F.F5
G 5000 100 163.1.88.1
C G.F1 B G.F2 G.F3

B.2 Query

A B C D E F G
A B A.F2=B.F2 0.000005
B A B.F2=A.F2 0.000005 C B.F3=C.F3 0.000001
C B C.F3=B.F3 0.000001 D C.F5=D.F4 0.000005
D C D.F4=C.F5 0.000005 E D.F6=E.F5 0.00001
E D E.F5=D.F6 0.00001 F E.F1=F.F1 0.00001
F E F.F1=E.F1 0.00001 G F.F2=G.F3 0.00001
G F G.F3=F.F2 0.00001

108

C Chain ccp formula proof

Theorem D1: For all integers n > 1

n−1∑
i=1

i(i+ 1) =
n3 − n

3

Proof. We use proof by induction. Assume true for n. Then we have the following.

n−1∑
i=1

i(i+ 1) =
n3 − n

3

n−1∑
i=1

i(i+ 1) + n(n+ 1) =
n3 − n

3
+

3n(n+ 1)

3

n−1∑
i=1

i(i+ 1) + n(n+ 1) =
n3 − n+ 3n2 + 3n

3

n−1∑
i=1

i(i+ 1) + n(n+ 1) =
(n+ 1)3 − (n+ 1)

3

If D1 is true for n then it is true for n + 1. When n = 2 lhs = 2 = rhs hence true
for all n > 1.

Theorem D2: The number of csg-cmp-pairs (#ccp) of a chain query involving n
relations is n3−n

3 .

Proof. Let csgi denote the set of connected subgraphs that contain i vertices.
For a chain graph we have |csgi| = n− i+ 1.
For a given s ∈ csgi there exists (n− i) connected complement subgraphs.
The total number of ccps can be found by summing all ccp for each csg.

⇒ #ccp =

n−1∑
i=1

(n− i+ 1)(n− i)

Let j = n− i.

⇒ #ccp =

n−1∑
j=1

j(j + 1)

By theorem D1 we have the desired result.

109

D Query Generator Design

QueryGenerator
starProbability: double
cycleProbability: double
chainProbability: double
cliqueProbability: double
availableRelations : Set<String>
usedRelations : Set<String>
modifiers : QueryModifier[]
currentModifier : QueryModifier
joinGraph : JoinGraph
nextQuerySize : int
generateStar() : void
generateClique() : void
generateChain() : void
generateCycle() : void
generateMixed() : void
getRandomJoinInfo(relation1 : String, relation2 : String) : JoinInfo
getNextQuerySize() : int
setQueryModifier() : void
obtainSubQueryRelations(nextQuerySize : int) : Set<String>

QueryModifier
joinGraph : JoinGraph
modify(relations : Set<String>) : void
performModification(relations : Set<String>) : void
addEdge(relation1 : String, relation2 : String, b : boolean)
getRandomEntryVertex() : String

CycleModifier

performModification(relations : Set<String>) : void

ChainModifier

performModification(relations : Set<String>) : void

CliqueModifier

performModification(relations : Set<String>) : void

StarModifier

performModification(relations : Set<String>) : void

Class Diagram 5 : Query Generator

110

E Algorithm Experimental Comparison

E.1 Distributed database with one execution site

E.1.1 Chain Queries

 1

20

S
c
a

le
d

 C
o
s
t

Query Size

Optimality Comparison of Optimization Algorithms

SeqML
DistML

IDP1ccp

 1

40

S
c
a

le
d

 C
o
s
t

Query Size

Optimality Comparison of Optimization Algorithms

SeqML
DistML

IDP1ccp

 1

60

S
c
a

le
d

 C
o
s
t

Query Size

Optimality Comparison of Optimization Algorithms

SeqML
DistML

IDP1ccp

Graph 29 : Chain, 20-Query Graph 30 : Chain, 40-Query Graph 31 : Chain, 60-Query

 1

 2

 3

 4

 5

80

S
c
a

le
d

 C
o
s
t

Query Size

Optimality Comparison of Optimization Algorithms

SeqML
DistML

IDP1ccp

 0

 100

 200

 300

 400

 500

100

S
c
a

le
d

 C
o
s
t

Query Size

Optimality Comparison of Optimization Algorithms

SeqML
DistML

IDP1ccp

Graph 32 : Chain, 80-Query Graph 33 : Chain, 100-Query

111

E.1.2 Cycle Queries

 1

20

S
c
a
le

d
 C

o
s
t

Query Size

Optimality Comparison of Optimization Algorithms

SeqML
DistML

IDP1ccp

 1

40

S
c
a
le

d
 C

o
s
t

Query Size

Optimality Comparison of Optimization Algorithms

SeqML
DistML

IDP1ccp

 10

 20

 30

 40

 50

 60

 70

60

S
c
a
le

d
 C

o
s
t

Query Size

Optimality Comparison of Optimization Algorithms

SeqML
DistML

IDP1ccp

Graph 34 : Cycle, 20-Query Graph 35 : Cycle, 40-Query Graph 36 : Cycle, 60-Query

 1

 100

80

S
c
a

le
d

 C
o
s
t

Query Size

Optimality Comparison of Optimization Algorithms

SeqML
DistML

IDP1ccp

 1

100

S
c
a

le
d

 C
o
s
t

Query Size

Optimality Comparison of Optimization Algorithms

SeqML
DistML

IDP1ccp

Graph 37 : Cycle, 80-Query Graph 38 : Cycle, 100-Query

E.1.3 Clique Queries

20

S
c
a
le

d
 C

o
s
t

Query Size

Optimality Comparison of Optimization Algorithms

SeqML
DistML

IDP1ccp

 1

 2

40

S
c
a
le

d
 C

o
s
t

Query Size

Optimality Comparison of Optimization Algorithms

SeqML
DistML

IDP1ccp

 1

 2

60

S
c
a
le

d
 C

o
s
t

Query Size

Optimality Comparison of Optimization Algorithms

SeqML
DistML

IDP1ccp

Graph 39 : Clique, 20-Query Graph 40 : Clique, 40-Query Graph 41 : Clique, 60-Query

112

 1

 2

80

S
c
a
le

d
 C

o
s
t

Query Size

Optimality Comparison of Optimization Algorithms

SeqML
DistML

IDP1ccp

 0.5

 1

 1.5

100

S
c
a
le

d
 C

o
s
t

Query Size

Optimality Comparison of Optimization Algorithms

SeqML
DistML

Graph 42 : Clique, 80-Query Graph 43 : Clique, 100-Query

E.1.4 Star Queries

 1

 2

20

S
c
a

le
d

 C
o
s
t

Query Size

Optimality Comparison of Optimization Algorithms

SeqML
DistML

IDP1ccp

40

S
c
a

le
d

 C
o
s
t

Query Size

Optimality Comparison of Optimization Algorithms

SeqML
DistML

IDP1ccp

 1

 2

60

S
c
a

le
d

 C
o
s
t

Query Size

Optimality Comparison of Optimization Algorithms

SeqML
DistML

IDP1ccp

Graph 44 : Star, 20-Query Graph 45 : Star, 40-Query Graph 46 : Star, 60-Query

 1

 100

80

S
c
a

le
d

 C
o
s
t

Query Size

Optimality Comparison of Optimization Algorithms

SeqML
DistML

IDP1ccp

 1

 100

 10000

100

S
c
a

le
d

 C
o
s
t

Query Size

Optimality Comparison of Optimization Algorithms

SeqML
DistML

IDP1ccp

Graph 47 : Star, 80-Query Graph 48 : Star, 100-Query

113

E.2 Distributed database with nine execution sites

E.2.1 Chain Queries

 1

 2

 3

 4

 5

20

S
c
a
le

d
 C

o
s
t

Query Size

Optimality Comparison of Optimization Algorithms

SeqML
DistML

IDP1ccp

 1

 2

 3

 4

 5

 6

40

S
c
a
le

d
 C

o
s
t

Query Size

Optimality Comparison of Optimization Algorithms

SeqML
DistML

IDP1ccp

 0.5

 1

 1.5

60

S
c
a
le

d
 C

o
s
t

Query Size

Optimality Comparison of Optimization Algorithms

SeqML
DistML

Graph 49 : Chain, 20-Query Graph 50 : Chain, 40-Query Graph 51 : Chain, 60-Query

 0.5

 1

 1.5

 2

80

S
c
a

le
d

 C
o
s
t

Query Size

Optimality Comparison of Optimization Algorithms

SeqML
DistML

 1

 100

100

S
c
a

le
d

 C
o
s
t

Query Size

Optimality Comparison of Optimization Algorithms

SeqML
DistML

Graph 52 : Chain, 80-Query Graph 53 : Chain, 100-Query

114

E.2.2 Cycle Queries

 1

 2

 3

 4

 5

20

S
c
a
le

d
 C

o
s
t

Query Size

Optimality Comparison of Optimization Algorithms

SeqML
DistML

IDP1ccp

 1

 2

40

S
c
a
le

d
 C

o
s
t

Query Size

Optimality Comparison of Optimization Algorithms

SeqML
DistML

 1

 2

 3

60

S
c
a
le

d
 C

o
s
t

Query Size

Optimality Comparison of Optimization Algorithms

SeqML
DistML

Graph 54 : Cycle, 20-Query Graph 55 : Cycle, 40-Query Graph 56 : Cycle, 60-Query

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

80

S
c
a

le
d

 C
o
s
t

Query Size

Optimality Comparison of Optimization Algorithms

SeqML
DistML

 1

 2

 3

 4

 5

 6

100

S
c
a

le
d

 C
o
s
t

Query Size

Optimality Comparison of Optimization Algorithms

SeqML
DistML

Graph 57 : Cycle, 80-Query Graph 58 : Cycle, 100-Query

E.2.3 Clique Queries

 1

 2

20

S
c
a
le

d
 C

o
s
t

Query Size

Optimality Comparison of Optimization Algorithms

SeqML
DistML

 1

 2

40

S
c
a
le

d
 C

o
s
t

Query Size

Optimality Comparison of Optimization Algorithms

SeqML
DistML

 1

 2

60

S
c
a
le

d
 C

o
s
t

Query Size

Optimality Comparison of Optimization Algorithms

SeqML
DistML

Graph 59 : Clique, 20-Query Graph 60 : Clique, 40-Query Graph 61 : Clique, 60-Query

115

 1

 2

80

S
c
a
le

d
 C

o
s
t

Query Size

Optimality Comparison of Optimization Algorithms

SeqML
DistML

 1

 2

100

S
c
a
le

d
 C

o
s
t

Query Size

Optimality Comparison of Optimization Algorithms

SeqML
DistML

Graph 62 : Clique, 80-Query Graph 63 : Clique, 100-Query

E.2.4 Star Queries

 1

 2

 3

20

S
c
a

le
d

 C
o
s
t

Query Size

Optimality Comparison of Optimization Algorithms

SeqML
DistML

 1

 2

40

S
c
a

le
d

 C
o
s
t

Query Size

Optimality Comparison of Optimization Algorithms

SeqML
DistML

 1

 2

60

S
c
a

le
d

 C
o
s
t

Query Size

Optimality Comparison of Optimization Algorithms

SeqML
DistML

Graph 64 : Star, 20-Query Graph 65 : Star, 40-Query Graph 66 : Star, 60-Query

 1

 2

80

S
c
a

le
d

 C
o
s
t

Query Size

Optimality Comparison of Optimization Algorithms

SeqML
DistML

 1

 2

100

S
c
a

le
d

 C
o
s
t

Query Size

Optimality Comparison of Optimization Algorithms

SeqML
DistML

Graph 67 : Star, 80-Query Graph 68 : Star, 100-Query

116

F Maximum K Values

Below, we present the maximum k values that can be used by each algorithm Se-
qML, DistML and IDP1ccp in order to comply with the 30 second time cap. ’-’
indicates that no k value could be found to meet the time cap.

Query Size Query Type 1 Execution Site 3 Execution Sites 9 Execution Sites
20 Chain 20 20 4
20 Cycle 20 20 4
20 Clique 4 3 -
20 Star 6 4 2
40 Chain 40 15 2
40 Cycle 40 12 -
40 Clique 3 2 -
40 Star 4 3 2
60 Chain 60 9 -
60 Cycle 59 8 -
60 Clique 2 - -
60 Star 3 2 2
80 Chain 79 7 -
80 Cycle 40 6 -
80 Clique 2 - -
80 Star 2 2 2
100 Chain 40 5 -
100 Cycle 32 5 -
100 Clique - - -
100 Star 2 2 -

Table 4: IDP1ccp Maximum k values

117

Query Size Query Type 1 Execution Site 3 Execution Sites 9 Execution Sites
20 Chain 20 20 8
20 Cycle 20 19 8
20 Clique 11 8 4
20 Star 15 11 6
40 Chain 40 26 6
40 Cycle 40 19 6
40 Clique 10 7 4
40 Star 14 9 5
60 Chain 60 19 5
60 Cycle 59 19 5
60 Clique 10 6 3
60 Star 14 8 4
80 Chain 68 18 5
80 Cycle 68 16 5
80 Clique 10 6 3
80 Star 13 8 4
100 Chain 67 17 4
100 Cycle 61 16 4
100 Clique 9 6 3
100 Star 13 8 3

Table 5: SeqML maximum k values

118

Query Size Query Type 1 Execution Site 3 Execution Sites 9 Execution Sites
20 Chain 20 20 10
20 Cycle 20 19 10
20 Clique 11 8 5
20 Star 15 11 7
20 Mixed 11 8 5
40 Chain 40 26 10
40 Cycle 40 25 8
40 Clique 11 8 5
40 Star 15 10 6
40 Mixed 11 8 5
60 Chain 60 25 10
60 Cycle 59 24 8
60 Clique 11 8 5
60 Star 15 10 6
60 Mixed 11 8 5
80 Chain 68 25 10
80 Cycle 68 24 8
80 Clique 11 8 5
80 Star 15 10 6
80 Mixed 11 8 5
100 Chain 67 24 8
100 Cycle 67 23 8
100 Clique 11 7 4
100 Star 15 10 6
100 Mixed 11 7 4

Table 6: DistML maximum k values

119

G Plan Quality with Varying K

G.1 System with one Execution Site - SeqML - 100-Queries

 1

 10

 100

 1000

 10000

 100000

 10 20 30 40 50 60 70

S
c
a
le

d
 C

o
s
t

Size of sub-query (k)

SeqML, Chain Query, 1 Execution Sites, 100 Relations

Chain

 1

 10

 100

 1000

 10000

 100000

 1e+06

 10 20 30 40 50 60 70

S
c
a
le

d
 C

o
s
t

Size of sub-query (k)

SeqML, Cycle Query, 1 Execution Sites, 100 Relations

Cycle

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 2 3 4 5 6 7 8 9

S
c
a
le

d
 C

o
s
t

Size of sub-query (k)

SeqML, Clique Query, 1 Execution Sites, 100 Relations

Clique

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 2 4 6 8 10 12 14

S
c
a
le

d
 C

o
s
t

Size of sub-query (k)

SeqML, Star Query, 1 Execution Sites, 100 Relations

Star

120

G.2 System with one Execution Site - DistML - 100-Queries

 1

 10

 100

 1000

 10000

 100000

 10 20 30 40 50 60 70

S
c
a
le

d
 C

o
s
t

Size of sub-query (k)

DistML, Chain Query, 1 Execution Sites, 100 Relations

Chain

 1

 10

 100

 1000

 10000

 100000

 1e+06

 10 20 30 40 50 60 70

S
c
a
le

d
 C

o
s
t

Size of sub-query (k)

DistML, Cycle Query, 1 Execution Sites, 100 Relations

Cycle

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 2 3 4 5 6 7 8 9 10 11

S
c
a
le

d
 C

o
s
t

Size of sub-query (k)

DistML, Clique Query, 1 Execution Sites, 100 Relations

Clique

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 2 4 6 8 10 12 14 16

S
c
a
le

d
 C

o
s
t

Size of sub-query (k)

DistML, Star Query, 1 Execution Sites, 100 Relations

Star

121

G.3 Distributed System with three Execution Sites - DistML - 100-
Queries

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 5 10 15 20 25

S
c
a
le

d
 C

o
s
t

Size of sub-query (k)

DistML, Chain Query, 3 Execution Sites, 100 Relations

Chain

 1

 10

 100

 1000

 10000

 100000

 5 10 15 20 25

S
c
a
le

d
 C

o
s
t

Size of sub-query (k)

DistML, Cycle Query, 3 Execution Sites, 100 Relations

Cycle

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 2 3 4 5 6 7

S
c
a
le

d
 C

o
s
t

Size of sub-query (k)

DistML, Clique Query, 3 Execution Sites, 100 Relations

Clique

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

 2 3 4 5 6 7 8 9 10

S
c
a
le

d
 C

o
s
t

Size of sub-query (k)

DistML, Star Query, 3 Execution Sites, 100 Relations

Star

122

G.4 Distributed System with nine Execution Sites - SeqML - 100-
Queries

 1

 10

 100

 1000

 2 2.5 3 3.5 4

S
c
a
le

d
 C

o
s
t

Size of sub-query (k)

SeqML, Chain Query, 9 Execution Sites, 100 Relations

Chain

 1

 10

 100

 2 2.5 3 3.5 4

S
c
a
le

d
 C

o
s
t

Size of sub-query (k)

SeqML, Cycle Query, 9 Execution Sites, 100 Relations

Cycle

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 2 2.2 2.4 2.6 2.8 3

S
c
a
le

d
 C

o
s
t

Size of sub-query (k)

SeqML, Clique Query, 9 Execution Sites, 100 Relations

Clique

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 2 2.2 2.4 2.6 2.8 3

S
c
a
le

d
 C

o
s
t

Size of sub-query (k)

SeqML, Star Query, 9 Execution Sites, 100 Relations

Star

123

G.5 Distributed System with nine Execution Sites - DistML - 100-
Queries

 1

 10

 100

 1000

 10000

 2 3 4 5 6 7 8

S
c
a
le

d
 C

o
s
t

Size of sub-query (k)

DistML, Chain Query, 9 Execution Sites, 100 Relations

Chain

 1

 10

 100

 1000

 10000

 2 3 4 5 6 7 8

S
c
a
le

d
 C

o
s
t

Size of sub-query (k)

DistML, Cycle Query, 9 Execution Sites, 100 Relations

Cycle

 1

 1.5

 2

 2.5

 3

 3.5

 4

 2 2.5 3 3.5 4

S
c
a
le

d
 C

o
s
t

Size of sub-query (k)

DistML, Clique Query, 9 Execution Sites, 100 Relations

Clique

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 4.5e+06

 2 2.5 3 3.5 4 4.5 5 5.5 6

S
c
a
le

d
 C

o
s
t

Size of sub-query (k)

DistML, Star Query, 9 Execution Sites, 100 Relations

Star

124

