MAYEE

Oxford University Computing Laboratory
http://www.comlab.ox.ac.uk/projects/SPROUT/

Key goals and contributions:

» discover tractable query&data (sub)instances: tractable inequality (<,#) queries, database restrictions (e.g., functional dependencies, tuple independent),
* design scalable techniques for exact and approximate query evaluation: incremental lineage factorization, compilation into read-once functions, OBDDs,
* implement open-source query engine SPROUT as an extension of PostgreSQL backend: secondary-storage confidence computation, lazy/eager query plans.

L
o
-
=
(g |
o
Ll
=
=
=
,ri;-";
s
||':),

¥ OXFORD

February 2010, Dan Olteanu

Incremental Lineage Factorization

« Complete factorization in polynomial time
for tractable query & data instances.

« Partial factorization for hard instances
gives lower/upper bounds on probability.

e Independent-or ¢o: Partition © into independent DNFs
®,, Py C @ such that @ 15 equivalent to &, V Dy,

o Independent-and -: Partition ® into independent DNFs
®q, Py C @ such that @ 1s equivalent to & A Do,

o Exclusive-or ¢:: Choose a variable = in ®. Replace ® by

D ({{z=a}

acDomg, ®|.—,F0

* (I) J:ZClJ

where the DNF @ |._, is obtained from ® by removing
all clauses ¢ € ® for which ¢ /A (z = a) 1s inconsistent
and (syntactically) removing the atomic formula z = a
from the remaining clauses in which it occurs. Obviously,
(z = a) A ® is equivalent to (z = a) A ©® |,—,. This
decomposition is called Shannon expansion.

.:/: \
Ve
-t

v

AN

Hu =2}]
L)

Fig. 2. D-tree of DNF ® = {{z = 1}, {z = 2,y = 1},{z = 2,2 =
N {u=1,0=1}{u=2}}

Approximate evaluation for positive relational algebra

 Given a partial factorization (d-tree) and lower & upper bounds for
the probabilities of leaf DNFs, we can efficiently compute bounds for
the probability of the d-tree.

Proposition 5.8: Given a DNF @, a fixed error €, and a
d-tree for @ with bounds [L,U].
e If U — €< L +e, then any value in [U — €, L + €] 1s an
absolute e-approximation of P(®).
e If (1 —€)-U < (1+¢€)- L. then any value in [(1 — €) -
U,(1+ €)- L] is a relative e-approximation of P(®). O

*The factorization is continued at promising leaves until the bounds on
the probability of the d-tree get tight enough.
 Memory-efficient version: only store the current root-to-leaf path; in
depth-first construction of the d-tree, before factorizing the current leaf,
we can decide locally whether the overall desired approximation can
still be met even if that leaf is closed (not factorized further).
* Underlying idea: after a certain depth in the d-tree, the approximation
introduced by discarding a leaf may be big locally, but it is insignificant
from a global perspective.
Example: Absolute error = .012.
We cannot stop: Upper — Lower =
644 — 595 = .049 > 2*.012 = .024
We may close the current leaf (and
be pessimistic about the remaining
leaves): Upper’ — Lower =
6173 — .595 = .0223 < .024.

AN
$4]0.1,0. 1_‘/
/

{{z=1}}[0.5,0.5] $5[0.4,0.44]

$3[0.35,0.38]

Fig. 4. D-tree. Leaves: @ is closed, ®9 is current, &3 is open.

Tractable conjunctive queries

For the class TQ of all tractable conjunctive queries without self-joins (hierarchical), query lineage
can be factorized into read-once functions for any tuple-independent probabilistic database.
Theorem: For any TQ query g and database D, ¥t € q(D), and lineage ¢,
@ There is a variable order © computable in time O(|¢,| - log® |¢|) such that
@ The OBDD (¢;.7m) has size and can be computed in time
O(f(|g|) - |Vars(d¢)|), where f(-) is a function of the query size only.

Convex conjunctive queries with inequalities (<) admit OBDDs quadratic in the size of the query
lineage. This tractability result carries over to counting vertex covers in convex bipartite graphs.

Lazy vs. eager query plans for exact confidence computation of TQ queries

« Confidence computation done by an aggregation operator fully integrated into relational plans.
» Uses the query signature (in the brackets, e.g., [Cust Ord*]) to understand whether joins are
one/many-one/many and derive the number of passes over the lineage needed for computation.

* Left: Eager plan

[(Cust Ord)*] [(Cust* Ord)*] [(Cust® (Ord* Ttem*)*)*]
(operator pushed down) . . .
D{f.l!‘.t.,_,.h. MI._!_.{_H B -k !_r,;”._”
» Middle: Hybrid plan et cst] (OdIerrel oo i s
-sfla —l, —;sl;, r:llm T ot 1 R{}rd]h:lm
« Right: Lazy plan - o Cust
(operator done at the end) i eme] Cos A
Todate .f-la-f- v.okey ﬁf-x-f-_..l- okey "*?lm
{}Ird Fdis ._f-r.lu nt >0
ftem

aconf = optimized Karp-Luby FPRAS. d-tree = incremental lineage factorization.
SPROUT (here) = secondary-storage lineage factorization for hierarchical queries only.

Scale factor 1, probabilities of input tuples in (0,0.01)

| | | |
aconf(rel error 0.01) ==X
—~ 300 d-tree(rel erroro) =@
Q d-tree(error 0) I
3 SPROUT
E 10 H T hg— G G
Q
@
[72]
£
(1))
£
S 104 B ["4 B <4
o
Q@
©
; T T

TPC-H query B21, relative errors 0.01 and 0.05

I I I I
aconf(error 0.01) ---&---
aconf(error 0.05) ---6---
d-tree(error 0.01) —=—
d-tree(error 0.05) —e—

Timeout

100

10

/
/
/
o)
7 7/
/7

1

0.1

Time in sec (In scale)

0.01

-

1 15 B6

Tractable TPC-H queries (aggregations/ineqg-joins dropped) on tuple-independent tables

0.05 0.1 0.5
TPC-H scale factor (In scale)

0.005 0.01

B16 B17

Selected publications on SPROUT:

Approximate Confidence Computation in Probabilistic Databases.
ICDE’10. D. Olteanu, J. Huang, and C. Koch.

Secondary-Storage Confidence Computation for Conjunctive Queries with Inequalities.
SIGMOD’09. D. Olteanu, J. Huang

SPROUT: Lazy vs. Eager Query Plans for Tuple-Independent Probabilistic Databases.
ICDE’09. D. Olteanu, J. Huang, C. Koch.

Using OBDDs for Efficient Query Evaluation on Probabilistic Databases.
SUM’'08. D. Olteanu, J. Huang.

