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Main goals of the MayBMS project

Create a scalable DBMS for uncertain/probabilistic data

1 Representation and storage mechanisms

2 Uncertainty-aware query and data manipulation language

3 Efficient processing techniques for queries and constraints

This talk covers aspects of (3).

MayBMS available at sourceforge.net !



Conditioning c-table-like Probabilistic Databases

Transform a probabilistic database of priors into a posterior probabilistic database.

Example: Probabilistic database representing four weighted instances of relation
R defining social security numbers and names:

R1 SSN NAME
1 John
4 Bill

R2 SSN NAME
7 John
4 Bill

P = .06 P = .24

R3 SSN NAME
1 John
7 Bill

R4 SSN NAME
7 John
7 Bill

P = .14 P = .56

Events: Ax = Bill has SSN x ; B = SSN is unique in R .

Q1 = select SSN, conf() from R where NAME = ’Bill’ group by SSN;
assert SSN→NAME on R;Q1

P(A4) = .3 P(A4 | B) = P(A4∧B)
P(B) = .3

.06+.24+.14 ≈ .68



Challenges

Conditioning/confidence computation is NP-hard on succinct representations.

No prior work on conditioning probabilistic databases (i.e., on using assert)

Some prior work on confidence computation (MystiQ, Trio, MayBMS, . . .)

Exact versus approximate computation.

Approximation problematic for compositional query languages for
probabilistic databases.

◮ Introduced errors aggregate and grow.
◮ conf() used in comparison predicates.

Materialize the (succinct) probabilistic database result of conditioning.

assert is natural for data cleaning under possible worlds semantics.



Our representation system: U-Relational Databases

Discrete independent (random) variables.

Representation: U-relations + table W representing distributions.

The schema of each U-relation consists of
◮ a set of column pairs WSD = (Var → Dom) representing variable assignments,
◮ a set of value columns,
◮ (a tuple id column).

W Var Dom P
j 1 .2
j 7 .8
b 4 .3
b 7 .7

UR WSD SSN NAME
{j 7→ 1} 1 John
{j 7→ 7} 7 John
{b 7→ 4} 4 Bill
{b 7→ 7} 7 Bill

Properties of U-relational databases

Complete representation system for finite sets of possible worlds.

Purely relational representation of uncertainty at attribute-level.

Efficient relational evaluation of SPJ queries (without conf()).
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Queries on U-Relational Databases

W Var Dom P
j 1 .2
j 7 .8
b 4 .3
b 7 .7

UR WSD SSN NAME
{j 7→ 1} 1 John
{j 7→ 7} 7 John
{b 7→ 4} 4 Bill
{b 7→ 7} 7 Bill

Q1 = select SSN, conf() as P from R where NAME = ’Bill’ group by SSN;

Q1 SSN P
4 P({b 7→ 4})
7 P({b 7→ 7})



What makes confidence computation hard?
1 Succinct representation of uncertainty.

◮ Each tuple in a probabilistic database is associated with a world-set descriptor

that succinctly encodes the set of worlds containing that tuple.
World-set descriptor = Conjunction of variable assignments.
Examples: {j → 1}, {j → 1, b → 4}.

◮ Arbitrary combinations of input world-set descriptors produced by query joins.

2 Queries with projections can create duplicate answer tuples.
◮ Distinct tuples can be associated with sets of world-set descriptors.

Set of world-set descriptors = DNF expression over variable assigments.
Examples: {{j → 1}} and {{j → 1}, {j → 1, b → 4}, {b → 7}}.

3 #SAT (Model counting) is #P-hard for arbitrary DNF expressions.
◮ Model counting is a special case of confidence computation.
◮ Arbitrary sets of world-set descriptors can be created by queries.
◮ The sets of models of different conjunctions in a DNF expression can overlap

and have exponential size.



Knowledge Compilation Techniques to the Rescue

Useful for compiling formulas into propositional theories with tractable
properties, e.g., (#)SAT.
ROBDDs (Bryant), d-NNFs (Darwiche), and variations thereof.

Successfully applied to system modelling and verification.

In this paper: ws-sets compiled into ws-trees.

more succinct than OBDDs and similar to d-NNFs

structurally limited (trees) and with multistate variables

ws-sets can be compiled into ws-trees of exponential size
but like OBDDs tend to behave well in practice

Idea behind ws-tree construction: Given a tuple t with a ws-set S , partition S

into independent subsets (exploit contextual independence)

by variable elimination (Davis-Putnam procedure)



Building ws-trees

S = {{x 7→ 1}, {x 7→ 2, y 7→ 1}, {x 7→ 2, z 7→ 1}, {u 7→ 1, v 7→ 1}, {u 7→ 2}}

Assume domx = {1, 2, 3} and domy = domz = domu = domv = {1, 2}.

⊗

⊕
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⊗
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∅
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⊕
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z 7→ 1

⊕

⊕

u 7→ 1

∅

v 7→ 1

∅

u 7→ 2

Apply independence partitioning to S :

left: {{x 7→ 1}, {x 7→ 2, y 7→ 1}, {x 7→ 2, z 7→ 1}}

right: {{u 7→ 1, v 7→ 1}, {u 7→ 2}}.
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Apply variable elimination to {{x 7→ 1}, {x 7→ 2, y 7→ 1}, {x 7→ 2, z 7→ 1}}.

left: x 7→ 1 : ∅

right: x 7→ 2 : {{y 7→ 1}, {z 7→ 1}}.
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left: {{y 7→ 1}}

right: {{z 7→ 1}}
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Apply variable elimination to {{u 7→ 1, v 7→ 1}, {u 7→ 2}}.

left: u 7→ 1 : {{v 7→ 1}}

right: u 7→ 2 : ∅



Confidence computation using ws-trees

S = {{x 7→ 1}, {x 7→ 2, y 7→ 1}, {x 7→ 2, z 7→ 1}, {u 7→ 1, v 7→ 1}, {u 7→ 2}}

Assume: domx = {1, 2, 3} and domy = domz = domu = domv = {1, 2}.

x
.1
7→ 1, x

.4
7→ 2, y

.2
7→ 1, z

.4
7→ 1, u

.7
7→ 1, u

.3
7→ 2, v

.5
7→ 1.

⊗ 0.7578

⊕ 0.308

∅ 1.0

x
.1
7→ 1

⊗ 0.52

x
.4
7→ 2

⊕ 0.2

∅ 1.0

y
.2
7→ 1

⊕ 0.4

∅ 1.0

z
.4
7→ 1

⊕ 0.65

⊕ 0.5

u
.7
7→ 1

∅ 1.0

v
.5
7→ 1

∅ 1.0

u
.3
7→ 2

P(S) = 0.7578.



Conditioning using ws-trees

Assert constraint φ on U-relational database U.

1 Compute the ws-set S that describes the worlds in which φ holds.
Evaluation of Boolean query for φ followed by complement with W .

2 Compile S into a ws-tree T .

3 Renormalize T such that the probabilities of all remaining worlds sum up to 1.
Introduce new variables to reflect renormalization.

4 Update the ws-descriptors WSD in U according to renormalized T .
While traversing T , remove from WSD the encountered variables and add
the newly created ones.

The last three steps can be done together and T need not be materialized.



Data cleaning example: Evaluate

W Var Dom P
j 1 .2
j 7 .8
b 4 .3
b 7 .7

UR WSD SSN NAME
{j 7→ 1} 1 John
{j 7→ 7} 7 John
{b 7→ 4} 4 Bill
{b 7→ 7} 7 Bill

Keep only those worlds that satisfy the key constraint on R :

assert SSN→ NAME on R;

Expressed as a Boolean query as a complement of π∅(R ⊲⊳φ R) where
φ := (1.SSN = 2.SSN ∧ 1.NAME 6= 2.NAME ). On U-relation UR ,

πWSD(UR ⊲⊳φ∧1.WSD consistent with 2.WSD UR).

Result consists of WSD {j 7→ 7, b 7→ 7}. Its complement with the (entire)
world-set given by W is:

{{j 7→ 1}, {j 7→ 7, b 7→ 4}}, or (equivalently)

{{b 7→ 4}, {b 7→ 7, j 7→ 1}}.



Data cleaning example: Compile and Renormalize

W Var Dom P
j 1 .2
j 7 .8
b 4 .3
b 7 .7

UR WSD SSN NAME
{j 7→ 1} 1 John
{j 7→ 7} 7 John
{b 7→ 4} 4 Bill
{b 7→ 7} 7 Bill

SSN→NAME holds in the worlds defined by S = {{j 7→ 1}, {j 7→ 7, b 7→ 4}}.
Compile S into a ws-tree and renormalize the latter.

⊕

∅

j
.2
7→ 1

⊕

j
.8
7→ 7

∅

b
.3
7→ 4

⊕

∅

j ′
.2
.447→ 1

⊕

j ′
.8·.3
.447→ 7

∅

b′
1
7→ 4



Data cleaning example: Update the Database

W Var Dom P
j 1 .2
j 7 .8
b 4 .3
b 7 .7

UR WSD SSN NAME
{j 7→ 1} 1 John
{j 7→ 7} 7 John
{b 7→ 4} 4 Bill
{b 7→ 7} 7 Bill

U1 ւ ⊕ ց U2

∅

j
.2
7→ 1

⊕ ↓ U3

j
.8
7→ 7

∅

b
.3
7→ 4

U′

1 ր ⊕ տ U′

2

∅

j ′
.2
.447→ 1

⊕ ↑ U′

3

j ′
.8·.3
.447→ 7

∅

b′
1
7→ 4

The U-relation tuples to be conditioned are passed down the ws-tree:

U1 = j 7→ 1 : UR WSD SSN NAME
{j 7→ 1} 1 John
{j 7→ 1, b 7→ 4} 4 Bill
{j 7→ 1, b 7→ 7} 7 Bill



Data cleaning example: Update the Database

W Var Dom P
j 1 .2
j 7 .8
b 4 .3
b 7 .7

UR WSD SSN NAME
{j 7→ 1} 1 John
{j 7→ 7} 7 John
{b 7→ 4} 4 Bill
{b 7→ 7} 7 Bill
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∅
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j
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∅

b
.3
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U′

1 ր ⊕ տ U′

2

∅

j ′
.2
.447→ 1

⊕ ↑ U′

3

j ′
.8·.3
.447→ 7

∅

b′
1
7→ 4

The U-relation tuples to be conditioned are passed down the ws-tree:

U2 = j 7→ 7 : UR WSD SSN NAME
{j 7→ 7} 1 John
{j 7→ 7, b 7→ 4} 4 Bill
{j 7→ 7, b 7→ 7} 7 Bill



Data cleaning example: Update the Database

W Var Dom P
j 1 .2
j 7 .8
b 4 .3
b 7 .7

UR WSD SSN NAME
{j 7→ 1} 1 John
{j 7→ 7} 7 John
{b 7→ 4} 4 Bill
{b 7→ 7} 7 Bill

U1 ւ ⊕ ց U2

∅

j
.2
7→ 1

⊕ ↓ U3

j
.8
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∅

b
.3
7→ 4

U′
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2
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j ′
.2
.447→ 1

⊕ ↑ U′

3

j ′
.8·.3
.447→ 7

∅

b′
1
7→ 4

The U-relation tuples to be conditioned are passed down the ws-tree:

U3 = b 7→ 4 : U2 WSD SSN NAME
{j 7→ 7, b → 4} 1 John
{j 7→ 7, b 7→ 4} 4 Bill



Data cleaning example: Update the Database

W Var Dom P
j 1 .2
j 7 .8
b 4 .3
b 7 .7

UR WSD SSN NAME
{j 7→ 1} 1 John
{j 7→ 7} 7 John
{b 7→ 4} 4 Bill
{b 7→ 7} 7 Bill
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3
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.8·.3
.447→ 7

∅

b′
1
7→ 4

Replace old variables by new variables in the U-relations to be pushed up the
normalized ws-tree:

U′

3 = Replace b by b′ in U3 WSD SSN NAME
{j 7→ 7, b′ 7→ 4} 1 John
{j 7→ 7, b′ 7→ 4} 4 Bill



Data cleaning example: Update the Database

W Var Dom P
j 1 .2
j 7 .8
b 4 .3
b 7 .7

UR WSD SSN NAME
{j 7→ 1} 1 John
{j 7→ 7} 7 John
{b 7→ 4} 4 Bill
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3
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∅
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Replace old by new variables in the U-relation tuples to be pushed up the
normalized ws-tree:

U′

2 = Replace j by j ′ in U′

3 WSD SSN NAME
{j ′ 7→ 7, b′ 7→ 4} 1 John
{j ′ 7→ 7, b′ 7→ 4} 4 Bill



Data cleaning example: Update the Database

W Var Dom P
j 1 .2
j 7 .8
b 4 .3
b 7 .7

UR WSD SSN NAME
{j 7→ 1} 1 John
{j 7→ 7} 7 John
{b 7→ 4} 4 Bill
{b 7→ 7} 7 Bill

U1 ւ ⊕ ց U2

∅

j
.2
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j
.8
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.3
7→ 4
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j ′
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∅
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1
7→ 4

Replace old by new variables in the U-relation tuples to be pushed up the
normalized ws-tree:

U′

1 = Replace j by j ′ in U1 WSD SSN NAME
{j ′ 7→ 1} 1 John
{j ′ 7→ 1, b 7→ 4} 4 Bill
{j ′ 7→ 1, b 7→ 7} 7 Bill



Data cleaning example: Update the Database

W Var Dom P
j 1 .2
j 7 .8
b 4 .3
b 7 .7

UR WSD SSN NAME
{j 7→ 1} 1 John
{j 7→ 7} 7 John
{b 7→ 4} 4 Bill
{b 7→ 7} 7 Bill

U1 ւ ⊕ ց U2

∅

j
.2
7→ 1

⊕ ↓ U3

j
.8
7→ 7

∅

b
.3
7→ 4

U′

1 ր ⊕ տ U′

2

∅

j ′
.2
.447→ 1

⊕ ↑ U′

3

j ′
.8·.3
.447→ 7

∅

b′
1
7→ 4

The U-relational database after conditioning (b′ and j are useless and removed):

W ′ Var Dom P
b 4 .3
b 7 .7
j ′ 1 .2/.44
j ′ 7 .8 · .3/.44

U′

R
= U′

1 ∪ U′

2 WSD SSN NAME
{j ′ 7→ 1} 1 John
{j ′ 7→ 7, b′ 7→ 4} 1 John
{j ′ 7→ 1, b 7→ 4} 4 Bill
{j ′ 7→ 1, b 7→ 7} 7 Bill
{j ′ 7→ 7, b′ 7→ 4} 4 Bill



Experiments



Tuple-independent TPC-H Data
Queries

1 select distinct true from customer c, orders o, lineitem l where c.mktsegment =

’BUILDING’ and c.custkey = o.custkey and o.orderkey = l.orderkey and o.orderdate >

’1995-03-15’

2 select distinct true from lineitem where shipdate between ’1994-01-01’ and ’1996-01-01’

and discount between ’0.05’ and ’0.08’ and quantity < 24

Query Size of TPC-H #Input Size of User
ws-desc. Scale Vars ws-set Time(s)

0.01 77215 9836 5.10
Q1 3 0.05 382314 43498 99.76

0.10 765572 63886 356.56
0.01 60175 3029 0.20

Q2 1 0.05 299814 15545 8.24
0.10 600572 30948 33.68

Tractable cases of query evaluation on probabilistic databases beyond safe plans:

Using OBDDs for Efficient Query Evaluation on Probabilistic Databases.
O. and Huang. In Proc. SUM 2008.

Lazy versus Eager Query Plans for Tuple-Independent Probabilistic Databases.
O., Huang, and Koch. 2008.



#P-hard cases
Input: ws-sets similar to those associated with the answers of non-safe Boolean
queries on probabilistic databases.

Compared agorithms for confidence computation

INDVE: independence partitioning and variable elimination

VE: only variable elimination

KL: (adapted) optimal Monte Carlo simulation based on Karp-Luby FPRAS
for DNF counting
Given a DNF formula with m clauses, compute an (ǫ, δ)-approximation ĉ of
the number of solutions c of the DNF formula such that

Pr[|c − ĉ | ≤ ǫ · c] ≥ 1 − δ

for any given 0 < ǫ < 1, 0 < δ < 1. It does so within ⌈4 · m · log(2/δ)/ǫ2⌉
iterations of an efficiently computable estimator.

INDVE is now part of the MayBMS engine!



#variables and #wsds differ by orders of magnitude
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#variables and #wsds are close: Easy-hard-easy pattern
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Known that the computation becomes harder in this case. The hard area is
smaller for SAT than for #SAT.



Thanks!



Order of Variable Elimination Matters!

S = {{x 7→ 1}, {x 7→ 2, y 7→ 1}, {x 7→ 2, z 7→ 1}, {u 7→ 1, v 7→ 1}, {u 7→ 2}}

Assume domx = {1, 2, 3} and domy = domz = domu = domv = {1, 2}.

⊕

⊕
y 7→ 1

⊗
u 7→ 1

⊕

∅
v 7→ 1

⊕

⊕(α)
z 7→ 2

∅
x 7→ 1

∅
x 7→ 2

α

∅
u 7→ 2

⊕
y 7→ 2

∅
x 7→ 1

⊗
x 7→ 2

⊕

∅
z 7→ 1

⊕(β)

∅
u 7→ 2

⊕
u 7→ 1

∅
v 7→ 1

β
x 7→ 3

Different ws-tree for the same ws-set S!


