## MAYBE

Conditioning Probabilistic Databases
Dan Olteanu (Oxford University Computing Laboratory)

Joint work with Christoph Koch (Cornell University Database Systems Group)

## Main goals of the MayBMS project

Create a scalable DBMS for uncertain/probabilistic data
(a) Representation and storage mechanisms
(2) Uncertainty-aware query and data manipulation language
(3) Efficient processing techniques for queries and constraints

This talk covers aspects of (3).

MayBMS available at sourceforge.net!

## Conditioning c-table-like Probabilistic Databases

Transform a probabilistic database of priors into a posterior probabilistic database.
Example: Probabilistic database representing four weighted instances of relation $R$ defining social security numbers and names:

| $R^{1}$ | SSN | NAME |  | $R^{2}$ | SSN | NAME |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | John |  |  | 7 | John |  |  |
|  | 4 | Bill |  |  | 4 | Bill |  |  |
|  | $\mathrm{P}=.06$ |  |  |  |  | $\mathrm{P}=.24$ |  |  |


| $R^{3}$ | SSN | NAME | $R^{4}$ | SSN | NAME |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | John |  | 7 | John |
|  | 7 | Bill |  | 7 | Bill |

Events: $A_{x}=$ Bill has SSN $x ; B=\operatorname{SSN}$ is unique in $R$.
$Q_{1}=$ select $\mathrm{SSN}, \operatorname{conf}()$ from R where NAME = 'Bill' group by SSN; assert $\mathrm{SSN} \rightarrow \mathrm{NAME}$ on $\mathrm{R} ; \mathrm{Q}_{1}$

$$
P\left(A_{4}\right)=.3 \quad P\left(A_{4} \mid B\right)=\frac{P\left(A_{4} \wedge B\right)}{P(B)}=\frac{.3}{.06+.24+.14} \approx .68
$$

## Challenges

Conditioning/confidence computation is NP-hard on succinct representations.

- No prior work on conditioning probabilistic databases (i.e., on using assert)
- Some prior work on confidence computation (MystiQ, Trio, MayBMS, ...)

Exact versus approximate computation.

- Approximation problematic for compositional query languages for probabilistic databases.
- Introduced errors aggregate and grow.
- conf() used in comparison predicates.

Materialize the (succinct) probabilistic database result of conditioning.

- assert is natural for data cleaning under possible worlds semantics.


## Our representation system: U-Relational Databases

- Discrete independent (random) variables.
- Representation: U-relations + table $W$ representing distributions.
- The schema of each U-relation consists of
- a set of column pairs WSD $=($ Var $\rightarrow$ Dom $)$ representing variable assignments,
- a set of value columns,
- (a tuple id column).

| $W$ | Var | Dom | P |
| :--- | :--- | :--- | :--- |
|  | $j$ | 1 | .2 |
|  | $j$ | 7 | .8 |
|  | $b$ | 4 | .3 |
|  | $b$ | 7 | .7 |


| $U_{R}$ | WSD | SSN | NAME |
| :---: | :---: | :---: | :---: |
|  | $\{j \mapsto 1\}$ | 1 | John |
|  | $\{j \mapsto 7\}$ | 7 | John |
|  | $\{b \mapsto 4\}$ | 4 | Bill |
|  | $\{b \mapsto 7\}$ | 7 | Bill |

Properties of U-relational databases

- Complete representation system for finite sets of possible worlds.
- Purely relational representation of uncertainty at attribute-level.
- Efficient relational evaluation of SPJ queries (without conf()).


## Our representation system: U-Relational Databases

| $W$ | Var | Dom | P |
| :--- | :--- | :--- | :--- |
|  | $j$ | 1 | .2 |
|  | $j$ | 7 | .8 |
|  | $b$ | 4 | .3 |
|  | $b$ | 7 | .7 |


| $U_{R}$ | WSD | SSN | NAME |
| :---: | :---: | :---: | :---: |
|  | $\{j \mapsto 1\}$ | 1 | John |
|  | $\{j \mapsto 7\}$ | 7 | John |
|  | $\{b \mapsto 4\}$ | 4 | Bill |
|  | $\{b \mapsto 7\}$ | 7 | Bill |

## Our representation system: U-Relational Databases

| $W$ | Var | Dom | P |
| :--- | :--- | :--- | :--- |
|  | $j$ | 1 | .2 |
|  | $j$ | 7 | .8 |
|  | $b$ | 4 | .3 |
|  | $b$ | 7 | .7 |


| $U_{R}$ | WSD | SSN | NAME |
| :---: | :---: | :---: | :---: |
|  | $\{j \mapsto 1\}$ | 1 | John |
|  | $\{j \mapsto 7\}$ | 7 | John |
|  | $\{b \mapsto 4\}$ | 4 | Bill |
|  | $\{b \mapsto 7\}$ | 7 | Bill |


| $R^{1}$ | SSN | NAME |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | John |  |  |  |  |  |
|  | 4 | Bill |  |  |  |  |  |
| $\mathrm{P}=.2 \cdot .3=.06$ |  |  |  |  |  |  |  |


| $R^{3}$ | SSN | NAME | $R^{4}$ | SSN | NAME |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | John |  | 7 | John |
|  | 7 | Bill |  | 7 | Bill |
| . $2 \cdot .7=.14$ |  |  | $\mathrm{P}=.8 \cdot .7=.56$ |  |  |

## Our representation system: U-Relational Databases

| $W$ | Var | Dom | P |
| :--- | :--- | :--- | :--- |
|  | $j$ | 1 | .2 |
|  | $j$ | 7 | .8 |
|  | $b$ | 4 | .3 |
|  | $b$ | 7 | .7 |


| $U_{R}$ | WSD | SSN | NAME |
| :---: | :---: | :---: | :---: |
|  | $\{j \mapsto 1\}$ | 1 | John |
|  | $\{j \mapsto 7\}$ | 7 | John |
|  | $\{b \mapsto 4\}$ | 4 | Bill |
|  | $\{b \mapsto 7\}$ | 7 | Bill |


| $R^{1}$ | SSN | NAME |
| :---: | :---: | :---: |
|  | 1 | John |
|  | 4 | Bill |

$$
\mathrm{P}=.2 \cdot .3=.06
$$

| $R^{3}$ | SSN | NAME |
| :---: | :---: | :---: |
|  | 1 | John |
|  | 7 | Bill |

$$
P=.2 \cdot .7=.14
$$


$\mathrm{P}=.8 \cdot .3=.24$

| $R^{4}$ | SSN | NAME |
| :---: | :---: | :---: |
|  | 7 | John |
|  | 7 | Bill |
| $\mathrm{P}=.8 \cdot .7=.56$ |  |  |

## Our representation system: U-Relational Databases

| $W$ | Var | Dom | P |
| :--- | :--- | :--- | :--- |
|  | $j$ | 1 | .2 |
|  | $j$ | 7 | .8 |
|  | $b$ | 4 | .3 |
|  | $b$ | 7 | .7 |


| $U_{R}$ | WSD | SSN | NAME |
| :---: | :---: | :---: | :---: |
|  | $\{j \mapsto 1\}$ | 1 | John |
|  | $\{j \mapsto 7\}$ | 7 | John |
|  | $\{b \mapsto 4\}$ | 4 | Bill |
|  | $\{b \mapsto 7\}$ | 7 | Bill |


| $R^{1}$ | SSN | NAME | $R^{2}$ | SSN | NAME |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | John |  | 7 | John |
|  | 4 | Bill |  | 4 | Bill |
| $\mathrm{P}=.2 \cdot .3=.06$ |  |  | $\mathrm{P}=.8 \cdot .3=.24$ |  |  |



## Our representation system: U-Relational Databases

| $W$ | Var | Dom | P |
| :--- | :--- | :--- | :--- |
|  | $j$ | 1 | .2 |
|  | $j$ | 7 | .8 |
|  | $b$ | 4 | .3 |
|  | $b$ | 7 | .7 |


| $U_{R}$ | WSD | SSN | NAME |
| :---: | :---: | :---: | :---: |
|  | $\{j \mapsto 1\}$ | 1 | John |
|  | $\{j \mapsto 7\}$ | 7 | John |
|  | $\{b \mapsto 4\}$ | 4 | Bill |
|  | $\{b \mapsto 7\}$ | 7 | Bill |


| $R^{1}$ | SSN | NAME | $R^{2}$ | SSN | NAME |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | John |  | 7 | John |
|  | 4 | Bill |  | 4 | Bill |
| $\mathrm{P}=.2 \cdot .3=.06$ |  |  | $\mathrm{P}=.8 \cdot .3=.24$ |  |  |



$$
\mathrm{P}=.2 \cdot .7=.14
$$



## Queries on U-Relational Databases

| $W$ | Var | Dom | P |
| :--- | :--- | :--- | :--- |
|  | $j$ | 1 | .2 |
|  | $j$ | 7 | .8 |
|  | $b$ | 4 | .3 |
|  | $b$ | 7 | .7 |


| $U_{R}$ | WSD | SSN | NAME |
| :---: | :---: | :---: | :---: |
|  | $\{j \mapsto 1\}$ | 1 | John |
|  | $\{j \mapsto 7\}$ | 7 | John |
|  | $\{b \mapsto 4\}$ | 4 | Bill |
|  | $\{b \mapsto 7\}$ | 7 | Bill |

$Q_{1}=$ select $\mathrm{SSN}, \operatorname{conf}()$ as P from R where NAME $=$ 'Bill' group by SSN;

| $Q_{1}$ | SSN | $P$ |
| :---: | :---: | :---: |
|  | 4 | $P(\{b \mapsto 4\})$ |
|  | 7 | $P(\{b \mapsto 7\})$ |

## What makes confidence computation hard?

(3) Succinct representation of uncertainty.

- Each tuple in a probabilistic database is associated with a world-set descriptor that succinctly encodes the set of worlds containing that tuple.
World-set descriptor $=$ Conjunction of variable assignments. Examples: $\{j \rightarrow 1\},\{j \rightarrow 1, b \rightarrow 4\}$.
- Arbitrary combinations of input world-set descriptors produced by query joins.
(2) Queries with projections can create duplicate answer tuples.
- Distinct tuples can be associated with sets of world-set descriptors. Set of world-set descriptors = DNF expression over variable assigments. Examples: $\{\{j \rightarrow 1\}\}$ and $\{\{j \rightarrow 1\},\{j \rightarrow 1, b \rightarrow 4\},\{b \rightarrow 7\}\}$.
© \#SAT (Model counting) is \#P-hard for arbitrary DNF expressions.
- Model counting is a special case of confidence computation.
- Arbitrary sets of world-set descriptors can be created by queries.
- The sets of models of different conjunctions in a DNF expression can overlap and have exponential size.


## Knowledge Compilation Techniques to the Rescue

- Useful for compiling formulas into propositional theories with tractable properties, e.g., (\#)SAT.
ROBDDs (Bryant), d-NNFs (Darwiche), and variations thereof.
- Successfully applied to system modelling and verification.

In this paper: ws-sets compiled into ws-trees.

- more succinct than OBDDs and similar to d-NNFs
- structurally limited (trees) and with multistate variables
- ws-sets can be compiled into ws-trees of exponential size but like OBDDs tend to behave well in practice

Idea behind ws-tree construction: Given a tuple $t$ with a ws-set $S$, partition $S$

- into independent subsets (exploit contextual independence)
- by variable elimination (Davis-Putnam procedure)


## Building ws-trees

$$
\begin{aligned}
& S=\{\{x \mapsto 1\},\{x \mapsto 2, y \mapsto 1\},\{x \mapsto 2, z \mapsto 1\},\{u \mapsto 1, v \mapsto 1\},\{u \mapsto 2\}\} \\
& \text { Assume } \operatorname{dom}_{x}=\{1,2,3\} \text { and } \operatorname{dom}_{y}=\operatorname{dom}_{z}=\operatorname{dom}_{u}=\operatorname{dom}_{v}=\{1,2\} .
\end{aligned}
$$



Apply independence partitioning to $S$ :

- left: $\{\{x \mapsto 1\},\{x \mapsto 2, y \mapsto 1\},\{x \mapsto 2, z \mapsto 1\}\}$
- right: $\{\{u \mapsto 1, v \mapsto 1\},\{u \mapsto 2\}\}$.


## Building ws-trees

$S=\{\{x \mapsto 1\},\{x \mapsto 2, y \mapsto 1\},\{x \mapsto 2, z \mapsto 1\},\{u \mapsto 1, v \mapsto 1\},\{u \mapsto 2\}\}$
Assume $\operatorname{dom}_{x}=\{1,2,3\}$ and $\operatorname{dom}_{y}=\operatorname{dom}_{z}=\operatorname{dom}_{u}=\operatorname{dom}_{v}=\{1,2\}$.


Apply variable elimination to $\{\{x \mapsto 1\},\{x \mapsto 2, y \mapsto 1\},\{x \mapsto 2, z \mapsto 1\}\}$.

- left: $x \mapsto 1$ : $\emptyset$
- right: $x \mapsto 2$ : $\{\{y \mapsto 1\},\{z \mapsto 1\}\}$.


## Building ws-trees

$$
\begin{aligned}
& S=\{\{x \mapsto 1\},\{x \mapsto 2, y \mapsto 1\},\{x \mapsto 2, z \mapsto 1\},\{u \mapsto 1, v \mapsto 1\},\{u \mapsto 2\}\} \\
& \text { Assume } \operatorname{dom}_{x}=\{1,2,3\} \text { and } \operatorname{dom}_{y}=\operatorname{dom}_{z}=\operatorname{dom}_{u}=\operatorname{dom}_{v}=\{1,2\} .
\end{aligned}
$$



Apply independence partitioning to $\{\{y \mapsto 1\},\{z \mapsto 1\}\}$.

- left: $\{\{y \mapsto 1\}\}$
- right: $\{\{z \mapsto 1\}\}$


## Building ws-trees

$$
\begin{aligned}
& S=\{\{x \mapsto 1\},\{x \mapsto 2, y \mapsto 1\},\{x \mapsto 2, z \mapsto 1\},\{u \mapsto 1, v \mapsto 1\},\{u \mapsto 2\}\} \\
& \text { Assume } \operatorname{dom}_{x}=\{1,2,3\} \text { and } \operatorname{dom}_{y}=\operatorname{dom}_{z}=\operatorname{dom}_{u}=\operatorname{dom}_{v}=\{1,2\} .
\end{aligned}
$$



Apply variable elimination to $\{\{u \mapsto 1, v \mapsto 1\},\{u \mapsto 2\}\}$.

- left: $u \mapsto 1$ : $\{\{v \mapsto 1\}\}$
- right: $u \mapsto 2$ : $\emptyset$


## Confidence computation using ws-trees

$S=\{\{x \mapsto 1\},\{x \mapsto 2, y \mapsto 1\},\{x \mapsto 2, z \mapsto 1\},\{u \mapsto 1, v \mapsto 1\},\{u \mapsto 2\}\}$
Assume: $\operatorname{dom}_{x}=\{1,2,3\}$ and $\operatorname{dom}_{y}=\operatorname{dom}_{z}=\operatorname{dom}_{u}=\operatorname{dom}_{v}=\{1,2\}$.

$$
x \stackrel{1}{\mapsto} 1, x \stackrel{4}{\mapsto} 2, y \stackrel{.2}{\mapsto} 1, z \stackrel{4}{\mapsto} 1, u \stackrel{7}{\mapsto} 1, u \stackrel{3}{\mapsto} 2, v \stackrel{.5}{\mapsto} 1 .
$$



## Conditioning using ws-trees

Assert constraint $\phi$ on U-relational database $U$.
(3) Compute the ws-set $S$ that describes the worlds in which $\phi$ holds. Evaluation of Boolean query for $\phi$ followed by complement with $W$.
(2) Compile $S$ into a ws-tree $T$.
(3) Renormalize $T$ such that the probabilities of all remaining worlds sum up to 1 . Introduce new variables to reflect renormalization.
(9) Update the ws-descriptors WSD in $U$ according to renormalized $T$. While traversing $T$, remove from WSD the encountered variables and add the newly created ones.

The last three steps can be done together and $T$ need not be materialized.

## Data cleaning example: Evaluate

| W | Var | Dom | P | $U_{R}$ | WSD | SSN | NAME |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | j | 1 | . 2 |  | $\{j \mapsto 1\}$ | 1 | John |
|  | $j$ | 7 | . 8 |  | $\{j \mapsto 7\}$ | 7 | John |
|  | $b$ | 4 | . 3 |  | $\{b \mapsto 4\}$ | 4 | Bill |
|  | $b$ | 7 | . 7 |  | $\{b \mapsto 7\}$ | 7 | Bill |

Keep only those worlds that satisfy the key constraint on $R$ :

## assert $\mathrm{SSN} \rightarrow$ NAME on R ;

Expressed as a Boolean query as a complement of $\pi_{\emptyset}\left(R \bowtie_{\phi} R\right)$ where $\phi:=(1 . S S N=2 . S S N \wedge$ 1.NAME $\neq 2 . N A M E)$. On U-relation $U_{R}$,

$$
\pi_{W S D}\left(U_{R} \bowtie_{\phi \wedge 1 . W S D} \text { consistent with 2.WSD } U_{R}\right) \text {. }
$$

Result consists of WSD $\{j \mapsto 7, b \mapsto 7\}$. Its complement with the (entire) world-set given by $W$ is:

- $\{\{j \mapsto 1\},\{j \mapsto 7, b \mapsto 4\}\}$, or (equivalently)
- $\{\{b \mapsto 4\},\{b \mapsto 7, j \mapsto 1\}\}$.


## Data cleaning example: Compile and Renormalize

| $W$ | Var | Dom | P |
| :--- | :--- | :--- | :--- |
|  | $j$ | 1 | .2 |
|  | $j$ | 7 | .8 |
|  | $b$ | 4 | .3 |
|  | $b$ | 7 | .7 |


| $U_{R}$ | WSD | SSN | NAME |
| :---: | :---: | :---: | :---: |
|  | $\{j \mapsto 1\}$ | 1 | John |
|  | $\{j \mapsto 7\}$ | 7 | John |
|  | $\{b \mapsto 4\}$ | 4 | Bill |
|  | $\{b \mapsto 7\}$ | 7 | Bill |

$\mathrm{SSN} \rightarrow$ NAME holds in the worlds defined by $S=\{\{j \mapsto 1\},\{j \mapsto 7, b \mapsto 4\}\}$. Compile $S$ into a ws-tree and renormalize the latter.


## Data cleaning example: Update the Database



The U-relation tuples to be conditioned are passed down the ws-tree:

| $U_{1}=j \mapsto 1: U_{R}$ | WSD | SSN | NAME |
| :--- | :--- | :---: | :---: |
|  | $\{j \mapsto 1\}$ | 1 | John |
|  | $\{j \mapsto 1, b \mapsto 4\}$ | 4 | Bill |
|  | $\{j \mapsto 1, b \mapsto 7\}$ | 7 | Bill |

## Data cleaning example: Update the Database



The U-relation tuples to be conditioned are passed down the ws-tree:

| $U_{2}=j \mapsto 7: U_{R}$ | WSD | SSN | NAME |
| :--- | :--- | :---: | :---: |
|  | $\{j \mapsto 7\}$ | 1 | John |
|  | $\{j \mapsto 7, b \mapsto 4\}$ | 4 | Bill |
|  | $\{j \mapsto 7, b \mapsto 7\}$ | 7 | Bill |

## Data cleaning example: Update the Database



The U-relation tuples to be conditioned are passed down the ws-tree:

| $U_{3}=b \mapsto 4: U_{2}$ | WSD | SSN | NAME |
| :--- | :--- | :---: | :---: |
|  | $\{j \mapsto 7, b \rightarrow 4\}$ | 1 | John |
|  | $\{j \mapsto 7, b \mapsto 4\}$ | 4 | Bill |

## Data cleaning example: Update the Database

| $W$ | Var | Dom | P |
| :--- | :--- | :--- | :--- |
|  | $j$ | 1 | .2 |
|  | $j$ | 7 | .8 |
|  | $b$ | 4 | .3 |
|  | $b$ | 7 | .7 |


| $U_{R}$ | WSD | SSN | NAME |
| :---: | :---: | :---: | :---: |
|  | $\{j \mapsto 1\}$ | 1 | John |
|  | $\{j \mapsto 7\}$ | 7 | John |
|  | $\{b \mapsto 4\}$ | 4 | Bill |
|  | $\{b \mapsto 7\}$ | 7 | Bill |



Replace old variables by new variables in the U-relations to be pushed up the normalized ws-tree:

| $U_{3}^{\prime}=$ Replace $b$ by $b^{\prime}$ in $U_{3}$ | WSD | SSN | NAME |
| :--- | :--- | :---: | :---: |
|  | $\left\{j \mapsto 7, b^{\prime} \mapsto 4\right\}$ | 1 | John |
|  | $\left\{j \mapsto 7, b^{\prime} \mapsto 4\right\}$ | 4 | Bill |

## Data cleaning example: Update the Database



Replace old by new variables in the U-relation tuples to be pushed up the normalized ws-tree:

| $U_{2}^{\prime}=$ Replace $j$ by $j^{\prime}$ in $U_{3}^{\prime}$ | WSD | SSN | NAME |
| :--- | :--- | :---: | :---: |
|  | $\left\{j^{\prime} \mapsto 7, b^{\prime} \mapsto 4\right\}$ | 1 | John |
|  | $\left\{j^{\prime} \mapsto 7, b^{\prime} \mapsto 4\right\}$ | 4 | Bill |

## Data cleaning example: Update the Database



Replace old by new variables in the U-relation tuples to be pushed up the normalized ws-tree:

| $U_{1}^{\prime}=$ Replace $j$ by $j^{\prime}$ in $U_{1}$ | WSD | SSN | NAME |
| :--- | :--- | :---: | :---: |
|  | $\left\{j^{\prime} \mapsto 1\right\}$ | 1 | John |
|  | $\left\{j^{\prime} \mapsto 1, b \mapsto 4\right\}$ | 4 | Bill |
|  | $\left\{j^{\prime} \mapsto 1, b \mapsto 7\right\}$ | 7 | Bill |

## Data cleaning example: Update the Database

| $W$ | Var | Dom | P |
| :--- | :--- | :--- | :--- |
|  | $j$ | 1 | .2 |
|  | $j$ | 7 | .8 |
|  | $b$ | 4 | .3 |
|  | $b$ | 7 | .7 |


| $U_{R}$ | WSD | SSN | NAME |
| :---: | :---: | :---: | :---: |
|  | $\{j \mapsto 1\}$ | 1 | John |
|  | $\{j \mapsto 7\}$ | 7 | John |
|  | $\{b \mapsto 4\}$ | 4 | Bill |
|  | $\{b \mapsto 7\}$ | 7 | Bill |




The U-relational database after conditioning ( $b^{\prime}$ and $j$ are useless and removed):

| $W^{\prime}$ | Var | Dom | P | $U_{R}^{\prime}=U_{1}^{\prime} \cup U_{2}^{\prime}$ | WSD | SSN | NAME |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | b | 4 | . 3 |  | $\left\{j^{\prime} \mapsto 1\right\}$ | 1 | John |
|  | $b$ | 7 | . 7 |  | $\left\{j^{\prime} \mapsto 7, b^{\prime} \mapsto 4\right\}$ | 1 | John |
|  | $j^{\prime}$ | 1 | .2/.44 |  | $\left\{j^{\prime} \mapsto 1, b \mapsto 4\right\}$ | 4 | Bill |
|  | $j^{\prime}$ | 7 | . $8 \cdot .3 / .44$ |  | $\left\{j^{\prime} \mapsto 1, b \mapsto 7\right\}$ | 7 | Bill |
|  |  |  |  |  | $\left\{j^{\prime} \mapsto 7, b^{\prime} \mapsto 4\right\}$ | 4 | Bill |

## Experiments

## Tuple-independent TPC-H Data

## Queries

(1) select distinct true from customer c , orders o , lineitem I where $\mathrm{c} . \mathrm{mktsegment}=$ 'BUILDING' and c.custkey $=$ o.custkey and o.orderkey $=$ I.orderkey and o.orderdate > '1995-03-15'
(2) select distinct true from lineitem where shipdate between '1994-01-01' and '1996-01-01' and discount between ' 0.05 ' and ' 0.08 ' and quantity $<24$

| Query | Size of <br> ws-desc. | TPC-H <br> Scale | \#lnput <br> Vars | Size of <br> ws-set | User <br> Time(s) |
| :--- | :---: | :---: | ---: | ---: | ---: |
| $Q_{1}$ | 3 | 0.01 | 77215 | 9836 | 5.10 |
|  |  | 0.05 | 382314 | 43498 | 99.76 |
|  |  | 0.10 | 765572 | 63886 | 356.56 |
| $Q_{2}$ | 1 | 0.01 | 60175 | 3029 | 0.20 |
|  |  | 0.05 | 299814 | 15545 | 8.24 |

Tractable cases of query evaluation on probabilistic databases beyond safe plans:

- Using OBDDs for Efficient Query Evaluation on Probabilistic Databases. O. and Huang. In Proc. SUM 2008.
- Lazy versus Eager Query Plans for Tuple-Independent Probabilistic Databases. O., Huang, and Koch. 2008.


## \#P-hard cases

Input: ws-sets similar to those associated with the answers of non-safe Boolean queries on probabilistic databases.

Compared agorithms for confidence computation

- INDVE: independence partitioning and variable elimination
- VE: only variable elimination
- KL: (adapted) optimal Monte Carlo simulation based on Karp-Luby FPRAS for DNF counting
Given a DNF formula with $m$ clauses, compute an $(\epsilon, \delta)$-approximation $\hat{c}$ of the number of solutions $c$ of the DNF formula such that

$$
\operatorname{Pr}[|c-\hat{c}| \leq \epsilon \cdot c] \geq 1-\delta
$$

for any given $0<\epsilon<1,0<\delta<1$. It does so within $\left\lceil 4 \cdot m \cdot \log (2 / \delta) / \epsilon^{2}\right\rceil$ iterations of an efficiently computable estimator.

INDVE is now part of the MayBMS engine!

## \#variables and \#wsds differ by orders of magnitude

Few variables (100), many ws-descriptors, $r=4(2), s=4$

$r=$ domain size of variables; $s=$ size of wsds $=\#$ joins used to produce them.

## \#variables and \#wsds differ by orders of magnitude

Many variables (100k), few ws-descriptors, $\mathrm{r}=4, \mathrm{~s}=2$

$r=$ domain size of variables; $s=$ size of wsds $=\#$ joins used to produce them.

## \#variables and \#wsds are close: Easy-hard-easy pattern

Number of variables close to ws-set size, 70 variables, $r=4, s=4$


Known that the computation becomes harder in this case. The hard area is smaller for SAT than for \#SAT.

Thanks!

## Order of Variable Elimination Matters!

$S=\{\{x \mapsto 1\},\{x \mapsto 2, y \mapsto 1\},\{x \mapsto 2, z \mapsto 1\},\{u \mapsto 1, v \mapsto 1\},\{u \mapsto 2\}\}$
Assume $\operatorname{dom}_{x}=\{1,2,3\}$ and $\operatorname{dom}_{y}=\operatorname{dom}_{z}=\operatorname{dom}_{u}=\operatorname{dom}_{v}=\{1,2\}$.


Different ws-tree for the same ws-set S !

