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Abstract
Teacher: Last week I held a tutorial series with my students on the
concept of a functor, with the purpose of taking a fresh look from a
few angles they hadn’t considered before.
Lisa: We started gently, but soon built up a heady tower of abstrac-
tion, freely wielding the force of functoriality.
Harry: For a newcomer to category theory, I can’t believe how
much I learnt. And we were having so much fun, we even continued
on into the weekend!
Teacher: Yes, to finish off our week we looked at how we might
describe the printf function in terms of monoidal functors.

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Applicative (Functional) Programming; D.3.2 [Program-
ming Languages]: Language Classifications—applicative (func-
tional) languages
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Monday
Teacher: Class, last week we started investigating the concept of
a functor. Let’s refresh our memory. Can someone summarise the
salient points?
Lisa: A functor is a structure-preserving mapping between two
categories—
Harry: And because a category consists of objects and arrows,
a functor consists of two parts, a mapping between objects and a
mapping between arrows.
Lisa: The two parts have to go together: the arrow part has to
respect the types and it has to preserve identity and composition.
Teacher: That’s right. Some formal definitions are certainly not
amiss. If C and D are categories, then we write F : C → D to
express that F is a functor between C and D . The first requirement
that Lisa mentioned can be captured by two typing rules.

A : C

F A : D

f : A→ B : C

F f : F A→ F B : D

Remember that we use the same symbol for both parts of the
functor. The F in F f is the arrow part, the F in F A and F B is
the object part. The second requirement that Lisa mentioned gives
rise to two laws, the functor laws.

F id = id

F (g · f ) = F g ·F f

Where do the equations live?
Lisa: In the category D .
Harry: This all reminds me of Haskell’s Functor class.

class Functor f where
map :: (a→ b)→ (f a→ f b)

Surely, this is related?
Lisa: This looks similar to the typing requirement.
Brooks: Type classes are Haskell’s approach to overloading. The
declaration simply expresses our intent that we wish to overload
the identifier map. A functor is really given by a datatype or a type
declaration, the object part, for instance,

data Maybe a = Nothing | Just a

and a Functor instance declaration, the arrow part,

instance Functor Maybe where
map f (Nothing) = Nothing
map f (Just a) = Just (f a)

We don’t have to use overloading, but it’s jolly convenient.
Lisa: I can see that the class ensures that the arrow part respects the
types, but I can’t see how it ensures that identity and composition
are preserved.
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Teacher: Yes, this is a missing proof obligation—the programmer
needs to convince themselves that the laws hold. What are the
categories here?
Brooks: Presumably just one: Haskell’s ambient category, the cat-
egory with Haskell types and functions as objects and arrows.
Lisa: Isn’t this a bit restrictive?
Harry: One world is enough. Why would we want more than
one category for programming? Anyway, looking at functors from
a programming language angle, is it fair to characterise them as
container types? So, F A is an F-container of A-elements . . .
Brooks: Yes, and if we continue this line of thinking, the functor
laws can be seen as program optimisations.

map id = id

map (g · f ) = map g ·map f

The second equation is actually known as map fusion; it allows us
to replace a double traversal by a single one.

[Bertrand joins in from the sidelines]
Bertrand: Ah, containers. So, in object-oriented terms, a functor F
can be thought of as a generic container type, and the arrow part
F f is an internal iterator.
Lisa: I’m not sure I follow. What’s an internal iterator?
Bertrand: Perhaps it would be easier if I showed you what I meant.
I’ll use Java in deference to the Eiffel-impaired.

interface Function〈T〉 {
void invoke (T x);
}
class Container〈T〉 {

void iterate (Function〈T〉 f ) {
// some kind of loop that applies
// f .invoke () to each element
}

}

The Container class is parametrised by a type, T , and offers a
method to apply a function to each element of the collection.
Since Java doesn’t have first-class functions like Haskell does, I’ve
created a new type, Function, for wrapping up a block of code.
Lisa: But since a functor F takes an arrow f : A→ B to an arrow
F f : F A→ F B, the output of the iteration shouldn’t be void: it
should be another Container of a different type.
Bertrand: Yes, but it’s fairly simple to create a Function that
constructs a new Container for you. This is more general.
Teacher: This is certainly one way to look at the concept of a
functor. However, as Lisa has suggested, this is only a limited view.
Remember, a categorical object is not necessarily a set, or an arrow
a function, or a type and a program, for that matter. What examples
of categories have we discussed previously?
Lisa: Every preorder can be seen as a category: the objects are the
elements of the preorder, and there is an arrow between two objects
if they are related by the preorder. This is a rather extreme example
though as there is at most one arrow between any two objects.
Teacher: So a functor between two preorders seen as categories—
Lisa: Is a monotone function! We discussed another extreme ex-
ample. Every monoid can be seen as a category: there is only one
object, and the arrows are the elements of the monoid. Since id is
the identity element, and the composition of arrows corresponds to
the product of the monoid, a functor will be a mapping that pre-
serves the monoid structure: a monoid homomorphism.
Teacher (smiling): Indeed. And how about a functor between a
preorder and a monoid. Consider the natural numbers. The less than

or equal relation ≤ is a preorder, and addition with zero forms a
monoid. Can you construct a functor between these categories?
Lisa: The object part is obvious as it must map every natural num-
ber to the dummy object of the monoid category: F n = •. It seems
as though the arrow part is often where the real action happens.
It must take an arrow between two natural numbers to an arrow
that represents a natural number. Moreover, to preserve identity and
composition, reflexivity must map to zero and transitivity must map
to addition. I’ll pick subtraction, or distance.

F (n≤ m) = m−n

Harry: Clever—and I can see how the laws hold.

F (n≤ n) = 0
F (n≤ m≤ o) = F (m≤ o)+F (n≤ m)

Lisa: If functors are mappings, then can we compose them?
Teacher: We can indeed. If we have two functors F : C → D and
G : D → E , we can compose them by composing their object and
arrow parts in the obvious way: (G ◦F) A = G (F A), (G ◦F) f =
G (F f ). And what might complement this?
Lisa: We can construct a functor Id : C → C , for any category C ,
that maps objects and arrows to themselves, Id A = A, Id f = f . This
satisfies the laws and is the identity for functor composition.
Teacher: So if functors can be composed and have an identity—
Harry: There’s a category of categories?
Lisa: Doesn’t this have the same problem as the set of all sets?
Teacher: Technically you are right, Lisa. However, we can avoid
size problems by restricting to small categories, which are cate-
gories where the collections of arrows and objects are both sets.
This category of small categories is called Cat.

Here’s a homework exercise for you: consider the category 1,
which has exactly one object and one arrow, the identity for that
object. Show that there is a unique functor from any category to 1.

Tuesday
Harry: I’d like to return to the programming language examples if
you don’t mind. I’ve been playing with monads lately and I’ve read
that every monad is a functor. I checked the requirements for the
reader monad and everything works out nicely:

type Reader r a = r→ a
instance Functor (Reader r) where

map f r = f · r

Teacher: That’s correct; go on . . .
Harry: I’ve noticed a library function called with

with :: (r′→ r)→ (Reader r a→ Reader r′ a)
with f r = r · f

that executes a computation in a modified environment. It’s almost
like a map, but the types aren’t quite right. Perhaps, we need
another concept. What about this?

class Opfunctor f where
opmap :: (b→ a)→ (f a→ f b)

I’ve taken the declaration from paper [9] on the reading list.
Teacher: Now I see what you mean. That’s an excellent example,
so let’s investigate. What happens if you pass with the identity?
Harry: Basically nothing, we have with id = id.
Teacher: If you first modify the environment using f and then
using g, how do the effects accumulate?
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Lisa: I’ve done a quick calculation. It’s similar to the second
functor law, except that the effects are flipped: with g ·with f =
with (f ·g). In a sense, everything is the wrong way round.
Teacher: The wrong way, or the opposite way . . . We can turn the
data into a functor—we don’t need a second concept—if we define
a category where everything is flipped. Specifically, the opposite
category C op has the same objects as C ; the arrows of C op are in
one-to-one correspondence to the arrows in C , that is, f op : A→ B :
C op if and only if f : B→ A : C .

A : C

A : C op
f : B→ A : C

f op : A→ B : C op

Identity and composition are defined flipwise.

idop = id

f op ·gop = (g · f )op

Ask yourself later what these rules and definitions also look like.
Harry: I don’t understand. Doesn’t that require that every arrow
in C has an inverse?
Teacher: No, this is just a different view on the same data. Think
of looking into a mirror.
Brooks: Or, think of a newtype declaration, where (−)op is the
newtype constructor.
Harry: Ah, I see. To me, it seems as though category theory is
overloading the function type arrow to mean different things?
Teacher: In a sense, yes. This is why we often write f : A →
B : C to make explicit that f is an arrow from A to B in the
category C . Before I forget, a functor of type C op → D or C →
Dop is sometimes called a contravariant functor from C to D , the
usual kind being styled covariant.
Bertrand: Contravariant? Ugh, I’ve been struggling with this for
years.
Brooks: If I recall correctly, variance in object-oriented languages
isn’t quite the same. In the case of functors we are talking about
the direction of arrows, while for object-oriented languages we are
really talking about the type hierarchy. Consider this example:

class A { }
class B extends A { }
A coA ();
B coB ();
void contraA (A x);
void contraB (B x);

We say coB’s type is a subtype of coA’s, as a B is also an A. In other
words, coB can be given coA’s type. This respects the subtype order
between A and B, so we say this is covariant.

However, contraA’s type is a subtype of contraB’s. We can use
a B in place of an A, so contraA can be given contraB’s type. The
order has reversed, so we say it’s contravariant.

You must follow these rules when you override a method, so
that the new method’s type is at least as general as the old one.
This reflects the principle that preconditions should only ever be
made more general, while postconditions should only be made
more specific.
Teacher: The concepts are more closely related than you might
think. In a type hierarchy, there are implicit functions to convert
from a subtype to a supertype. We call these ‘inclusion arrows’.
Covariance and contravariance in object-oriented languages refers
to whether the functor that constructs the type is covariant or
contravariant with respect to the inclusion arrows.
Bertrand: Eiffel avoids this nonsense: the subclass always deals in
subclasses of what the superclass used.

Harry: But then what happens when you substitute in a subclass
where a superclass was used before?
Bertrand: Erm . . .

[There is a brief period of silence.]
Teacher: I think we are out of time for today. Before you all go,
I’d like to set an exercise. Recall that we write the set of all arrows
from A to B in a category C as C (A,B). Try to turn this into a
functor from C to Set, the category of sets and functions. You
should find that there are two ways of doing this: one that results
in a covariant functor, and another that results in a contravariant
functor.

Wednesday
Harry: I’ve got a question that follows on from yesterday . . .
Teacher: Sure, go ahead!
Harry: So far we have concentrated on container types—this is
still my preferred way to look at functors—with one parameter. But
in Haskell, datatypes may have an arbitrary number of arguments.
Actually, Reader is an example of a datatype with two arguments.
Don’t we need a generalisation of the concept of a functor to
accommodate for that? For instance, binary functors

class Bifunctor f where
bimap :: (a→ b)→ (c→ d)→ (f a c→ f b d)

Again, I’ve taken the declaration from paper [3] on the reading list.
Teacher: OK. What properties would you expect?
Harry: Well, just two argument versions of the two functor laws:
bimap id id = id and bimap (g1 · f1) (g2 · f2) = bimap g1 g2 ·
bimap f1 f2. [Smiles.] The laws were actually listed in the paper.
Lisa (getting slightly excited): Indices, ugly. But couldn’t we play
the same trick as we did for contravariant functors; introducing a
new category, I mean?
Teacher: Have a go!
Lisa: An object would consist of two objects and an arrow would
consist of two arrows, but I’m not sure about the details.
Teacher: That was a good attempt. The category you are thinking
of is called the product category. Like the opposite category, it’s a
construction on categories: it takes two categories, say, C and D
to another category, written C ×D . A little Gedankenexperiment
might help you with the details. Assume that we’ve succeeded
in turning C ×D into a category. Then we might wish for two
projection functors, Outl : C ×D → C and Outr : C ×D → D
that retrieve the original categories.
Harry: Isn’t their definition pretty obvious?

Outl (A,B) = A Outr (A,B) = B

Outl (f ,g) = f Outr (f ,g) = g

Lisa: Yes, but the question is, what does this imply? Let’s see; Outl
and Outr have to respect the types.

P : C ×D

Outl P : C

p : P→ Q : C ×D

Outl p : Outl P→Outl Q : C

P : C ×D

Outr P : D

p : P→ Q : C ×D

Outr p : Outr P→Outr Q : D

So this fixes the types of the arrows in the product category?
Teacher: Indeed. We’ve derived the first half of the official defini-
tion of a product category. Let C and D be categories. An object
of the product category C ×D is a pair (A,B) of objects A : C
and B : D ; an arrow of (A,B)→ (C,D) is a pair (f ,g) of arrows
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f : A→ C : C and g : B→ D : D .
A : C B : D

(A,B) : C ×D

f : A→ B : C g : C→ D : D

(f ,g) : (A,C)→ (B,D) : C ×D

How do we define identity and composition?
Lisa: Well, so far we haven’t made use of the fact that Outl and
Outr have to preserve identity and composition.

Outl id = id Outr id = id

Outl (q ·p) =Outl q ·Outl p Outr (q ·p) =Outr q ·Outr p

Harry (enlightened): Aha, this implies that the identity in C ×
D is a pair of identities and that composition composes the two
components in parallel.
Teacher: Yes, they are defined componentwise:

id = (id, id)

(h,k) · (f ,g) = (h · f ,k ·g)
Product categories avoid the need for functors of several arguments.
Functors from a product category are often called bifunctors.
Harry: So all together, may I conclude that Reader is a functor of
type H op×H →H , where H is Haskell’s ambient category?
Teacher: Yes, that’s right.
Lisa: Stop, stop, stop. I don’t see this at all! If I understand cor-
rectly, Reader r a is a covariant functor if we fix r, and it’s a con-
travariant functor if we fix a. Are we really able to conclude that
it’s also a bifunctor?
Teacher: That’s a very insightful remark. In general, two functors
don’t make a bifunctor, if you see what I mean. Assume that we
have a bifunctor⊗ : C ×D→ E , which we’ll write infix for clarity.
If we fix the first argument, we obtain another functor and likewise
for the second: A⊗− : D → E and −⊗B : C → E .
Brooks: Ah, operator sections.
Teacher: Oh, sorry; but I hope the notation is clear. Back to the
topic. The converse is not true: if A⊗− : D → E is a functor for
each A : C , and −⊗B : C → E is a functor for each B : C , then ⊗
isn’t necessarily a bifunctor. Why?
Lisa: So the object part of ⊗ is given, but not the arrow part? The
only option to define the latter is to compose the unary functors
A⊗− and −⊗B. Let f : A→ A′ : C and g : B→ B′ : D , then

f ⊗g = (A′⊗g) · (f ⊗B) (1)

Identity is preserved, but I’m not so sure about composition . . .
[Lambert senses an opportunity to contribute.]

Lambert: Let’s calculate, with f ′ : A′→ A′′ and g′ : B′→ B′′.

(f ′ · f )⊗ (g′ ·g)
= { definition of ⊗ (1) }

(A′′⊗ (g′ ·g)) · ((f ′ · f )⊗B)

= { B⊗− functor and −⊗C functor }
(A′′⊗g′) · (A′′⊗g) · (f ′⊗B) · (f ⊗B)

Starting at the other end, we obtain

(f ′⊗g′) · (f ⊗g)

= { definition of ⊗ (1), twice }
(A′′⊗g′) · (f ′⊗B′) · (A′⊗g) · (f ⊗B)

To be able to connect the loose end we have to assume

(A′′⊗g) · (f ′⊗B) = (f ′⊗B′) · (A′⊗g) (2)

Teacher: Excellent. To define the bifunctor we can apply the unary
functors in any order. The coherence condition (2) demands that the
order does not matter, so we can take either side as the definition.

Harry: Here, I find a little diagram always helps me:

A⊗B
A⊗g //

f ⊗B
��

f ⊗g
%%

A⊗B′

f ⊗B′
��

A′⊗B
A′⊗g

// A′⊗B′

Lisa: OK, I’m much happier now. By the way, Reader passes the
coherence check, so yes, it is a bifunctor.
Teacher: Here is a homework exercise for you: conduct a Gedanken-
experiment to discover the structure of a coproduct category, as-
suming functors Inl : C → C +D and Inr : D → C +D .

Thursday
Harry: In Haskell, datatypes may have parametric types as argu-
ments, if that makes sense. No? OK, I’d better give an example.

data Rose f a = Node a (f (Rose f a))

This defines a general tree type where we’ve abstracted away from
the subtree structure: f is a container type, so a tree node consists
of an a-label and an f -structure of subtrees.
Teacher: Are you suggesting that f is a functor?
Harry: Possibly; at least, I need to make this assumption when
defining the functor instance for Rose.

instance (Functor f )⇒ Functor (Rose f ) where
map f (Node a ts) = Node (f a) (map (map f ) ts)

I’m tempted to conclude that Rose is a higher-order functor, a
functor of type (H →H )→ (H →H ).
Lisa: This doesn’t make any sense as H →H is not a category!
Harry (disappointed): Too bad.
Brooks: In Haskell, the type of a type is described using the kind
system. The type Rose has kind (∗→ ∗)→ (∗→ ∗). Maybe Harry
is on the right track after all.
Teacher: Well, we can unloose the Gordian Knot if we manage
to turn H →H into a category. So, let’s do that! Generalising
slightly, the task is to impose categorical structure on C → D .
Actually, to avoid confusion, we should use a different notation for
this category: DC is standard.
Lisa: The objects of DC are certainly functors—
Harry: And functors compose; we are done!
Lisa: No, no. We need to find out what the arrows are—they need
to compose, not the objects.
Harry (flushes a bit): Yes, you are right.
Teacher: Let’s conduct another Gedankenexperiment. Assume that
we’ve succeeded in turning DC into a category. The next logical
step would be to turn functor application into a functor.
Harry: Functor application’s a functor? My brain just exploded . . .
Lisa (pondering): Let’s first make the categories explicit, after all,
a functor is a mapping between two categories. Functor application
has type DC ×C →D . . . so functor application is a bifunctor.
Harry: I guess you are telling me that we should apply what we
learnt yesterday about bifunctors?
Lisa: Harry, that’s brilliant; we simply start at the other end by
turning F− : C →D and − A : DC →D into unary functors—
Harry: And then check the coherence property for bifunctors!?
Your notation is strange: is it derived from F A, applying F to A?
Lisa: That’s right. Now, F − : C → D is just F, so this is a
functor by definition. The second one, − A : DC →D , looks more
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interesting. To be able to turn it into a functor, DC has to be a
category. Perhaps this tells us something about the arrows of DC ?
Remember, functors have to respect the types:

F : DC

F A : D

α : F→ G : DC

α A : F A→ G A : D

This suggests that an arrow α : F→ G in DC sends an object A
of C to an arrow α A : F A→ G A in D .
Harry: That’s not very informative if you ask me.
Lisa: Because we’ve not yet applied the force of functoriality. The
functor − A also has to preserve identity and composition.

id A = id

(β ·α) A = β A ·α A

We can take these equations as the definitions of identity and
composition in DC !
Harry: That’s all? An arrow in DC sends an object to an arrow,
and identity and composition are defined ‘pointwise’?
Lisa: Not quite. As you’ve pointed out, we also have to check the
coherence condition. Let’s see. If α : F→ G and f : A→ B, then

G f ·α A = α B ·F f

Harry: OK. Let me try to get this straight in my head: F and G
are container types; α transforms F-containers into G-containers.
The coherence condition says that we can either map f over the F-
structure and then transform, or transform first and then map f over
the resulting G-structure.
Teacher: I continue to be impressed! You have just discovered the
concept of a natural transformation. That’s the official term for
the arrows in DC . The category itself is called a functor category,
because the objects are functors. Let me summarise.

Let F,G : C → D be two parallel functors. A transformation
α : F→ G is a collection of arrows, so that for each object A : C
there is an arrow α A : F A → G A : D . A transformation is a
mapping from objects to arrows. The transformation α is natural,
α : F→̇G, if

G h ·α A = α B ·F h (3)
for all arrows h : A→ B : C . Given α and h, there are essentially
two ways of turning F A things into G B things. The coherence
condition (3) demands that they are equal.

F A F h //

α A
��

F B

α B
��

G A
G h
// G B

With natural transformations idF : F→̇F, α : F→̇G, and β : G→̇H,
identity and composition are defined pointwise:

idF A = idF A

(β ·α) A = β A ·α A

Thus, functors of type C →D and natural transformations between
form the functor category DC .

F : C →D

F : DC

α : F→̇G

α : F→ G : DC

Harry: Let’s get back to my example, rose trees. Just to be clear,
the arrow part of Rose has to send natural transformations to natural
transformations. But how I would capture this in Haskell?
Teacher: As a first approximation you can equate natural transfor-
mations with polymorphic functions.

Harry (starts typing): Of course! So the arrow part of Rose is a
rank-2 function, as it takes a polymorphic function as an argument.

class Hofunctor h where
homap :: (∀a . f a→ g a)→ (∀a . h f a→ h g a)

instance Hofunctor Rose where
homap α (Node a ts) = Node a (map (homap α) (α ts))

This doesn’t quite work, the compiler complains about a missing
Functor g instance. Swapping map (homap α) and α,

instance Hofunctor Rose where
homap α (Node a ts) = Node a (α (map (homap α) ts))

results in a missing Functor f instance.
Brooks: The type of homap is too strong. You will need to assume
that f and g are functors.

class Hofunctor h where
homap :: (Functor f ,Functor g)⇒

(∀a . f a→ g a)→ (∀a . h f a→ h g a)

[Peeks over Harry’s shoulder.]
Incidentally, the error message suggests a fix along those lines.
Teacher: Excellent. That wasn’t quite what I intended to cover
today, but I think it was a very good discussion nonetheless. To
wrap up, the parametric type Rose can indeed be seen as a functor,
a functor of type H H → H H . Again, the important point is
that a new concept isn’t needed: Harry’s hofunctor, a contraction of
the unwieldy term higher-order functor, I suppose, is just a functor
between functor categories. You can find a similar type class in
paper [6] on the reading list.

Before you run away, here is a homework exercise for you: use
the characterisation of bifunctors to turn functor composition into
a functor of type E D ×DC → E C .

Friday
Harry: I guess it’s me kicking off the discussion again; I’m not
sure I’ve fully digested the idea of functor application as a functor.
Teacher: Well, we haven’t actually spelled out its definition. Per-
haps this is a good opportunity to close the gap. Maybe it’s also
helpful to introduce an explicit operator for the ‘functor applica-
tion’ functor, say ?. Happy with that?
Harry: Not really. What’s the difference between F A and F?A?
Lisa: The former is standard notation—well, at least in FP—for
applying a mapping to an argument. A functor consists of two
mappings; in F A the object part of F is applied to an argument,
the object A. By contrast, in F ?A the functor F is an argument,
the mapping is ?, a functor whose object part is applied to two
objects: F, which is an object in a functor category, and the object A.
Harry: Thanks, Lisa; let me try to work out the typing rules.

F : DC A : C

F?A : D

α : F→ G : DC f : A→ B : C

α? f : F?A→ G?B : D

Teacher: Excellent. And how are you going to define ??
Lisa: The object part is clear: we apply the functor to the object.
For the arrow part, we build on the characterisation of bifunctors,
using either side of the coherence condition (3).

F?A = F A

α?h = G h ·α A = α B ·F h (4)

Harry: OK, now I see the difference between F?A and F A.
Brooks: We’ve covered functor application, but is there also such
a thing as functor abstraction?
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Harry: Abstraction as the inverse of application?
Teacher: The notion of an inverse isn’t quite appropriate: you
can’t recreate function and argument from the result of a function
application. But application has what is sometimes called a quasi-
inverse. Specialised to functors: for each functor F : C ×D → E
there exists a functor Λ F : C → E D such that

F (A,B) = G A?B

F (f ,g) = G f ?g

}
⇐⇒ Λ F= G (5)

for all G : C → E D . So Λ turns a bifunctor into a hofunctor.
Actually, this should appeal to you, Brooks, it’s called currying.
Brooks: You mean currying as in turning a function of two argu-
ments into a function of the first argument whose values are func-
tions of the second argument?
Teacher: Exactly, but on the level of functors.
Harry: But then the definition of Λ F is straightforward, isn’t it:
Λ F A B = F (A,B) and Λ F f g = F (f ,g).
Teacher: Not quite, Λ F has to be functorial, but also Λ F A. Let’s
spell out the categories involved.

A : C

Λ F A : E D

f : A→ A′ : C

Λ F f : Λ F A→Λ F A′ : E D

Lisa: In the arrow part, Λ F f is a natural transformation that sends
an object of D to an arrow in E . What about Λ F f B = F (f , idB)?
Teacher: Looks good to me. And the object part?
Lisa: Because Λ F A, in turn, has to be a functor, it consists of an
object and an arrow part.

B : D

Λ F A B : E

g : B→ B′ : D

Λ F A g : Λ F A B→Λ F A B′ : E

For the object part we can actually use Harry’s original definition:
Λ F A B = F (A,B). And the arrow part is Λ F A g = F (idA,g).
Harry: Yikes, this is complicated.
Teacher: Let’s bring the definitions all together.

Λ F A B = F (A,B)
Λ F A g = F (idA,g)
Λ F f B = F (f , idB)

To see what’s what, it’s helpful to name the intermediate functors.

Λ F= G where

G A = H where
{
H B = F (A,B)

H g = F (idA,g)

G f B = F (f , idB)

(6)

So Λ sends F to G, which in turn sends A to H. A number of
proof obligations arise: we have to show that G f is natural and
that G and H preserve identity and composition. The proofs are all
straightforward but I encourage you to go through the details. And
you should check that (5) holds.

[Someone wanders in, having misread the room number.]
Olivier: Uhh, is this the tutorial on “Lambda Calculus and Types”?
Wasn’t that last term?

Saturday
Teacher: We’ve covered quite a lot of material over the week, so
maybe we could do with a brief recap. On Monday we introduced
Cat, the category of all small categories and functors between
them. In a sense, we spent the following days exploring its struc-
ture. On Wednesday, we introduced product categories, and then
functor categories on Thursday. The upshot is that Cat is a so-called
Cartesian-closed category, CCC for short. (As an aside, Wednes-
day’s homework exercise asked you to define coproduct categories,

so Cat is actually bicartesian closed.) We’ll take a closer look at
Cartesian closure in the weeks ahead, but for now, I’ll just say that
Cartesian-closed categories are intimately related to simply-typed
lambda calculi.
Harry (grins): So Olivier wasn’t confused yesterday, just lost.
Teacher (serious): No, not at all. We can interpret a simply-typed
lambda term in a Cartesian-closed category. In general, the inter-
pretation of a λ-term is an arrow from the interpretation of its free
variables to the interpretation of its type.
Lisa: If we pick Cat as the target category, then we can see a λ-term
as a functor?
Teacher: Exactly. The slogan is: a λ-term is a functorial in its free
variables. Let’s have a look at some examples. As a warm-up, what
functor is this?

x : C ` x : C

Harry: Aah, I remember this from “Lambda Calculus and Types”.
The sentence x1 : T1, . . . ,xn : Tn ` e : T says that if x1 has type T1
and so forth, then e has type T . But now, e denotes an object and T
a category, is that right?
Lisa: Seems like it. So, the λ-term x : C ` x : C presumably denotes
the identity functor Id : C → C , assuming that C is the interpreta-
tion of C.
Teacher: OK, how about . . .

g : D→ E, f : C→ D ` λ x . g (f x) : C→ E

Harry: So, C→ E has to be interpreted as a category?
Lisa (excited): Ooo, this is about what we did on Thursday, when
we introduced functor categories to be able to give a meaning to
higher-order functors. In which case, your λ-term is a functor of
type E D ×DC → E C . Functor composition?
Teacher: Bingo!
Harry: Wait, we had ‘functor application’ as a functor and now we
have ‘functor composition’ as a functor?
Teacher: That’s right. But before we go any further, I’d like to point
out why the simply-typed λ-calculus is so convenient for describing
functors. In a sense, we only describe the action on objects and get
the action on arrows for free.
Harry: So what is the action of functor composition on arrows?
Lisa: First of all, functor composition acts on two natural trans-
formations—those are the arrows in a functor category. But the
definition . . . I reckon we have to combine functor abstraction and
functor application. Let’s break it down and consider the body of
the λ-abstraction first. The typing rule for λ-abstraction

Γ,x : t ` e : u
Γ ` λ x . e : t→ u

suggests that we have to consider

g : D→ E, f : C→ D,x : C ` g (f x) : E

The interpretation of g (f x) is then a functor B with B (β,α,h) =
β?(α?h), functor application nested . . . but I’m not quite sure how
to interpret the λ-abstraction.
Harry: We’ve got to move a type from the left side to the right
. . . can’t we use currying?
Lisa: Of course! So the interpretation of λ x . g (f x) is just Λ B.
Using the definition of currying (6), we have Λ B = C where
C (β,α) A = β? (α? idA).
Teacher: Well done, you made it. If we use infix notation for
functor composition, then this translates to

(β◦α) A = β? (α? idA)
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where α : F→̇H and β : G→̇K. Generalising slightly, we have

(β◦α)?h = β? (α?h)

which nicely relates functor composition and functor application.
Lisa: Hmm, functor composition as a functor was Thursday’s
homework, and I ended up with a different definition. Using the
characterisation of bifunctors I looked at G◦− and −◦F. Starting
out, it wasn’t clear that these were really functors. For the action
on arrows I defined (G ◦α) A = G (α A) and (β ◦F) A = β (F A)
and everything worked out nicely. The coherence condition (2)
followed from naturality, so I concluded

β◦α= (K◦α) · (β◦F) = (β◦H) · (G◦α)

G◦F G◦α //

β◦F
��

β◦α
##

G◦H

β◦H
��

K◦F
K◦α

// K◦H

Lambert: Calculemus igitur.

β? (α? idA)

= { definition of functor application (4) }
β? (α A ·F idA)

= { F functor }
β?α A

= { definition of functor application (4) }
β (H A) ·G (α A)

= { definition of G◦− and −◦H, see above }
(β◦H) A · (G◦α) A

= { composition of natural transformations }
((β◦H) · (G◦α)) A

Consequently, β? (α? idA) = (β◦H) · (G◦α) as desired.
Harry: Hold up, I thought we already had a way to compose
natural transformations, β ·α?
Teacher: Let’s have a look at the typing rules:

G : E D F : DC

G◦F : E C

β : G→ K : E D α : F→ H : DC

β◦α : G◦F→ K◦H : E C

As you can see, the natural transformations α and β are in different
functor categories. Before, we were composing natural transforma-
tions in the same functor category. The natural transformation β ·α
is sometimes called the vertical composition of α and β, while β◦α
is the horizontal composition. We can easily see the relationship be-
tween them if we write the following equation in 2D:

(β1 ◦α1)
·

(β2 ◦α2)
=

β1
·
β2

◦
α1
·
α2


This is known as the abide law (above and beside), and follows
from the functoriality of ◦. (A little Bird told me about this law.)
Brooks: So, if any λ-term can be considered a functor, what about
Haskell types? In Haskell, we can apply any type constructor to
any type. We can only abstract types by creating a definition,
but this isn’t much of a restriction. We could implement functor
composition in Haskell like so:

type (f ◦g) a = f (g a)

So, can we always turn a Haskell type constructor into a functor?

Teacher: Almost. First of all, we can add constants to the simply-
typed lambda calculus to model the datatype features of the pro-
gramming language at hand. We only have to be able to interpret
these constants as functors. However, with regards to Haskell there
is a caveat. Consider the following definition:

type R a = Reader a a

Recall the Reader functor from Tuesday and Wednesday, which
we know is a bifunctor of type C op×C → C . It would seem that,
since we are simply applying this to some arguments, we should
have a functor. We could try to define the action on arrows in terms
of Reader like so:

R f = Reader f f
However, since Reader takes one arrow from C and one from C op,
this is only defined for arrows that are in both C and C op: the
invertible arrows.

The problem is that Haskell’s kind system doesn’t distinguish
between the categories H and H op. However, any Haskell type
that is formed from purely covariant operations is functorial.
Harry: What about product types and sum types? Can we model
those as functors?

data Product a b = Pair a b
data Sum a b = Left a | Right b

Teacher: We can model product and sum types with categorical
products and coproducts, which are roughly analogous to the Carte-
sian product and disjoint union of sets. So for Haskell we would
need to include, say, × and + as constants in our calculus. Then
Product and Sum correspond to

a : C,b : C ` a×b : C

a : C,b : C ` a+b : C

We’ll be talking about products and coproducts in later weeks.
Lisa: Just one quick question before you move on: are products and
coproducts related to the product and coproduct categories?
Teacher: They are: the product category is the categorical product
in Cat, and similarly for the coproduct category.
Harry: What about recursive datatypes?

data Tree a = Nil | Fork a (Tree a) (Tree a)

Teacher: We can think of a recursive datatype as being the fixed
point of a functor. There are actually two ways to define such a
fixed point: initial algebras and final coalgebras. Again, we’ll get
to this in the coming weeks.

I’d like to hold an optional tutorial tomorrow where we look at
an application of all this theory. I have some ideas, but please let
me know if you want to look at anything in particular.

Sunday
Teacher: I’m delighted that you’re all back for more today. I
promised to look at an application for today and Harry suggested
the printf function. Harry, why don’t you start us off?
Harry: The challenge is to define a type-safe version of C’s printf
function, which takes a variable number of arguments.

[Harry types out some examples on his laptop.]

>>printf nil
""
>>printf int 4711
"4711"
>>printf (string♦ int) "Eau de Cologne: " 4711
"Eau de Cologne: 4711"
>>printf (lit "Eau de Cologne: "♦ int) 4711
"Eau de Cologne: 4711"

Functional Pearl: F for Functor 7 2012/3/14



There’ve been a few variations on a typed printf , and one approach
is to model the directives as values of type F String, where the func-
tor F specifies whether further arguments are expected or not [4].

int :: (Reader Int) String
int n = show n
string :: (Reader String) String
string s = s
lit :: String→ Id String
lit s = s

For string, the functor is Reader String, which specifies that an
additional argument of type String is required. In contrast, lit s has
type Id String, which means that nothing further is expected.

The directives are concatenated with ♦, which has an intriguing
type and definition.

nil :: Id String
nil = ""

infixr♦
(♦) :: (Functor g,Functor f )⇒

g String→ f String→ (g◦ f ) String
x♦ y = map (λ s→ map (λ t→ s++ t) y) x

The operator composes the two functors and at the same time
concatenates the strings. For this to all make sense, we need to show
that ♦ is associative with nil as its neutral element.
Teacher: OK. First of all, let me forewarn you: this might get
tricky, so don’t expect to digest everything in one go. Second, I’d
like to generalise the problem slightly—this will make the problem
easier, not harder. The idea is to separate the monoid operations, ""
and ++, from the structural operations:

unit :: Id ()
unit = ()

(~) :: (Functor g,Functor f )⇒ g a→ f b→ (g◦ f ) (a,b)
x~ y = map (λa→ map (λb→ (a,b)) y) x

I’ve turned ♦ into a polymorphic function ~, which pairs the data.
As an example, if g and f are lists, then ~ is the cross product.

>> [’A’ . .’D’ ]~ [0 . .2]
[[(’A’,0),(’A’,1),(’A’,2)], [(’B’,0),(’B’,1),(’B’,2)],
[(’C’,0),(’C’,1),(’C’,2)], [(’D’,0),(’D’,1),(’D’,2)]]

I hope everyone can see how to define ♦ in terms of ~: if a and b
are strings, then we map string concatenation over g ◦ f . So now
we’ll show that ~ is associative with unit as its neutral element.
Harry: Hmm, I don’t see how we’re going to turn ♦ or ~ into
category theory. The two occurrences of map are strangely nested.
Teacher: Yes, there’s a subtle problem with the definition of ~:
the function that’s passed to the inner map refers to the variable a,
which is bound at an outer scope. So, we can’t translate this into
the first-order language of category theory, unless we make some
additional assumptions.
Lisa: The right-hand side of ~’s definition looks like a standard λ-
term to me. We discussed yesterday that we can interpret a λ-term
in a Cartesian-closed category. Is this the additional assumption?
Teacher: That’s a good point. The infrastructure of a CCC gives us
the machinery for manipulating environments, but that alone isn’t
going to cut it. Loosely speaking, the plumbing of environments
also has to work across functors, yet g and f are nothing special.
Harry: How special do they need to be?
Teacher: One approach is to assume a broadcast operation bcl :
F A×B→ F (A×B), which broadcasts its second argument over
its first. This has to work for all A and B, so we require bcl to be
natural in A and B.

Harry: bc like the BBC?
Teacher (chuckling): Yes, and l to indicate that the F-structure is
on the left. (As an aside, bcl is also called tensorial strength.)
Harry: In Haskell I’d write:

bcl :: (Functor f )⇒ (f a,b)→ f (a,b)
bcl (s,b) = map (λ a→ (a,b)) s

Teacher: That’s exactly the point. The function passed to map
refers to the variable b, which is bound at an outer scope.
Harry: Aah, I see.
Lisa: Sorry, I’m a bit slow; I’m still pondering about the naturality
requirement. I can see that bcl’s source and target type are functo-
rial in A and B—we can express both as λ-terms, which as we know
are functorial in their free variables. This would imply that bcl is a
natural transformation between bifunctors, a binatural transforma-
tion? Is there more to it—like coherence for bifunctors?
Teacher: Good point. Fortunately, the situation is a lot simpler
for ‘binatural transformations’: a transformation is natural in two
arguments if and only if it’s natural in each argument separately.
Can someone state the naturality condition for bcl?
Harry: What about this?

F (h× k) ·bclF = bclF · (F h× k)

In the tradition of Haskell, I’ve omitted the type arguments of bclF.
Lisa: Yes, and the functor laws imply that this equation is equiva-
lent to these two

F (h×B) ·bclF = bclF · (F h×B) (7)
F (A× k) ·bclF = bclF · (F A× k) (8)

which capture naturality in one of the arguments. Thanks!
Teacher: Now, to define ~ it’ll be handy to also have an operation
that broadcasts to the right: bcr : A× F B→ F (A×B). One can
be defined in terms of the other: bcr = F swap · bcl · swap, where
swap : A×B ∼= B×A is the isomorphism that swaps a pair. We’ll
rename ~ to com; who wants to have a go?
Lisa: Let’s see. We are given a pair of structures F A×G B. The
only thing we can really do is to broadcast G B over F A, which
gives F (A×G B), and then broadcast A over G B, within F. So,

comF,G : F A×G B→ (F◦G) (A×B)

comF,G = F bcrG ·bclF (9)

I’ve added F and G as subscripts as a substitute for Haskell’s
overloading. By the way, here we’re making use of the fact that
the broadcasts are natural. Furthermore, comF,G inherits naturality:
it’s natural in A and B, as well.
Harry: Why can’t we do it the other way round? First broadcast
F A over G B . . . No, then the functors come out in the wrong order.
Teacher: For completeness, here’s the categorical definition of
unit—recall that 1 is the counterpart of Haskell’s unit type ().

unit : 1→ Id 1
unit = id1

Lisa: Comparing nil and ♦ with unit and ~, aka com, it seems
that we’ve replaced the String monoid by a monoid on the level of
objects: × is associative with 1 as its neutral element.
Teacher: Yes, but we have to be careful to pick the right notion of
equality: (A×B)×C is not the same object as A× (B×C), rather
the two objects are isomorphic. We have

λ : 1×A∼= A (10)
ρ : A×1∼= A (11)
α : (A×B)×C ∼= A× (B×C) (12)
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All of these have to be natural isomorphisms. Sorry for the Greek
letters, but they’re all standard: lambda cancels the unit of the left,
rho on the right, and alpha is the associative law.
Lisa: So com is only associative modulo these isomorphisms?
Teacher: Correct. We have to add the isomorphisms at the appro-
priate places, but it’s only slightly inconvenient. Here are the de-
sired properties of unit and com: the unit and associative laws.

F λ · comId,F · (unit× id) = λ (13)

F ρ · comF,Id · (id×unit) = ρ (14)

(F◦G◦H) α · comF◦G,H · (comF,G× id)

= comF,G◦H · (id× comG,H) ·α
(15)

If the isomorphisms λ , ρ and α were identities, then we’d simply
write comId,F · (unit× id) = id, and so forth.
Harry: These laws look a lot more daunting than the laws of
the String monoid: ""++ s = s, s++ "" = s and (s++ t) ++ u =
s++(t++u).
Teacher: It’s possibly helpful to draw the corresponding diagrams.

1×F A
λ

unit×id
��

F A

F λ

Id 1×F A
comId,F

// (Id◦F) (1×A)

F A×1
ρ

id×unit
��

F A

F ρ

F A×Id 1
comF,Id

// (F◦ Id) (A×1)

(F A×G B)×H C
α

comF,G×id
��

F A×(G B×H C)

id×comG,H
��

((F◦G) (A×B))×H C

comF◦G,H
��

F A×((G◦H) (B×C))

comF,G◦H
��

(F◦G◦H) ((A×B)×C)

(F◦G◦H) α

(F◦G◦H) (A×(B×C))

I always find the type information invaluable. By the way, the
double lines in the diagram indicate isomorphism, not equality. I
wanted to avoid drawing long twiddles ∼.
Harry: In a sense, these conditions are similar to the coherence
condition for bifunctors. There are two ways of turning three struc-
tures (F A×G B)×H C into the nested structure (F ◦G ◦H) (A×
(B×C)). The associative law expresses that both paths lead to the
same result.
Teacher: That’s a very insightful remark. Category theory has been
characterised as coherently constructive lattice theory [2]. So yes,
the laws can be seen as coherence requirements. Let’s have a crack
at the proofs, shall we?
Lisa: Hmm, it seems to me that we are missing some assumptions:
coherence conditions for bcl and bcr.
Teacher: Have a go.
Lisa: I would expect stripped-down versions of the unit laws and
the associative law (15). Since F A×1∼= F A, broadcasting the unit
type should be a no-op. Since (F A×B)×C ∼= F A× (B×C), a
nested broadcast of first B and then C, should be equivalent to a
single broadcast of B×C.

F ρ ·bclF = ρ (16)
F α ·bclF · (bclF× id) = bclF ·α (17)

(F A×B)×C
α

bclF×id
��

F A×(B×C)

bclF

��

F (A×B)×C

bclF ��
F ((A×B)×C)

F α
F (A×(B×C))

F A×1

bclF
��

ρ

**
F A

F (A×1) F ρ

55

Harry: And for bcr we swap the laws around.

F λ ·bcrF = λ (18)
F α ·bcrF = bcrF · (id×bcrF) ·α (19)

1×F A

bcrF
��

λ

tt
F A

F (1×A)F λ

ii

(A×B)×F C
α

bcrF

��

A×(B×F C)

id×bcrF��
A×F (B×C)

bcrF��
F ((A×B)×C)

F α
F (A×(B×C))

Teacher: Well done. It will also be convenient to have a ‘mixed’
associative law.

F α ·bclF · (bcrF× id) = bcrF · (id×bclF) ·α (20)

(A×F B)×C
α

bcrF×id
��

A×(F B×C)

id×bclF��
F (A×B)×C

bclF ��

A×F (B×C)

bcrF��
F ((A×B)×C)

F α
F (A×(B×C))

To summarise, the broadcast operations have to be natural and they
have to satisfy unit and associative laws. The two operations are
interdefinable. Likewise, the laws for bcr follow from the laws for
bcl and vice versa. The ‘mixed’ law is a consequence of either.
Lisa: Going back to the original problem, shouldn’t we check that
the functors involved do indeed support broadcast?
Teacher: Absolutely. Just take my word for it that Reader A does—
a precise argument would lead us astray. I’ll leave it to you to check
the identity functor and functor composition.
Lisa: Well, Id is straightforward, we pick the identity for bclId :
Id A×B→ Id (A×B). For composition, we need to assume that
the to-be-composed functors have broadcasts, then we can define
bclF◦G in terms of bclF and bclG.

bclId = id (21)
bclF◦G = F bclG ·bclF (22)

bcrId = id (23)
bcrF◦G = F bcrG ·bcrF (24)

Lambert: Interesting. We defined com in terms of bcl and bcr.
The symmetric com seems to generalise the asymmetric broadcasts.
Using (21) and (23), we can actually make this precise: comF,Id =
bclF and comId,F = bcrF. Furthermore, the unit laws for com, (13)
and (14), are immediate consequences of the unit laws for the
broadcasts, (16) and (18).
Lisa (animated): Similarly, the three associative laws, (17), (19)
and (20), are instances of the associative law for com (15)! We
simply instantiate two out of three functors to the identity functor.
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Teacher: That’s a brilliant observation. There is indeed something
more general going on. The broadcast bclF can be seen as a family
of natural transformations, indexed by the functor F. Your observa-
tions suggest that these instances are not independent of each other,
bcl is what is called a polytypic or datatype-generic operation. If
you’d like to investigate this further, then I heartily recommend pa-
per [5] from our reading list. (There bcl is identified as a special
case of a more general operation called zip.)
Lambert (sweating): I’ve just completed the proof of the associa-
tive law (15). It’s somewhat longish, but mostly straightforward. It
would have even been longer, if I’d spelled out every single appli-
cation of the functor laws.

[Proof reproduced in Figure 1 with Lambert’s kind permission.]
Harry: I’m so impressed; I couldn’t have come up with this.
Lambert: Well, there is a clear strategy: we have to move the
isomorphism α from the left to the right. The three associative laws
are the only means to accomplish this. At some points we have to
appeal to naturality to make progress.
Teacher: No need to despair, Harry. There is actually a very sys-
tematic approach. The associative law states that the two ways of
transforming (F A×G B)×H C into (F◦G◦H) (A× (B×C)) us-
ing com are equivalent. However, using the primitive operations bcl
and bcr there are actually a lot more possibilities. I’ve prepared a
little commutative diagram that details the various ways.

[The Teacher distributes the diagram reproduced in Figure 2.]
Recall that a diagram commutes if all of its inner polygons com-
mute. For instance, the hexagon labelled Â is an instance of the
mixed associative law (20). Or as another example, Ä is a natural-
ity square (7), which amounts to saying that the two rewrites are
independent of each other.
Lisa: It’s actually not too hard to relate the commutative diagram
to Lambert’s proof. I’ve added references to some of the steps, the
remaining ones only plug in definitions.
Teacher (peeks at his watch): OK. I think it’s time to wrap up. I’d
like to use the remaining half an hour to put today’s findings into
perspective. I noticed that you’ve all fallen in love with the ‘functor
application’ functor. [Harry sighs.] What we’ve just shown is that
this functor is also a monoidal functor.
Harry: A what?
Teacher: A monoidal functor is one between monoidal categories.
So what is a monoidal category? A category with a bit of extra
structure, a monoid on the object level: an object N and a bifunc-
tor⊕ that is associative with N as its neutral element. Can someone
provide an example?
Harry: Well, Haskell’s ambient category with the unit 1 and the
binary product ×?
Teacher: Almost, but not quite.
Lisa: The category C C with the identity functor Id and functor
composition ◦. We know that functor composition is a functor, so
this seems to work out.
Teacher: Excellent. This makes a strict monoidal category. Harry’s
example is what is called a relaxed monoidal category. In the latter
case, we replace the equalities by isomorphisms, see (10)–(12).
These isomorphisms have to be natural and they have to satisfy
suitable coherence conditions (which I’m too tired to discuss). How
would you define the notion of a monoidal functor?
Lisa: I would expect that a monoidal functor preserves the extra
structure. If (C ,N,⊕) and (D ,E,⊗) are monoidal categories, then
a monoidal functor is a functor F : C →D such that

F N ∼= E

F (A⊕B)∼= F A⊗F B

In line with the previous discussion I’ve opted for isomorphism
rather than equality.
Teacher: This is what is called a strong monoidal functor. A re-
laxed monoidal functor replaces the isomorphisms by arrows.

E→ F N

F A⊗F B→ F (A⊕B)

The second arrow has to be natural in A and B. Furthermore, they
have to satisfy unit laws and an associative law—this was exactly
today’s task (13)–(15).
Harry: So this gives us the warm fuzzy feeling that we were on the
right track?
Teacher (smiles): I guess so. It’s always reassuring when you
discover some known structure in some unknown territory.
Lisa: I’m not sure I can match up the types with unit and com . . .
Teacher: Well, this is the truly intriguing part: the monoidal functor
is the application functor, which is a bifunctor from the strict
monoidal category C C and the relaxed monoidal category C to C .
(The product of two monoidal categories is again monoidal.) So the
types of unit and com are

unit : Id?1
comF,G : F?A×G?B→ (F◦G)? (A×B)

Lisa: Hmm, but then com has to be natural not only in A and B, but
also in F and G?!?
Teacher: Yes, that’s right: com is an example of a higher-order
natural transformation. That said, we have to be slightly more
careful with ?’s type.
Lisa: Yes, of course. The objects of C C can’t be arbitrary functors,
they have to support broadcasts.
Teacher: Well spotted. But this alone is not enough. We also have
to require that the natural transformations respect the broadcasts. A
natural transformation σ : F→̇G is well-behaved in this sense if

σ (A×B) ·bclF = bclG · (σ A×B) (25)

F A×B
σ A×B //

bclF ��

G A×B

bclG��
F (A×B)

σ (A×B)
// G (A×B)

It doesn’t matter whether we first broadcast and then change the
structure, or the other way round.

So we have shown that functor application is a functor of type
BC(C )×C →C , where BC(C ) is the category of functors of type
C → C that support broadcasts and natural transformations that
respect broadcasts.
Lisa: Hmm, equation (25) looks a lot like a naturality property.
Teacher: Indeed. Looking at the equation from a different angle it
expresses that bclF is natural in the functor F. If we combine the
higher- and first-order naturality properties we obtain

σ ? (f ×g) ·bclF = bclG · (σ ? f ×g) (26)
σ ? (f ×g) ·bcrF = bcrG · (f ×σ ?g) (27)

Lambert: This is the missing link! We can now show that com
is natural in both the functors and the objects. Let σ : F →̇H and
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F (G (H α)) · comF◦G,H · (comF,G× id)

= { definition of com (9) }
F (G (H α)) ·F (G bcrH) ·bclF◦G · (F bcrG ·bclF× id)

= { definition of bclF◦G (22) }
F (G (H α)) ·F (G bcrH) ·F bclG ·bclF · (F bcrG ·bclF× id)

= { À bcrH associative (19) }
F (G (bcrH · (id×bcrH) ·α)) ·F bclG ·bclF · (F bcrG ·bclF× id)

= { × bifunctor }
F (G (bcrH · (id×bcrH) ·α)) ·F bclG ·bclF · (F bcrG× id) · (bclF× id)

= { Á bclF natural in A (8) }
F (G (bcrH · (id×bcrH) ·α)) ·F bclG ·F (bcrG× id) ·bclF · (bclF× id)

= { Â bclG/bcrG associative (20) }
F (G (bcrH · (id×bcrH))) ·F (bcrG · (id×bclG) ·α) ·bclF · (bclF× id)

= { Ã bclF associative (17) }
F (G (bcrH · (id×bcrH))) ·F (bcrG · (id×bclG)) ·bclF ·α

= { Ä bclF natural in B (7) }
F (G (bcrH · (id×bcrH))) ·F bcrG ·bclF · (id×bclG) ·α

= { Å bcrG natural in B }
F (G bcrH ·bcrG · (id×G bcrH)) ·bclF · (id×bclG) ·α

= { Æ bclF natural in B (7) }
F (G bcrH ·bcrG) ·bclF · (id×G bcrH) · (id×bclG) ·α

= { × bifunctor }
F (G bcrH ·bcrG) ·bclF · (id×G bcrH ·bclG) ·α

= { definition of bcrG◦H (24) }
F bcrG◦H ·bclF · (id×G bcrH ·bclG) ·α

= { definition of com (9) }
comF,G◦H · (id× comG,H) ·α

Figure 1. Calculational proof of the associative law (15)

(F A×G B)×H C

��
Ã

F A× (G B×H C)

��uu
ÄF (A×G B)×H C

��

// F ((A×G B)×H C)

zz

Á

Â

F (A× (G B×H C))

��

F A×G (B×H C)

��uu
F (G (A×B))×H C

��

F (A×G (B×H C))

{{

))
Å

F A×G (H (B×C))

��

Æ

F (G (A×B)×H C)

��

F (A×G (H (B×C)))

��
F (G ((A×B)×H C))

��
À

F (G (A× (B×H C))) // F (G (A×H (B×C)))

��
F (G (H ((A×B)×C))) F (G (H (A× (B×C))))

Figure 2. Commuting diagram proving the associative law (15)
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τ : G→̇K, then

comH,K · (σ ? f × τ ?g)

= { definition of comH,K (9) }
H bcrK ·bclH · (σ ? f × τ ?g)

= { bcl is higher-order natural (26) }
H bcrK ·σ ? (f × τ ?g) ·bclF

= { ? bifunctor }
σ ? (bcrK · (f × τ ?g)) ·bclF

= { bcr is higher-order natural (27) }
σ ? (τ ? (f ×g) ·bcrG) ·bclF

= { ? bifunctor }
σ ? (τ ? (f ×g)) ·F bcrG ·bclF

= { definition of comF,G (9) }
σ ? (τ ? (f ×g)) · comF,G

= { σ ? (τ ?h) = (σ ◦ τ)?h, see Saturday }
(σ ◦ τ)? (f ×g) · comF,G

Teacher: Excellent. I think we’re done. As a final remark: monoidal
functors have become rather fashionable lately in the Haskell com-
munity, where they’re called idioms or applicative functors [8].
Like monads, they are useful for adding structure and genericity to
your programs [1, 7, 10].

Well, I hope you’ve enjoyed the tutorials this week as much as
I have—even though we are badly overrunning today.
Harry: Definitely. Today’s material was somewhat over my head—
well, I asked for it. Anyway, I’m certainly going to remember that
there’s a lot more to functors than what the Haskell Functor type
class suggests.
Lisa: Oh Harry, you ain’t seen nothin’ yet. I’ve been reading ahead
and I saw these things called Kan extensions; apparently everything
is a Kan extension!
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