New insights into probability on function types

PIHOC 2020, IRIF, Paris

Dario Stein1, Sam Staton1, Michael Wolman2

February 26, 2020

1University of Oxford 2McGill University
New insights into probability on function types

Aim: Study the nature of probability on function spaces

Outline:

1. The Model
 - Quasi-Borel spaces
 - Descriptive Set Theory

2. A surprising connection
 - H/o probability \leftrightarrow Name generation

3. Structural consequences
 - Non-positive probability
Higher-order probability

General-purpose probabilistic programming:

- Continuous probability distributions \(\Rightarrow\) **Measurable** spaces
- Higher-order constructs are useful
- Compositional semantics? **Meas** is not cartesian closed

Theorem [Aumann’61]

Let \(2^\mathbb{R}\) denote the space of Borel measurable maps \(\mathbb{R} \rightarrow 2\). Then there is no \(\sigma\)-algebra on \(2^\mathbb{R}\) that makes the evaluation map

\[
(\exists) : 2^\mathbb{R} \times \mathbb{R} \rightarrow 2
\]

measurable.
Higher-order probability

Some models of higher-order probability

- Spaces of continuous functions
- Measurable cones [Ehrhard, Pagani, Tasson’17]
- Ordered Banach Spaces [Dahlqvist, Kozen’19]
- **Quasi-Borel spaces** [Heunen, Kammar, Staton, Yang’17]
What’s a quasi-Borel space?
Standard Borel spaces (Sbs):

- Well-behaved subcategory of Meas

\[S ::= 0 \mid 1 \mid \mathbb{R} \mid \prod_\omega S \mid \sum_\omega S \mid G(S) \]

- Every sbs is countable&discrete or isomorphic to \(\mathbb{R} \).
Quasi-Borel spaces (Qbs)

- conservative extension of Sbs
- achieve cartesian closure
- nice properties (Fubini, randomization lemma, de Finetti)
- “Denotational Validation of Higher-Order Bayesian Inference” [Ścibior & al.’18]
- “Trace types and denotational semantics for sound programmable inference in probabilistic languages” [Lew & al.’19]
Definition: A qbs is a pair \((X, M_X)\) where \(M_X \subseteq [\mathbb{R} \to X]\) is a collection of distinguished maps (satisfying some conditions)

- call \(\alpha \in M_X\) “random element”

A morphism \(f: (X, M_X) \to (Y, M_Y)\) is a map

\[
\begin{array}{ccc}
\mathbb{R} & \to & \\downarrow \forall \alpha \in M_X \\
\downarrow f & & \downarrow f \circ \alpha \in M_Y \\
X & \xrightarrow{f} & Y
\end{array}
\]

E.g. \(M_{\mathbb{R}} = \text{Meas}(\mathbb{R}, \mathbb{R})\). Note that \(M_X = \text{Qbs}(\mathbb{R}, X)\).
Quasi-Borel spaces

There is an idempotent adjunction

\[\Sigma \quad \bot \quad \text{Meas} \]

Where

\[M(\Omega) = (|\Omega|, M_{\Omega}) \quad \text{and} \quad M_{\Omega} = \text{Meas}(\mathbb{R}, \Omega) \]

\[\Sigma(X) = (|X|, \Sigma_X) \quad \text{and} \quad \Sigma_X \cong \text{Qbs}(X, 2) \]

\[\Sigma M \Sigma X = \Sigma X \quad \text{and} \quad M \Sigma M_{\Omega} = M_{\Omega} \]
We say a qbs is **standard** if its qbs structure comes from a/can be recovered from its σ-algebra.

Thm: Function spaces $2^\mathbb{R}, \mathbb{R}^\mathbb{R}, \ldots$ are *non-standard* qbs

Qbs conservatively extends *Sbs*
Function spaces

Examples:

- We identify $2^\mathbb{R} \cong \mathcal{B}$, the qbs of Borel sets,
- A random element $\mathbb{R} \to 2^\mathbb{R}$ must come from currying $A : \mathbb{R} \times \mathbb{R} \to 2$, i.e.

 $$x \mapsto A_x = \{y : (x, y) \in A\}$$

 for some $A \subseteq \mathbb{R}^2$ Borel.
Function spaces

- Evaluation \((\exists) : 2^R \times R \rightarrow 2\) is a valid morphism
 \[\Rightarrow (\exists) \in \Sigma_{2^R \times R}\]

- but \((\exists) \notin \Sigma_{2^R} \otimes \Sigma_R\) [Aumann]
 \[\Rightarrow \Sigma : \text{Qbs} \rightarrow \text{Meas} \text{ does not preserve products}\]

When do we need \(\Sigma_X\) at all?
Given a random element $\alpha : \mathbb{R} \to X$, we can pushforward probability from \mathbb{R} to X.

$$P(X) = \{\alpha_* \mu : \alpha \in M_X, \mu \in G(\mathbb{R})\} \subseteq G(X, \Sigma_X).$$

Equality of measures is extensional equality on Σ_X.

- $P(\mathbb{R}) = M(G(\mathbb{R}))$
- P is a strong, affine, commutative monad on Qbs
What are distributions on function spaces?
Distributions on function spaces

Easy to use

let \(a \leftarrow \mathcal{N}(0, 1) \) in
let \(b \leftarrow \mathcal{N}(0, 1) \) in
let \(f = \lambda x. a \cdot x + b \) in \ldots
observe \(y_i \) from \(\mathcal{N}(f(x_i), \epsilon) \)
Distributions on function spaces

Easy to use

\[
\text{let } a \leftarrow \mathcal{N}(0, 1) \text{ in } \\
\text{let } b \leftarrow \mathcal{N}(0, 1) \text{ in } \\
\text{let } f = \lambda x. a \cdot x + b \text{ in } . . . \\
\text{observe } y_i \text{ from } \mathcal{N}(f(x_i), \epsilon)
\]

but difficult to analyse directly. So let’s do that now!
Crucial example
Theorem (Privacy equation)

Consider the random singleton set

\[X \sim \mathcal{U}[0, 1] \]

\[A = \{ X \} \]
Theorem (Privacy equation)

Consider the random singleton set

\[X \sim \mathcal{U}[0, 1] \]

\[A = \{ X \} \]

Then \(A \equiv^d \emptyset \).

More formally in \(P(2^\mathbb{R}) \)

\[
(\text{let } x \leftarrow \mathcal{U}[0, 1] \text{ in } \delta(\lambda y.(y = x))) = \delta(\lambda y.\text{false})
\]
Computer scientist (works with name generation): *Not surprised*

Privacy equation [Stark’93]

\[
\llbracket \text{let } x = \text{new } \text{in } \lambda y. (x = y) \rrbracket = \llbracket \lambda y. \text{false} \rrbracket
\]

- the name \(x\) is *private*
- doesn’t get *leaked* from the closure \(\lambda y. (x = y)\)

But names aren’t random numbers, are they?
Theorem (Privacy equation)

Consider the random singleton set

\[X \sim \mathcal{U}[0, 1] \]
\[A = \{X\} \]

Then \(A \equiv^d \emptyset \).

Mathematican (surprised) *Wait . . . Surely, every sample of \(A \) is non-empty. Can’t I tell?*
Theorem (Privacy equation)

Consider the random singleton set

\[X \sim U[0, 1] \]
\[A = \{X\} \]

Then \(A \equiv^d \emptyset \).

Mathematican (surprised) *Wait . . . Surely, every sample of A is non-empty. Can't I tell? But can you tell measurably?*
Measurable properties of functions

What are *measurable properties* of Borel sets?

- morphisms $2^{\mathbb{R}} \rightarrow 2$ (second-order type!)
Measurable properties of functions

What are measurable properties of Borel sets?

- morphisms $2^\mathbb{R} \rightarrow 2$ (second-order type!)

Examples: Let $X \sim \mathcal{U}[0, 1]$ and $A = \{X\}$

1. membership tests; for any $x_0 \in \mathbb{R}$,

 \[x_0 \in A \iff x_0 \in \emptyset \quad \text{a.s.} \]

2. ρ σ-finite measure, then

 \[\rho(A) = 0 = \rho(\emptyset) \quad \text{a.s.} \]

3. But what about checking nonemptyness?
Measurable properties of functions

Borel on Borel [Kechris ’87]

Every morphism $\mathcal{U} : 2^\mathbb{R} \to 2$ must satisfy

$$\forall A \in \Sigma_{\mathbb{R}^2}, \{x : A_x \in \mathcal{U}\} \text{ Borel.}$$
Borel on Borel [Kechris ’87]

\(\mathcal{U} \) Borel on Borel iff \(\forall A \in \Sigma_{\mathbb{R}^2}, \{ x : A_x \in \mathcal{U} \} \in \Sigma_{\mathbb{R}} \).

Can \(\exists : 2^{\mathbb{R}} \rightarrow 2 \) be a morphism? Then for all \(A \subseteq \mathbb{R}^2 \) Borel,

\[
\pi(A) = \{ x : A_x \neq \emptyset \} \text{ must be Borel.}
\]
Borel on Borel [Kechris ’87]

\(\mathcal{U} \) Borel on Borel iff \(\forall A \in \Sigma_{\mathbb{R}^2}, \{ x : A_x \in \mathcal{U} \} \in \Sigma_{\mathbb{R}}. \)

Can \(\exists : 2^{\mathbb{R}} \to 2 \) be a morphism? Then for all \(A \subseteq \mathbb{R}^2 \) Borel,

\[\pi(A) = \{ x : A_x \neq \emptyset \} \] must be Borel.

Theorem [Lebesgue]: For all \(A \subseteq \mathbb{R}^2 \) Borel, \(\pi(A) \) is Borel.
Borel on Borel [Kechris ’87]

\[\mathcal{U} \text{ Borel on Borel iff } \forall A \in \Sigma_{\mathbb{R}^2}, \{ x : A_x \in \mathcal{U} \} \in \Sigma_{\mathbb{R}}. \]

Can \(\exists : 2^{\mathbb{R}} \to 2 \) be a morphism? Then for all \(A \subseteq \mathbb{R}^2 \) Borel,

\[\pi(A) = \{ x : A_x \neq \emptyset \} \text{ must be Borel.} \]

Theorem [Lebesgue]: For all \(A \subseteq \mathbb{R}^2 \) Borel, \(\pi(A) \) is Borel.

Theorem [Suslin]: For \(A \subseteq \mathbb{R}^2 \) Borel, \(\pi(A) \) need not be Borel \(\not\in \) (Birthplace of Descriptive Set Theory)
No $\mathcal{U} : 2^\mathbb{R} \rightarrow 2$ can distinguish between $\{X\}$ and \emptyset with positive probability.
Theorem

For all Borel on Borel \mathcal{U}, $\emptyset \in \mathcal{U} \iff \{x\} \in \mathcal{U}$ for almost all x.

Idea “Borel inseparability”.

- A, B are $Borel$ $inseparable$ if there is no Borel C with

- There is a Borel set $C \subseteq \mathbb{R}^2$ such that $C^0 = \{x : C_x \text{ empty}\}$ and $C^1 = \{x : C_x \text{ singleton}\}$ are Borel inseparable [Becker].
Theorem

For all Borel on Borel U, $\emptyset \in U \iff \{x\} \in U$ for almost all x.

Sketch. Assume $\emptyset \in U$ but $S = \{x : \{x\} \not\in U\}$ has positive measure. Do some encoding to let Becker’s set C lie in $\mathbb{R} \times S$. Then $B = \{x : C_x \in U\}$ is Borel and

1. if $x \in C^0$ then $C_x = \emptyset \in U$, so $x \in B$.
2. if $x \in C^1$ then $C_x = \{s\}$ for some $s \in S$, so $x \not\in B$.

Thus B separates C^0 and C^1.
Generalizing

Random transposition = identity

Consider the transposition map $\tau : \mathbb{R}^2 \to \mathbb{R}^\mathbb{R}$

$$\tau(a, b)(x) = (a \ b)(x).$$

Then we have

$$\left(\text{let } (a, b) \leftarrow \mathcal{U}[0, 1]^2 \text{ in } \delta(\tau(a, b))\right) = \delta(\text{id}_\mathbb{R}) \in P(\mathbb{R}^\mathbb{R})$$

Descriptive Set Theory: More sophisticated encoding

Name-generation: Swapping two private names is not observable
Names & Probability
Name generation & probability

Name-generation is a synthetic* probabilistic effect.

- commutative & discardable
- models: e.g nominal sets & name-generation monad
 [Stark’96, Pitts’13]

We can interpret it as an actual probabilistic effect.

Theorem

Higher-order PPLs are a sound and correct models for Stark’s \(\nu \)-calculus

1. names are interpreted in \(\mathbb{R} \)
2. name-generation is sampling a continuous distribution
Name ideas inevitably show up in higher-order PPL, but name generation is subtle.

\[\nu x. \lambda y. x \not\equiv \lambda y. \nu x. x \]

\[\nu a. \nu b. \lambda x. \text{if } (x = a) \text{ then } a \text{ else } b \quad \approx \quad \nu b. \lambda x. b \]

\[\nu a. \nu b. \lambda x. \text{if } (x = b) \text{ then } a \text{ else } b \not\equiv \nu b. \lambda x. b \]

Which equivalences are verified in probabilistic semantics?
Theorem

Let M, M' be ν-calculus expressions of type

- $\tau_1 \rightarrow \cdots \rightarrow \tau_n \rightarrow \text{bool}$

- or $\tau_1, \ldots, \tau_n \rightarrow \text{name}$, $\tau_i \in \{\text{bool}, \text{name}\}$

then $M \equiv M' \iff \llbracket M \rrbracket = \llbracket M' \rrbracket$ in Qbs.

Conjecture

Full abstraction at all iterated function types

$$\tau_1 \rightarrow \cdots \tau_n \rightarrow \tau$$

This is **more abstract** than traditional semantics! (nominal sets don’t validate the Privacy equation).
Structural consequences
Structural consequences

Synthetic probability theory [Fritz’19]

- categorical axiomatization of probabilistic systems
- high-level comparison of properties

Example: Deterministic marginals

Given a joint distribution \((X; Y)\) with \(X\) deterministic. Then \(X\) and \(Y\) are independent.

- True for discrete probability
- True on \(\mathcal{M}_{\text{product}}\!\text{-algebras!}\)
- Blatantly fails with negative probabilities (\(D\)) axiomatized by a property called “positivity”
Structural consequences

Synthetic probability theory [Fritz’19]
- categorical axiomatization of probabilistic systems
- high-level comparison of properties

Example: Deterministic marginals
Given a joint distribution \((X, Y)\) with \(X\) deterministic. Then \(X\) and \(Y\) are independent.

- True for discrete probability
- True on \textbf{Meas} (product-\(\sigma\)-algebras!)
- Blantantly fails with negative probabilities \((D_{\pm})\)
- Axiomatized by a property called “positivity”
Name generation is non-positive

Name-generation violates deterministic marginals:

\[\text{let } x = \text{new in } (\lambda y.(y = x), x) \in T(2^A \times A) \]

By Privacy equation:

- first marginal is deterministically \(\lambda y.\text{false} \).
- not independent of \(x \), which is leaked

Qbs is non-positive for the same reason

- requires failure of product-preservation (\textbf{Meas} is positive)
- this shows \(\Sigma(2^\mathbb{R} \times \mathbb{R}) \neq \Sigma(2^\mathbb{R}) \otimes \Sigma(\mathbb{R}) \) [Aumann]
1. Qbs is a convenient category to work in
 - Usual probability theory at ground types
 - Descriptive set theory at function types
 - Random singleton = ∅
 - **Conjecture:** Full abstraction at first-order for ν-calculus
 (Already more abstract than nominal sets)
1. **Qbs** is a convenient category to work in
 - Usual probability theory at ground types
 - Descriptive set theory at function types
 - Random singleton $= \emptyset$
 - **Conjecture:** Full abstraction at first-order for ν-calculus
 (Already more abstract than nominal sets)

2. **Higher-order probability** (model independent)
 - Measures on function types are interesting to study
 - Inevitable connection with name generation
 - H/o measurability \iff second-order programs $2^{\mathbb{R}} \to 2$
 - Non-positivity is a feature
 - Randomization is anonymization (diff. privacy)
Takeaway

If you have a model of higher-order probability supporting

1. continuous distributions
2. equality checks $\mathbb{R} \times \mathbb{R} \rightarrow 2$

⇒ Test it against ν-calculus and tell me what happens!