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What is PRISM?
• PRISM: Probabilistic (symbolic) model checker

• PRISM today
§ 12 types of probabilistic models, many probabilistic temporal logics
§ uses: logic, automata, Markov models, optimisation,

SMT, simulation, game theory, artificial intelligence, learning… 
§ >400 case studies across a broad range of application domains

• PRISM development: driven by challenges, applications, users
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DTMC, LTS, MDP, 
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PRISM: A brief history
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• 1998: tool development begins (Birmingham)
§ symbolic probabilistic model checking

• 2001: first official public release of PRISM
• 2004 & 2006: PRISM 2.0 & 3.0

§ new GUI, logics, cost/reward models, simulator engines

• 2011: PRISM 4.0
§ probabilistic real-time systems, PRISM benchmark suite
§ multi-objective model checking & assume-guarantee

• 2013: first release of PRISM-games
• 2016 & 2020: PRISM-games 2.0 & 3.0

§ multi-objective, concurrent stochastic games, equilibria

• 2020-2024: policy/strategy synthesis, POMDPs, uncertain MDPs, …



PRISM: A brief history
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• 1998: tool development begins (Birmingham)
§ symbolic probabilistic model checking  [TACAS’00,’02]

• 2001: first official public release of PRISM
• 2004 & 2006: PRISM 2.0 & 3.0  [TACAS’06]

§ new GUI, logics, cost/reward models, simulator engines  [TACAS’04]

• 2011: PRISM 4.0
§ probabilistic real-time systems, PRISM benchmark suite
§ multi-objective model checking & assume-guarantee  [TACAS’07,’10,’11]

• 2013: first release of PRISM-games  [TACAS’12,’13]

• 2016 & 2020: PRISM-games 2.0 & 3.0
§ multi-objective, concurrent stochastic games, equilibria  [TACAS’15,’16,’22]

• 2020-2024: policy/strategy synthesis, POMDPs, uncertain MDPs, …



Early applications of PRISM
• Randomised distributed algorithms/protocols

§ modelled as MDPs/probabilistic automata
§ key motivating example for probabilistic verification
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Herman’s self-
stabilisation

Bluetooth device
discovery

• Performance modelling &
biochemical reactions
§ modelled as Markov chains

FGF cell signalling
pathway experiments

FireWire protocol

Reliable multiplexing
in nanotechnology
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Enabling technologies
• Challenge-driven tool development

§ Symbolic model checking
• [TACAS’00] [TACAS’02] [STTT’04] [CAV’06] …

§ Real-time probabilistic verification
• [TCS’02] [FMSD’06] [Info&Comp’07] [FORMATS’09] …

§ Game-based abstraction refinement
• [QEST’06] [VMCAI’09] [FMSD’10] [QEST’11] ...

§ Multi-objective & compositional verification
• [TACAS’10] [QEST’10] [FASE’11] [Info&Comp’13] ...

§ Multi-agent model checking (stochastic games)
• [TACAS’12] [Inf-&Comp’17] [FMSD’21] [TACAS’22] ...

M1 || M2 ⊨ ⟨G⟩≥p

⟨A⟩≥q M2 ⟨G⟩≥p
M1 ⊨ ⟨A⟩≥q
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PRISM models
• Increasing variety (and complexity) of probabilistic models supported
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• discrete-time Markov chains

+ concurrency• probabilistic automata

+ exponential delays• continuous-time Markov chains

+ real-time clocks• probabilistic timed automata

+ policies / control• Markov decision processes (MDPs)

+ observability• partially observable MDPs

+ multi-agent & strategies• stochastic multi-player games

+ concurrency & equilibria• concurrent stochastic games

+ epistemic uncertainty• interval Markov chains & MDPs



PRISM applications
• Increasing variety (and complexity) of applications tackled
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• discrete-time Markov chains

• probabilistic automata

• continuous-time Markov chains

• probabilistic timed automata

• Markov decision processes

• partially observable MDPs

• stochastic multi-player games

• concurrent stochastic games

• interval Markov chains & MDPs

From verification
to control problems

§ Long-running autonomous
mobile robots [IJRR’19]

• via multi-objective MDPs § Real-time task scheduling with
faulty processors [FMSD’13]
• probabilistic timed automata

22

are added to encode the random delays. For example, in the case of multiplication, with
probability 1

3 the task completes after 2 time units; with probability 2
3 , the PTA moves to a

location where, with probability 1
2 the task completes after 1 additional time unit (i.e., of a

total of 3 time units) or moves to a location where the task completes after 2 more time units
(i.e., 4 time units in total). When the task completes, the PTA moves to a location where no
time can pass (clock x is reset upon entering and the invariant of the location is x≤0) and
immediately notifies the scheduler the task is computed through action p1 done. To prevent
the scheduler from seeing into the future when making decisions, the probabilistic choice
for task completion is made on completion rather than on initialisation.

Analysing this model, we find that the optimal expected time and energy consumption to
complete all tasks equals 12.226 picoseconds and 1.3201 nanojoules, respectively. This im-
proves on the results obtained using the optimal schedulers for the original model, where the
expected time and energy consumption equal 13.1852 picoseconds and 1.3211 nanojoules.
Examining the optimal schedulers, we find that they change their decision based upon the
delays of previously completed tasks. For example, for elapsed time, the optimal scheduler
starts as for the non-probabilistic case, first scheduling task1 followed by task3 on P1 and
task2 on P2. However, it is now possible for task2 to complete before task3 (if the execution
times for task1, task2 and task3 are 3, 6 and 4 respectively), in which case the optimal sched-
uler now makes a different decision from the non-probabilistic case. Under one possible set
of execution times for the remaining tasks, the optimal scheduling is as follows:

time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P1 task1 task3 task5 task6

P2 task2 task4

Adding a Faulty Processor. As a second extension of the scheduling problem, we add a
third processor P3 which consumes the same energy as P2 but is faster (addition takes 3
picoseconds and multiplication 5 picoseconds). However, this comes at a cost: there is a
chance (probability p) that the processor fails and the computation must be rescheduled and
performed again.

In Figure 8(b), we show the PTA for the faulty version of processor P1. In this PTA, when
a task completes, there is a probabilistic choice between moving to a location corresponding
to successful completion and one to failure. In both cases, we move to a location where
no time can pass and immediate notify the scheduler of either the success or failure of the
computation. The automaton for the scheduler also changes for this model since it must
react to the failure signals from the processors. In addition, the reward structure energy is
extended to include the energy consumed by the additional processor.

The graphs in Figure 9 plot the optimal expected time and energy consumption for this
extended model as the failure probability p varies. The dashed lines show the optimal re-
sults for the original model, i.e., when not using the processor P3. As can be seen, once the
probability of failure becomes sufficiently large, there is no gain in using the processor P3

but, while when the probability of failure is small, it uses offers considerable gains in per-
formance. To illustrate this fact, below we give a scheduler that optimises (minimises) the
expected energy consumption when p=0.5. Dark boxes for tasks are used to denote proces-
sor P3 failing to complete a task correctly, meaning that the task needs to be rescheduled.

time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P1 task3 task6

P2 task2 task5

P3 task1 task4
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(a) Expected time (b) Expected energy consumption

Fig. 9 Optimal expected time and energy consumption as the failure probability of processor P3 varies

time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P1 task1 task3 task5 task6

P2 task2 task4

P3 task1

time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P1 task3 task4 task6

P2 task2 task5

P3 task1 task4

Notice that the scheduler uses the processor P3 for task1 and, if this task is completed suc-
cessfully, it later uses P3 for task4. However, if task1 fails to complete, P3 is not used again.

7 Conclusions

In this paper, we have presented an introduction to the model of probabilistic timed au-
tomata and summarised the various techniques developed to perform probabilistic model
checking. Verification of probabilistic real-time systems is an active field of research and
further progress is required in several important directions. Examples include the develop-
ment of verification techniques for probabilistic timed games [43,6] and for probabilistic

hybrid automata [64,36,9]. The former have proved, in the non-probabilistic setting, to be-
ing applicable to a variety of useful synthesis problems [12]. The latter provide essential
modelling capabilities for domains such as embedded systems and cyber-physical systems;
they represent a useful, but more tractable, subclass of the model of stochastic hybrid au-
tomata. Other important issues to investigate in the context of PTAs include robustness [7]
and continuously-distributed time delays [53,1,60].
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§ Human trust models for
automated driving [TCPS’22]

• via multi-objective POMDPs



PRISM applications
• Increasing variety (and complexity) of applications tackled

9

• discrete-time Markov chains

• probabilistic automata

• continuous-time Markov chains

• probabilistic timed automata

• Markov decision processes

• partially observable MDPs

• stochastic multi-player games

• concurrent stochastic games

• interval Markov chains & MDPs

Verification
+ game theory

§ Computer security
attack-defence scenarios

• stochastic games strategies

[CSF’16]

§ Distributed energy protocols
• flaws fixed via incentives

[FMSD’13]



PRISM applications
• Increasing variety (and complexity) of applications tackled
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• discrete-time Markov chains

• probabilistic automata

• continuous-time Markov chains

• probabilistic timed automata

• Markov decision processes

• partially observable MDPs

• stochastic multi-player games

• concurrent stochastic games

• interval Markov chains & MDPs

Verification &
epistemic uncertainty

§ Robust AUV control [JAIR’23]
• continuous-space + unknown

noise → IMDP abstraction
§ Robust anytime learning [NeurIPS’22]

• MDP policies learnt from samples
• IMDPs used for robust guarantees

§ Deep reinforcement learning
• verified probabilistic policies

from neural nets, via IMDPs
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Fig. 1: Sampled policy probabilities for one action in an abstract state (left)
and the template polyhedra partition generated through refinement (right).

then later split according to the most promising one (i.e., with the widest prob-
ability spread across all actions). The probabilities for each a are computed in
a one-vs-all fashion: we generate a point cloud representing the probability of
taking that action as opposed to any other action.

The number of samples used (and hence the time needed) is kept fixed,
rather than fixing the density of the sampled points. We sample 1000 points per
abstract state split but this parameter can be tuned depending on the machine
and the desired time/accuracy tradeo↵. This ensures that ever more accurate
approximations are generated as the size of the polyhedra decreases.

Choosing candidate directions. We refine abstract states (represented as
template polyhedra) by bisecting them along a chosen direction from the set �
used to define them. Since the polyhedra are bounded, we are free to pick any one.
To find the direction that contributes most to reducing the probability spread,
we use cross-entropy minimisation to find the optimal boundary at which to split
each direction, and then pick the direction that yields the lowest value.

Let S̃ be the set of sampled points and Ỹs denote the true probability of
choosing action a in each point s 2 S̃, as extracted from the probabilistic policy.
For a direction �, we project all points in S̃ onto � and sort them accordingly,
i.e., we let S̃ = {s1, . . . , sm}, where m = |S̃| and index i is sorted by h�, sii.
We determine the optimal boundary for splitting in direction � by finding the
optimal index k that splits S̃ into {s1, . . . , sk} and {sk+1, . . . , sm}. To do so, we
first define the function Y

k,�
i classifying the ith point according to this split:

Y
k,�
i =

⇢
1 if i 6 k

0 if i > k

and then minimise, over k, the binary cross entropy loss function:

H(Y k,�
, Ỹ ) = � 1

m

Xm

i=1

⇣
Y

k,�
i log(Ỹsi) + (1� Y

k,�
i ) log(1� Ỹsi)

⌘
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Who uses PRISM?  (and how/why)

• PRISM bibliography1 lists >850 papers relating to PRISM
§ 375 “case studies”, >100 “extensions”, >250 “connections”

• PRISM applications & users
§ very wide (often non-expert) user base
§ broad applicability of PMC techniques/models
§ easy, self-contained install
§ user interface: model editor, simulator,

debugger, graph plotting, …
§ documentation, tutorials, examples

• General aims
§ stable, usable, flexible, coherent framework

11
1 https://prismmodelchecker.org/bib.php

• PRISM for teaching
§ common basis for the practical

component of taught courses on
(non-)probabilistic model checking

https://prismmodelchecker.org/bib.php


Diverse applications of PRISM
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[Van Roy et al.,
JAIR’23, MIT-SSAC’24]

• Football tactics
§ team strategies learnt from data
§ tactical efficiency analysed via 

probabilistic model checking

• Cloud computing
§ live migration of VMs
§ plan optimisation for

performance guarantees

[Kikuchi/Matsumoto
(Fujitsu), CLOUD’11]

(Best paper)

• Human-cell conversion
§ for disease models, gene therapies
§ design tool for optimisation and

prediction, based on model checking

[Jung et al., Nature
Communications’21]



Building on PRISM
• Extending PRISM

§ open-source codebase (GPL)
§ primarily implemented in Java

• (some C code and various native libraries)
§ accessibility for student/external contributors

• “explicit” engine is an easy entry point

• Connections & tool chains
§ via PRISM modelling language

• e.g. PEPA, bigraphs, RoboChart, SBML

§ via explicit (textual) model files
§ programmatically via API

• Java, Python, model generators

13
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The PRISM language
• PRISM modelling language

§ simple textual language based on guarded commands
§ inspired by: SMV language, Reactive modules
§ de-facto standard for probabilistic verification

• Key ingredients
§ the basics: modules (variables + guarded commands),

parallel composition, costs/rewards, parameters (constants)
§ also: clocks, observations, players, epistemic uncertainty, …

• Some design decisions
§ consistent modelling language for many model types
§ (deliberately) simple/low-level, general-purpose language

14

CTMC, CSG, 
DTMC, LTS, MDP, 
POMDP, POPTA, 

PTA, STPG, SMG, 
TPTG, IDTMC, 

IMDP



The PRISM language
• PRISM modelling language

§ simple textual language based on guarded commands
§ inspired by: SMV language, Reactive modules
§ de-facto standard for probabilistic verification

• Key ingredients
§ the basics: modules (variables + guarded commands),

parallel composition, costs/rewards, parameters (constants)
§ also: clocks, observations, players, epistemic uncertainty, …

• Some design decisions
§ consistent modelling language for many model types
§ (deliberately) simple/low-level, general-purpose language
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CTMC, CSG, 
DTMC, LTS, MDP, 
POMDP, POPTA, 

PTA, STPG, SMG, 
TPTG, IDTMC, 

IMDP
• PRISM models as benchmarks

§ open data: >15 years of supplementary 
materials pages on PRISM publications (~60)

§ benchmark suite: 36 scalable benchmarks
& property queries classified by type1

1 See also: Quantitative Verification Benchmark Set



PRISM: Where next?

• Coming soon (ish) to PRISM
§ modelling/property language extensions
§ more flexible compositional model specifications
§ improved API access (Java, Python, …)
§ better tool interoperability

• Research advances in model checking functionality
§ epistemic uncertainty (e.g., intervals)
§ learning models/parameters from data,
§ neuro-symbolic models
§ stochastic games & equilibria

16

Running example: Robust control
• An IMDP for the robot example 
‣ uncertainty added to two state-action pairs 

‣ Note: the degree of uncertainty (e) 
in states s1 and s2 is correlated here 
(but the actual transition probabilities are not) 

52

•  Robust control 

‣ for any e, we can pick a “robust” 
(optimal worst-case) policy 

‣ and give a safe lower bound 
on its performance

27
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Summary
• PRISM (& PRISM-games)

§ approx. 25 years of continuous development
§ challenge-, application- and user-driven tool evolution
§ stable, usable, coherent framework for wide user base
§ many enhancements to come and challenges to tackle

17

prismmodelchecker.org
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