
Conformance checking of
dynamic access control policies

David Power, Mark Slaymaker and Andrew Simpson

Oxford University Computing Laboratory
Wolfson Building, Parks Road, Oxford OX1 3QD, UK

Abstract. The capture, deployment and enforcement of appropriate ac-
cess control policies are crucial aspects of many modern software-based
systems. Previously, there has been a significant amount of research un-
dertaken with respect to the formal modelling and analysis of access
control policies; however, only a limited proportion of this work has
been concerned with dynamic policies. In this paper we explore tech-
niques for the modelling, analysis and subsequent deployment of such
policies—which may rely on external data. We use the Alloy modelling
language to describe constraints on policies and external data; utilising
these constraints, we test static instances constructed from the current
state of the external data. We present Gauge, a constraint checker for
static instances that has been developed to be complementary to Alloy,
and show how it is possible to test systems of much greater complexity
via Gauge than can typically be handled by a model finder.

1 Introduction

Large-scale data-oriented systems dominate much of our lives: as employees, as
consumers, as patients, as travellers, as web surfers, and as citizens. The nature
of much of this data, coupled with an increased awareness of relevant security
and privacy issues, means that it is essential that effective tools, technologies
and processes are in place to ensure that any and all access is appropriate.
Our concern in this paper is the construction of access control policies that
rely on context to inform decisions. (Arguments as to the potential benefits of
context-sensitive access control have been made by, for example, [1], [2], and
[3].) Specifically, our concern is what might be termed evolving access control—
whereby access control decisions are made on the basis of state.

We utilise formal models for the construction and analysis of such dynamic
policies. In this respect, our work has much in common with that of [4], which
defines a framework to capture the behaviour of access control policies in dy-
namic environments. (In common with our approach, the authors also separate
the policy from the environment.) Importantly, our work is driven by practi-
cal concerns. The policies that are constructed and analysed are subsequently
deployed to instances of the sif (service-oriented interoperability framework)
middleware framework [5, 6] to support the secure sharing and aggregation of
data.

The framework supports relatively straightforward policies that conform to
the role-based access control (RBAC) model [7]; it also supports more complex
policies in the expressive XACML (eXtensible Access Control Markup Language)
policy language.1

Of course, the use of access control policies can bring many benefits when
managing complex systems: by centralising all authorisation decisions, consis-
tency of access can be maintained, and updating a single access control policy is
much simpler than modifying multiple components. Nevertheless, creating and
updating access control policies is still a potentially time-consuming task. Going
further, policy languages such as XACML support access to external data—
which may be updated independently of the policy. While this simplifies the
task of maintaining policies, it greatly complicates their analysis and also neces-
sitates controls on the modification of external data.

As demonstrated by many authors, formal methods have a role to play in
this area, with examples including the work of [8] and [9]—both of which are
concerned with the modelling and analysis of XACML. Even when the require-
ments for an access control policy are well understood, it is still possible for
mistakes to be made: the flexibility of policy languages increases the potential
for mistakes due, in part, to their expressiveness.

We utilise the Alloy Modelling Language [10] in this paper to build models of
policies and external data. Using the Alloy Analyzer we are able to test properties
of those models. By constructing instances of policies and external data, we are
able to evaluate the constraints described in the Alloy model.2 However, the
Alloy Analyzer is only capable of analysing models of bounded size; this and a
lack of support for the large integers needed to model times, dates and monetary
values has led some researcher to avoid using the Alloy Modelling Language [16].
To address these problems, we have developed a tool for checking constraints on
large policies which also has the potential to support large integers and other
data types.

While, in general, it is not possible to say if a policy is ‘correct’ (due to the
‘safety problem’ of [17]), it is possible to test for certain healthiness conditions,
such as separation of duty constraints in role-based policies. Of course, there
are many other possible constraints which may be appropriate in role-based
policies, such as the absence (or presence) of a user with all permissions, or all
users having at least one role.

To this end, we concern ourselves with RBAC models and policies as a means
of illustrating the contribution. Specifically, we build on the RBAC model of [18],
which has been utilised in the policy editing tool described in [19]. It should be
noted that the modelling and analysis of RBAC constraints has a rich history,
with the work of [20] and [21] being of particular note.

1 See http://www.oasis-open.org/committees/xacml/.
2 Other work that has built policy analysis tools on Alloy include the contributions

of [11], [12] and [13]. Also relevant in terms of related work is the DynAlloy tool [14,
15], which extends Alloy to handle dynamic specifications.

Virtual Organisation

E

Data

Pm

I

E

Data

Pn

I

Site MSite N Client MClient N

Client U

Internal user request
External user request

Fig. 1. The sif view of a distributed system

The structure of the remainder of this paper is as follows. In Section 2 we
describe the motivation for, and context of, our work: the capture, analysis and
enforcement of dynamic access control policies that make reference to external
state. Then, in Section 3, we describe the modelling and analysis of constraints
via Alloy. In Section 4 we introduce Gauge—our tool for the evaluation of Alloy
predicates and expressions. Finally, in Section 5, we summarise the contribution
of this paper and outline potential areas of future work.

2 Context

In this section we present the background to our work. We start by introducing
the sif framework, before giving consideration to what we term evolving access
control. We then briefly introduce our RBAC policy editing tool.

2.1 sif

sif (service-oriented interoperability framework) is concerned with supporting
secure data sharing and aggregation in a fashion that doesn’t require organ-
isations to throw away existing data models or systems, change practices, or
invest in new technology. The philosophy behind sif was originally described
in [22]. There, a virtual organisation—spread across two or more geographically
or physically distinct units—was characterised as per Figure 1. Deployments
communicate via their external interfaces (represented by E), with data being
accessed via an internal interface, I . The permitted access to the data is regu-
lated by policies (P): each organisation has control over its data, which means
that the responsibility for defining policies resides a local level.

sif offers support for three types of ‘plug-in’—data plug-ins, file plug-ins and
algorithm plug-ins—and it is these plug-ins that facilitate interoperability. By
using a standard plug-in interface, it becomes possible to add heterogeneous

ServiceClient Service
Data

Audit Manager

Audit Dynamic
State

State Manager

Audit Handler

Policy
FileAccess Control

Fig. 2. Evolving access control architecture

resources into a virtual organisation. If, in a distributed, heterogeneous context,
a user runs a query across several data nodes, then the middleware will distribute
that query to the nodes and aggregate the results. The middleware exposes as
much to the user as the developer considers useful for the application in question:
it may be appropriate to expose the whole underlying data structure, allowing
users to construct SQL queries; alternatively, a simple interface supporting pre-
formulated queries might be appropriate.

2.2 Evolving access control

The middleware framework of the previous section has the potential to support
what might be termed evolving access control : what may be accessed by users and
applications may change dynamically, depending on context. Examples of such
policies might include “if there has been no contact from Officer X for over 30
minutes then access should be denied from her device,” “Professor Y can access
up to 10 of these images,” and “Dr Z can access data provided that the network
capacity is sufficient.” Meta-policies prescribe the relationship between policies:
after Officer X has been out of contact for over 30 minutes, any access that
was previously possible is now denied; once Professor Y has accessed 10 images,
she can access no more of them; when the network capacity increases, Dr Z
can access data to his heart’s content.3 Thus, these meta-policies are necessarily
written at a higher level of abstraction than policies—and, as such, are intended
to be closer to the level at which requirements might be captured or guidelines
might be stated.
3 Note that our notion of meta-policy—describing the relationship between policies—

differs from that of [23]—where the concern is ‘policies about policies’.

Policy Tooling

Edit Policy

sif Middleware

Access Control
Policy 1

Resource
1

Resource
n

Retrieve Policy

Deploy Policy
Validate
Policy

Revise Check

Access Control
Policy n

⋮⋮

Fig. 3. Policy editing and validation workflow

Of course, providing a system with the functionality to adapt access control
policies automatically means that the need for assurance that the correct policy
is in place necessarily increases: ensuring that certain fundamental properties
hold in every potential state, for example, is essential—we would not want our
protection mechanism to evolve into a state that provided little protection, for
example. Hence the driver for a model-driven approach to evolving access control:
raising the level of abstraction for data owners and policy writers, with a view
to giving a degree of assurance that data sharing is appropriate.

In this paper, our concern is the modelling and analysis of external data
referenced by access control policies. Ideally, it would be possible not only to
analyse the current state of external data but to model the modifications of that
data. This is possible with our evolving access control deployments, where the
combination of policy and external state evolve in accordance with a meta-policy.

The architecture of the existing evolving access control system is presented in
Figure 2. Here, an audit of client activity and other events of significance is han-
dled by an audit manager. Handlers monitor the audit and update the dynamic
state in accordance with the rules of the meta-policy. When the server makes an
access control request, external data can be accessed via a state manager which
reads the dynamic state.

2.3 RBAC policy editing tool

The sif middleware can support a number of different types of access control
policies, with the associated RBAC editing tool of [19] allowing the creation
and modification of RBAC policies. An illustration of how formal modelling
and analysis is incorporated into the overall RBAC policy workflow is given in
Figure 3.

Once modified, the policy is converted into an Alloy instance and then val-
idated against an Alloy model using the Alloy Evaluator. The tool tests each
policy against 12 different constraints; if a constraint does not hold, the user
is informed of the reason why so that the policy can be revised. The process
of creating instances is discussed in more detail in Section 4, in which we also
describe an alternative method of evaluating constraints.

3 Constraints and requirements

The work described in the following is motivated by the desire to be able to
ensure that policy level constraints hold in the presence of dynamically changing
data—assuming that we are aware of potential changes to the external data
and, as such, can perform constraint checking before the changes are made. The
simplest solution to this problem is to treat the entire policy as external data and
to check all of the constraints whenever there is a potential change. However, a
more efficient approach is to check just the constraints that are dependent on the
external data; this approach assumes that any constraints that are independent
of the external data have been checked at the time of policy construction.

We start by describing the model for RBAC policies that we leverage to
illustrate our contribution.

3.1 RBAC

The underlying principle upon which role-based access control is based is the
association of permissions with the roles that users may hold within an organi-
sation. There are four standard components in the ANSI standard for role-based
access control systems [7].

– Core RBAC is mandatory in any RBAC system, and associates permissions
with roles and roles with users.

– Any combination of the following can be utilised in a particular system.
1. Role hierarchies define what amounts to an inheritance relation between

roles. As an example, role r1 inherits from role r2 if all privileges associ-
ated with r2 are also associated with r1.

2. A static separation of duty (SSD) constraint is characterised by a role set,
rs, such that # rs ≥ 2, and a natural number, n, such that 2 ≤ n ≤ # rs,
and ensures that no user can be authorised for n or more roles in rs.

3. A dynamic separation of duty (DSD) constraint is concerned with ses-
sions: a DSD constraint ensures that no user can be associated with n
or more roles in rs in a particular session.

3.2 An Alloy representation of RBAC

We present a model for core RBAC with hierarchy and static separation of
duty constraints. The model is based on that of [18], which presents a formal
description of RBAC using the formal description language, Z [24, 25].

First, we introduce User, Role, Action and Resource, with Action and
Resource being used to define the contents of a Permission.

sig User, Role, Action, Resource {}

sig Permission {
action : Action,
resource : Resource

}

The MER signature represents a mutually exclusive roles constraint which
restricts the combinations of roles a user can be associated with. The signature
consists of an integer, limit, and a set of roles, roles. The MER signature also
has a constraint, which states that the value of limit ranges between 2 and the
cardinality of the roles set.

sig MER {
limit : Int,
roles : set Role

} {
2 <= limit
limit <= (# roles)

}

The fact uniquePermission ensures that each Permission is unique, i.e. no
two different (signified by disj) elements of Permission have the same action–
resource pair. This simplifies the subsequent definitions in the RBAC model.

fact uniquePermission {
all disj pb1, pb2 : Permission |
pb1.action != pb2.action || pb1.resource != pb2.resource

}

The Hierarchy signature represents an RBAC system with a role hierarchy
and static separation of duty constraints. It contains the sets USERS, ROLES and
PRMS, which represent the particular users, roles and permissions to which the
policy relates. It also contains the relations UA, PA and RH, which represent the
user-role, role-permission and role hierarchy mappings. The set SC is a set of
static separation of duty constraints, the roles of which must be a subset of
ROLES. The relation RH must be acyclic, which is ensured by no (^RH & iden).
The composition UA.*RH.PA creates a user–permission relation which relates
users and their reachable permissions taking into account the role hierarchy.

sig Hierarchy {
USERS : set User,
ROLES : set Role,
PRMS : set Permission,
UA : USERS -> ROLES,
RH : ROLES -> ROLES,
PA : ROLES -> PRMS,
SC : set MER

} {
no (^RH & iden)
all s : SC | s.roles in ROLES

}

We now describe a number of constraints that can be used to validate policies.
The applicability of each constraint will depend, of course, upon the context of

the deployed policy. In total, there are 12 constraints that are checked by our
RBAC policy construction tool, three of which are presented below.

The first example is a constraint on any individual user having all permis-
sions, represented as a fact called NobodyCanDoEverything affecting all elements
of Hierarchy. This fact could have been included in the signature of Hierarchy,
but is written as a separate fact to promote modularity and (consequently) to
allow it to be tested independently.

fact NobodyCanDoEverything {
all h : Hierarchy, u : h.USERS |
u.(h.UA).*(h.RH).(h.PA) != h.PRMS

}

Similarly, the enforcement of static separation of duty constraints is written
as a separate fact called NobodyBreachesSC. If the constraint does not hold, the
tool evaluates the function fun NobodyBreachesSC which returns a set contain-
ing (Hierarchy, MER, User) triples indicating, for each hierarchy, the particular
static separation of duty of constraint which has been breached and the user
that breaches it. Similar functions exist for the other constraints.

fact NobodyBreachesSC {
all h : Hierarchy, s : h.SC, u : h.USERS |

#(s.roles & u.(h.UA).*(h.RH)) < s.limit
}

fun fun_NobodyBreachesSC() : Hierarchy -> MER -> User {
{ h : Hierarchy, s : h.SC, u : h.USERS |

#(s.roles & u.(h.UA).*(h.RH)) >= s.limit }
}

There are also constraints relating to redundancy in the model. One such
example is NoRedundantPermissions, which prevents a role from being assigned
a permission that it already holds due to inheritance.

fact NoRedundantPermissions {
all h : Hierarchy, r : h.ROLES |
no (r.(h.PA) & r.^(h.RH).(h.PA))

}

3.3 Adding sessions

We now consider how sessions can be added to the RBAC model so as to allow
us to divide a policy into static and dynamic parts. We assume that the dynamic
parts of the policy are stored as external data.

The signature Session extends Hierarchy. The relation AR contains the
currently active roles for each user; this represents the dynamic part of the policy.
The set DC is a set of dynamic separation of duty constraints, which restrict the

active roles of a user (it is assumed that the set DC does not change dynamically).
As was the case for static separation of duty constraints, it is assumed that all
dynamic separation of duty constraints refer only to roles from the set ROLES.
The composition AR.PA is now used to relate users to their current permissions.

sig Session extends Hierarchy {
AR : USERS -> ROLES,
DC : set MER

} {
all d : DC | d.roles in ROLES

}

The value of the relation AR needs to meet two criteria: each user–role pair has
to represent a role that the user has access to, and the dynamic separation of duty
constraints must be met. These criteria are captured in the fact DynamicFact.

fact DynamicFact {
all s : Session |
s.AR in (s.UA).*(s.RH) &&
all d : s.DC , u : s.USERS |
#(d.roles & u.(s.AR)) < d.limit

}

As none of the constraints on Hierarchy make reference to AR they will
not need to be checked when AR changes, which reduces the amount of dy-
namic constraint checking required. It is possible to add extra constraints that
do depend on the AR relation. For example, it is possible to modify the fact
NobodyCanDoEverything to only depend on the currently activated roles.

fact NobodyCanCurrentlyDoEverything {
all s : Session, u : s.USERS |
u.(s.AR).(s.PA) != s.PRMS

}

4 Gauge

In this section we discuss Gauge, a means of evaluating Alloy predicates and
expressions that has been developed as a companion tool to the Alloy Analyzer.
Unlike the Alloy Analyzer, Gauge is not a model finder and can only work with
known instances. Specifically, Gauge is designed for instances built from real
world data which are too large for a model finder to handle; it is also capable
of handling large integers and other data types which are commonly found in
practice.

Alloy
Model

JSON
Instance

Parser

Predicates

Types

Instance
Object

Gauge

Fig. 4. Parsing and evaluation process

4.1 Overview

The first stage of using Gauge involves creating an Alloy model and using the
Alloy Analyzer to check the suitability of the model. Once this has been done,
it is then possible to construct a JavaScript Object Notation (JSON) instance
of the data using the signatures defined in the model.

Figure 4 shows how the Alloy model and JSON instance are processed. The
Alloy model is parsed using a modified version of the parser used by the Alloy
Analyzer; this creates both type information for the signatures and predicate
information for the facts and other constraints. The type information is used
to turn the JSON instance into an object representation (considered further in
the next section). Once the instance object has been created, the predicates can
then be evaluated. In certain circumstances, Gauge can extend the instance by
adding new atoms; this is represented by the dotted arrow.

4.2 Instances

An instance consists of three types of data: atoms, signature relations and field
relations. Atoms are the basic building blocks of an instance and each atom has
a signature type. The signature relations are sets of atoms of a certain signature
type. Where one signature extends another, atoms of the subtype will appear in
both signature relations. Field relations are sets of tuples, the first element of
which is the atom to which the field relates.

In a JSON instance, each atom is introduced as a separate object. The id
field is used as a unique identifier for the atom and the type field represents

the signature type of the atom. If the atom has any field values, these are listed
in fields where each field name is associated with an array of arrays of atom
identifiers. The inner arrays are necessary as field values could be of any arity.
Shown below is an example of JSON instance containing a MER atom and its
associated roles.

{ id : role1, type : Role },
{ id : role2, type : Role },
{ id : mer1, type : MER,
fields : {
limit : [[2]],
roles : [[role1],[role2]]}

}

When loaded, the following atoms, signature relations and field relations
are created, including the univ signature relation which all signatures extend.
Integers are identified using a decimal string representation.

Atoms = {role1, role2,mer1, 2}
Signatures = {Role → {role1, role2},MER → {mer1},

Int → {2}, univ → {role1, role2,mer1, 2}}
Fields = {limit → {(mer1, 2)}, roles → {(mer1, role1), (mer1, role2)}}

4.3 Evaluation

Each predicate that is to be evaluated is constructed from a number of ex-
pressions. When evaluated, an expression can have either a Boolean value, a
relational value, or a primitive integer value. For relational operators, such as
composition (.) or union (+), Gauge first evaluates the two sub-expressions and
then combines the resulting relations using the operator specified. When refer-
ence is made to a signature or field, the associated relation is retrieved from the
instance.

For Boolean operators such as (&&) or (||), a ‘short-circuit’ approach is used
whereby sub-expressions are evaluated from left to right as required. Similarly,
when evaluating quantifiers such as some or all evaluation stops as soon as a
definitive result is found.

Some expressions introduce variables, the simplest of which is let. To store
the current values of variables, a mapping is maintained between variables and
the relations they represent. For a let expression, the value of the variable is
fixed within each evaluation. After evaluating the body of the let expression,
the variable is removed from the mapping before the result is returned. For
quantifiers, the value of each variable is drawn from a set, the body of the
quantifier is evaluated separately for each combination of variable values. Set
comprehensions work similarly to quantifiers with successful combinations of
variable values being turned into tuples and added to the resulting relation.

Calls to predicates and functions are handled dynamically during evaluation.
The arguments are first calculated and added to the variable mapping. The

body of the called predicate or function is then evaluated. As a natural conse-
quence of this evaluation method, Gauge is capable of evaluating certain types
of recursively defined functions and predicates.

4.4 Types

While it is possible to model specific aspects of data types when constructing
an Alloy model, a certain amount of abstraction is needed if one wishes to use
the model-finding capabilities of the Alloy Analyzer. An example of this is the
representation of integers, where the bit width is restricted. When testing for
counterexamples, the restriction of the bit width is not normally a problem;
however, real world data is, of course, likely to exceed the bit width used for
modelling.

There are many other data types that would be of relevance in an access
control system, including times, dates, strings and X.509 certificates. Each of
these would be impossible to model completely in Alloy but are simple to handle
in a general purpose programming language.

Such types are handled in a straightforward manner in Gauge by casting be-
tween Alloy atoms and native representations as necessary. As a simple example,
part of the Gauge time module is presented below. Here, currentTime refers to
the current time, and the predicate Time lte is used for comparisons.

sig Time {}
one sig currentTime extends Time {}

pred Time_lte(t1, t2 : Time) {
lte[t1,t2]

}

As a simple example, the predicate NineToFive can be used to check if the
time of evaluation is in ‘normal office hours’: between 9am and 5pm.

pred NineToFive() {
Time_lte[T_9_0_0,currentTime]
Time_lte[currentTime,T_17_0_0]

}

When evaluating NineToFive, Gauge will recognise the predicate Time lte
as a predicate on time and, instead of expanding its definition, will perform the
comparison using native Java objects. For atoms such as T 9 0 0, Gauge will
create a time object with the three numbers representing hours, minutes and
seconds. The atom currentTime is also recognised as a special case and a new
atom is created which represents the current time.

It is possible to use the same methods to allow time arithmetic, such as
adding an hour or calculating the difference between two times. These will po-
tentially add new atoms to the instance. Without the ability to add new atoms,
all intermediate results would need to form part of the initial instance.

Users Atoms Static time Dynamic time

256 530 41ms 8ms
512 995 88ms 14ms
1024 1925 189ms 24ms
2048 3785 544ms 110ms
4096 7505 1.78s 169ms
8192 14945 6.71s 591ms
16384 29825 27.5s 2.29s
32768 59585 122s 8.38s
65536 119105 553s 35.6s

Fig. 5. Scalability results

4.5 Scalability

While the model finder used by Alloy is capable of dealing with the case when
the relations are all fixed, it still is restricted by internal data structures which
put a limit on the total number of atoms of 231/n (where n is the largest arity
of any relation in the model). In our RBAC model, the UA, PA and RH field
relations are all of arity 3, which imposes a limit of approximately 1,000 total
atoms. Gauge, on the other hand, does not have any restrictions on the size of
the instance other than the memory needed to store it.

To test scalability, instances of policies were created, and the time taken
to test the 12 static and 2 dynamic constraints were recorded. A simple role
hierarchy was created, with all apart from one role being connected in a binary
tree. One user was allocated the ‘separate role’, with all others being randomly
allocated between one and three roles from the tree. For each role, there were
exactly four permissions, each having a unique action and resource. There was a
single separation of duty constraint for every 16 roles—with each such constraint
involving two roles, one of which was the ‘separate role’. By allocating the roles,
permissions and constraints in this fashion, it was possible to ensure that all
but one of the constraints held, maximising the amount of work required. The
constraint that did not hold pertained to a role being senior to multiple roles.

There were 16 times as many users as roles, and 8 times as many active
roles. The number of users is listed in Figure 5, together with the total number of
atoms. The total number of atoms includes 64 integers and the atom representing
the policy, but otherwise is proportional to the number of users.

4.6 Optimisation

To achieve the times listed in Figure 5, the constraints were modified so that
they could be evaluated more efficiently. As discussed previously, Gauge uses a
simple evaluation strategy for quantifiers where the body is evaluated separately
for each combination of variable values. This can lead to an expression being
evaluated multiple times for the same values. By using let statements, it is

possible to store the results of expressions so they can be reused. Shown below
is DynamicFact rewritten using let statements.

fact DynamicFact {
all s : Session |
let sess = s.AR |
sess in (s.UA).*(s.RH) &&
all d : s.DC |
let lim = d.limit |
let rol = d.roles |
all u : s.USERS | #(rol & u.sess) < lim

}

In this case the difference in performance is significant: with 8192 users,
the evaluation took 454 seconds without the let statements and 0.795 seconds
with the let statements. Other optimisations are less obvious; for example,
uniquePermission can be rewritten to remove the quantifiers completely.

fact uniquePermission {
(action.~action & resource.~resource) in iden

}

Again, the difference in performance is significant: with 2048 permissions, the
original uniquePermission took 14 seconds to evaluate compared with 0.022
seconds for the alternative version.

Another potential area of performance gain when evaluating the dynamic
constraints comes from using an incremental approach to evaluation. In the
current example, the deactivation of a role can never result in the breaching of
a constraint and the activation of a role can only result in breaches related to
the user doing the activating and the role(s) being activated. A combination of
storing the value of expressions related to the static part of the policy (such as
(s.UA).*(s.RH)) and only evaluating quantifiers for the parts of the dynamic
policy that have changed (removing all u : s.USERS) would have a dramatic
effect on performance.

5 Conclusions and further work

In this paper we have discussed methods for the modelling and analysis of access
control policies which reference external data. The referencing of external data is
of particular relevance when dealing with dynamic access control policies which
are constantly modified in response to user activity or system events. By building
models of access control policies in the Alloy modelling language, we are able
to describe policy constraints and test existing policies. By directly creating
Alloy instances, it becomes possible to test more complex policies than might
be handled by the Alloy model finder. We have described a prototype evaluator

called Gauge which is capable of handling large instances and also has limited
support for real world data types.

By decomposing a model of an access control policy into static and dynamic
parts, we have shown how it is possible to test just a small set of constraints
when the dynamic parts of a policy change. It is possible to test the suitability of
a set of constraints by using the model-finding capabilities of the Alloy Analyzer;
once a set of constraints has been found to be suitable, a simple evaluation of a
new instance is sufficient.

The long-term goal is to be able to analyse changes in dynamic state in
real time. While this is currently feasible for policies which have hundreds or
even thousands of users, the evaluation time for larger policies starts to become
prohibitive. By providing a facility for the persistent storage of instances it will
be possible to cache results and to only evaluate constraints related to changes in
the dynamic state. With such a system in place, it should be possible to handle
significantly larger policies.

For changes to the static parts of policies, there is the potential to increase
the speed of evaluation by decomposing the problem and utilising parallel eval-
uation; with the advent of cloud computing infrastructures, such approaches are
now more feasible than ever before, and we intend exploring the potential for
benefitting from such developments in the near future. Finally, while the develop-
ment of Gauge has been driven by the needs of a particular domain, we consider
it to be a general purpose evaluator; as such, we will be giving consideration to
further application areas in the coming months.

References

1. Kumar, A., Karnik, N., Chafle, G.: Context sensitivity in role-based access control.
ACM SIGOPS Operating Systems Review 36(3) (2002) 53–66

2. Bhatti, R., Bertino, E., Ghafoor, A.: A trust-based context-aware access control
model for web-services. Distributed and Parallel Databases 18(1) (2005) 83–105

3. Hulsebosch, R.J., Salden, A.H., Bargh, M.S., Ebben, P.W.G., Reitsma, J.: Context
sensitive access control. In: Proceedings of the 10th ACM Symposium on Access
Control Models and Technologies (SACMAT 2005). (2005) 111–119

4. Dougherty, D.J., Fisler, K., Krishnamurthi, S.: Specifying and reasoning about dy-
namic access-control policies. In: Proceedings of the 3rd International Joint Con-
ference on Automated Reasoning (IJCAR 2006), Springer-Verlag Lecture Notes in
Computer Science volume 4130 (2006) 632–646

5. Simpson, A.C., Power, D.J., Russell, D., Slaymaker, M.A., Kouadri-Mostefaoui,
G., Ma, X., Wilson, G.: A healthcare-driven framework for facilitating the secure
sharing of data across organisational boundaries. Studies in Health Technology
and Informatics 138 (2008) 3–12

6. Slaymaker, M.A., Power, D.J., Russell, D., Simpson, A.C.: On the facilitation
of fine-grained access to distributed healthcare data. In: Proceedings of the 5th
VLDB Workshop on Secure Data Management (SDM 2008), Springer-Verlag Lec-
ture Notes in Computer Science volume 5159 (2008) 169–184

7. Ferraiolo, D.F., Sandhu, R.S., Gavrilla, S., Kuhn, D.R., Chandramouli, R.: Pro-
posed NIST standard for role-based access control. ACM Transactions on Infor-
mation and Systems Security 4(3) (2001) 224–274

8. Zhang, N., Ryan, M., Guelev, D.P.: Synthesising verified access control systems
in XACML. In: Proceedings of the 2nd ACM Workshop on Formal Methods in
Security Engineering (FMSE 2004). (2004) 56–65

9. Bryans, J.W., Fitzgerald, J.S.: Formal engineering of XACML access control poli-
cies in VDM++. In: Proceedings of the 9th International Conference on Formal
Engineering Methods (ICFEM 2007), Springer-Verlag Lecture Notes in Computer
Science volume 4789 (2007) 37–56

10. Jackson, D.: Software Abstractions: Logic, Language, and Analysis. MIT Press
(2006)

11. Schaad, A., Moffett, J.D.: A lightweight approach to specification and analysis of
role-based access control extensions. In: Proceedings of the 7th ACM Symposium
on Access Control Models and Technologies (SACMAT 2002). (2002) 13–22

12. Hughes, G., Bultan, T.: Automated verification of access control policies. Technical
Report 2004-22, University of California, Santa Barbara (2004)

13. Fisler, K., Krishnamurthi, S., Meyerovich, L., Tshantz, M.C.: Verification and
change-impact analysis of access-control policies. In: Proceedings of the 27th In-
ternational Conference on Software Engineering (ICSE 2005). (2005) 196–205

14. Frias, M.F., Galeotti, J.P., Pombo, C.G.L., Aguirre, N.M.: DynAlloy: upgrad-
ing Alloy with actions. In: Proceedings of the 27th International Conference on
Software Engineering (ICSE 2005). (2005) 442–451

15. Frias, M.F., Pombo, C.G.L., Galeotti, J.P., Aguirre, N.M.: Efficient analysis of
DynAlloy specifications. ACM Transactions on Software Engineering and Method-
ology (TOSEM) 17(1) (2007) Article number 4

16. Shaikh, R.A., Adi, K., Logrippo, L., Mankovski, S.: Inconsistency detection method
for access control policies. In: Proceedings of 6th International Conference on
Information Assurance and Security (IAS 2010). (2010) 204–209

17. Harrison, M.A., Ruzzo, W.L., Ullman, J.D.: Protection in operating systems.
Communications of the ACM 19(8) (1976) 461–471

18. Power, D.J., Slaymaker, M.A., Simpson, A.C.: On formalizing and normalizing
role-based access control systems. The Computer Journal 52(3) (2009) 305–325

19. Power, D.J., Slaymaker, M.A., Simpson, A.C.: Automatic conformance checking
of role-based access control policies via Alloy. In: Proceedings of the 2011 Inter-
national Symposium on Engineering Secure Software and Systems (ESSoS 2011),
Springer-Verlag Lecture Notes in Computer Science volume 6542 (2011) 15–28

20. Ahn, G.J., Sandhu, R.S.: Role-based authorization constraint specification. ACM
Transactions on Information and Systems Security 3(4) (2000) 207–226

21. Crampton, J.: Specifying and enforcing constraints in role-based access control.
In: Proceedings of the 8th ACM Symposium on Access Control Models and Tech-
nologies (SACMAT 2003). (2003) 43–50

22. Power, D.J., Politou, E.A., Slaymaker, M.A., Simpson, A.C.: Towards secure grid-
enabled healthcare. Software: Practice and Experience 35(9) (2005) 857–871

23. Hosmer, H.H.: Metapolicies I. ACM SIGSAC Review 10(2–3) (1992) 18–43
24. Spivey, J.M.: The Z Notation: A Reference Manual. Prentice Hall (1992)
25. Woodcock, J.C.P., Davies, J.W.M.: Using Z: Specification, Refinement, and Proof.

Prentice-Hall (1996)

