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Introduction

The Atiyah-Singer index theorem is a milestone of twentieth century mathematics. Roughly speaking, it relates
a global analytical datum of a manifold - the number of solutions of a certain linear PDE - to an integral of local
topological expressions over this manifold. The index theorem provided a link between analysis, geometry and
topology, paving the way for many further applications along these lines.

An operator T' : H; — Hj between Hilbert spaces is called Fredholm if both its kernel and its cokernel are finite
dimensional. The index of such an operator is defined to be the difference between these two quantities. Every
elliptic differential operator between vector bundles over a compact manifold defines a Fredholm operator and
therefore has a finite index. The index is a very well behaved analytical quantity which is, for example, stable
under compact perturbations. This prompted Israel Gelfand in 1960 to conjecture that the index of an elliptic
operator is a topological invariant and to ask for an explicit expression of this index in terms of other invariants.

The easiest example of such an ‘index theorem’ is the Toeplitz theorem.
Let L2(SY) = {X,cp anz" | Yeplan]® < oo} and let H := {37 janz" | Yo lan|? < oo} be the Hardy
space with projector IT : L*(S*) — H. For f € C(S"), the Toeplitz operator is the map T’ := IT My|,, : H — H,
where My : L?(S') — L?(S') denotes the multiplication operator with f. Using basic properties of the index
one can show that T is Fredholm if and only if f is non-vanishing and

ind(7Ty) = — winding number of f around 0. (1)

If f is differentiable, we can use the logarithmic derivative and express this as ind(Ty) = fﬁ 831 fT/ dz.

In guise of the ‘classical index theorems’ - the Signature theorem, the Chern-Gauss-Bonnet theorem and the
Hirzebruch-Riemann-Roch theorem - more complicated index theorems had already been known for specific
elliptic operators.

In 1963, Michael Atiyah and Isadore Singer solved Gelfand’s problem and announced their theorem, expressing
the index of a general elliptic operator on a compact oriented manifold in terms of certain characteristic classes -
subsequently dubbed ‘topological index’ - of this manifold.

In the following essay, we explain how this can be done for a particular class of elliptic operators - twisted Dirac
operators on even dimensional compact spin manifolds - and then indicate how this solves the general problem.
We will now give a brief overview of our main results.

Spin Geometry

The Clifford algebra Clc (V') of a vector space V' with inner product (-, -) is the complex algebra generated by
vectors v € V' with relations
vy - U + vg - v = —2(v1,v2). 2)

As a vector space, the Clifford algebra is isomorphic to the (complex) exterior algebra AV. Using an orthonormal
basis ey, ..., e, of V, this isomorphism is given by

o:Cle(V) - AV €iy "t i P> €y At A €. 3)



If M is a Riemannian manifold we define the Clifford algebra Cl¢ (M), at the point z to be the Clifford algebra
of T:* M with the induced Riemmanian metric. The Levi-Civita connection on 7'M extends to a connection on the
exterior bundle AT™* M which induces a connection V on the Clifford algebra bundle Cl¢(M).

A hermitian vector bundle £ = £+ @ £~ with compatible connection V¢ is said to be a Clifford bundle if there is
an algebra bundle homomorphism ¢ : Clg(M) — End(€) such that for a section « of T*M and €,¢' € €

(1) c(a) swaps Et and €7,  (2) (c(@)e,€) + (e, c(@)e’) =0, (3) [V, cla)] =c(Vxa). @)

The Dirac operator D on a Clifford bundle £ is the formally self-adjoint elliptic operator defined in terms of a local

frame eq, ..., e, of TM (with corresponding dual frame e!, ..., e") as
dim(M)
D:i= > c(e")VE,. (5)
i=1

In this essay, we will focus on a specific example of a Clifford bundle - the twisted spinor bundle on an even
dimensional spin manifold. A spin manifold is an oriented Riemannian manifold fulfilling certain topological
conditions. On an even dimensional spin manifold, there exists a Clifford bundle g =8 * ® $ such that
¢ : Clg(M) — End($) is an isomorphism. In fact, the fibrewise representation $, of Clc(M), is the unique
irreducible representation of the Clifford algebra. The Dirac operator I) on this so called spinor bundle is formally

. . + T . . . . .
self-adjoint and maps sections of §~ to § *_If V is a hermitian vector bundle with compatible connection, we can
define the twisted spinor bundle

e-sov-(§ov)o(s ov) (©6)

with corresponding Dirac operator I)y,.
If M is even-dimensional and spin, every Clifford bundle is of this form.

The Atiyah-Singer Index Theorem

Since the Dirac operator on a twisted spinor bundle £ = $§@V is self-adjoint, its index vanishes. To get an operator
with non-trivial index we split & = ($* ® v) @ ($’ ® v) and write

0 By

Dy = ( L M
Dy 0

The operators D:_; are called chiral Dirac operators.

The Atiyah-Singer index theorem states that the index of the chiral Dirac operator of a twisted spinor bundle § ® V
on an even dimensional compact spin manifold M™ is given by

ind(D}) = (2ri) # |

i <A(M) A ch(V)) . ®)

[n]

Here, A\(M) = det? (%) e Hig (M) is the A—genus of M and ch(V) := exp(—K) € H3z(M)
is the Chern character of ¥V with R being the Riemann curvature of M and K the curvature of V. The map
(")) * Har (M) — Higg (M) denotes the projection of a form to its n-form component.

The heat equation proof of this formula is based on the realisation that
ind(1D)) = Tr(e v %) — Tr(e v Pv) vt > 0. 9)

This follows from the fact that the non-zero eigenspaces of 10}, o DYy, and 13 o 1Dy, 1Dy, are isomorphic.

Thus, the only contribution from the right hand side is dim(ker(E;lD:;)) — dim(ker(lD:;lD;)) = ind(]ﬂ?; ). The
graded trace Trg(e=tP%) := Tr(e~PvPV) — Tr(e~t#V V) is called the supertrace.



This reduces the calculation of the index ind(lD\t) to the study of the heat operator e~tPY, Using Sobolev theory,
we will show that the heat operator has a Clifford algebra valued integral kernel p;(z,y) with Mercer’s theorem
implying that
ind(lﬁ;) = Trs(e_”pi) = f trg(ps(x, x)) da. (10)
M
Since the left hand side is independent of ¢, it suffices to know the small ¢ behaviour of the heat kernel. It has an
asymptotic expansion

pe(z,2) ~ (47t)~ 2 thBj(x,a?) (t —0), (11)
j=0

where the coefficients B; only depend on local curvature and metric terms and can be computed recursively.
Therefore,

ind(lbﬁ) = }g% JM trs(pe(z,z)) de = (47)~ 2 JM trs(Bz)dz. (12)

For small n, the recursion relation determining Bz can be solved explicitly, yielding an expression for the index.
However, for arbitrary n, this direct approach becomes intractable.

Supersymmetry and Rescaling

The problem of determining the coefficient trg(B= ) was solved by Ezra Getzler using a scaling argument based
on Witten’s ideas on supersymmetry.

This can be motivated from the following observation.
The Clifford algebra Clc(2n) is generated by an orthonormal basis ey, . . . , €2, together with relations

€i€; +eje;, = —251‘]‘. (13)
Changing basis to ¢; = 3(e; — i€j4n), pi := 3(€; + iejy) for 1 < i < n, these relations become

qiq; + q;q; = 0, pip; + pipi = 0, qiPj + Piq; = —0ij- (14)

Up to a factor of —ih, these are just the canonical anticommutation relations (CAR) describing a quantum mechan-
ical system of fermions with n degrees of freedom. From this point of view, the isomorphism AC?" — Cl¢(2n)
can be seen as a quantisation map, mapping the classical anticommutation relations (e;e; + eje; = 0) to the CAR.

Instead of the CAR, we could equally well consider the canonical commutation relations (CCR) describing a
system of n bosons

49 — 4,9 = 0, pipj — pipi = 0, qip; — Piqi = —0ij- (15)

The complex algebra generated by these relations is the Weyl algebra W(2n).

All results obtained for the Clifford algebra (i.e. for fermions) can be transferred to results for the Weyl algebra
(i.e. for bosons). For example, while the Clifford algebra is a quantisation of the exterior algebra, the Weyl algebra
is a quantisation of the symmetric algebra. The unique irreducible representation of the Clifford algebra is Clifford
multiplication ¢ on spinors. The analogous irreducible representation of the Weyl algebra is given by the vector
space C[z1, ..., z,] of complex polynomials in n variables with action

0
The analogies between Clifford and Weyl algebra can be pushed much further. The idea to treat fermions and
bosons on a completely equal footing is called supersymmetry. From a supersymmetric point of view, Clifford
multplication (fermions) and differential operators (bosons) are to be treated equivalently. The Dirac operator
D=3", c(ei)V‘; - being a perfect pairing of Clifford multiplication and covariant derivative - is an example of
a supersymmetric operator.

(16)

qi — 2, Di

To find the expansion coefficient trg(B= ), Getzler introduced a scaling parameter u? into the Clifford relations

vow+w-v=—2u?(v,w) 17



(which is morally just Planck’s constant /) and considered the classical limit v — 0 in which the Clifford alge-
bra degenerates to the exterior algebra. To preserve supersymmetry, he rescaled differential operators (and thus
spacetime R~y x M) accordingly.

It turns out that the rescaled heat kernel pj_; (, ) has the term (—2i)~ 2 trg(By) placed in leading order in
an asymptotic expansion in the scaling parameter u. On the same time, the rescaled kernel p}* fulfills the heat
equation of an appropriately rescaled heat operator L*. In the v — 0 limit this rescaled heat operator approaches

the operator

n

2

n

L'=-% (ai -] Rijxj> + K, (18)

i=1 j=1
2

which is a generalized harmonic oscillator, a matrix version of the usual harmonic oscillator H = 7% + a2z

Given our quantum mechanical approach to the scaling argument, the appearance of this operator shouldn’t come
as too much of a surprise. It also could have been expected from a more mathematical perspective since the
harmonic oscillator is (up to the constant K') a quadratic element of the Weyl algebra. The quadratic elements of
both Clifford and Weyl algebra form closed Lie subalgebras and therefore occupy somewhat special positions.

Its heat kernel can be calculated explicitly (Mehler’s formula). On the diagonal it is given by

tR/2

0 _ z _
p; (x,x) = det <sinh(tR/2)> exp(—tK). (19)

Setting ¢ = 1 yields trg(Bz) = (—2i)5 A(M) A ch(V). The index theorem then follows from equation (12).

n
2

Applications and the General Index Theorem

Many geometrical first order differential operators can be expressed in terms of Dirac operators on Clifford bundles.
For example, let X be a complex manifold, V be a hermitian vector bundle and consider the Dolbeault complex

0 Q00) 5 0l(y) 5 ... 8 ln(yy (20)
where Q0+#()) denotes the space of (0,4)— forms with values in the vector bundle V. Then, the combined operator
0+ POV > P (V) 1)
§j=0 j=0

is a Dirac operator on the Clifford bundle € = @7_( Q% (V) = ET D E™ = @D ey Q7 (V) @ D) 000 X7 (V).
On an even dimensional spin manifold, all Clifford bundles are in fact twisted spinor bundles, such that the index
problem for all these operators is covered by (8). Since the heat equation proof is inherently local and any manifold
is locally a spin manifold, the statement of (8) can easily be generalised to Dirac operators on Clifford bundles on

possibly non-spin manifolds.
In the case of the Dolbeault Dirac operator (21), the index theorem yields

ind (0 + "

= (2mi)~ dime() f td(7"°X) A ch(V 22
where ch(V) is the chern class and td(71°X) is the so called Todd class of the holomorphic tangent bundle
T9(X), which is for example defined in [7].

Since the index of the operator 0 + " (—B . even Qov.j(V) — (—Dj odd 299 (V) is just the Euler characteristic of the
Dolbeaut complex x (X, V) = >, ;(—1)* dim¢ (H*(X,V)), this yields the Hirzebruch-Riemann-Roch theorem

X(X,E) = (2m)—dimc<X>J td(TH°(X)) A ch(V). (23)



Using a similar reasoning, the Signature theorem and the Chern-Gauss-Bonnet theorem can be derived from the
Atiyah-Singer index theorem for Dirac operators on Clifford bundles.

But even more is true. Let M be a compact even-dimensional spin manifold. Introducing the group K (M) of
equivalence classes of vector bundles on M and the group Ell(M) of abstract elliptic operators, it can be proven
that the map K (M) — EI(M), [V] ~ Dy, is an isomorphism. Therefore, every elliptic operator on an even-
dimensional spin manifold is generated by a twisted Dirac operators. In this sense, the class of twisted Dirac
operators is fundamental among elliptic operators and the index theorem (8) actually solves the index problem for
general elliptic operators on even-dimensional compact spin manifolds.

Even though it is a statement about linear differential operators, the index theorem can also be used to study non-
linear PDEs. In fact, applying it to a linearised version of a non-linear partial differential operator yields the local
dimension of the solution manifold of this operator. This is a pivotal technique used for example in Donaldson
theory and Seiberg-Witten theory.

Outline

In chapter one, we introduce the intriguing subject of spin geometry. We provide background on Clifford algebras,
spin groups and spinor representations and discuss these concepts in a geometrical setting, introducing spin mani-
folds and Dirac operators. Our exposition mainly follows [6] with some borrowings from [2] and [7].

The proof of the index theorem for Dirac operators - indisputably the core of this essay - is presented in chapter two.
We first introduce analytical techniques such as Sobolev and Fredholm theory, mainly following [3] and [8]. Our
subsequent proof of the index theorem is based on the expositions in [2] and [3] with valuable amendments both
from [8] and Getzler’s original paper [4].

In the final chapter, we present several applications of the index theorem, including a proof of the Riemann-Roch
theorem for Riemann surfaces and a brief summary on how the index theorem is used in the study of solution
spaces of non-linear PDEs. Finally, we outline how the index theorem for Dirac operators can be generalised and
how it is used in the proof of the index theorem for general elliptic operators.



Chapter 1

Spin Geometry

The concept of spin has its roots in the early years of quantum mechanics, when Wolfang Pauli - in order to for-
mulate his exclusion principle - introduced an additional internal degree of freedom for the electron.

From a modern point of view, this additional degree of freedom comes from the fact that the rotationally invariant
electron transforms under a projective representation of the group SOg, or equivalently under an ordinary repre-
sentation of its universal covering group. Consequently, this covering group came to be known as the Spin-group.
These ideas became further consolidated, when in 1928 Paul Dirac set out to find a relativistic theory of the elec-
tron. In search for this theory, Dirac was faced with the problem of finding a linear partial differential operator
which squares to the Laplacian. He realised that this was only possible if he allowed the operator , ~%0; to have
coefficients in some non-commutative algebra. Equating the square of this operator with the Laplacian

n 2 n n
(Z 71@_) _ % Z (Vir? +~347) 8:0; A= Z 0?2 (1.1)

yields o . N

Yyl + Ayl = 26", (1.2)
This is the famous Clifford algebra, initially discovered by William Clifford in 1878 and rediscovered by Dirac in
1928. This algebra, liying at the heart of spin geometry will be the starting point for our subsequent discussions.

In the first half of the following chapter we will examine its algebraic properties and define the Spin and Pin group
and their representations. In the second half, we establish these notions in a geometrical context and discuss spin
manifolds and Dirac operators.

1.1 Clifford Algebras

1.1.1 Basic Definitions and Properties

In the following section, let V' be a finite dimensional vector space over K = R or C.

Let B : V x V — K be a symmetric bilinear (possibly non-degenerate) form. Consider the associated quadratic
form @ : V — K, given by Q(v) = B(v,v) for v € V. We can reconstruct the bilinear form B from @ by the
polarisation identity

Blo,w) = 3 Qv +w) ~ Q) ~ Q(w)). (13)

Thus, quadratic forms and symmetric bilinear forms are essentially the same. Abusing notation we will denote
both the quadratic form and the bilinear form on V' by Q).
Let T*V := @,_, V®" denote the tensor algebra of V.



Definition 1.1. Let I be the two sided ideal of TV generated by elements of the form
vu+ Q) e T’V TV. (1.4)

We define the Clifford algebra as
CUV,Q) =TV /I, . (1.5)

Due to the polarisation identity, the ideal I also contains all elements of the form s@w+w®v) + Qv,w)
for v, w € V. Thus, the relation
vw + wu = —2Q (v, w) v,weV (1.6)

follow from the relations v = —Q(v).
Given an orthogonal basis e1, . . ., e, of V, a corresponding basis for the Clifford algebra C1(V, Q) is given by

{er:=eiy e, | I =(i1,...,ip) with1 <i; <...<ip <nand0<p<n} 1.7)

It follows that dim C1(V, Q) = 24m V.,

One can also define Clifford algebras in terms of a universal property.

Definition 1.2. Let A be an associative unital K-algebra.
We call a K-linear map ¢ : V' — A Clifford, if forallve V'

$(v)® = —Q(v) 1a. (1.8)

Note that the inclusion V' — Cl(V, @) is an injective Clifford map.

Proposition 1.3. For every Clifford map ¢ : V. — Ainto an arbitrary associative unital K—algebra, there is a
unique algebra homomorphism ¢ : CI(V, Q) — A extending ¢, i.e. such that the following diagram commutes:

CIv,Q)

T X (1.9)
o

Vv—— A

The Clifford algebra is uniquely (up to algebra isomorphisms) determined by this property.

Proof. By the universal property of the tensor algebra T*V, every linear map ¢ : V' — A lifts to a unique algebra
homomorphism qb TV - A If ¢i 1s Clifford, the map (b factors through the ideal I and thus defines a unique
algebra homomorphism CI(V, Q) — O

Proposition 1.4. Every linear isometry f : (V,Qv) — (W, Qw) between quadratic vector spaces extends to a
unique algebra homomorphism CI1(f) : CI(V, Qv) — CY(W, Qw ).

Proof. Since f is an isometry, it follows that

F(0)? = =Qw(f()law.gw) = —Qv () lcw.qw) VoeV.
Therefore, f : V — W — CIW, Qw) is Clifford. By the universal property (Proposition 1.3), f extends to a
unique map C1(f) : CI(V, Qv) — CL{W, Qw ). O

The Clifford algebra has two important involutions.

Definition 1.5. We define the grading automorphism o : C1(V, Q) — CI(V, Q) as the extension (in the sense of
Proposition 1.4) of the isometry —Idy : v — —v.
The transpose () : C1(V, Q) — C1(V, Q) is defined as the unique anti-automorphism such that

(W) ' =w, YweClV,Q) and o' =v, YoeV. (1.10)



Given an orhogonal basis {ei, ..., e,} of V with corresponding basis {e;, ---e;, | 1 < iy < ... < ip < n} of
Cl(V, @), the involutions are given by
ale, --ei,) = (—1)Pe; - e, (L.11)
t(eil ..‘eip) :eip‘..eil_ (1.12)

Before investigating Clifford algebras more thoroughly, we will briefly give some low dimensional examples.

", v?. We denote the associated Clifford

Example 1.6. Let V = R™ with the euclidean quadratic form |[v]? = >
algebra C1(V, || - |?) by Cl(n).
For V' = R with unit basis vector ¢ € V, the algebra CI(1) is spanned by the basis {1, 4} with relations

i?=—1. (1.13)

Therefore, as real algebras Cl(1) =~ C.
For V = R? with orthonormal basis 4, j € V, the Clifford algebra C1(2) has basis {1, 1, j, k}, where k := ij and
relations

i?=—1, j>=-1, ij=—ji. ) (1.14)

This defines the algebra H of quaternions. We have shown that C1(2) = H.

1.1.2 Grading, Filtration and the Symbol Map

In the following section, we focus on the structure of C1(V, Q) inherited by the tensor algebra 7*V and the inner
product.

Consider the grading automorphism a : C1(V,Q) — CI(V,Q) from Definition 1.5. Since a? = Idcyv,q), it
follows that (as vector spaces)

CI(V,Q) = CI(V,Q) @ CI'(V, Q), (1.15)
where _ ‘
CI'(V,Q) = {ue CIV,Q) | a(u) = (=1)"u}. (1.16)
This defines a Z-grading on C1(V, Q). Indeed, since « is an algebra homomorphism
CIY(V, Q) - CV(V, Q) < CII+ (med2) (7 (3) i,j € Zo. (1.17)

We call elements of C1°(V, Q) even and elements of C1'(V, Q) odd. This owes to the fact that C1°(V, Q) is spanned
by products of even numbers of elements of V, while C1* (V, Q) is spanned by an odd number.
Observe that C1°(V, Q) is a subalgebra of C1(V, Q), whereas C1'(V, Q) is not.

This Z,-grading is a remnant of the N— grading of the tensor algebra

TV = PpVver = ( D V®"> ® <@ V®"> , (1.18)

neN n even n odd

that factors through the ideal /.

Another structure inherited from the grading of the tensor algebra is the filtration of C1(V, Q). Indeed, since every
graded algebra is trivially a filtered algebra we have the following filtration of T°V

F'V =PV FVcr've...cTV F'WQF"V < FrmV. (1.19)

<n

Since quotienting by the ideal I can only decrease degree, this filtration induces a filtration on the Clifford algebra

FrCUV,Q) = (Di<n V®i)/IQ . (1.20)

Recall that every filtered algebra F'A = ... € A has an associated graded algebra G(A) = @, .y G"A with
GYA:= FOAand G" := F"A/Fn=14 for n > 0. As a vector space G(A) is isomorphic to A, as algebras they
are usually distinct.

10



Proposition 1.7. The associated graded algebra of CL(V, Q) is the exterior algebra AV.
Proof. Indeed, note that

g" CI(V, Q) = (@zSn V®i/IQ)/(@¢<n—1 V®i/IQ) = V®n/f = A"V,
where [ is the ideal of T*V generated by v ® v forv e V. O

Therefore, the Clifford algebra can be seen as an enhancement of the exterior algebra. Indeed, Clifford invented
his algebra as a means of incorporating the inner product in the exterior algebra. From the point of view of
physics, the exterior algebra represents the classical fermionic Fock space with the classical anticommutation
relation e; - e; + e; - ¢; = 0. Quantising this Fock space leads to an algebra with canonical anticommutation
relations e; - e; + e; - e; = hd;;. Up to a sign, this is exactly the Clifford algebra. Therefore, the isomorphism
AV — Cl(V, Q) is often called quantisation map. This is discussed in greater detail in section 1.4.

Definition 1.8. The isomorphism ¢ : CI(V, Q) — AV is called the symbol map.

Explicitly, its inverse 0 =1 : AV — CI(V, Q) is given by the linear extension of

1 .
VLA Uy ] 2 sign(0)ve(1) * * * Vo(r) V1,...,0, € V. (1.21)
o€S,.
Given an orthonormal basis ey, . . ., e, of V, this isomorphism maps
€iy At A€ > €€ forl<ig<...<%.<n. (1.22)

Since C1(V, Q) and AV are isomorphic, we can define an action of C1(V, Q) on the exterior algegra.
Definition 1.9. We define Clifford multiplication of C1(V, Q) on the vector space AV by
c(a) =0 (a-)o~! € End(AV) ae Cl(V,Q). (1.23)

From now on we suppose that () is non-degenerate, such that we have an isomorphism Q(—, ) : V' — V*.

Definition 1.10. We define the interior product 1 : V' — End(AV) as 1(v) = tg(s,.)» Where ¢, denotes contraction
of a covector w € V* with an element of AV. Explicitly,

k
t(v)vr A A = Z(—l)”lQ(vi,v)vl A ADp A A Ve (1.24)
i=1

We also define the exterior product € : V' — End(AV) by
e(v) :=v A - (1.25)

The interior product ¢ is adjoint to € with respect to the quadratic form ¢ on AV,

Qe(w)w,w') = Q(w, t(v)w) w,w eAV,veV. (1.26)
Observe that since v A v = 0, it follows that
e()?=0, (v)?=0, e w)+i(w)e(v)=Qw,w) forv,weV. (1.27)

We can reexpress Clifford multiplication by vectors in V' using interior and exterior product.
Proposition 1.11. Forv e V < CI(V, Q) we have that
c(v) = €(v) — t(v) € End(AV). (1.28)

Proof. Lete;, A --- Ae; €AV, whereeq,...e, is an orthonormal basis for V. Then

€ A€, Nt A e, 1€ {i1,. .., 0k
C(ei)eilA"'/\eik_J(Gi'eil"'eik)_{ (—1)j€i2 /\.Z-l-/\e/i\/\.l.k./\ei {i;ij, }
1 j k
On the other hand,
€ A€ At A€ i ¢ {1, ..., 0k
(e(eq) —uleq))es, ARRRIRANC % _{ (—l)je; /\-1-1-/\5;'\/\-1.]‘./\61' {i;ij’ } ’ -
1 j k

11



1.2 The Spin and Pin Groups

We are now ready to introduce the groups Spin,, and Pin,, as certain multiplicative subgroups of the Clifford
algebra. As a guiding principle, we will try to find a double cover of SO,, and O,, among these subgroups.

1.2.1 Subgroups of Cl(n)

From now on we let V' = R" with euclidean quadratic form |v|? := >)"" | v? and denote the corresponding Clif-

i=1 "1
ford algebra CI(R™, | - |) by Cl(n).
In this section we study several (multiplicational) subgroups of the algebra Cl(n), eventually leading to the defini-
tion of the Pin and Spin groups.

Since Cl(n) is a unital algebra, a first subgroup to consider is the following.

Definition 1.12. The group of units of the algebra Cl(n) is
ClX :={ueCl(n)|Iu"t e Cl(n), st. v u=uu"t =1}. (1.29)

Since v H;‘TZ = 1, it follows that an element v € V is invertible, if and only if v # 0.

Having defined a group CL¥, we could consider its adjoint action on itself, given by Ad(u)v=wuvu~! foru,veCL .
However, we will use the grading automorphism « from Definition 1.5 to define a slightly different action.

Definition 1.13. The group of units CL\ acts on Cl(n) via the twisted adjoint action

Ad: C1X — Aut(Cl(n)) Ady(z) == a(wau™"  we LY, e Cl(n). (1.30)
This action is well defined since Kfiu is invertible with inverse ANdu_l and is a group homomorphism since « is.
For v # 0 € R™ and w € R™, we have that

~ _ —v v, W n
Ad,(w) = a(v)wv™! = —vww =w— 2v<|v2> e R™ (1.31)

Thus, we see that Avdv : R™ — R™ defines the reflection at the plane orthogonal to the line passing through v. This
is the reason we considered the twisted adjoint action instead of the adjoint action.
However, for a general w € C1¥, Ad,(R") & R™.

Definition 1.14. We define the Clifford group
T, := {ue CI* | Ad,(v) € R", Yo e R"} (1.32)

as the subgroup of CL* that stabilises R™.

Clearly, any product of non-zero vectors in R™ is contained in I';,. In fact, the Clifford group is the subgroup of
Cl(n) generated by non-vanishing vectors. Therefore, the maps « and (-)? restrict to an automorphism and an
anti-automorphism on I';,. A proof of this can be found in [6].

By construction, the twisted adjoint representation Ad : Cl; — Aut(Cl(n)) restricts to a representation

Ad: T, — Aut(R") = Gl,, . (1.33)

Since I, is generated by all non-zero vectors in R", it follows that its image under Ad is the set of all possible
compositions of reflections. The following lemma thus shows that any composition of reflections is a rotation.
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Lemma 1.15. The image onAvd : T, — Gl,, is contained in O,,.

Proof. Observe that for v € R™, we have that |[v||*> = —v - v = a(v)v. Thus, forv e R", ¢ € T,
|0l = a(Ade0)Rdgo = d(-v)a(dHa(@)vs! = —gv- v~ = o]

Since Ad,, preserves the norm | - [, it is an element of O,,. O

We’ve seen that I, is generated by non-vanishing vectors in R™ and that Ad : I';, — O,, maps such vectors to
the reflection at the plane orthogonal to these vectors. The following theorem from linear algebra guarantees that
every rotation can be obtained from reflections.

Theorem 1.16 (Cartan-Dieudonné). Every rotation R € O,, can be written as a product of at most n reflections.

Proof. A proof can be found in [6]. O

Combining this result with a calculation of the kernel of Ad we find the following lemma.
Lemma 1.17. The following is a short exact sequence

1—R*—T, 24 0, —1. (1.34)

Proof. By the Cartan-Dieudonné theorem 1.16 every rotation R € O,, can be written as a product of reflections
R = py, -+ pu,., where p, denotes reflection at the plane orthogonal to v € R™.

Since p, = Ad,, it follows that Ad ', — O, is surjective.

Let’s compute its kernel. Suppose ¢ € I';, is in the kernel of Ad. Then a(¢p)v = ve¢. Decomposing ¢ = ¢ + ¢,
where ¢ is even and ¢~ is odd we obtain (¢pT — ¢7)v = v(dpt + ¢7), or

oTv=vp" o v=—vd~ Vv e R™.
Fix an orthonormal basis vy, . .., v, of R".
We write ¢ = a4 + v1by, where a, by are elements of Cl(n) not containing v; if spanned in terms of the basis
of Cl(n) associated to the basis vy, ..., v, of R”. Observe that a, and b, are even, while a_ and b_ are odd.

Therefore, ayv; = viaq, byv; = +v1by and we calculate
tviar + bz = (ag +v1bg)vy = ¢tv, = 19t = tviay T bs.

Therefore, b+ = 0. Repeating this argument succesively for all basis vectors, it follows that ¢* does not containing
any v; and is therefore a constant. Since ¢+ € I',,, this constant is non-zero. Thus ker(Ad) = R*. O

1.2.2 The Groups Pin,, and Spin,,

So far we have considered the Clifford group I',, generated by all non-zero vectors and have obtained a R* -fold
covering of O,,. To obtain a double cover, we have to restrict to the group generated by unit vectors.

Definition 1.18. We define the spinor norm N : Cl(n) — Cl(n) as

N :u v ua(u)'. (1.35)

The name ’spinor norm’ comes from the observation that for v € R™, we have that N (v) = —v? = |v|?.
However, on arbitrary elements of Cl(n) the spinor norm has not much in common with a norm; in general it isn’t

even a real number. If we restrict the spinor norm to the Clifford group I',, we can recover its norm-like behaviour.
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Lemma 1.19. The restriction of the spinor norm N to the Clifford group T',, is a homomorphism
N:T, - R* (1.36)
such that N(a(x)) = N(z), Ve € T,,.

Proof. Letz €T, Since v and (-)? restrict to (anti-) automorphism on T',, it follows that a(x)! € T',,. Therefore,
N(z) = za(z)t €T,

We will show that Aﬁm) = 1. It then follows from Lemma 1.17 that N (x) € ker(A\a) =R*.

Let v € R™. Since 2! € T',, it follows that a(z)tvz! " € R™. Applying (-) and observing that w! = w, Yw € R",

a(z) vz h = 27 wa(x).

Therefore, 1 o~ ~
v =za(z)va (za(x)') " = Adan@v = Ady v, O

We can use this norm N to restrict I',, to unit vectors and introduce the groups Pin,, and Spin,,.

Definition 1.20. We define the pinor group Pin,, as the kernel of the homomorphism N : I',, — R* and the
spinor group Spin,, as its even part Pin,, n C1°(n), where C1°(n) is the even part of the Clifford algebra.

Since 04|Cl°(n) = Id, we don’t have to distinguish between adjoint and twisted adjoint for the Spin,, group.
Therefore,

Pin, = {z € Cl(n) | a(z)vz™' e R", Vo e R", N(z) = 1} (1.37)
Spin,, = {z € CI°(n) | zvz~' € R", Yv € R", N(z) = 1}. (1.38)

The group Pin, is the subgroup of Cl* generated by unit vectors of R” and Spin,, is the subgroup of Pin,
generated by even products of unit vectors of R™.

Using the spinor norm N to restrict the short exact sequence of I',, to unit vectors, we find that the Spin,, and Pin,,
group are indeed double covers of SO,, and O,,, respectively.

Theorem 1.21. There are short exact sequences

Ad

1— Zy — Pin,, — 0O,, — 1 (1.39)
1 —> Zy —> Spin,, 2% S0, — 1. (1.40)

Proof. Observe that for k € R*, N (k) = k2. Thus, the following diagram commutes

1 RX r, 24,0, 1
J(JZ J{N J
1 RX —= RX 1 1

which means that ¢ := {()2, IV, 1} is a morphism of chain complexes with kernel
1 —> Zy —> Pin, 2% 0, — 1.

Since both domain and codomain of ¢ are exact, it follows that the above sequence is exact. Restricting to C1°(n)
and observing that the product of an even number of reflections is contained in SO, it follows that

1—>Z2;>Spinnﬂ> SO, —1

is exact. O
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From now on we will focus on the spinor group Spin,,.
As alluded to in the introduction of this chapter, one can prove that the spin group Spin,, is simply connected for
n > 3 and therefore the universal cover of SO3. This explains its appearance in quantum physics.

Example 1.22. We continue Example 1.6 and discuss the Spin,,-group and the adjoint map Ad : Spin,, — SO,,
inthe casesn = 1 andn = 2.

For n = 1 we have that Cl(1) = span{1,i} = C. The even subalgebra is C1°(1) = span{1} =~ R. The group
Spin, is the group generated by even products of unit vectors. Thus, Spin, is the group {1,i? = —1} = Zj.

For n = 2 with C1(2) = H = span{1,i, 5, k = ij} we have that C1°(2) = span{1, k} with relation

k? =ijij = —1. (1.41)

Therefore, 010(2) =~ C. Under this isomorphism, for x € Clo(2), the map Ad, acts as

72

Ad,(v) = W’U veR? =C,
x

where | - | denotes the aboslute value in C. Thus, Ad,.(R?) < R?, which implies that
Spin, = {z € CIO(Z) |IN(z) =1} ={zeC]|z]* =1} = 5, (1.42)

where we have used that N (z) = za! = (21 + kao) (71 — kz2) = 27 = |z|°.
Identifying SO, with S* acting on C by phase multiplication we thus find that Ad : Spin, =~ S — SO, =~ S!
acts as

Ad:S'— 5t ze 22 (1.43)

1.2.3 The Lie Algebra spin,,

Since Spin,, is a subgroup of the algebra Cl(n), it follows that its Lie algebra spin,, is a Lie subalgebra of Cl(n)
with commutator [, 8] = o f — - a.. Let o : Cl(n) — AR™ be the symbol map, the isomorphism between the
Clifford algebra and the exterior algebra from Definition 1.8.

Lemma 1.23. The Lie algebra spin,, is the subalgebra o= (A*R™) of Cl(n).

Proof.  We will first show that =1 (A?R™) is indeed a subalgebra of Cl(n).

Letey, ..., e, be an orthonormal basis of R™, such that 0~ (A?2R") = span{e; -¢; | i < j}. A computation shows
that the commutator [e; - €5, ey, - €] is again contained in span{e; - ¢; | i < j}. Thus, 0! (A?R") is a subalgebra
of Cl(n).

To prove that the subalgebra spin,, equals ! (A?R™) we consider the curve

75 (t) := cos(t)1 + sin(t)e; - e; € Spin,,  fori < j

and observe that v(0) = 1, 4(0) = e; - ;. Thus, the span span{e; - ¢; | i < j} = o' (A?R") is contained in the
Lie algebra spin,,.

Since Ad : Spin,, — SO, is a double cover, it follows that spin,, = so,,. Therefore, dim(spin,,) =dim(so, ) = (}).
On the other hand, dim(o~*(A2R")) = dim(A?R"™) = (3), which proves that o~ (A%R") = spin,,. O

The double cover Ad : Spin,, — SO,, induces an isomorphism Ad, : spin,, — s0,,.
Fix an orthonormal basis eq, .. ., e, of R™. The associated standard basis of s0,, is given by ¢; A ¢; € 50,

ei A ej(v) = (v, ejye; — (v, e;)e; veR™. (1.44)
In matrix notation, every antisymmetric matrix (A;;) corresponds to the element

A=) Ajje; aej € 50, (1.45)

1<j

The notation e; A e; is chosen since A’R™ — so0,, €; A e; — e; A e; defines an isomorphism of Lie algebras.
Using the basis e; A e; of 50,,, we can now describe the isomorphism Ady : spin,, = 0~} (A?R") — so,,.
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Proposition 1.24. Given an orthonormal basis e, . . . , e, € R, the isomorphism Ad, : spin, — so,, is given on
basis elements by
Ady e -ej — —2e; Aey. (1.46)

Proof. Let~y(t) = cos(t)1 + sin(t)e; - e; € Spin,,. Then Ad.,(;) € SO, is given by
Ad,pyv=(t)-v-y(t)"" wveR",
with derivative at the identity

d d
Ady v

(Adwei-e)) (0) = (Ads3O) ) = 5| -l

(@) -v-~v(1)7)
=6i~€j-U—’U'€i'6j.
This equals

le;-ej,v] =ei-ej-v+e-v-ej+ 2w, ee; =2v,epe; —2v,ejre; = —2e; A e;(v) O

Given an antisymmetric matrix A = (4;;) € so,,, we have that

1 1 n
Ad;l A = Ad;l (Z Aijei A 63) = —5 Z Aijei . €j = —1 Z Aijei . 6j' (147)

i<j i<j ij=1

1.3 Spinor Representations

In the following section we will study representations of the Clifford algebra Cl(n) and the spin group Spin,, . We
will see that in even dimensions, the Clifford algebra has exactly one irreducible representations S, called the spin
representation. This representation splits in two irreducible Spin,,-representations S = ST @ .S~.

To deal with representations it is more convenient to consider the complexification of the Clifford algebra
Clg(n) := Cl(n) ® C. (1.48)

Observe that this complexification equals the complex Clifford algebra C1(C",q), where ¢ is the (complex-
bilinear!) form

q(z,w) = Z ZiW; z,we C". (1.49)
i=1

Definition 1.25. A representation of the Clifford algebra Clg(n) is a C—algebra homomorphism
p: Clg(n) — Endc (W), (1.50)

where W is a finite-dimensional C—vector space.

In Definition 1.9, we have already encountered the representation ¢ : Clg(n) — Endc(AC™) induced by the map
¢: Ve — End(AC") c(v) :=€e(v) — v(v). (L.51)
However, observe that AC" is generated by e(v) and «(v) acting on 1 € AC™ for v € C", while the image of

Clg(n) is only generated by c¢(v) = €(v) — ¢(v). Thus, Clg(n)1 € AC™ is a proper subspace and AC™ therefore
not an irreducible representation.

However, in the even dimensional case n = 2m, we can use a similar construction as (1.51) to obtain an irreducible
representation of Clg(n).
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Let V = R?™ and let .J be a complex structure on V, i.e. a linear map .J : V — V such that J? = —1y, which is
compatible with the real euclidean product (-, -) in the sense that (Jv, Jw) = (v, w).

Let Ve = V ® C be the complexification of V. The euclidean product on V extends to the (complex-bilinear!)
form g on V¢ defined in equation (1.49). The complexification decomposes into

Ve=P®P, (1.52)

where P andf are the +¢ and —1¢ eigenspaces of J ® 1.
The notation P comes from the fact that complex conjugation

Voo Ve, v®@u—ov®n veV,ueC, (1.53)

restricts to a real isomorphism ~ : P — P.
Since J is compatible with the euclidean product (-, -), it follows that

q(p1,p2) = 0 = q(b1,b2) p1,p2 € P, by, by € P. (1.54)
and that ¢ places P and P in duality, i.e. such that the map
P — pP* b— q(b,-) (1.55)

is an isomorphism. The choice of subspace P is known as a polarisation of V.

On the complex vector space V¢ with bilinear form ¢, we define the exterior product € : Ve — Endc(AVe) and
interior product ¢ : Ve — Endc(AVg) as in Definition 1.10.
Observe that for p € P, b € P we have that

e(p) € Endc(AP) and  «(b) € Endc(AP). (1.56)
We define the map ¢ : Vo — Endc(AP) as
c(p +b) :== V2 (e(p) — (b)), p+beVe=P®P. (1.57)

It squares to
c(p +0)* =2 (e(p)® — e(p)e(b) — 1(b)e(p) + 1(b)?) . (1.58)
Using relations (1.27), it follows that

c(p+b)* = —2q(p,b) = —q(p+ b,p +b). (1.59)
Thus, the map ¢ : Vo — End¢(AP) is Clifford and induces a map
¢ : Cl(Vg, q) = Clg(2m) — Endc(AP). (1.60)

For different choices of complex structure J we get different polarisations P. However, one can prove that the
representations ¢ : Clg(2m) — Endc(AP) are equivalent. For definiteness, we let S := AP, where P is the

subspace of C2™ obtained from the standard complex structure J = ( 10 _3’” ) on R?™, Explicitly,
m
P=span{e; —iejim|1<j<m} and P =spanf{ej +iejim|1l<j<m}, (1.61)

where e1, . . ., e, is the standard basis of R>™.

We observe that dim(S) = 2™.

Definition 1.26. The representation ¢ : Clc(2m) — Endc(S) is called the spin representation.
The 2™ —dimensional space S is the spin space.

Usually, the map ¢ : Clg(2m) — Endc(S) is called Clifford multiplication.
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Proposition 1.27. The representation
¢ : Clg(2m) — Endc(S) (1.62)

is an isomorphism of C—algebras and thus irreducible.

Proof. We start by proving that c is surjective.

Let V = R*" Vi = C?*™ and P, P as in 1.52. The algebra End¢(S) = Endc(AP) is generated by €(p) forp € P
and ¢, for w € P*. The complex bilinear form ¢ induces an isomorphism between P* and P (equation (1.55))
such that for every w € P*, thereis a b € P with 1, = ¢(b). Since ¢(p) = v/2¢(p) and c(b) = —v/2u(b) = —v/2t.,
it follows that c is surjective.

It is an isomorphism, since dimg (Cle(2m)) = 22 and dime (Ende(S)) = (27m)% = 227, O

It is proven in [6], that in even dimension n = 2m, the spin space .S is up to equivalence the unique irreducible
Clc(2m)—representation.

Proposition 1.28. There exists a hermitian product -,y on S such that
le(v)s, 8"y = —(s,c(v)s") Vs,s' € S, v e R*™ c C*™. (1.63)

Proof. 'We define the inner product on S using our explicit construction of S = AP from above.
It suffices to define an hermitian product with properties (1.63) on P, which can then be extended to A P.
Let~: P — P denote complex conjugation. We define the hermitian product

{p,p') = qa(p, D) p,p € P. (1.64)

Letv € V = R?™. Since v is real, it is of the form v = w + @ for some w € P. Thus, c(v) = /2 (e(w) — ¢(W))
and

{e()p,p'y = V2{(e(w) — v(w))p, p') = V2q (e(w) — v(@)p, p') -

Since ¢ is adjoint to € with respect to ¢ (equation 1.26), it follows that

) = V24 (p, (sw) = @) 7)) = =24 (p, (c(w) = L@) 7') = =, cw)p). =

If we restrict this representation of Clc(2m) to the Spin group, we obtain a representation of Spin,,,, .

Definition 1.29. The complex spin representation of Spin,,,, is the homomorphism
s @ Spin,,, — Glc(S), (1.65)

obtained by restricting the irreducible spin representation of Clc(2m) to Spin,,, < C1°(2m) < Clc(2m).

Using equation (1.63) and the fact that Spin,, is generated by an even number of unit vectors in Cl(n), we see that
the spin representation 7g is unitary with respect to the hermitian product (-, -» on S.

The representation 7g is not irreducible. This can be seen by the following.
Definition 1.30. We define the complex volume element wc € Clc(2m) as
we :=1"e1 - eom, (1.66)

where eq, ..., eq,, is a positively oriented orthonormal basis of R?™,

A calculation shows that w? = 1. Thus, we can split every Clc(2m)-representation W into a direct sum of +1
eigenspaces of wg, i.e.

W=wrew-, W= %(lip(w(c))VV. (1.67)

Noticing that
weo = awe  forall o € Cl%(Qm), (1.68)

we see that each of W7 is invariant under the even subalgebra CI2(2m) and defines a subrepresentation for C12(2m).
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Given the spin representation S, we can therefore decompose S = St @ S~ in Spin,,,-subrepresentations.

In terms of our explicit construction S = AP, these subrepresentations are ST = A®*"P and S~ = A°4P,

The Spin,,, representations S and S~ are inequivalent and irreducible. In fact, they are up to equivalence the
only irreducible Spin,,, representations. A proof of these facts can be found in [6].

Definition 1.31. The complex irreducible unitary representations 7g+ : Spin,,, — Glc(S%) are called half spin
representations.

With respect to the hermitian product (-, -) from Definition 1.28, the spaces S and S~ are orthogonal to each
other.

Example 1.32. Continuing Example 1.6 and 1.22, we discuss the spinor representation of Spin, =~ S*.

Consider R? with the standard complex structure J = < (1) _01 ) Then R2® C = C2 = P @ P, where
P = span{f := \%(el —iey)} and P = span{f := %(el + i e5)} and where ey, ey is the standard basis of R.

The spin space isthen S = AP =C® P. We decompose

) ‘ . : B
e1 = 5(61 —ieg) + 2(61 +ieg) = —=fande; = ;(61 —ieg) — %(61 ties) = —=(f — ) (1.69)

VR V2

and obtain that ¢ : Clg(2) — End¢(S) = Endce(C @ span{f}) is given as the complex linear extension of
cle)a+df)= (e(f) —e(f)) (a+bf)=-b+af (1.70)
clea)(a+bf) =1 (e(f) + L(?)) (a+bf)=1ib+iaf. (1.71)

Here, we have used that . (f)f = q(f, f) = 1.

The half spin spaces are ST = A®V*"P = C = span{1} and S~ = A°dP = P = span{f}.
The spin representation 7g is given by Clifford multiplication restricted to Spin,,.
Therefore, for cos(¢) + sin(¢)ejez € Spin,,

s (cos((j)) + sin(qb)eleg) (a+bf)= (cos(gi)) - isin(¢)) a+ (cos((b) + isin(¢)) b f. (1.72)

Identifying S* = Spin, via e'® > cos(¢) + sin(d)ejes and S = ST @ S~ = span{1} ®span{f} = COC, we
find that

+ 8" - End¢(C) z— 27t (1.73)

~: 8" - End¢(C) Z> 2 (1.74)
271 0

ng : S' — Endc(C?) 2z < 0 ) . (1.75)

1.4 Fermions and Bosons

When we discussed the isomorphism between Clifford algebra and exterior algebra, we mentioned that the Clifford
algebra can be seen as representing the canoncial anticommutation relations (CAR).

The usual presentation of the CAR algebra describing a quantum mechanical system of fermions with n degrees of
freedom is slightly different. It is generated by position operators q1, . . . , ¢, and momentum operators p1, . .., Dy
with relations

495 + 454 =0, pipj +pipi =0, qipj +piq = —0; 1<i,j<n, (1.76)

(modulo a factor of —ih). However, this algebra is equivalent to the complex Clifford algebra Clc(2n) in 2n
generators. In fact, choosing a polarisation of R?", e.g.

(R*)¢ (= C*") = P® P = span{e; —iejin | 1 <j < n}@span{e; +ieji, |1 < j<n} (1.77)
(where ey, ..., es, is an ONB of R?", see (1.61)), we find that the Clifford algebra Clc(2n) is generated by vectors
¢ = é (e; ze]+,,) and p; = % 5 (€i + iei4,) with relations

795 +qjq =0 pipj + pjpi =0 qipj + pjqi = —0ij 1<i,j<n. (1.78)
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Therefore, the Clifford algebra Clc(2n) is in fact equivalent to the CAR algebra.

Completely analogously, we can consider the canonical commutation relations (CCR)

49 — q;¢ =0 pip; —pipi =0 qiPj — Pjqi = —0ij 1<i4,j<n, (L.79)

describing a system of bosons with n degrees of freedom. Similar to the Clifford algebra, there is a coordinate
independent definition of this algebra.

Let V be an even dimensional complex vector space with a symplectic form w (i.e. an antisymmetric non-
degenerate bilinear form w : V' x V' — C). We define the Weyl algebra

WWV,w):=TV/[ | (1.80)

where T*V is the tensor algebra and I, is the ideal generated by v ® w — w ® v + w(v, w)1 for v,w e V.
Observe that in contrary to the Clifford algebra, the Weyl algebra is only defineable in even dimensions.
Similar to (1.54), we define a polarisation of V' with respect to w to be a choice of subspaces V' = @ @ P such that

w(q1,q2) = 0= w(p1,p2) Vq1,q2 € Q, p1,p2 € P. (1.81)

Choosing a basis ¢1, ..., ¢, of Q and p; ...p, of P such that w(g;,p;) = d;;, the Weyl algebra is generated by
the relations
495 — 4;9; =0 pip; —pipi =0 qipj — Piqi = —w(qi,pj) = —0ij- (1.82)

Therefore, the Weyl algebra is equivalent to the CCR-algebra describing a bosonic system with n degrees of
freedom.

We can transfer all results obtained for the Clifford algebra to corresponding results for the Weyl algebra.

While the Clifford algebra is a quantisation of the exterior algebra AV (i.e. AV is the associated graded algebra to
the filtered algebra C1(V)), the Weyl algebra is a quantisation of the symmetric algebra Sym(V).

The Clifford algebra Clc(2n) is defined via an inner product and therefore related to the group SOs,,. In the same
way, the Weyl algebra is defined via a symplectic form and is related to the symplectic group Sp,,,.

For example, we found in Lemma 1.23 that the quadratic elements o~ (A2C2") of the Clifford algebra are canon-
ically isomorphic to the Lie algebra of the Spin group Spin,,, (here, o : Clc(2n) — AC2" is the symbol map).
Analogously, we can show that the quadratic elements ! (Sym2 C?") of the Weyl algebra W(2n) are canonically
isomorphic to the Lie algebra of the double cover of the symplectic group (here p : W(2n) — Sym(C?") is the
isomorphism between symmetric and Weyl algebra). This double cover of the symplectic group is known as the
metaplectic group Mp,,,.

We can push these analogies between Clifford and Weyl algebra much further. The idea to treat fermions and
bosons - or Clifford and Weyl algebra - on a completely equal footing is called supersymmetry.

The utility of supersymmetry becomes apparent if we consider the bosonic analogon of Clifford multiplication (the
spin representation) ¢ : Clg(2n) — Endc¢(.S) from Definition 1.27.
Following equation (1.57), we define the representation e : W(2n) — End¢(Sym @) as the extension of

e:C* =Q®P — Endc(Sym Q) e(q+p) :=7(q) + (p), (1.83)

where 7 : @ — End¢(Sym Q) is the symmetric product with elements of @) and « its formal adjoint.
Observe that in comparison to (1.57), we ommited a factor +/2, which is due to the missing factor of 2 in the
defining relation v @ w — w ® v = —w(v, w)1 of the Weyl algebra.

The algebra Sym @ is the algebra of polynomial expressions in vectors of @ (e.g. ¢ + ¢2) and can thus be
identified with the algebra C[Q*] of polynomial functions on the vector space Q*. Fixing a basis q1, ..., g, of
@, this yields an identification Sym @ = C|[gq,...,¢,]. Under this identification, the symmetric product 7(q)
becomes multiplication with g, such that

e(q;) : Clar, ... an) = Clar, - - -, qn] (elg)f)(qrs-- - an) = Gif(qis-- -, qn)- (1.84)

A computation shows that the formal adjoint «(p;) corresponds to the derivative with respect to g;, such that

e(pi) : Clar,-- -, qn] = Clau, - - -, ¢n] (e(p)f) (a1, aqn) = %(Q1»~-aQn)~ (1.85)

(2
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Since e(g; )e(p;)—e(p;)e(q:) = — gg; = —6;; = —w(gs, p;), this indeed defines a representation of the Weyl algebra.

In the same way as the spinor representation S is the unique irreducible representation of the Clifford algebra, the
representation e : W(2n) — End(C[q,...,qy]) is the unique irreducible representation of the Weyl algebra - a
fact known as the Stone-von Neumann theorem.

Therefore, in the same way that fermions are represented by Clifford multplication on spinors, bosons correspond
to (polynomial) differential operators on (). The power of supersymmetry is that it relates these two concepts.

In the following, we will mainly focus on fermions and spinors and come back to the idea of supersymmetry only
in the final step of the proof of the index theorem.

1.5 Spin Geometry

Having discussed algebraic properties of Clifford algebras and spin groups we can now place them in a geometrical
context.

1.5.1 Differential Geometry

In the following, we will briefly recapitulate important concepts from differential geometry.
Let M be a smooth manifold. For a vector bundle £, we denote its space of sections by I'(E).

Definition 1.33. Let G be a Lie group. A principal G—bundle P — M over M is a G—fibre bundle with a free
and transitive right action of G on P which preserves fibres.

The main example of a (Gl, —)principal bundle is the frame bundle Pg; £ of a rank r vector bundle £. Its fibre
(Pa1,.(€)), at x € M is given by the set of all ordered bases of £, with Gl, acting on them by change of basis.

To every principal G—bundle and every G-representation, we can associate a vector bundle.

Definition 1.34. Given a principal G—bundle P — M and a representation p : G — GIl(V) we define the
associated vector bundle
Pgx,V:=(PegxV)/~, (1.86)

where (p.g,v) ~ (p, p(g)v), Vg € G.

Every rank r vector bundle £ is associated to its frame bundle under the fundamental representation

p:=1d:Gl. - GI(R") = Gl,. (1.87)
All other bundles usually associated to £ can be reconstructed as associated to its frame bundle. For example,
E = Pai, (E) x,R", E* = Py, () x xR", APE = Pay, (€) xpr, (A'RT), ®%E = Py, (€) x g, (R'RT),

where p*, AFp, @ p are the induced dual, exterior power and tensor product representations.

Let £ be a rank r vector bundle with transition functions ¢;; : U; nU; — Gl and let G < Gl,.. We say that £ has
a G —structure, if its transition functions can be chosen to map into G, i.e. if ¢;; : U; nU; — G < Gl,..

For example, if £ is orientable its transition functions can be chosen to lie in Glf . Similarly, if £ has an inner
product, then they can be chosen to lie in O,.. We can then consider its oriented or orthonormal frame bundle
Pay+ (&) or Py, (€) of oriented or othonormal frames, respectively. This can be generalised to arbitrary principal
bundles.
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Definition 1.35. Let P — M be a principal G-bundle over a manifold M and let H 2 Ghea group homo-
morphism. The bundle Pg reduces/lifts along ¢ if there exists a trivialisation {U;} of P with transition maps
9i; : Uy nU; — G, such that there exist maps G;; : U; n U; — H fulfilling the cocycle condition G;; = GG
(i.e. such that they also define a bundle) and such that g;; = ¢(G;;).

The principal bundle P induced by the transition functions G;; is called a reduction/lift of Pg along ¢.

If Py is a reduction/lift of Py along ¢ : H — G, then there exists a bundle map £ : Py — P, such that

§(p-h) = &(p)-9(h) Vhe H. (1.88)

In most cases H — G is taken to be an inclusion of a subgroup, which is why we usually speak about a reduction
of a G—bundle. However, in the following essay we will be considering the double cover Spin,, — SO,,, which
makes it more natural to talk about a lift of the structure group.

Many geometrical notions can be restated in terms of reductions of specific principal bundles.

A Riemannian structure on a manifold M™ is defined to be a reduction of its frame bundle Pg;, (T'M) along
the inclusion O,, — Gl,. Each Riemannian structure corresponds to a choice of a specific (isometry class of)
Riemannian metrics on 7' M.

An orientation of M is a reduction of the frame bundle Pq, (T'M) along G1;} < Gl,,. If such a reduction exists,
we say that M is orientable.

Example 1.36. To prepare for our discussion of the existence of spin structures, we briefly investigate the notion
of orientability of a manifold M. Consider the short exact sequence

sign(det)

1—-Glf < Gl, "= "Zy—1. (1.89)
This induces a long exact sequence in cohomology
HY(M,Gl}) — HY(M,Gl,) 3 H' (M, Zs). (1.90)

We use Cech-cohomology to identify isomorphism classes of principal G-bundles with H'(M,G). A principal
Gl,,-bundle P is orientable if it reduces to a GI," -bundle, i.e. if it lies in the image of H! (M, G1,") — H!(M, Gl,,).
By exactness of (1.90), we have thus obtained that a principal Gl,, —bundle is orientable if and only if w; (P) = 0.
The class wq (P) € H(M, Zs) is called the first Stieffel-Whitney class of P.

A local section s : U — P of a principal bundle P yields trivialisations of P and all its associated bundles over U'.
Indeed, the map (z, g) — s(x).g identifies U x G = P|y, trivialising P. Given an associated bundle £ = P x ,R",
the map (z,v) — [(s(z).g,v)] = [(s(x), p(g)v)] identifies U x R" = E|y.

In particular, every local section s : U — P induces a local frame for every associated bundle.

One of the main advantages of the use of principal bundles is to facilitate the study of connections.

Definition 1.37. A covariant derivative on a vector bundle £ — M is a map

V:T'(E) ->T(T*M®E), (1.91)
fulfilling the Leibniz rule
V(fX)=df X + fVX feC®M), X eI (). (1.92)
Given a local frame (e, ...,e,) of |y, we define the connection one-form as the r x r matrix of one-forms
&'; € Q'(U) such that
Ve; = Z Ok ®ep. (1.93)
k=1

The connection one-forms @ € Q! (U, End(R")) = Q' (U, gl,.) are only locally defined and depend on the specific
trivialisation of £|y;. Using principal bundles we can organise them into globally defined one-forms independent
of the trivialisation.

22



Definition 1.38. A principal connection on a principal G—bundle P — M is an element w € Q*(P, g) fulfilling
several technical conditions, given for example in [2].

Let w € Q*(P, g) be a principal connection on P and let £ be a vector bundle associated to P via a representation
p : G — Gl,. We define a covariant derivative on £ as follows.

Let U < M be an open subset and s : U — P be a local section of P trivialising P and inducing a local frame
€1y...,en of E|y.

Then s*w € QY(U, g) and we define & := pys*w € Q1(U, gl,.), where py : g — gl,. is the tangent map of p. This
defines local connection forms Uﬂj = e’ (We;) and a covariant derivative

V=d+&:C*UR") - QYU,R". (1.94)

One can prove that this definition of V is independent of the choice of trivialisation.

‘We can now define the notion of curvature of a connection.

Definition 1.39. Given a covariant derivative V on a vector bundle £, we define its curvature tensor
KV e 0%(M, End(&)) by

KY(X,Y) =[Vx,Vy] = Vix,y] X,Y e T(TM). (1.95)

Given a local frame e, . . ., e, over U M, we can trivialise KV to obtain the local curvature form
K € Q*(U, gl,.) defined by

(KY(X,Y))'. =" (KY(X,Y)ej) X, Y eT(TM|y) (1.96)

i
J
Having defined the curvature of a covariant derivative, we can define the associated notion for a principal connec-

tion w on a principal bundle.

Definition 1.40. Given a principal connection w € Q*(P, g) on a principal bundle P — M, we define its principal
curvature

Q¥ =dw+wAwe Q*(P,g). (1.97)

Let & be a vector bundle associated to P via a representation p : G — Gl,. and let w be a principal connection on
P with induced covariant derivative V on £. Let U € M be an open subset and s : U — P be a local section of
P trivialising P|y and &|y with induced local frame ey, .. ., e, of £.

In this trivialisation we have that s*Q € Q?(U, g) is related to the trivialised curvature K}y € Q2(U, gl,,) by

P (5¥Q%) = K. (1.98)

We will now focus on the tangent bundle 7'M of a Riemannian manifold (M, g).
The Levi-Civita connection V on I'(T'M) is the unique connection that is torsion free, i.e. such that

VxY — VyX = [X,Y] forall X,Y e I'(TM) (1.99)

and compatible with the metric

Zg(X,Y) = g(VzX,Y) + g(X,V2Y) forall X,Y, Z € T(TM). (1.100)

Its curvature tensor R € Q2(M,End(TM)) is the Riemann curvature tensor. Given a local frame e1, ..., e, of
TM|y, we let

Rijkl = (RU(ei,ej))kl = ek(R(ei,ej)el). (1101)

Usually, we lower the index k using the metric and define

Rijr = ZgrkRijrl = g(ex, R(ei,ej)er)  where g, = g(e,, ex). (1.102)
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The Riemann curvature tensor has the following symmetries:

Rijr + Rijie = 0, (1.103)
Rijri + Ry = 0, (1.104)
Rijri — Riiiy = 0, (1.105)
Rijki + Rikiy + Rigx = 0. (1.106)

The last identity is known as the Bianchi identity.

We define the Ricci tensor as the contraction of the Riemann tensor Ric;; := >)/_,; g* Rirji. The symmetries of
the Riemann tensor imply that the Ricci tensor is symmetric; Ric;; = Ricj;.

Finally, we define the scalar curvature of M as

rar = Y Ricij g7 = Ri' 1™ (1.107)
i,j ilk

This is clearly independent of the local frame and defines a global function r; € C*(M).

1.5.2 Spin Manifolds

In the following let (M™, g) be an n—dimensional oriented Riemannian manifold. We denote its positively oriented
orthonormal coframe bundle by Pg, .

Definition 1.41. A spin structure P, —on an oriented Riemannian manifold (M™,g) is a lift of Pd, toa
principal Spin, -bundle along the double cover Ad : Spin,, — SO,,. An oriented Riemannian manifold with a

spin structure is called a spin manifold. We denote the induced bundle map by ¢ : P&, — P, .

In the literature, spin structures are either defined as a lift of the frame bundle Pso,, (as for example in [6]) or of
the coframe bundle (see [2]). Here, we have chosen the coframe appraoch to avoid the exterior algebra AT M in
favour of the much more geometrical AT* M.

Since the metric ¢ induces a canonical isomorphism between 7'M and 7* M , both definitions are equivalent.

Similar to our discussion of orientability in Example 1.36, we can find topological obstructions to the existence of
spin structures. Let’s consider the exact sequence

1 — Zy < Spin, 29 S0,, — 1 (1.108)
with induced long exact sequence
H'(X, Spin,) 2 H'(X,SO,,) “3 H%(X, Z,). (1.109)

Thus, the oriented orthonormal coframe bundle g, = lies in the image of Ad if and only if wo(Pg, ) = 0.
This shows that a manifold M admits a spin structure if and only if the second Stieffel Whitney class of its tangent
bundle wo (T M) vanishes.

Definition 1.42. Let M"=2" be an even dimensional spin manifold. We define the (complex) spinor bundle $ as
the associated bundle

$ = Pé xS, (1.110)

where 7g : Spin,, — Gl¢(S) is the spin representation. Its (local) sections are called spinors.
The halfl spinor bundles Si are defined as § . PS*pin Xrgs S * with sections called half spinors.

As vector bundles § decomposes as the direct sum § = @ § . The hermitian product on S induces a hermitian
. . . +
metric on $ with respect to which the bundles §~ are orthogonal.

Having defined a spinor bundle it is a natural next step to ask for a bundle of Clifford algebras acting on §.
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To define such a bundle, we observe that any orthogonal transformation R € O,, induces a map of the tensor algebra
to itself which preserves the ideal generated by v ® v + ¢(v). Therefore, it induces an orthogonal transformation
CI(R) on Cl(n) (see Proposition 1.4). This defines a representation

Cl: SO, — Aut(Cl,). (1.111)

Definition 1.43. Let (M", g) be an n—dimensional oriented Riemannian manifold. We define the Clifford bundle
on M to be the associated bundle
Cl(M) := Py, xc1Cl(n). (1.112)

The Clifford bundle has fibres C1(M),, over x € M given by the Clifford algebra C1(T;* M) associated to T;* M.
We note that in contrast to the spinor bundle, we do not need a spin structure on M to define a Clifford bundle.

We define the complex Clifford bundle as the complexification Clg (M) := Cl(M) ® C.

Definition 1.44. We define the symbol map
o:Cl(M) - AT*M (1.113)

as the vector bundle isomorphism induced by the fibrewise symbol maps o, : CI(T* M) — AT M from Defini-
tion 1.8.

Proposition 1.45. Let M"=2™ be an even dimensional spin manifold with spinor bundle $. Clifford multiplication
¢ : Clg(n) — Endc(S) induces an algebra-bundle (iso)morphism

¢: Cle(M) — Ende($). (1.114)

Proof. A proof can be found in [6]. O

As in equation (1.67) we can use a volume form in Clc (M) to define the projections of § to § * in terms of Clifford
multiplication.

Definition 1.46. For an even dimensional spin manifold M"=2" with volume form w € I'(A"T* M) induced by
the metric, we let w® := i2 0! (w) € I'(Clc(M)) be the complex volume form.

‘We then obtain that .
87 = (1g £ (")) 8. (1.115)

1.5.3 Spin Connection

Since the Levi-Civita connection on M is compatible with the Riemannian structure it defines a principal con-

: 1 * * 1 . * * 3 1
nection 7 € QY(Pg, ,50,) on P§, . Under the spin structure § : Pspin, — Pso,» 7 lifts to a connection
! % 1 * : *
T = e O (Pg, spin,) on P

Definition 1.47. Let M™=2™ be an even dimensional spin manifold with Levi-Civita connection 7 and let 7/ = £*7

be the lift of 7 to PS’“pin . The induced covariant derivative
V8 T(8) 5> T(T*M @ $) (1.116)
is called spin connection.
Trivialised by a local orthonormal frame (ey, ..., e,) of T M|y we can write the Levi-Civita connection on T M
as
Vo, =0; + Iy : C®(U,R") - C®(U,R"), (1.117)
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where I'; := I'(9;) and T € Q*(U, s0,,) are the Christoffel symbols, the local one-form of the Levi-Civita connec-
tion. In terms of our frame, they are given by (I‘i)o‘ﬁ =e*(Vaep) = g(ea, Va,ep) . _

Since g(eq, Vo,ep) = —gles, Vo, eq), it follows that I'; € so,,. Using the basis e* A e’ of so,, introduced in
equation (1.44), we can write them as

Di= >, M)%ea®e’ = > (1) e a €. (1.118)
a,B=1

a<f

Lets compare this to the spin connection vE.
The (dual of the) local orthonormal frame s = (e!,. .., e™) defines a local section of P§o. - Using this section, we
can relate the principal Levi-Civita connection 7 to the Christoffel symbols I, via

I = —s*r, (1.119)

where the minus comes from the fact that 7 defines a connection on the cotangent bundle.
Let 5 be a section of Pg such that £(3) = s (since £ is a double cover, there are two sections with this property).

Spin,,
This section § trivialises P§;;, and therefore also $. In this trivialisation, the local connection one-form of the
spin-connection is I'* = 7g,5%7 € Q'(U, gl(S)), where 7/ € QY (Pg,;, ,spin,,) is the lift of the Levi-Civita

connection and 7g : Spin,, — Glc(.S) is the spin representation. Since 7/ = £*7, it follows that

¥ = T8 €T = Mgy Ad;l(g 08)* 1 = g, Ad;1 s*7 = (mg 0 Ad 1) (=T), (1.120)
where Ad : Spin,, — SO,, and we have used that 3*¢£* = Ad, " (£ 0 3)* : QNP ,50,) — QY(U, spin,,).
By definition, the map 7g : Spin,, — Gl¢(SS) is simply the restriction of Clifford multiplication
¢ : Clg(n) — Endc(S) to Spin,,, such that

VE =0 +Tf =0, — c(Ad(T)) . (1.121)
Writing T; = 37, (I';)’ e7 & €* and using (1.47), it follows that
$ 1 n
rf =3 2 (el el
a,f=1

Ommiting the local coordinate system z¢ of M, we summarise our findings in the following proposition.

Proposition 1.48. Let ey, ..., e, be a local orthonormal frame of TM|y. Let s = (el,...,e") be the corre-
sponding local section of Péko" and let 3 be a local section of PS*pin in the preimage of s under the spin structure

¢ PS*lDirln — Pgy (there are two choices L5 for 3). In the trivialisation of 8 induced by 3 we have that

V8 =d+ ‘lla/jZ:l (F)O‘Bc(eo‘)c(eﬁ) where (F)aﬁ = g(eq, Veg) € QHU). (1.122)

With a completely analogous discussion we can relate the trivialised curvature of the Levi-Civita connection to the
curvature of the spin connection.

Proposition 1.49. Let ey, ..., e, be a local orthonormal frame of TM|y.
The curvature of the spin connection R* € Q2(M, End($)) is

1 ¢ 1
R$(ei7ej) =1 2 Rijri c(eF)e(el) = —3 2 Rijric(e®)c(e!)  where Rijr = glex, R(ei, ej)er) (1.123)
k=1 k<l
and where R € Q*(M,End(TM)) is the Riemann curvature tensor.

Proof.  This proof is very similar to the proof of the previous proposition. Let s and 3 be as in Proposition 1.48.
Let Q)" € QQ(PS*O” ,50,,) be the principal curvature of the Levi-Civita connection 7, such that the local curvature
(see equation (1.96)) is Ry = s*Q7 € Q%(U, s0,,).
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We use the basis (1.44), to write Ry (X,Y) = X, _5 (Ru(X,Y))% ge* A el
By formula (1.98), Rg — 54507, where mg : Spin,, — Gl¢(S) is the spin representation and 7/ is the spin

connection. Since 7/ = £*7, it follows that O = £*Q7 and thus that Rg = ws*g*QT/ = Tgy Ad;l(RU).

Therefore,
n

Rg(X,Y)z—i S Ru(X, V)% ye(e®)e(e?).
a,B=1

The claim follows, since Ry (e;,€;)* 5 = e*(R(ei, €j)ep) = glea, R(ei, €5)ep) = Rijagp. O

Since Clc (M) is associated to Pg, , the Levi-Civita connection induces a connection V on Clc(M). The spin
connection is compatible with the structure on § defined so far.

Proposition 1.50.

(1) The spin connection V¥ is compatible with the hermitian product (-,-) on $, in the sense that

X(s,8) = (VEs,8) + (5, V+ X¥s') e T*M 5,5 e T($), X e I(TM). (1.124)

(2) The spin connection V¥ is compatible with Clifford multiplication in the sense that

VA (c(a)s) = e(Vxa)s + c(a) Vs X e TM, s eT(§), a € T(Cle(M)). (1.125)
Proof. A proof can be found in [6]. O

Having discussed the spin connection, we can now define the central object of this essay.

Definition 1.51. The Dirac operator IP on an even dimensional spin manifold M"=2™ is the operator

8 (&
D: T8 L TN(T*M® ) - T($). (1.126)
Given a local orthonormal frame e, ..., e, of TM|y with corresponding dual frame €', ..., e" of T% M|y, the
Dirac operator can be written as
D=>cle)VE. (1.127)
i=1

So far, we have defined the Dirac operator on the spinor bundle ,$. By twisting the spinor bundle with a vector
bundle V and defining an associated Dirac operator on it, we can vastly increase the generality of our construction.
Indeed, on a spin manifold most geometric operators are related to Dirac operators of twisted bundles (a precise
statement can be found in Section 3.4).

Definition 1.52. Let V — M be a hermitian vector bundle with compatible connection VY. On the bundle
£ := $®V, we define the connection V¥ = V¥ ® 1 + 1® V" and the Clifford action ¢ : Clc(M) — End(&) by

c(la) (e ®v) = (c(la)o)®v ael'(Cle(M)), o eT(§),ve (V). (1.128)

The bundle £ is called a twisted spinor bundle with Dirac operator Dy, := >, c(e")VE .

Definition 1.53. Given a hermitian vector bundle YV — M with compatible connection VY, we define its Clifford
curvature FY € T'(End($ ® V)) b

. 1 &
FY = Z c(eM)e(e?)KY( (ei,€5) 5 2 (ei,ej), (1.129)
i<j j=1
where K € Q%(M,End())) is the curvature of VY and ey, . . ., e, is a local orthonormal frame of T'M.
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This definition is independent of the choice of frame and defines a global section ¥ € T'(End(§ ® V)).

Definition 1.54. Let )V — M be a vector bundle with connection VY. Given a local orthonormal frame e1, . . ., e,
of T M, we define the connection Laplacian Ay, to be

Ay = — i (VE92 = V%, .) i T(V) > TV, (1.130)

i=1

This definition is independent of the choice of local frame. We will redefine the Laplacian later in a nicer, frame
independent form in the context of formal adjoints (Definition 1.62).

Theorem 1.55 (Lichnerowicz). Let £ = §®V be a twisted spinor bundle over an even dimensional spin manifold.
Then

1
» :Ag—&-ZrM—i—FV, (1.131)

where Ag is the connection Laplacian on &, FY € T'(End(€)) is the Clifford curvature of VY and rj; € C*(M)
is the scalar curvature of M.

Proof. Fix apoint x € M. We use a local orthonormal frame ey, . . ., e,, of T M such that (Ve;), = 0 (e.g. using
geodesic coordinates, see Lemma 2.44) and denote its dual frame by e', ..., e™.

We abbreviate ¢ := c(e’) and V; := V& . Then at the point z € M, we have that [V;, '] = ¢(V,e?) = 0 and
thus

wi = i Civicjvj = i cicjvivj = (i(ci)QVNi> + (Z Cicj[vi7vj]> .

1,j=1 i,j=1 i=1 i<j

Using (¢%)? = c((e)?) = —1, the first term becomes Y., ,(c')?V,;V; = —=>" | V;V,; = Ag|,. The second
term is o o

Z ¢V, V] = Z IKE (e, e5)

i<j i<j
where K€ € Q2(U, End(€)) is the curvature of the connection V¢ and we have used that

[ei,ej]\x = (Veiej - Vejei)‘x = 0.
Observe that

KE=R*Q1+1QK",

where R® ¢ Q2(M,End($)) is the curvature of the spin connection V¥ and KY € Q2(M,End(V)) is the
curvature of VY.
Therefore, we have that at z € M

Di =Ag + Z cich$(e,-,ej) + Z FAKY (e, ¢5).

1<j 1<j

By definition, >, _; 'KV (e;,e;) = FY. We are left with the term containing the spin curvature R®. By

Proposition 1.49, it follows that R$(ei, ej) = —i St Rijrictcl. Therefore,

o 1 & o
ZczcﬂRég(ei,ej):—f Z Rijklclcjckcl.
— 8 .
1<j 4,7,k =1
Note that the Bianchi identity implies that
0 = (Rijr + Rirtj + Riji) ¥t = Rijric? et + Ripgjcfcle? + Ryjrctcd
_( ijkl + Uikl + zljk) c'C = [jpic'c’c + Ljgcc + Ljjpcccr.
Therefore and since R;;x; = —R;jix, it follows that

n

j kL j kL k.l.j l.j.k
Z Z Rijklc’c c =2 Z (Rijklc]c c + Rikljc cdd + Riljkc dc ) =0.
J=1k#j,l#j Jj<k<l
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Thus,
Z Rijklcjckcl = ZRijjlchjCl + ZRijijjckcj = QZRiCil Cl7

Gk l=1 il ik 1

where Ric;; = Y, « Rikjk s the Ricci curvature tensor.
By symmetry of the Ricci tensor,

Z Rijklcicjckcl = QZRicij et = QZRicii(ci)Q = —2ry.
.9,k ij i
Putting everthing together, this means that
i Jpd 1
Z ' R” (e, ej) = 1M
1<j

which proves the claim. O

We will now investigate how the Dirac operator behaves with respect to the subbundles § =
For a twisted Dirac bundle £ := § Q@ V, we let ET := $i RV.

Lemma 1.56. Let wC be the complex volume form (Definition 1.46). Then,
Dye(w®) = —c(w)Dy,. (1.132)

Proof. Letey,...,e, be alocal orthonormal frame of TM and letw = e! A --- A €™ € T(A™T* M) be the (real)
volume form on M. We claim that Vw = 0.

Indeed, Vyxw = X et A=A Vxe A-ne” =37 (Vxe')(e) €' A--- A €e". By metric compatibility,
(Vxe')e; = g(Vxe', et) = —g(e', Vxe'). It follows that (Vxe?) (e;) = 0, which proves that Vw = 0.

Since [V, c(w®)] = e(Vxw®) = 0, it follows that

n

Dyye(w®) = Z c(ei)Vfic(wc) = Z c(eiwC)Vfi = Z —c(wcei)Vfi = —c(W) Dy O

i=1 i=1 i=1

Since £* = (1g + ¢(w®)) &, the Dirac operator thus restricts to operators Dy, : [(E¥) — T(EF).

Definition 1.57. The operators lD\% = Ev‘gi ['(E%) — [(ET) are called chiral Dirac operators.

Using a block matrix notation corresponding to the decomposition £ = £¥@ £, we can write D, = ( D()Jr lDOV ) .
v

1.5.4 Formal Adjoints

To make contact with the analytical part of the following discussions, we will now discuss the notion of formal adjoints.

Let M be a compact Riemannian manifold. To improve readability, we will from now on denote its volume form
by dx, remembering that this is just a notational convenience and does not indicate that the volume form is exact.
Let £ — M be a hermitian vector bundle with inner product (-, -). On I'(£), we define the inner product

W, ) = wa(x),w(x))dx b o eT(E). (1.133)

Definition 1.58. Let £ and F be hermitian vector bundles. We say that a linear operator 7% : I'(F) — I'(€) is
Sormally adjoint to T : T'(E) — T'(F) if

(T, ¢) = <, T*¢) Vip e U(E), ¢ € I'(F). (1.134)
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By local considerations, the formal adjoint of a k-th order linear differential operator P : T'(£) — I'(F) exists and
is again a k-th order linear differential operator P* : I'(F) — I'(&).

Definition 1.59. We define the divergence of a vector field X € T'(TM) as the unique scalar function div(X)
such that
div(X)dz = d(tx dx). (1.135)

Lemma 1.60. Let ey, ..., e, be alocal frame and X € T'(TM). Then
div(X) = Y €'(Ve, X). (1.136)
i=1

Proof. A proof can for example be found in [8]. O
Lemma 1.61. Let £ be a hermitian vector bundle with compatibe connection V¢.
The formal adjoint of V€ : T'(E) — T(T*M ® &) is the operator VE™ : T(T*M ® £) — T'(€) given by

VE (X" ®e) = —Vie —div(X)e X eD(TM), ecT(£), (1.137)
where b : TM — T*M is the musical isomorphism induced by the Riemmanian metric.
Proof. Fix a vector field Z € T'(T'M) and let X, Y € T'(£). Then

(VXY = fM(VZX, V) dz — fM Z(X,Y)dw — (X, V) dz — JM 2(X,Y)dz — (X, V4V,

Let fxy := (X,Y) e C®(M). Observe that Z(fxy) = tz (dfxy) and thus that
0= Ly (dfxy N d.i?) =ly (dfxy) dx — dfxy A\ Lz(dl‘).
This means that §, vz (df xy)dz = §,, dfxy A tz(dz). Using Stokes theorem on the closed manifold M,

0= JM d(fxyLz(dx)) = J‘M dfxy » Lz(d(E) + J fxyd (LZ (dx)) R

M

such that §, - dfxy A vz(dz) = —§,, fxy div(Z) dz.
Putting everthing together, we obtain that {, Z(X,Y)dz = -, (X,Y") div(Z) dz and therefore that

(VzX, V) =(X,(—div(Z) = Vz)Y),

which means that the formal adjoint of Vz : T'(£) — T'(€) is Vi = —div(Z) — V.
To compute the formal adjoint of V : T'(§) » T(T*M ® ) lete, f € T'(£) and Z € T'(T'M). Then, by definition
of the induced inner product on T*M ® &,

<f7V*(Zb®e)> = <Vf,Zb®€> = <sz,€> = <f7(_d1V(Z) _VZ)6>'

This proves the claim. O

We can now give a new and frame independent definition of the Laplacian.

Definition 1.62. The connection Laplacian is defined to be

Ag = VE'VE  T(E) - T(E). (1.138)

In this new form, the self adjointness of A¢ is apparent.
The following proposition proves that the new definition agrees with our old Definition 1.54.

Proposition 1.63. Given a local frame e, . . ., e, of T M we can write this as
n
ij (o€ & £
Ag = — Z g (Veivej - Vveiej) ) (1.139)
ij=1

where g = g(e',e’) and g is the induced metric on T* M and where V is the Levi-Civita connection.
In particular, in a local orthonormal frame we have that

n

Ae == (VEVE -VE ). (1.140)

i=1
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Proof.  For the proof we will denote both connections V¢ and V by V.
It suffices to prove the formula for an orthonormal frame. Let X € I'(£) and let eq, . . . , e, be a local orthonormal
frame of T M. Since it is orthonormal, we have that e’ = e? and thus that

AeX =V*(VX) = V* (D d @V, X) = Y v* (e;*- ®VE,LX) .
i=1 i=1
Using Lemma 1.61, we find that

AeX = ) (—div(e;) = Ve,) Ve, X = = Y (Ve, Ve, X + div(e;) Ve, X).

i=1 %

Since div(e;) = >7_, ¢’ (Ve €i) = 25906, Vesei) = =33,9(Ve €5, €) = —ei(zj V., e;) it follows that

Ediv(ei)VEiX = =2 Ve, e)Ve, X == Vy, ;X
i J J

i

This proves the claim. ]

We can use this result about the adjoint of the connection to prove the following.

Proposition 1.64. Let £ = $ ®V be a twisted spinor bundle on an even dimensional spin manifold.
Then, the Dirac operator Iy, : T($ ® V) — T'($ ® V) is formally self-adjoint.

Proof. Letey,..., e, be alocal orthonormal frame of TM and write [y, = > ¢(e’)VE .
Proposition 1.28 implies that for ¢, v € T'(E), (c(e?)d,v)e, = —(¢,c(e)h)e,, where (-,-)g, is the hermitian
product on &,. Thus,

B ¥) = Dl V2,0,) = = F(VE 6, cle)¥) = = 3, VErele)

Lemma 1.61 implies that
2 VE*e(eh)yp = —Z (div(e;)e(e’) + VE e(e")) ¢ = —c (Z (div(e;)e’ + Veiei)> P — an c(eHVE
5 5 i i=1

We have shown in the proof of Lemma 1.63 that div(e;) = —e¢° (Z i Ve, ej).
It follows that 33", div(e;)e; = — >/_; Ve e; and therefore that 3,; | VE*c(ef)y = — X7 c(e')VE 4. This
implies that

<lDV¢7 ¢> = <¢7 -ZDV¢>7

which proves the formal self adjointness of I,,. O

This yields the following corollary for the chiral Dirac operator.

Corollary 1.65. The chiral Dirac operators ]ﬁ,% :T(EE) — T(ET) are formally adjoint to one another; i.e.

(Dﬁ)* - D). (1.141)

Proof. Let¢ e T(E7)and v € T(E7). Then, (Dy ¢, v) = (Dyo, 1) = (b, Dyib) = (¢, Pyy). D
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Chapter 2

The Atiyah-Singer Index Theorem

The index of an elliptic operator is defined to be the difference between the dimension of its kernel and its cokernel.
Therefore, the index of any formally self-adjoint operator vanishes. An important example of an elliptic operator
that is not self-adjoint is given by the chiral Dirac operator lﬁ;: (Definition 1.57). The following chapter will be
devoted to the calculation of its index on an even dimensional compact spin manifold.

We first given an introduction to Sobolev spaces and Fredholm theory and use them to study analytical properties
of the chiral Dirac operator. Thereafter, we will engage in the actual calculation of the index. We follow the ‘heat
equation proof’, initially due to Atiyah, Bott and Patodi with a crucial last step due to Getzler.

2.1 Sobolev Spaces

The main goal of the following section is to prove Theorem 2.13, which states that the space of square integrable
sections of a twisted spinor bundle has an orthonormal basis of smooth eigenfunctions of ﬁi

To reach this goal, we will introduce the theory of Sobolev spaces on manifolds, making our operators accessible
to methods from functional analysis on Hilbert spaces.

In the following, let M be a closed Riemannian manifold with associated volume form dz. Let E — M be a
hermitian vector bundle with hermitian product (-, -) and space of smooth sections denoted by T'(E).

Let V: T'(E) - I'(T*M ® E) be a connection on F, compatible with the hermitian product. Together with the
Levi-Civita connection this induces a connection V : T((T*M)* @ E) - T'((T* M) @ E).

In equation (1.133), we defined the product (¢, 1)) = {, (¢(x), 1(x)) da, which makes I'( E) into a non-complete
inner product space. To be able to use tools from functional analysis we will consider its completion.

Definition 2.1. The space L?(E) of square integrabel sections of E is defined to be the completion of the space
I'(E) with respect to the inner product

Gni= | (9. vla) do. 1)
M
For | € Ny, the Sobolev spaces H,(F) are defined to be the completion of T'( E') with respect to the inner product
(¢ 9>m, = fM (6(2), 9 () + (Vo(2), V(@) + ... + (V'é(x), V() d, (2.2)

where (-, -) denotes the inner product on E ® (7 M)* induced by (-, -) on E and the metric g on T'M.
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We remark that Hy(FE) = L?(E) and we will use both notations interchangeably.
From the definition, we deduce that

[1m < [¥lm;  forl <i"and ¢ € I'(E). (23)

The inner product (-, -) g, turns all Sobolev spaces H;(E) into Hilbert spaces. However, usually we want to work
with the product {-, )2 instead of (-, -)p,. To extend this product from I'(E) to the Sobolev space H;(E) we
make the following definition.

Definition 2.2. For !/ € Ny and f € T'(E) we let

I F ey o= sap {I<f e | [ ¢ € T(E), [[]la, = 1} (2.4
and define the Sobolev space H_; as the completion of I'(E') with respect to || - | z_,

Since
[y = sup{Kf, ¥pr2| [¢ € T(E), [¥]r2 =1} = [ f] L2, (2.5)
it follows that H_o(E) = L?(E) = Hy(E).

From the definition of | - ||;7_, we conclude that for ¢, ¢ € I'(E)

Ko el < |Qla_ [ a,- (2.6)
Hence, (-, )2 extends to a non-degenerate sesquilinear pairing
(yyr2 : Ho(E) ® Hi(E) — C. 2.7)

The most important basic properties of Sobolev spaces are summarised in the following proposition.
Proposition 2.3.

(1) There are bounded inclusions Hy (E) — H(E) forl' >l € Z.

(2) The covariant derivative V extends to a bounded map V : H|(E) — H;_1(T*M ® E) foralll € Z.

(3) A k-th order differential operator P : T'(E) — T'(F) between vector bundles E and F extends to a bounded
map P : H(E) — H;_(F) foralll € Z.

Proof. (1) The inclusions Hy (F) — H;(E) are a direct consequence of inequality (2.3) for I’ > [ > 0. By
continuity and inequality (2.6), it follows that

(K ozl < [ flasi @l < [fla_ @l fork,l>0and f e T(E), ¢ € Hi(E).

Therefore, || f|z_, , < |f|lz_, which implies that H_;(E) € H_;_(E) forall [, k >
Thus, Hi:(FE) € Hi(E) for0 =1’ = [. Forl’ = 0 > | we note that H;(E) 2 Hy(E) 2 Hl/(E). This proves (1).
(2) For [ > 0, the statement follows from the inequality

IVl < [¢lm,,  forl=0andy e T(E) (2.8)

which is a direct consequence of the definition of | - ||,

For | < 0, we observe that the formal adjoint V* : T'(T*M ® E) — I'(E) can be written as V* = Ly o V + Ly,
where L; is a section of Hom(7T*M ® E, E) and Ly is a section of End(E) (see (1.137)).

Therefore, V* extends to a bounded map V* : H; 1 (T*M ® E) — H;(F) for all | > 0, which means that there
is a constant C' > 0 such that [V*@|x, < C|¢|n,,, forall ¢ € H 1 (T*M ® E).

Thus, for ) € T'(E) and ¢ € Hj11(T*M ® E) it follows that

|<V1/}>¢>L2‘ = |<’¢}av*¢>L2| < H’(/JHH—I HV*QJ)HHI < WHH_:CWHHM
Consequently, [V¢|g_,_, < C|[¢| a_,, implying that V extends to a bounded operator
V:H_ (T*M®FE)—> H_;_1(E) foralll > 0.

(3) This statement is a consequence of the fact, that any k-th order differential operator P : I'(E) — I'(F) can be
written as P = Ly, o V¥ + ... L1 o V + L, where L; are sections of Hom((T*M)*® E, F) for 0 < i < k.
By (2), P extends to a bounded map P : H;(E) — H,_(F) foralll € Z. O
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The reason we can relate results obtained via Sobolev spaces back to the space of smooth functions is the following.

Theorem 2.4.
(1) (Rellich). The inclusion H;(E) — H;_y(FE) is compact for all | = k.

(2) (Sobolev). Ifl — 2 > k, then Hy(E) < C*(E), where C*(E) denotes the space of C*—sections of E.

Proof. Proofs can be found in [7] and [3]. The usual approach to theorems of this kind is to use a partition of
unity to divide M into chart domains, which one can take to lie on a torus. On these domains one can then use
standard techniques from Sobolev theory such as Fourier analysis. [

By Proposition 2.3, it follows that
.2 H_ {(E)2L*(E)=Hy(E)2H\(E)2...2T(E). (2.9)
Combining this with the Sobolev embedding theorem 2.4 implies that

() H/(E) = T(E) for any k € Z. (2.10)

=k

Sobolev spaces are Hilbert spaces and therefore easy to deal with in terms of functional analysis. The Sobolev
theorem helps us to relate results obtained in this way back to I'(E).

Before discussing the Dirac operator in terms of Sobolev theory, we will briefly come back to the negative Sobolev
spaces.
Recall that (-, )12 extends to a non-degenerate pairing H_;(F) ® H;(E) — C. Consequently, this defines an

isomorphism f — (f, )2 between H_;(E) and H; (E)* By definition of ||-|| y_, we can see that this isomorphism
is isometric. Indeed,

I<Fs D2 Iy = swpllKF e [l = 1} = [ fla, 2.1

This suggest that H_;(E) can be thought of as a space of distributions. For example, given a point € M and a
vector v, € E, we can define the delta distribution

Ou, (1) := (va, P()) ¢ e I(E). (2.12)

Lemma 2.5. The delta distribution d,,, can be extended to a bounded antilinear map H [2] (E) - C.
Hence, 6, € H_[ ](E)

n
2

Proof.  Observe that for 0 <[ < §
|00, (V)] = (V2 ¥(2))] < Jva[¢p(2)] < Cl]m,,
where the last inequality follows from the Sobolev embedding theorem. [

Remark 2.6. Since H;(F) is also a Hilbert space with inner product (-, -),, it follows by Riesz representation

theorem that H,;(E) is isometric isomorphic to H; (E)*, which in turn is isometric isomorphic to H_;(E). We will
exploit this isomorphism H_;(E) — H;(E) in the next section for a slight variation of the inner product (-, ) g, .

2.1.1 Sobolev Theory for Dirac Operators

So far we have dealt with Sobolev spaces defined via the linear differential operator V. We will now focus our
attention on Dirac operators )y, on twisted spinor bundles and restate Sobolev theory in terms of this operator.

Let M be an even dimensional compact spin manifold with spinor bundle $ and let £ = § ® V be a twisted spinor
bundle with Dirac operator ID,,. We will denote the Sobolev space H;(£) by H.
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By Proposition 2.3 the Dirac operator I), on £ extends to a bounded map

Dy:H —H_; forleZ. (2.13)

Since the usual Sobolev theory is built on the connection V, we introduce a slight alteration of the inner product

1
. . . . 2
to make it better suited for Dirac operators and spinors. Observe that (lﬁv +1 ) extends to a bounded map

l
(mi + 1) H, — H_, for = 0. (2.14)

Definition 2.7. On H; with [ > 0, we define the inner product

€ m = (B +1) .0 @.15)

We will show that this product is equivalent to the usual <, -)g, product from Definition 2.1. To do so, we need
the following estimate.

Proposition 2.8 (Garding’s inequality). Forl = 0 and 1 € H,, there exists a constant C; > 0 such that

I9013,., < Co(IPvelF, + 1¢13,) - (2.16)

Proof. By continuity, it suffices to verify the inequality for ) € I'(£). Recall Lichnerowicz’s Theorem 1.55
Ei =A+ iTM + FY.Forl = 0, we have that

o, = (18003 = (14 8 = = F°) .32 = D Dyt (1= 3R = 7 ) vy

Since both curvatures 7, and FV are bounded on the compact manifold M, it follows that there is a constant
Cop > 0 such that

|17, < Co (IDvelz: + [¥]72) -
Let now [ > 0 and assume that (2.16) holds for all smaller values of . Hence, for ¢ € H; the induction hypothesis
yields

Q

[l = IV, + 013 < Cix (1Dv L, + 1960, ) + 013

< i (IV Dy, + 11Dy, VIl + IVel3,,) + 613
< G (1Dl + 160, + 1By, VIl ) + 113
<G (I1Bvel_, + 1%, ) -

In the last inequality, we have used that [),,, V] is an O-th order differential operator, which can be seen by a
computation in a local frame. O

Using this estimate, we can prove that both products {{-, >, and {-, -, are equivalent.
Proposition 2.9. The inner product {{-,-)) g, is equivalent to the inner product (-, ).

Proof. 'We need to show that there are constants C, ¢ > 0 such that

e, v < [YlE, < C v,

The lower bound follows directly from the fact that (Di + 1 )l : H; — H_; is bounded.
For the upper bound we use induction on [ > 0.
The case | = 0 is trivial. Using Gading’s inequality and the induction hypothesis for [ > 0 we obtain

161, < G (1Bl + 1wl
< C (W% + D7 Dy, Butrs + By + D', 0012
= C (By + D)) = C L),

which proves the claim. O
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The inner product {{, -)) g, induces a norm || - ||z, on H; and a corresponding norm

WSz, = sup{ Kf,dpr2| | ¢ € Hy, [|@l|m, =1} 120 (2.17)

on H_;, which is equivalent to | - | z_,. From now on we will only work with this new set of equivalent inner
products and norms. By equivalence, all statements from Proposition 2.3 and Theorem 2.4 are still true for H;
equipped with || - || -

We have seen in Remark 2.6, that the spaces H; and H_; are isomorphic. Using our new inner product {{-, >)p,
we can exhibit this isomorphism explicitly.

Corollary 2.10. The bounded map
l
(mi + I) H, — H_ (2.18)

is an isometric isomorphism with respect to {{-, -y .

Proof. Observe that H_; — 20 f — {f,->r2 is by definition an isometric isomorphism. Since H; is a Hilbert
space with inner product {{-, -»>p,, it follows by Riesz representation theorem that the map H; — H,

g — <{g,)) is an isometric isomorphism. Composing these maps gives an isometric isomorphism H; — H_;
mapping g € H; to the unique f € H_; such that {f, )2 = (g, ) mH,.

By definition

Coym = (B +1) 9.5 2.19)
l

which means that the isometric isomorphism H; — H_; is given by (lDi +1 ) O

We can now take up the task alluded to in the beginning of this section and work towards find a spectral decompo-
sition of I}, : L2(E) — H_,(E).
As a first step we define the operator

p%+1)7 "
T:Hy— H_, ( "—>) H, — H,. (2.20)

This is clearly a self adjoint and positive operator. By Theorem 2.4 and the fact that the composition of a compact
and a bounded operators is again compact, it follows that 7" is compact. Hence, we can invoke the spectral theorem
for compact self adjoint operators, a proof of which can be found in [8].

Lemma 2.11. If T is a compact, self adjoint operator on a Hilbert space H, then H admits an orthonormal basis
(¥ )nen consisting of eigenvectors of T to eigenvalues i, such that

tn € R lim p, =0. (2.21)

n—oo0

Since our 7' is positive (and injective) it follows that p,, > 0 for all n € N. Defining \,, := /% — 1 we conclude
that

D Dyt = Aats (2.22)
(i) linéo Ap = OO (2.23)

and noting that A, (¢, ¢)r2 = <Iﬁiw, Yyr2 = Dy, Pyapdrs = 0 it follows that

(iii) An = 0. (2.24)
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We still need to establish that the eigenfunctions 1/,, are smooth.
To do so we need the following regularity lemma.

l
Lemma 2.12. If ¢ € L2 with (wi n I) Wb € L2 for some | > 0, then 1 € H.

Proof. Different proofs for this lemma can be found in [7], [3] and [8]. The main idea is again to use a partition
of unity to divide M into chart domains taken to lie on torus and then use standard techniques from Sobolev theory
such as mollifiers. O

Theorem 2.13 (Elliptic Regularity). Let M be an even dimensional compact spin manifold with twisted Dirac

bundle & = $ ® V. Then there is an orthonormal basis (V) nen of L?(E) consisting of eigenfunctions of ]Di such
that all 1, € T'(E) (i.e. such that all 1, are smooth).

Proof. 'We have already established that there is an orthonormal basis (1,,) of L? of eigenfunctions of lﬁi Since

l
(1])?, + 1) Un = (A + 1) by € L2 forall | > 0, it follows from Lemma 2.12 that ¢, € H, for all [ = 0. Thus,
by the Sobolev embedding theorem, v, € I'(E). O

2.2 Fredholm Operators and Index

So far, we have defined the index on a rather informal basis. In this section, we give a formal definition of the
index of the chiral Dirac operator in terms of Fredholm operators.

Definition 2.14. A bounded operator T': H — H' between Hilbert spaces H and H' is Fredholm, if both ker(T')
and coker(7") are finite dimensional.

Definition 2.15. The index of a Fredholm operator T is defined to be

ind(T) := dim(ker(T")) — dim(coker(T)). (2.25)

By the rank-nullity theorem, the index of any operator between finite dimensional vector spaces is zero.
A less trivial example is given by the operator R : [ — [2, (a1, azg,...) — (0,a1,az,...) which has index -1.
We also observe that any isomorphism is Fredholm with index zero.

IfA: H—> W, B: H — W/ are bounded operators between Hilbert spaces, then A®@B: H®H' — W@ W’
is Fredholm if and only if A and B are Fredholm with index

ind(A@® B) = ind(A) + ind(B). (2.26)
This is a consequence of ker(A @ B) = ker(A) @ ker(B) and im(A @ B) = im(A4) @ im(B).

To get a handle on Fredholm operators we state the following lemma. A proof can be found in [8].

Lemma 2.16. Let H, H' and H" be Hilbert spaces.
(1) IfT:H — H', S: H — H” are Fredholm, then TS : H — H" is Fredholm with index

ind(7'S) = ind(7T') + ind(S). (2.27)

2) If K : H — H is compact, then I + K : H — H is Fredholm with index zero.
(3) If T : H — H' is Fredholm with (Hilbert space) adjoint T* : H' — H, then T* is Fredholm with

ind(7T") = dim(ker(T)) — dim(coker(7T*)) = — ind(T™). (2.28)

It turns out that the Dirac Laplacian lDi, the Dirac operator )y, and the chiral Dirac operators ]2:_; are all Fredholm.
To prove this, we need the following lemma.

37



Lemma 2.17. Forl e Z, )
I+ Dy, :H — H_» (2.29)

is an isomorphism.

Proof. 'We’ve already proven the case [ = 1 in Corollary 2.10. A proof for the general case can be found in [8].
O

We are now ready to show that the Dirac operator and its square are both Fredholm operators.

Proposition 2.18.
(1) The square of the Dirac operator lﬁi : Hy — H;_5 is Fredholm with index zero.

(2) The Dirac operator ]DV : Hy — H;_4 is Fredholm with index zero.

Proof (1) By Lemma 2.17, I + lﬁi : Hyyo — H, is an isomorphism with inverse (I + lDi)_l : Hy — Hyyo.
Since 3 (I + ID3)~1 : H, — Hy is of the form I — K, where K = (I + I03)~' : H, — Hy,o — H,. By
Rellich’s Theorem 2.4, the operator K is compact. It follows from Lemma 2.16 that 12?,([ + D?})_l cH, — H_,
is Fredholm and has index zero. Since any isomorphism is Fredholm with index zero, it follows that

DY = DI + %)\ (I + %) is Fredholm with index

ind(y) = ind(y, (I + By,) ") + ind(I + 1y;) = 0.

For (2), consider the operator I + ilﬁv : H; — H;_1 and observe that

(I — i) (I +ilDy) =T + I« Hy — Hy_».

Since this is an isomorphism, it follows that I + iEV : Hy — H,;_; is injective.

Since also (I +ilPy,)(I —ilby) = I+ P} Hy 1 — Hy_y is an isomorphism, it follows that I + 10, is surjective
and thus that [ + ilﬁv : Hy — H;_; is an isomorphism. Now consider iDV(I + iﬁv)’l : H — H;, which is
again of the form I — K, where K = (I + ile)’l : Hy — H;q, — H; is compact.

Thus Dy,i(I + IDy,)~! is Fredholm of index zero. By the same reasoning as for lDi, it follows that 0, is Fredholm
of index zero. O]

In particular, this means that the index of lDV and lDi is independent of [ € Z.

We’ve seen that the index of both the Dirac operator and its square vanishes. This is due to the fact that both
operators are formally self-adjoint. We’ll thus turn our attention to the non self-adjoint chiral Dirac operators with
non-trivial index.

Corollary 2.19. The chiral Dirac operators ]D]i; : Hl($ir ®V) — Hl,1($$ ® V) are Fredholm with
ind(1)y,) = dim(ker(1y))) — dim(ker(1y,)) = — ind(Dy,). (2.30)
Proof. Since Dy, = ]D‘t @® Dy, the statement follows from equations (2.26) and (2.28). O

Corollary 2.20. The index of lD\i; : Hy — H;_1 is independent of | € Z.

Proof. We remark that by the elliptic regularity theorem 2.13 ker(Dy,) @ ker(1y,) = ker(IDy,) < T'(&). Thus,
dim(ker(w;j )) and therefore also ind(lD;S) are independent of [. O

We can thus speak about the index of lbg : 1"($ir ®V) — F($$ ® V) and don’t have to care about the Sobolev
spaces between which we consider the operator.
This statement is only based on elliptic regularity and is therefore true for all elliptic operators.
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2.3 The Proof of the Index Theorem

We now come to the actual proof of the index theorem, which will be divided in four steps.

Firstly, we express the index of the chiral dirac operator in terms of the supertrace of the heat operator associated to Di
This result is known as the McKean-Singer formula (Theorem 2.29).

In the second step, we study the heat operator in greater detail and show that it can be written as an integral over a
heat kernel and that its supertrace is the integral over the pointwise supertraces of this kernel (Mercer’s Theorem 2.35).
Thirdly, we show that the heat kernel has an asymptotic expansion and express the index in terms of a specific co-
efficient of this expansion (equation (2.63)).

Finally, we employ a scaling argument to reduce the calculation of this coefficient to the calculation of the heat
kernel of a generalized harmonic oscillator.

Before we start proving the McKean-Singer formula, we give a brief introduction to superspaces.

2.3.1 Superspaces and Supertraces

Many properties we’ve discussed so far are related to Zs-gradings of certain spaces, such as the Zs-grading of the
Clifford algebra Cl(n) = C1°(n) ® C1'(n) or the Zy- grading of the spin representation S = S* @ 5.

Since especially the grading of the spin representation will play a prominent role in the following proof of the
index theorem, we will give a short introduction in Zs-graded vector spaces (or superspaces) and the supertrace
defined on their operators.

Definition 2.21. A superspace is a Zo-graded vector space V =Vt V.
The grading operator € of a superspace V is the element € € End (V') defined by

€v = { J_ri ZEX‘;J: (2.31)
If V is a finite dimensional superspace, we define its superdimension to be
dimg(V) = dim(V") — dim(V ™) (2.32)
and for A € End(V'), we define the supertrace
trg(A) :=tr(eo A) A e End(V). (2.33)

Writing an operator A € End(V) in terms of a block matrix with respect to the splitting V = V* @V, its

supertrace is
trg (( CCL Z )) = tr(a) — tr(d). (2.34)

We’ve already encountered the spin representation S = S* @ S, a superspace with grading operator c(w®).

Lemma 2.22. Lete; ..., e, be an orthonormal basis of R™ with corresponding basis {e; =e;, - - - €;_} of Clg(n).
If A € Endc(S) = Cle(n) is given as >, Aley, its supertrace is

trg(A) = (=2i)2 AL-m (2.35)

Proof. Note that trg(A) = tr(w®A) and w® = i%¢; - - - e,. Therefore,

w3

trg(er---e,) = tr(i= 2 (W©)?) =i 2 dim(S) =i 22% = (—2i)%.
Observe that for A € Clc(n) and e; some basis element,

trg(e;A) = tr(wCe;A) = —tr(e;wtA) = —tr(wCAe;) = — trg(Ae;).
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For ey a basis element of Cl¢(n) with some 4 ¢ I this means that
trs(eiejei) = *tl‘s(e]e?) = tI‘S(B[).

Since e;ere; = (—1)!1* ey, it follows that trg(er) = (—1)1* 1 trg(es), implying that trs(e;) = 0 if |I] is even.

Now assume that ¢; is a basis element of Clc(n) with |I| odd. Then, e;w® = —wCe; and thus
trs(er) = tr(wey) = —tr(e;w®) = —tr(wte;) = —trg(er),
which shows that trg(ey) = 0 forall I  {1,...,n}. O

We have to be more careful if V' is an infinite-dimensional superspace.

Definition 2.23. A compact operator 7" on a seperable Hilbert space H is trace-class, if the eigenvalues
1 = po = ... = 0of T*T satisfy Zle +/fin, < 00. For a trace class operator 7', we can then define its trace as
Te(T) = 3 (Ten, en), Where (e;) ey is any orthonormal basis of H.

Since the composition of a bounded and a trace-class operator is still trace-class, it follows that the supertrace of a
trace class operator is also well defined. We will denote supertraces on infinite dimensional vector spaces by Trg
and supertraces on finite dimensional vector spaces by trg.

2.3.2 The McKean-Singer formula - Step One

We are now ready for our first step in the proof of the Atiyah-Singer index theorem.
* —
Since (ﬁ; ) = Iy, it follows that

ker(1Dy, D)) = ker(DDy) and ker(1Dy D)) = ker(IDy,). (2.36)

Thus,

ind(P3) = dim (ker(zz); 12)$)) — dim (1«;412)312);)) . (2.37)
In the language of superspaces, this means that
ind(p))) = dimg (ker(193)). (2.38)

We make the following observation: By carefully balancing the gradings, we can replace ker(lDi) by some higher
dimensional but easier calculable space without changing its superdimension.
It is easier to work with supertraces instead of superdimensions. Let Pker( p%) be the projector on the kernel of

E\z, Since dims(ker(]ﬁi)) =Trg (Pker( »?, )> , our plan is to replace this projector with another operator of larger
support but same supertrace.
We will show that such an operator is given by the heat operator ety

Let V() be the A—eigenspace of [}, in L2(€). By Theorem 2.13, it follows that V() < T'(€).
Let Vo (A) :i= V(M) n T(EY).

Lemma 2.24. For A # 0, the operator lﬁ;: :T(EY) — T(E7) restricts to an isomorphism V() — V_(\).
Proof.  For ¢ € V()), it follows that \¢) = lD?ﬂ/} = ]ﬂ;]ﬁ;d) Thus,

APyt = Dy Dy Pyt = Dy Dy,
Therefore, Iy, (V (A)) € V(A) nT(E7) = V_(A). Since Dy, D)5 |y, (n) = A Id, it follows that D3} is injective.

On the other hand since also lD‘tID;‘ o = A1d, it follows that lD\t is also surjective and thus an isomorphism.
V-
O
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For f : R0 — R with sup, .. p2) |f(A)| < 0, we define the operator

F(Dy) : LA(€) — L(€), b > F(An)ton.

This is a well-defined bounded operator.

Lemma 2.25. The operator f(]ﬁ?,) is trace class if and only if Z/\ESpec(zz)i) [f(A)] < oo

(2.39)

Proof.  Since lim,,_,« | f(An)| = 0, the operator f (lﬁi) is a limit of finite rank operators and therefore compact.

Because it is self adjoint, it is trace class if and only if >, | f(\)[ < 0.

Proposition 2.26. Let f : R.g — R be such that f(0) = 1 and Z)\ESPEC(D@ |f(A)] < 0. Then

ind(1Y) = Te(f(Dy 1Y) — Te(f (D5 By)) = Trs(f (D).

Proof  For X € spec(ID,), let V(A) € T'(€) the eigenspace of 07, to eigenvalue ) and let
Vi(\) = V(A) nT(E%). Observe that

Trs(f(DY) = %) (dim(Vi(N) = dim(V-(\) ) FOV).

)\Espec(ﬂ)i)

By Lemma 2.24, for A # 0, V. (A) = V_()), and thus dim(V, (X)) = dim(V_(\)). Therefore,
Tes(f(P)) = dim(V: (0) — dim(V-(0)),

which equals ind(]ﬁD by equation (2.37).

A specific example of a function as in Proposition 2.26 is f;(\) := e~** fort > 0. Since SUD )\ eqpec(12) le™t

the map ¢~tP% defines a bounded operator on L?(£).

Definition 2.27. The bounded map
TV LHE) > LHE) YT,
is called the heat operator.

Lemma 2.28. It holds that

Aespec(D3,)

forallt > 0. In other words, the heat operator is trace class.

Proof. This fact is part of Mercer’s theorem 2.35.

Because of its importance we will restate Proposition 2.26 in terms of the heat operator.

Theorem 2.29 (McKean-Singer formula). For any t > 0, we have that

ind(Dy) = Tr(e P9 P%) — Ta(e P3P%) = Trg(e %),

2.3.3 The Heat Equation - Step Two

O

(2.40)

O

A<,

(2.41)

(2.42)

(2.43)

In the first step of the proof we realized that we can replace ind(]Di) = dimg (ker(]?i)) by the supertrace of the

2
heat operator e~ t?V _ In this second step we will explain why this operator is easier to deal with than the projector

on the kernel and why it is called heat operator.
Consider the (Dirac-) heat equation

(at n zpi) bi(z) = 0.
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Plugging in, we see that the operator Py maps initial conditions ¢g € L?(€) to solutions 1; = e~ tP 3}1/)0.
2 . . . .
Thus, e *?V is the evolution operator for the heat equation or simply the heat operator.
We will see that the full heat operator is a smoothing operator mapping distributional initial conditions to smooth

solutions. This allows us to express it in terms of an integral kernel ¢~*? iw(x) =, pe(x,y)p(y) dy. Mercer’s
theorem 2.35 then shows that the supertrace of the heat operator can be calculated as the integral of pointwise

2
supertraces of the heat kernel. This reduces the infinite-dimensional supertrace Trg(e’”z) V) to an integral over
finite-dimensional supertraces.
2 . . . . . ..
The fact that e 2V is smoothing is proven in the following proposition.

Proposition 2.30. The image of the heat operator is contained in T'(£)
etV L L2(8) - T(€). (2.45)
A map with this property is called a smoothing operator.

Proof. Let1 € L*(£). We will show that e tPoy e H;(€) foralll = 0. By Proposition 2.12, it suffices to show
that (lpi + I)le’mff@b € L*(€) forall I > 0. We write ¢ = Y, a1, where t,, are smooth eigenfunctions of
E\Q, Then e 1PV = >, ane P, Let Cp = supyo (A + 1)2’e™ A, Then,

2 _ 2 _
[y, + D'e Py, = Y an* (A + DPe 2 < O Janl? = Cill[32,

which proves that e=*?V¢) € H forall [ > 0.
2
By the Sobolev embedding theorem it follows that e~ *?v ¢ € T(E). O

Indeed, the heat operator is smoothing for all kind of distributional initial conditions.
By duality, any operator A; : H; — H; for [ > 0 defines an operator A_; : H_; — H_; via

(A, ¢y = (b, Af ¢ foripe H_j,¢ € Hy. (2.46)

If the image of A; is contained in T'(£), then this is also true for the image of A_; : H_; — H_;.

We can summarise these findings in the following corollary.

Corollary 2.31. For alll € Z, the heat operator is a smoothing operator

etV L H(€) - T(€) forallleZ. (2.47)

Since the heat operator is smoothing, it can be expressed in terms of a kernel. We introduce this kernel as the
solution of the heat equation originating from a delta function.

Definition 2.32. For z,y € M and ¢t > 0, we define the heat kernel p;(x,y) as the map

pe(z,y) : Ey — & oy — (eftmiéoy) (). (2.48)

Proposition 2.33. The heat kernel p,(x, y) is smooth in x,y and t > 0 and o,, — p(z,y)o, is linear.
More formally

bt : (LE, y) EM — pt(xa y) (249)

is a smooth section of the external tensor product E* [X] E and t — py is a smooth family of such sections.

Proof.  Linearity in o, is a direct consequence of linearity of o, — d,, .

It follows from Corollary 2.31 that p;(z,y) is smooth in x. Since etV is formally self-adjoint, we have for
Ty € Ey, 04 € &, that

(Borr eV, S0 = (V5,6 32,
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i.e. that ) )
(00 Pt (2,9)Ty) = (B e PV, Yo = (e7PVE, 6, Spe = (pi(y, 2) 00, ).

This means that

pe(y, ) = pe(z,9), (2.50)

where ~ denotes the adjoint of a map &, — &, with respect to the inner product (-, -). Therefore, p,(x,y) is also
smooth in y. Smoothness in ¢ > 0 follows from the fact that for fixed y € M and o, € &, p:(x,y)o, fulfills the
heat equation

(5t + lDiz) pe(z,y)o, = 0. O

. . . 2 . .
Using the eigenfunctions 1, of ID}, to eigenvalues \,, we can also write

P, y)oy = D n(@) (pe(@, 9)oy, Yn () = D e () (04, Pn (), (2.51)

n

or

pe(z,y) = Y ey () @ P (y), (2.52)

where ¥ (y) € &, is such that for f, € &,, VEY)(fy) == (fy, Vn(y)).

The heat kernel is indeed an integral kernel of e~*#7.

Proposition 2.34. For any smooth section i) € T'(€),

(™) @ = | miepvdn @53

Proof.  Any section 1 € I'(€) can be seen as the distribution

f o b P = jMop(x), f(2) da = JM ey (/) de.

Thus, as a distribution ¢ = S M 5w(x) dz and consequently,

(ﬁﬂ%zb) (z) = fM (e‘t”%w(y)) (z)dy = JM pe(, y)P(y) dy. =

The advantage of the heat kernel is, that we can calculate the trace of the heat operator as an integral over the trace
of the heat kernel on the diagonal. This result is known as Mercer’s theorem.

Theorem 2.35 (Mercer). Fort > 0, the heat operator et L?(&) — (&) is trace class.

Its supertrace is related to the fibrewise supertrace of the operator pi(z, x) € End(&,) via

Trs(e_“pi) = f trg(ps(x, x)) da. (2.54)
M

2 . .
Proof. To show that e ~*#V is trace class, it suffices to prove that ) e~A

For o, € &,, we have that

n < oo (see Lemma 2.25).

pela,y)ay = 3 e (@) (0, a(y)-
Setting © = y and tracing over o, € £,, we obtain

i, ) = Yo [ (@)

n

Integrating over M we obtain
j tr(pe(z, z)) do = f Z e, () |? o = Z e tAn J [t ()] da = Z et
M M - M -
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Since Zﬁle e~ |4, (r)|? is monotone in N, the monotone convergence theorem allowed us to interchange
summation and integration. Now observe that tr(p;(z, x)) is a smooth function on a compact manifold. Therefore,

o0 > f tr(pe(z,x)) do = Zef&”,
M n

. 2 .
proving that e~ PV s trace-class.
To obtain the formula for the supertrace, we just have to insert the grading automorphism

e&r
€: &, — &y, e(vx)z{iv Zeé'm_
to obtain
Trs(e_tm%’) = J trs(pe(z, ) da. O
M

2.3.4 The Asymptotic Expansion of the Heat Kernel - Step Three

We have seen that the index of the chiral Dirac operator ind(lﬁD = Trg(’Pker( »? ) can be expressed as the

2 . 2 — . . .
supertrace of the heat operator Trg <e’m V). Since e~ 1Py ' ker(p2)> W€ can interpret this result as stating

that the supertrace of the heat operator is preserved for all times ¢ > 0.
At late times ¢ — oo, any solution of the heat equation will be in the kernel of ]Di and thus depending on the
global geometry and topology of M (which is how the analytical index dimg <ker(1ﬁi)> was initially defined).

However, for small times ¢ > 0, we expect that the solution is supported in a small neighboorhood of its initial
distribution and therefore only depends on the local geometry of M.

This heuristic leads to the idea of calculating the index

ind (m ) - JM trs(pe(z, 2)) dz Yt >0 (2.55)
in terms of the ¢ — 0 limit
ind (ID;) =lim | trg(pi(a,x))de. (2.56)
=0 Jp

To find this limit, we don’t need the full heat kernel trg(p:(z, 2)) but only its leading terms in an expansion in
powers of t.

Definition 2.36. Let f be a continuous function on (0, c0). If there exist constants a,, € C such that
N—1
)= ) ant™ = O(tY)  (t—0) VN €N, (2.57)
n=0

then we say that the (possibly non-convergent) formal power series Zf:o ant™ is an asymptotic expansion of f.
We write

)~ D ant™  (t—0). (2.58)
n=0

An asymptotic expansion is unique: Given a continuous f : (0,00) — C, with an asymptotic expansion, we can
reconstruct its expansion coefficients as ag = lim;—,o f(¢), a1 = lim;_, @ and so forth.

For our purposes we need an asymptotic expansion of {—families of sections of vector bundles. To be able to freely
interchange derivatives and integrals with the expansion, we make the following refined definition.
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Definition 2.37. Let M be a compact manifold and f; a smooth family of sections of a hermitian vector bundle V
with connection V. If there are sections a,, € I'(V) such that

N
sup [oFva | f ( Z ) |=0tN"%) (t—0) VYN=kjeN, (2.59)

zeM

then we say that the formal power series Zf=0 ant™ is an asymptotic expansion of f and we write

z) ~ > an (@)t (2.60)
n=0

With this new definition, we can interchange derivatives (in ¢ and x) and integrals with asymptotic expansions.
We can now expand the heat kernel p;(x, y) in powers of .

Theorem A.4. There exist smooth sections B; € T'(E K E*) over M x M with By(x,x) = 1g, such that

o0

pe(z,y) ~ au(z,9) Y. ¥ B;(2,), (2.61)

Jj=0

€T,y 2
where qi(z,y) = (47rt)*%e*% is the Gaussian on M x M.
Proof. The proof of this theorem can be found in the appendix. O

Therefore, we can expand

ind(Dy,) = JM trs(pe(z, z)) da ~ (4mt) "% i ( J trg(B;(z ,x))dx). (2.62)

Since the left hand side is independent of ¢ > 0, it follows that for j # % trg(Bj(z,z))dz = 0 and

2 SJVI

n

1nd(le) = hm trg(pi(x,x))de = (4m)~2 J trs(Bz (v, 7)) dz. (2.63)
M M

In principle, we can calculate trs(B= (z,r)) from the recursion relations found in the proof of Theorem A.4.
However, for large n this method becomes highly impractical.

2.3.5 Getzler Scaling - Step Four

We’ve already shown that

ind(lﬁi) = }ir%J trs(pi(z,z)) de = (47)~ 2 J trs(Bz (v, 7)) dz. (2.64)
~0Jm M
In this fourth and last step of the proof of the index theorem, we will show that not only the limit of the integrals
limy ¢ §,, trg(p¢ (2, z)) do exists but also the limit of its integrands lim;_,o trg(p¢(, x)). This is far from ob-
vious, since the asymptotic expansion of p;(x,z) has leading term ¢~2. The ‘fantastic cancellations’ (as they
were dubbed by McKean and Singer) leading to the vanishing of the terms trg(B;(z,z)) for j < 4 are due to
symmetries of the Clifford algebra.

To exploit these symmetries, in his 1985 paper [4] Ezra Getzler introduced a simultaneous rescaling of both space-
time R.o x M and Clifford algebra. This is inspired by supersymmetry, scaling both Clifford multplication
(fermions) and differential operators (bosons) simultaneously. The scaling is chosen such that in the limit of small
scaling parameter u, the rescaled heat kernel approaches lim;_,q trs(p:(x, z)). On the other hand, the rescaled
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kernel is uniquely determined as the solution of a rescaled heat equation. In the v — 0 limit this rescaled heat
equation tends to the equation of a generalized hamonic oscillator, which can be solved exactly. This yields an
explicit expression for limy_,¢ trg(p:(x, x)) in terms of the local geometry of M.

Let £ = $ ® V be a twisted spinor bundle on a compact even dimensional spin manifold M ™ with Dirac operator
DDy, and heat kernel p;(z,y) € T'(M x M,E X E*).

For a form o € AT* M, we denote its projection to A*T* M by Q[k]-
We make the following observation.

Proposition 2.38. If o € T'(Clc(M)), then

tre(e) dz = (=2i)% o (a),, (2.65)
where o : Clc(M) — AT* M denotes the symbol map.
In particular,
trs (p(w, @) do = (~20) tr (o (pul, )y ) (2.66)

where tr denotes the trace over V,.

Proof. This is a direct consequence of Lemma 2.22 rewritten in terms of the volume form dz = e' A -+ A e®

for a local orthonormal basis eq, ..., e, of T M. [

To define the rescaling, we will work in geodesic coordinates around a point o € M.
Let W = T, M and let U = {z € T, M | |z| < €}, where ¢ > 0 is such that exp, : U — M is a diffeomor-
phism. Therefore, U is a chart of M. We call the corresponding coordinates geodesic coordinates.

Since D exp,, | 0= 1, it follows that the coordinate vectors 01, ..., 0, are orthonormal at 0 € W. So far we have

defined a coordinate system on M. Lets trivialize our bundles.

Let E :=&,,,V =V, and let 7(xg, z) : £, — E denote the parallel transport map along the unique geodesic in
exp,,, U connecting x, and z. Explicilty, this geodesic is given by v, (s) := exp, (s exp! ().

We use this trivialisation to identify I'(exp,, U, £) with C*(U, E).

Even though we already have a (non-orthogonal) coordinate frame 0; of M, we can apply the same construction
of trivialisation by parallel transport to T'M. We let ey, . .. , e,, be the orthonormal local frame of T'M on exp,, U
obtained by parallely transporting the vectors 0; |zo along geodesic starting at xg.

Definition 2.39. We define the local heat kernel at xo, k™ : Rog x U - AW* ® End(V) by
ko (t,z) == 0 (T(ﬂco, exp,, L)pt(exp,, T, ro)) , (2.67)

where o : End(S) = Clg(n) — AW* is the symbol map.

We are now ready to introduce the rescaling.

Definition 2.40. We define the Getzler scaling by 0 < u < 1 of an element « € C® (R~ x U, AW* ® End(V))
by

(Bua)(t,z) := Y u ' o(u’t, uz)p ae CP(Rsg x U, AW* @ End(V)). (2.68)
=0

Under Getzler scaling operators on C* (R~ x U, AW* ® End(V')) transform as
Su(z)d, " = d(uz) ¢ e C*(U)
5u0:0, 1 = u"20;
6,0:6, 1 =uto;.
On the other hand, the algebraic structure transforms into
Sue(w)dy,t = ute(w) we W

Sut(w)o;t =u  o(w) we W,
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where the maps € : W* — End(AW®*) and ¢ : W* — End(AW™*) are the exterior and interior product from
Definition 1.10. Therefore, Clifford multplication by w € W*, which acts on AW™ as c¢(w) = e(w) — t(w) (see
Proposition 1.11) changes to

Suc(w)dy, ' =u™t (e(w) + ut(w)) (2.69)

‘We can interpret the rescaled Clifford multiplication as coming from a rescaled Clifford algebra Cl (W*, u? (-, )) .
From the point of view of physics, the limit « — 0 can thus be understood as the classical 7 — 0 limit turning the
quantized Clifford algbera e; - e; + e; - e; = hd;; back into the classical exterior algebrae; - e; +¢e; - e; = 0.

Under rescaling, the heat kernel behaves as follows.

Definition 2.41. We define the rescaled heat kernel as

r(u,t, x) = u" (0,k7°)(t, x). (2.70)

The factor u™ is added such that 7*° is still a heat kernel with the right initial condition lim;_,q 7%° (u, t, )0, = 6%0 .

Getzler scaling is chosen such that
°(u,1,0) = Z " (6, 0) (2.71)

placing the top-level component k% (u?, 0) [n] as leading order term in u.
This means that if the u — 0 limit exists, then the top-level part 7%° (u, 1, 0),] converges to lim; o k™ (,0) -
It then follows from Proposition 2.38 that if the limit exists, we have that

iii% try, (r*(u,1,0)[n)) = }T})(—Qi)i% trg (pe(zo, 20)) dz, (2.72)

where try, ~denotes the trace over the vector space V.

To finish the proof of the index theorem, we therefore have to show that lim,,_,¢ 7%°(u, 1,0) exists and calculate
its value explicitly.

Using Lichnerowicz Theorem 1.55 for Ag, we find that in our trivialisation by parallel transport the square of the
Dirac operator is the End(E) = Clc(n) ® End(V)-valued differential operator

L=-Y g¥ (vgivgj —rfjvgk) 2L+ FY O (U,E) - C(U, B), (2.73)

4,j=1

where Vg is the trivialized connection on E (see equation (2.81)), 3y € C*(U) the scalar curvature of M and
FY € C*(U,End(E)) is the trivialized Clifford curvature of V" (see Definition 1.53).

The local heat kernel k*° fulfills the heat equation
(0¢ + L)k™ (t,z) = 0, (2.74)
from which it follows that the rescaled heat kernel fulfills

(0y + u?6, LS, ") 170 (u,t, ) = 0. (2.75)

To work out the small « limit of r(u, t, 2) we set out to find an asymptotic expansion of r in powers of w.

Proposition 2.42. There exists AW* ® End(V')-valued polynomials v; on R x W such that

o0

o (u,t,z) ~ qix) Y uyilt,z) (u—0), (2.76)

i=—n

with v;(0,0) = 0 for i # 0 and v0(0,0) = 1.
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Proof. Tt follows from Theorem A.4 that p;(z, y) has an asymptotic expasion in terms of sections B; € I'(EXIE*)
with Bo(zg,20) = 1. We localize these sections to functions A7 € C* (U, AW* @ End(V)), explicitly given
by A (z) = o (7(x0, exp,, ) Bj(exp,, x,xo)). Thus, we have the local asymptotic expansion

[e¢]
K (tz) ~ qi(z) Y. VAT (z)  (t—0).
=0
Expanding A7°(z) = 2" Aj}4(2) € @i_o A'W* ® End(V), we obtain
[ee] n
E*o(t,x) ~ qi(z ZZHAIO
7=01:=0

and therfore

0 n
rmo(u7tax ~ qt Z Z 2] zAIU ’Uﬂ))

Taylor expanding A (ux) in powers of u, we obtain an asymptotic series

P (u,tz) ~ qilz) Y, wytz)  (u—0),

j=—n
where ; are polynomials in ¢ and inz.
Explicitly, expanding A ° ( => keNn . u"“‘x we obtain
wihe)= Y At
aeN;iSn;keNS
2a—i+|k|=j
In particular,
0
Z u?7;(0,0) Zu zA”CO
j=—n
Since A§°(0) = o (Bo(z0,x0)) = 0 (1g) = 1, it follows that Ago[ 1(0) = diol.
This means that Z;if u?7;(0,0) = 1, which proves that ;(0,0) = 0 for i # 0 and (0, 0) = 1. O

So far, the asymptotic expansion of 7%° (u, ¢, ) has leading term %~ " and shows no sign of convergence as u — 0.
However, we will prove in Proposition 2.46 that there exists an operator K such that

L(u) = v?6,L6;' = K+ O(u)  (u— 0). (2.77)

Using this, we can show that the first non-vanishing leading term of 7% (u, ¢, z) is indeed u° and that r therefore
converges for u — 0.

Proposition 2.43. The polynomials ~y; vanish identically for j < 0.
Therefore, lim,, o r™ (u, t, x) exists and equals r°° (0, t, ) := q:(x)Yo(t, z). Furthermore, r™ (0,1, x) is uniquely
determined by the differential equation

(0 + K)r*(0,t,2) = 0 70(0,0) = 1, (2.78)
where K is the operator from Proposition 2.46.

Proof. 'We expand the equation

(0 + L(u 2 uly; =0

j=—n

in powers of u. In leading order u~" we obtain the equation

(0¢ + K)ge(z)y—n(t,z) = 0.
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Since -y, are polynomials and thus power series in ¢, the solution to the heat equation is uniquely determined by the
value v;(0, 0) (we can obtain a recurrence relation similar as in the proof of Lemma A.3 which shows that there is
a unique formal power series solution to (d; + K)g:(x)F = 0). Since y_,(0,0) = 0, it follows that y_,, = 0.
We can now proceed inductively to the next higher term in the expansion and prove that y_; = 0 for all j > 0.
For 7 = 0 we have the first non-trivial initial condition

(0r + K)qi(z)v0(t,2) = 0 70(0,0) = 1.

This implies that r(u,t,z) ~ q(z) Z,?:o u?7y;(t,z)and thus that lim, o 7(u,t,z) exists and equals g(z)7o.
Since 7o (¢, x) is a polynomial and therefore a power series in ¢, it follows that (0, ¢, z) is uniquely determined by
the above equation. O

We are now left with calculating the leading order part K of L(u). To do this, we need two auxiliary lemma.
The following technical lemma summarises the most important properties of geodesic coordinates and parallel
trivialisations.

Lemma 2.44. Let £ be a vector bundle with connection V¢ considered in geodesic coordinates with trivialisation
by parallel transport.

(1) Let R = Y | 2'0; be the radial vector field. For X € C* (U, E) we have that
VEX =Y 2'0:X = RX. (2.79)

In particular, if 0*° is a vector in E = &, and o € T'(exp,,, U, £) is obtained by parallel transporting o*°
along geodesics we obtain that

Vro = 0 and thus that (Vo), = 0. (2.80)

(2) Let K¢ € Q*(M,End(&)) be the curvature of V. Then,
1 n
VE =0 -3 2 (03, 0) 2z’ + O(|z]?) : C*(U, E) — C*(U, E). (2.81)

Proof. A proof can be found in [2]. ]

Using this lemma, we can find the local appearance of the (twisted) spin connection V.

Lemma 2.45. We work in geodesic coordinates with trivialisation by parallel transport.
(1) The function c(e*) € C*(U,End(E)) is constant and equals ¢' := c (da:i|zo> € End(F).

(2) The covariant derivative V§_ on C'OO(U, E) is given by

Z Riij(0)z/ et + 3 fim(z)cFe + g(2), (2.82)
J,k<l k<l

where fua(z) = O(Jz]2) € C*(U) and g(z) = O(|z]) € C* (U, End(V)).

Proof. (1)LetR =Y | 2'0;. By Lemma 2.44, Ve’ = 0 and therefore
Re(el) = Vie(e!) = ¢(Vre') = 0.
This implies that c(e?) is constant as a function C* (U, E) and equal to c(e?),, = C(dxi|zo) =
(2) It follows from Lemma 2.44, that
=0 — - 2 KE(0i,05)z02” + O(|z]?).
] 1
Observe that K¢ (;,0;) = R®(6;,0;) + K (0;, ;) and that by Proposition 1.49

R$(6i, 0j)zo = R$(ez, €)eo = — = Z R;jii(0 kel
k<l

This proves the claim. O
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Finally, we can work out how the rescaled heat equation looks in the « — 0 limit.

Proposition 2.46. The operator L(u) := u?5, L5, ! is of the form L(u) = K + O(u), where

n 2
K=— Z( '*iz zj> + KV (x), (2.83)

=1

where [R]|™° denotes the antisymmetric n x n matrix with coefficients in AW* = AT M given by

[RI = g(0, R(-,-)0)zy = Y, Ruaji(o) da® A da'| e NW* (2.84)

k<l
and where KY () € A2W* ® End (V') is the curvature of VY at .

Proof. Using Lemma 2.45, and writing €’ = e(dz?|,,) € End(AW*) and /* := 1(dx?|,,) € End(AW*) we have
that

ij

Vg = uby, VS ot =0 +uf Z Ryis( 0)uzdu> (e + uQLk) (el + u2Ll)+ufikl(u§)u_l (€k + uQLk)—i-ug(u@)
] k<l

=0;+ — Z Riij(0)z7 ¥ e + O(u)

J k<l
Writing [R]j} = 3, Rkji(0) dz* A dat|, w0 = — 2kt Biriij (O )erel, we find that

1 n
Vﬁ;“:@i—zz R]%a? + O(u).

Since in geodesic coordinates g/ = 6 + O(|z]) and T'}; = O(|z
Ffj(ug) = O(u) and thus that

), it follows that g% (uz) = 6% + O(u) and

L(u) = — i (Vﬁ;o) u?d, ( +FV)6 L O(u).

ij=1

Since rj; € C*(U), it follows that u28, 73,0, 1 = u?rys(uz) = O(u?) and using

V= Z KY(ei,ej)c(e)e(e?) = Z KY (e ej)c'c?

i<j i<j
we find that
u?s, FVo, !t = Z WK (e, ;) (uz)u™? (€ + u?t) (¢ + ) = Z KY(ei,e)zo€'ed + O(u)
1<j 1<j
= Y KV(03,0))00 du’ A da?| 4+ O(uw) = KV (-, )y, + O(u) € W* @End(V),
1<j
This proves the claim. ]

This operator K is a generalized harmonic oscillator, whose heat kernel can be calculated explicitly (Theorem B.3).
Both from the point of view of physics and mathematics, the appearance of this operator shouldn’t come as too
much of a surprise. In fact, we have seen that the bosonic analogon of the spin,,, Lie algebra is the metaplectic
algebra mp,,,, the subalgebra of the Weyl algebra generated by quadratic elements. Up to the constant K, the
harmonic oscillator is precisely such a quadratic element.

Since r*°(0, ¢, z) is uniquely determined by the harmonic oscillator heat equation, we conclude this section with
the following corollary.

Corollary 2.47. The function r*°(0,t,2) € AW* ® End(V') is given by
_ o __tRI™/2 LRy praes %0 v
r(0,t,z) = qi(x) det <sinh(t[R]930/2)> exp ( prec (t[R] /2 coth(t[R]"/2) 1)@ exp ( tK (.730)) .

(2.85)
By nilpotency of [R]*® and K, this is the product of the Gaussian with a polynomial in t and z.
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Proof. By Proposition 2.43, the function % (0,¢,z) = g:(x)70(t, ) is uniquely determined by
(0r + K)r*o(0,t,z) 7%/(0,0) = 1.

It follows from Theorem B.3 that -y, is uniquely determined by the equation and has the form given in (2.85). [

Summarising, we have shown in Proposition 2.43 that the limit lim,,_, 7*°(u, ¢, ) exists and we have calculated
this limit in Corollary 2.47 explicitly in terms of the curvatures R and K. By equation (2.72), we have therefore
calculated lim;_,¢ trs(p:(z, 2)) and proven the index theorem.

2.4 The Index Theorem

Given a r x r matrix A valued in some finite-dimensional commutative algebra A, we define the A— valued formal
sA/2
sinh sA/2
s as in equations (B.8) and (B.10). If A € Mat,.., is nilpotent, these formal power series are polynomials and can

thus be evaluated at s = 1, defining det? (m) and exp(—A).

power series det? ( ) and the Mat, ., (A)-valued formal power series exp(—sA) with formal parameter

In the following, our commutative algebra will be A = Q"(M) := Q—)I[El Q2F(M).

Definition 2.48. Let V — M be a rank r vector bundle over a manifold M and let VY be a connection on V with
curvature KV € Q2(M,End(V)). Let vy, ..., v, be a local framing of V|¢; and let [KV] be the r x r matrix of
two-forms given by

[Kv]ij =" (KY(-,-)v;) € QX(U). (2.86)
We define o
A(VV)‘U = det2 (blnh([[(\}]/g)) e QN(U). 2.87)

Since [K'] is nilpotent, this is a well defined 2°*°"(U')—polynomial in the components [K"];; € Q*(U) and by
definition of the determinant, it is independent of the choice of local frame.
Therefore, this defines a global form

A(VY)e Qe (M), (2.88)
called the ﬁ-form of VV.
We also define
ch(VY) 1= Tr (exp(—[KV])) € Q"(U, End(V)), (2.89)
which is also a Q" (U )-polynomial independent of the local frame.
Therefore,
ch (VY) € Q="(M), (2.90)

is a global form, called the Chern character form of VY .

Since Sin;g 7 is an even function, its Taylor series has only even terms and the A—form has only components in

degrees divisible by four,
4]

A(VY) e @ Q¥ (M). (2.91)

i=0

Recall that we denote the projection of a differential form o € Q(M) to Q¥ (M) by ay,j. Having introduced this
notation, we can finally state the index theorem.

Theorem 2.49 (Local Index Theorem). Let p;(x,y) be the heat kernel of the Dirac operator D, of a twisted
spinor bundle £ = $ ® V on an even dimensional compact spin manifold M™.
Then for x € M, the limit lim;_,q trg(p:(x, x)) exists, is uniform in x € M and equals

lim trg (p(2, 7)) de = (2mi) "% (A(V) A ch(VV)) @) (2.92)
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where V is the Levi-Civita connection on TM and VY is the connection on V.
Given a local frame of TM and V around x € M, this can be written as

lim trg(pe(z, ) dz = (2mi) % (deté (m}[l](%[]l/Rg]/Z)) A Tr (exp([Kv]))>[ | (2.93)

where [R] and [ KV are the matrices of two-forms obtained from the Riemann curvature R of M and the curvature
KY of VY as in (2.86).

Proof.  We have seen in the discussion leading to equation (2.72) that if the limit lim,,_,o 7° (u, 1, 0) exists, then
the limit lim;_,¢ trg(p:(xo, o)) also exists and

}i_r)r(l) trs(pe(zo, z0)) = (—2i)% try, (r* (0, l,Q)[n]) .

Uniformity of the limit follows from our construction starting with the asymptotic expansion (Theorem A.4), which
was uniform both in z and y. From Corollary 2.47 we have the explicit expression

r(0,1,0) = (47r)‘gdet% (snll[l(]%[]]%) A exp(—KY),
such that
}LH}) trs(py(z,z)) do = (2mi)~ 2 (deté (sml[lﬁ];]/fﬂ)) trv(exp(—KV))>[n] = (27mi)" %2 (g(V) A ch(Vv))[n] .

Observe that for a vector bundle V, both /AX(VV) and ch(VY) are closed forms and therefore define equivalence
classes in de-Rham cohomology. It turns out that these classes do only depend on the bundle V and not on the
choice of connection VY.

Definition 2.50. Let V — M be a vector bundle over a manifold M. We define the A—genus of V as the
cohomology class

R R (4]
AW) = [A(VV)] e D HiR(M), (2.94)

where VY is any connection on V with A—form A(VY).
Similarly, we define the Chern character of V as the cohomology class

ch(V) = [ch(VY)] e HF™(M). (2.95)

Finally, this leads to the Atiyah-Singer index theorem.

Theorem 2.51 (Atiyah-Singer Index Theorem). Let p;(x,y) be the heat kernel of the Dirac operator D\, of a
twisted Dirac bundle £ = $ ® V on an even dimensional compact spin manifold M. Then

ind(1}) = (2mi)~% fM (A(TM) /\Ch(V))[n]. (2.96)

Proof.  Since lim;_,q trg(p;(x, ) do = (2mi)~% (Q(V) A ch(VV)) is uniform in z, it follows that

[n]

i 5) = lim rs(pe(z,z))de = im trg(pe(z, z)) dz = (278) "2 A AC )
md(Dy) = lim | trsou(oa)do = | i trs(yo0) do = i) [ (ATM) Ac(v) O
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Chapter 3

Applications and Outlook

In this chapter, we discuss several applications of the Atiyah-Singer index theorem. We start with a discussion of
its direct consequences, such as the integrality of the A-genus of a spin manifold. We will then prove the Riemann-
Roch theorem as an example of how a ‘classical’ index theorem can be deduced from the Atiyah-Singer index
theorem. We will also give a very brief introduction on how the index theorem is used in the study of solutions to
non-linear PDEs such as the Seiberg-Witten equations.

Finally, we give an outlook on how the index theorem for Dirac operators on spin manifolds can be used as the
starting point of a proof of the index theorem for general elliptic operators.

3.1 First Examples

For any smooth n—dimensional manifold M we can define the A- genus

AM) = [det% (m}ﬁﬁ/g))] e [_(]) HA (M), 3.1)

where [R] is the curvature of some metric on M. From this definition we can infer that the value (27i) ™ 2] Sur A(M) [n]
(which is sometimes also called the /Al-genus of M) is a real number. Using Chern-Weil theory, one can improve
this statement and show that (27m')7[%] $us ﬁ(M)[n] € Q.

For a general manifold M, this statement can’t be improved any further.

However, the A—genus of an even dimensional spin manifold equals the index of the Dirac operator, which is by
definition an integer. Therefore, a first non-trivial application of the index theorem is the following.

Corollary 3.1. On an even dimensional spin manifold M™, the ﬁ—genus (2mi)~% § o ﬁ(M )[n] 18 an integer.

Without knowing the index theorem, this is a highly non-trivial statement. Indeed, the relation between having a
spin structure and an integral A—genus was one of the observations that led to the discovery of the Atiyah-Singer
index theorem.

Let M be a smooth manifold, which we equip with a metric g with corresponding curvature R. Using the Taylor
expansion % =1-— % + O(2*), we see that

R/2 _ Tr(Rz) . i
and therefore that
~ 1 R/2 Tr(RQ) . -
A = 2 ———m— | =1— QY M). .
(V) = det (sinh(R/2)> 5 + terms in i(—B (M) (3.3)
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Since ﬁ(V)m = 0, the ﬁ-genus of a two dimensional manifold vanishes and the first non-trivial instance of
Corollary 3.1 can be found in dimension 4.
For a four dimensional manifold M*, the A—genus is

Tr(R?)

Avy=1-—2

3.4)

As an example, we will calculate the A— genus of the four dimensional manifold CP?. We can use the Fubini-
Study metric to calculate tr(R?) = 24 volgpz, which means that A(V) = 1 — 1 volgpe . Therefore,

~ -1 1 1
2mi) | A =— —— | volgpz = — vol(CP?). 3.5
(27i) - (V)4 yrl I ( 2) volgpz = o3 vo ( ) (3.5)
Since CP? = S°/S" and since the Fubini study metric wpg is the quotient metric of the round metrics on S® and

1 2\ _ vol(S°) _ g2
S1, it follows that vol(CP*) = OB Therefore,

N9 ~ 1
(27T'Z) J(CPQ A(V)[4] = 16. (36)
This shows that CP? cannot be a spin manifold. Of course, this result could have been much easier obtained by
calculating the second Stieffel-Whitney class of CP? and noticing that it is not zero. Indeed, Corollary 3.1 is of
little use as an obstruction theorem for spin structures (since the second Stieffel-Whitney class is usually much
easier to compute than the A—genus). However, this calculation shows that it is by no means obvious that the
A—genus of a spin manifold is an integer.

We can use the Atiyah-Singer index theorem in combination with Lichnerowicz Theorem 1.55 to find an obstruc-
tion for a spin manifold to have positive scalar curvature.

Corollary 3.2 (Lichnerowicz). Let M™ be a compact manifold which admits a spin structure (i.e. for which there
exists a Riemann metric g such that (M, g) is a spin manifold) and such that the A—genus (2mi)~2 §, A(TM) is
non-zero. Then M admits no metric of strictly positive scalar curvature.

Proof. The condition that M admits a spin structure is equivalent to the vanishing of the second Stieffel-Whitney
class wo (T M) and thus independent of the choice of specific metric on M. Now suppose there exists a metric g
such that rp; > 0. It follows by Lichnerowicz’s formula that

¢2 = A$ + Tﬂ
4
Since rp; > 0, this means that ker(lDz) = 0 and consequently that ker(I)) =~ coker(I)) = 0. Therefore, the same

is true for the chiral Dirac operator lD+, which implies that ind(lD+) = (. Since we assumed that M is spin, the
Atiyah-Singer index theorem applies and the non-vanishing of the A—genus contradicts

0=ind(P") = JM A(T M), # 0. O

3.2 The Riemann Roch Theorem

We’ve already alluded to the fact that on spin manifolds many ‘classical’ index theorems (such as the Signature
theorem or the Hirzebruch-Riemann-Roch theorem) can be expressed in terms of the index theorm for a twisted
Dirac operator. To give an example on how this can be done, we will deduce the classical two-dimensional
Riemann-Roch theorem from the index theorem and prove that the space of holomorphic one-forms on a compact
Riemann surface of genus g has dimension g.

Proposition 3.3. Let X be a compact Riemann surface. Then X is a spin manifold.

Proof. A proof using characteristic classes can, for example, be found in [6]. O

54



We recall from Examples 1.6, 1.22 and 1.32 that under the identification Spin, = S, the adjoint representation is
given by

Ad: S' - GI(C) 2> 22 (3.7)
and the spinor representations are

mg+ ST — GI(C) 2> 27t (3.8)

ng- :S1 — GI(C) Z 2z (3.9

Let Pg,;,, be aspin structure on X.

Since X is a complex manifold, both its tangent bundle 7'X and its cotangent bundle 7* X are complex vector
bundles. Because we want to use a hermitian metric to identify tangent and cotangent vectors we need to equip the
cotangent bundle with the conjugate complex structure and consider 7% X instead of 7% X. As real vector bundles

they are isomorphic.

We denote the (4-real dimensional) spinor bundle on X by =9 * @9, where & * and %~ are the one-complex
dimensional vector bundles associated to PS’"pir12 via the representations mg+ and mg-—.

Since the cotangent bundle 7* X is associated to Pg,;, via the map Ad : St — GI(C), it follows from the above
explicit expressions (3.7) -(3.9) that

$7@8 =C, $ e =2TX, S QT*X=§, (3.10)

where C denotes the trivial bundle over X.
WeletV = § and consider the twisted Dirac operator Iy, : T'(§ ®@ V) - T(§ @ V).
Using the isomorphisms (3.10), the twisted bundle £ = § ® V decomposes as £ = £+ @ £, where

Et=8"@Vva=C, €& =§ @V=T*X. (3.11)
Therefore, the Dirac operator acts between

Dy :T(CO®T*X) - T(COT*X).
To find its explicit form, we have to determine how the Clifford algebra Clc(7T* X) acts on Endc(,$).

Since X is a complex manifold, it has a global complex structure J : T'M — T M. Thus, we can mirror the
fibrewise construction of the spin representation (1.57) to obtain an action of the Clifford algebra bundle.

In this global construction, the vector space V is replaced by 7% X with its complex structure .J = —.J induced
from the complex manifold X. Its complexification decomposes as

TEX = (T*X)% @ (T*X)M°, (3.12)

where (T%X)%! and (T*X )"0 are the +i and —i eigenspace of J. In terms of real coordinates z,y and corre-
sponding complex coordinates z = x + iy on X, the bundle (7% X)! has local basis dz = dx + idy and the
bundle (7% X )%! has local basis dzZ = dx — idy. Thus, our construction of the spin representation defines a map

¢: Cle(T*X) — End (A(T*X)%') = End (C® (T*X)"), (3.13)

which maps

. .
dv = 5 (dZ +d2) € A(T*X)* @A(T*X)Y and  dy = % (dz — dz) e A(T* X)L @ A(T* X)10
(3.14)
to
¢(dx) =

(e(dz) — 1(d2)) ¢(dy) = (e(dz) + v(d2)). (3.15)

4

1
V2
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We will now investigate how this map ¢ is related to Clifford multiplication ¢ : Clc(T*X) — End($) on the
spinor bundle $. Restricting to a trivialising subset U < X, $ ® V| = $ ® C|y = $|v. Thus, by construction
both maps ¢ and ¢ are locally equivalent. Globally this can’t be true since C @ T* X is not the spinor bundle $.

Horever, observe that T# X and (7% X)%! are isomorphic as complex vector bundles and define
c®1y : Clo(T*X) — End($) ® End(V) =~ End(§ ® V) = End(C®T*X) = End(C ® (T*X)%'). (3.16)

This yields a global equivalence of ¢ ® 1y and ¢ : Clg(T*X) — End(C @ (7% X)%!) and we see that ¢ defines
the twisted Clifford actionon $ ® V =~ C® (T*X)%!

We are now ready to compute the Dirac operator (where we identify 7% X with (7% X)%1)

Dy:T(Co(T*X)"") > T (Ca(T*X)™"). (3.17)

Let 0, and 0, be a local frame of 7'X and let dx and dy be the corresponding dual frame of 7% .X.
Then, using (3.15)

Dy =2 ( (e(dz) - L(dz)) Vo, +i (e(dz) + L(dz)) vay) . (3.18)

Restricting to the subspace £+ = § "' ®V = C, the chiral Dirac operator
Dy T(ET) = C*(X) - T(E7) = T((T*X)*) (3.19)

becomes

DY f =2 (0uf +i0,f) dZ = V20 fdzZ. (3.20)

This is exactly /2 times the Dolbeault operator

0:C*(X) - T((T*X)%). (3.21)

The Atiyah-Singer index theorem then states that
ind(?) = ind(Dy)) = (2mi)~" J A(X) A ch(V)g). (3.22)
X

From the expansion (3.3) it follows that ﬁ(X) = 1. Since V? = § ®§ = T*X and T*X is complex
isomorphic to the tangent bundle 7X, we have that ch(V) = 3 ch(T*X) = 3 ch(TX). Therefore,

ind(0) = J —ch TX [2] (3.23)
271

For a complex m-dimensional manifold, the top chern class @™ )m
whose integral over X yields the euler characteristic. Therefore,

ch(T'X )[2m] equals the Euler class e(T'X),

1
x(X)=1-g (3.24)

ind(0) = %JX e(TX) = 5

This is the Hirzebruch-Riemann-Roch theorem for a Riemann surface. It can easily be generalised to higher
dimensional complex manifolds, giving a formula for ind (0 + 5*) in terms of certain characteristic classes (see
equation (22) in the introduction).

Since ker(0) is the space of holomorphic functions on the compact manifold X, it follows that ker(d) = C. This
means that B
dim (Coker (@:C*(X) > r((T*X)Ovl))) —g (3.25)

Consider the Dolbeault cohomology associated to the operator 0,

ker @ : D((T*X)P9) — D((T*X)Pa+1)

HZU(X) := =
5 X) imo: D((T*X)Pa—1) - T((T*X)ra

(3.26)
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It follows from Hodge theory that [72**(X) =~ HZ"(X). Therefore, the space of holomorphic one-forms on X,

HYY(X) is (antilinear) isomorphic to the space

0

ker 0 : T((T*X)%!) — I'((T*X)%2
1) K@ (X)) - (T4 X)°02) -
imd: C®(X) - T((T*X)01)
Since X is complex one-dimensional, (7*X)%2 = 0 and thus Hg’l = coker(d : O®(X) — T((T*X)%h)).
Therefore, we can restate equation (3.25) as the following.

Theorem 3.4 (Riemann-Roch). Let X be a compact Riemann surface of genus g. Then the space of holomorphic
one-forms H%’O(X) has dimension g.

3.3 The Index Theorem in Seiberg-Witten Theory

A modern application of the index theorem is the study of solution spaces of non-linear PDEs. We briefly discuss
the main motivations behind studying these spaces and show how the index theorem can be used in this context.
We will focus on the specific example of Seiberg-Witten theory. Our outline roughly follows [5].

Most of the techniques discussed in this section were developed to classify different smooth structures on home-
omorphic manifolds. The main idea underlying these techniques is to use some geometrical partial differential
equation (which evidently depends on the smooth structure of M) and consider its space of solutions M. One can
then hope that certain topological invariants of the space M do also depend on the smooth structure of M. These
invariants could then be used to distinguish different smooth structures on homeomorphic spaces.

The solution space M of a linear PDE is a vector spaces with the dimension being its only invariant.

For the Laplace equation At = 0 this leads to Hodge theory (with b, = dim (ker A : QP(M) — QF(M)), the
k.th Betti-number of M) and for more general elliptic operators to index theories as discussed in this essay.
However, all these quantities are fopological invariants of M and none of them depends on the specific smooth
structure of M.

To obtain a solution space with richer structure, one has to consider non-linear PDEs. A pioneer of this approach
was Simon Donaldson who used the Yang-Mills equation on a four dimensional manifold M to construct an
invariant out of their solution space which indeed depended on the smooth structure of M.

A technically much easier set of partial differential equations leading to similar results as Donaldson theory are the
Seiberg-Witten equations, which we will briefly discuss in the following.

Both in Donaldson and Seiberg-Witten theory, the solution space M turns out to be (up to singular points) a smooth
manifold. One can use the index theorem to calculate the local dimension of this manifold. This works for the
following reason.

Heuristic. Let N : T'(V) — T'(W) be a non-linear elliptic operator between vector bundles V and W with solution
space M = {u € T'(V) | N(u) = 0}. Let up € M such that L = DN|,, is surjective (i.e. such that M is
smooth at ug). Then, the implicit function theorem implies that in a neighboorhood of g, M looks like ker(L).
In particular, the local dimension of M around wuy is given by dim(ker(L)) = ind(L) (since coker(L) = 0, due to
surjectivity of L), which can be calculated using the index theorem.

In the following, we give a very brief overview about how this heuristic is used in the case of Seiberg-Witten theory.
Definition 3.5. In analogy to the Spin group, we define the complex Spin group Spin;, by the exact sequence

1 — Zy — Spin;, — SO,, x U(1) — 1.
A spin®-structure on a compact Riemannian manifold (M, g) is a lift of the oriented orthonormal coframe bundle

Pgo,, toaSping - bundle P . .

One of the main advantages of the notion of a spin® structure is that it is much less restrictive than the notion of
a spin structure. Intuitively, a spin® structure is a spin structure up to an arbitrary phase. In particular, every spin
manifold is also spin®. Also, one can show that every smooth compact 4-manifold is spin®.
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For even n, the spin® representation 7g : Spin;, — Endc(.S) is defined as the restriction of the spinor representa-
tion ¢ : Clc(n) — Endc(S) to Spinf,. To a spin® manifold we associate the spinor bundles § o Psping Xre S+
and § = $° @ $~. Additionaly, on every spin® manifold M, there is an hermitian line bundle L associated to
P ;e via the representation Spinj, — SO, x U(1) — U(1).

While we were able to lift the Levi-Civita connection from P, to P§ ., we now need a connection on
Pio, X (Py(1y(L)) to lift to a connection on P;ping . Thus, given a connection A on L, we get a spin® con-
nection V4 : I'($) — I'(T*M ® $).We can then define the Dirac operator

Da:T(§) BT(T*M®8) 5 T(8). (3.28)

Since M is four dimensional, the Hodge-star * : Q¥ (M) — Q"% (M) defines an operator * : Q(M) — Q2(M)
that squares to the identity. We can therefore decompose Q2(M) = Q2 (M) @ Q2 (M) in the space of self-dual
and anti self-dual forms

P (M)={we QM) | *w=w} Q2 (M)={weQ*M)| *w=—w}. (3.29)

Since L is a line bundle, it follows that End (L) = C is trivial. Therefore, the curvature is a two-form F4 € Q?(M),
which we decompose as Fiy = F'f + F, . By extending the Clifford multiplication in a certain way, we also define

a squaring map q : . iA2T*M.

Definition 3.6. Let A/* be a smooth compact 4-manifold. Choose a spin® structure and let * be the associated
spinor bundles and L the associated line bundle. Let p be a fixed self-dual two form. The Seiberg-Witten equations
are the equations

Dag=0 Fi = aq(¢) +in, (3.30)

for (A, ¢), where A is a connection on L and ¢ is a section of § .

If we define the operator F (A, ¢) := (Dat, F{ — q(1) — i), then the Seiberg-Witten equations are F(A, ¢) = 0.
We denote the space of solutions by m = {(4, ¢) | F(A4, ¢) = 0}.

Since the equations are formulated in terms of a connection A, they are gauge invariant under the group of
U(1)—gauge transformations, i.e. under the group C*® (M, S*) acting on m as

h.(A,$) — (A —2h~dh, ho) heC®(M,S"). (3.31)

It is therefore natural to consider the moduli space of solutions M = m/C® (M, S'). We can topologize M in a
suitable way.

Proposition 3.7. The moduli space M is compact. For generic p, M is a smooth manifold with dimension

-
4 i
where b* = dim(H*(M)), b2 = dim(H? (M)), 7 =b% —b% and ¢c; = c1(L).

dim(M) =b' —1 b2 +

(3.32)

Proof sketch. We linearize the Seiberg-Witten equations at a point (Ag, ¢p) € m and obtain an operator

Liag,60) = DF|(a0,60) acting on (Ag + icr, ¢ + 1). To calculate the index of this operator we decompose it in
several elliptic operators and calculate their indices in terms of characteristic classes on M. In particular, we have
to calculate the index of the Dirac operator ) A,- This can be done using the Atiyah-Snger index theorem

ind(1) 4,) = (m‘)*j (A(M) A ch(L))

M [n]

Following our heuristic, thei gives a formula for the local dimension of M. O

We can use the so obtained explicit expression for the dimension to assign an invariant to the solution space M
which depends on the smooth structure of M.

2
C—T

For our manifold M with spin® structure s , we let d := bt —1— bi + 4. If d < 0, then the Seiberg-Witten
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equations have no solutions and we assign the invariant SW (M, s) = 0.

If d = 0, it follows that M is a compact and zero dimensional manifold and thus a finite set of points. We define
the Seiberg-Witten invariant of M as SW(M, s) = #(M), the number of points of M (actually one weights the
points with +1 according to the orientation of M).

If d > 0, the situation is more complicated and one defines the Seiberg-Witten invariant SW (M, s) as the integral
of a specific characteristic form over the smooth manifold M.

Considering SW as a function SW (M, -) : Sy — Z over the (non-empty) set of spin® structures on M, we have
found an invariant which only depends on the manifold M and its smooth structure.

3.4 Outlook

We conclude this essay with an outline of how the Atiyah-Singer index theorem for Dirac operators can be gener-
alised and what role the Dirac operator plays in the index theorem for general elliptic operators.

In the above discussion of the Riemann-Roch theorem we have seen that the Dolbeault operator @ on a Riemann
surface is a twisted Dirac operator. Indeed, there is a whole class of operators having similar properties than Dirac
operators.

Definition 3.8. A Clifford bundle £ over a compact Riemannian manifold is a hermitian vector bundle
& = &+ @ &~ with a compatible connection V¢, and a graded action ¢ : Clg (M) — End(€) (graded means that
c(v) : E+ — EF for all v € T* M) such that

(c(v)e,e’) = — (e,c(v)e) Ve, €&, veT*M and [V c(a)] =c(Va) YaeD(Clg(M)). (3.33)

Given a Clifford bundle £, we can define its associated Dirac operator as ) = Y. c(ei)Vfi for some orthonormal
frame ey,...,e, of T M.

The twisted Dirac bundles £ = $§ @ V discussed in this essay are examples of Clifford bundles.

Our proof of the Riemann-Roch theorem in the last section was basically about establishing that the bundle
A(T*M)%! carries an action ¢ of Clc(M) (equation (3.13)) which makes it into a Clifford bundle with asso-
ciated Dirac operator v/2 (5 + 5*) .

It is in fact no coincidence that this operator is equal to a twisted Dirac operator. One can prove that on a spin
manifold every Clifford bundle is a twisted spinor bundle.

Since every manifold is locally a spin manifold, every Clifford bundle is locally a twisted spinor bundle.

This leads to the following extension of the Atiyah-Singer index theorem to general non-spin manifolds.

Theorem 3.9. The index of a Dirac operator on a Clifford module £ over a compact oriented even dimensional
Riemannian manifold is given by

ind(P) = (2mi) "% f

. (fl(M) A ch(g/S)) . (3.34)

[n]

The twisted chern class ch(£/S) is defined in such a way that if £ = $ ® V is a twisted Dirac bundle for some
bundle V, then ch(E/S) = ch(V).

This generalised index theorem subsumes all classical index theorems such as the Hirzebruch-Riemann-Roch
theorem, the Signature theorem and the Chern-Gauss Bonnet theroem.

In fact, even more is true. Let M be an even-dimensional compact spin manifold and let K (M) be the abelian
group generated from the monoid of isomorphism classes of complex vector bundles on A under ®. We also
introduce the group Ell(M) of abstract elliptic operators on M, defined in [1]. Using K-theory, one can prove that
the map K (M) — El(M), [V] — Dy is an isomorphism. Therefore, any elliptic operator on M is generated
by twisted Dirac operators on certain twisted spinor bundles. In this sense, the index theorem for twisted Dirac
operators proven in this essay is the fundamental result leading to the index theorem for general elliptic operators
on even-dimensional compact spin manifolds.
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Appendix

A The Asymptotic Expansion

The following section is devoted to the proof of the existence of an asymptotic expansion of the heat kernel p;(x, y).
The proof consists of two parts. First, we show that there is a (local) formal power series solution to the heat
equation (Lemma A.3). Then we show that this formal power series is indeed an asymptotic expansion to the
actual heat kernel.

Let M be a compact even dimensional spin manifold with a Dirac bundle £ = § ® V and Dirac operator I,,.

For the first part of this section we will fix a point xg € M and work in geodesic coordinates around x( as
introduced at the beginning of the fourth step of the proof of the index theorem. We will globalize our results only
for the proof of Theorem A.4.

Let Wy, = TooM, Uy, = {z € T, M | ||z|| < €4}, Where €, > 0 is small enough such that exp,  : Uy, — M
is a diffeomorphism and let 7(xg, x) : &, — &, denote the parallel transport map. Let

L = Z gij (Vglv‘gy - Ffjvgk) + % + FV : Coo(megaifJ) - COO(UZI/’OagIo)’ (Al)

i,j=1

be the triviaized Dirac operator on U, and let p:(x, zo) be the heat kernel of Di on M x M.

To prove our main theorem we need to perform some auxiliary calculations. On U, define the Gaussian

J)

qe(z) = (47rt)_%e_ i zeU,,, (A.2)

where [z[? = Y7 (z%)% Let A = V*V = d*d be the Laplace-Beltrami operator on C® (U, ).

Lemma A.1. There is a smooth function a € C*(U,,), such that
a
(0 + A)gi(z) = ;Qt@)- (A3)

Proof. Let r(z) := |z| be the distance function. If h € C®(U,,) is of the form h(z) = f(|z|?), then
Vh = dh = 2|z| f'(|z]?)dr, where dr = 37| £ da'.
Since we are working in geodesic coordinates, we have that drf = 22;1 ﬁ@‘ = %

Thus, Ah = V*(2rf(r?)dr) = —2div(rf'(r?)Z). To calculate the divergence, we use the local formula
div(X) = ﬁ&a(\/ﬁX @), where g is the determinant of the metric g;;. Therefore,

Ah = —2 (ﬁ'(ﬁ)\}gaf +2r2f"(r?) + nf’(r2)) )

Applying this formula to the Gaussian g;(z) with f(z) = e~ and simplifying
r 1dg r\2 n
Mg = (5= = (5) +5 ) a
a (4tgar 2t) * 2t> e
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Because 0;q; = (—3; + %)Qt, we have that
(O +D)gr = ——=q-

Lemma A.2. Let q;(z) be the Gaussian and oy € C*(Uy,, Ex, ). Then
(0 + L)ae(z)oe(z) = ae(z) (0 + L +t7'V5 +17"a) ov(z),

where a € C*(Uy,)) is the function from the statement of Lemma A.1.

Proof. Since 0, + L = 0, + A€ + T+ F Y, we only need to consider the d; and A¢ parts.

From A¢ = — ZZJ':1 g¥ (V‘gi V‘gj — Ffj V§k>, it follows that

A (q00) = (Agr) 7 — 2 Z 97(Vo,00) (V& 01) + a:A 0.
4,g=1

Since we are working in geodesic coordinates, it follows that g"/ = 6”7 and thus

gt
or

o~

1
Znga 4V5,00 = =-V5 o = _ﬂ%vfa,.o't

,J

The claim follows from
(0 + A%)qior = 04 (01 + A)ge + 41 (01 + A%)oy + ¢t 7'V, o

and Lemma A.1.

(A4)

O

We can now turn our attention to the first step of the proof and show that locally there is a formal power series

solution to the heat equation.

Lemma A.3. There are unique smooth End (&, )-valued functions A7° (x) on Uy, with AG°(0) = 1g, ~such that

the formal power series
[e0]

F = qt Z jAIO

7=0

is a formal solution to the local heat equation (0; + L)F(t,z) =
Moreover, if we let F™N (t,z) := q;() Zj\;o t7 A7° (z), then

(0¢ + L)FN = ¢, L(An)tY

n _ =2

Proof.  Since the Gaussian ¢;(z) = (4nt)~2e~ 2t solves the Euclidean heat equation (J;
we make the Ansatz

0

F(t,z) = qi(x) ), ¥ A" (2).

Jj=0

Using Lemma A.2, we find that

0
(@ + L)F(t,z) = (6 + L+t Vo, +1 'a) Y. t/AT.

7=0
Equating coefficients of powers of ¢, we obtain the system
(vra,. + CL)A%O =0

(J + Vio, +a)AJ® = —LAT, j=1

Fixing y € Uy, and setting fo(s) = Ay°(sy), the first equation can be turned into the ODE
fo(s) = —alsy) fo(s) fo(0) = Ag°(0) = 1g,,,

61

(A.5)

(A.6)

= 2in1 )a(z) = 0,



which we can solve to get Aj°(sy).
By smooth dependence on initial conditions, this determines the function Ag® € C*(Uy,, End(&,,)).
Setting f;(t) := s/ Ag° (ty) ~' AJ° (ty), the other equations can be written as

fils) = ="M (A" (sy) "' LAT 1 (sy) fi(0)=0,j=1

We can solve this inductively to obtain all A;?". Given the initial condition A3°(0) = lg,, . they are uniquely
determined by this construction.
Furthermore, we observe that

N N
(@ + L)ge Y VAT = q(0r + L+t Voo, +171a) Y AT = itV L(AR). O
j=0 7=0

We can now return to the global setting and prove the main theorem of this section.

Theorem A.4. There exist smooth sections B; € I'(E [X1E*) over M x M with By(z,x) = 1g, such that

[o0]
pe(,y) ~ qe(x,y) Z (A7)

_n _d@w)? .
where qi(x,y) = (dnt)"ze™ " at  is the Gaussian on M x M.

Proof. 'We will use our local formal power series from Lemma A.3 to construct an asymptotic expansion of the
heat kernel. Since M is compact, there is an € > 0 such that

U:={(z,y) |lye M,z e T,M, [z <¢}

is diffeomorphic to
expU :={(z,y) e M x M | d(x,y) < €}

via the diffeomorphism (z,y) — (exp, z,y).
Following Lemma A.3 we can construct a formal power series

F(t,z,y) == q(z Z t]Ay ) € End(&y) (z,y) €U,

which is smooth in y € M by construction.
By uniqueness of the A%’s we observe that if exp, z = exp,, 2, then A%(z) = AY ().
Thus, we can pull this series back to exp U and define a formal power series

F(t,z,y) = (4nt) (v,y) eexpU

inT(expU, £ X E*), where éj (z,y) = 7(x, y)Ag@) (and z is such that exp, z = ).
If we introduce the bump function ¢ : Ry¢ — [0, 1]
1 s<eé?/16
’(/}(S) '_{ 0 5262/4 )
we can extend F' to a power series of global sections

F(t,@y)qu(d( thy Z ‘ (iC,y)GM.

We claim that this formal power series is indeed asymptotic to the heat kernel p;(x, ). To prove this let N > %

and set

N
FN(tvxvy) = ¢(d( qt z y Z ‘
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which is a smooth section of I'(€ X £*). Fix o, € £, and let
Nt a) = (FN(t2,y) = pe(,y)) o
For n € I'(£) we have that
|| oyt 4z =2 e,

Since FN (t,z,y) = ¥(d(z,v)?)q(z,y) Z;‘V:o ti §j (z,y) and since parallel transport preserves the inner product
on &, it follows that

fim | (PN (2, )y (o). do = Jim | (de,0)?)a:(,) (Bol )0y (@), dr

= lim w( (z,9)")ae(z,y) (A (), 7(y, 2)n(x)) ¢, da.

t—0

Changing coordinates back from M to Uy (noticing that the integrand vanishes away from exp, Uy) this equals

lim Ly W(lalP)a(z) (A (@), (), d,

where 7(z) := 7(y, exp, x)n(exp, ).
Since for every compactly supported h € C°(U), we have that lim; ¢ §; h(z)q(z) dz = h(0), this implies

lim | (FY(t,2,9)0,1(2))e, dz = (A5(0)ay,1(0))g, = (5, 1(y))g, -

t—0 Jas v
Therefore,
lim (fN(t,2),n(x)), dz =0 foralln € T'(€). (A.8)
) .
Let 7V (¢, (0 + lDi)fN(t, x) = (0 + ﬂi)FN(t, z,y)o,. Notice that FN (¢, z, y) and thus 7V (¢, z) vanish

) =
for d(x,y) > 5. Therefore, both sections are supported in exp, Uy. For z = exp, x € exp, U, we have that

Ty 2)r™ (t, @) = (0 + D2 FN (1 2. y)oy = ar(@)d (@)t LAY oy + [L$1FN (t 2. y)oy,
where FN (¢, 2, y) = q:(z) Zj\;o t/ AY(z) € End(&,) and we have used Lemma A.3.

Since the first order operator [L, z/J] vanishes for d(z,y) < § and since FN(t,z,y) is surpressed by e~ 3% for
d(z,y) > <, the t-dependence of 7 (¢, ) is governed by the term g, (z)t™ L(AY,).
Thus, there exists a constant C;my > ( such that

sup [ (t,2)] = sup [ (t )] < Cp, 1V,
xeM TEEXP,, U
Since M is constant we therefore have constants Cj , > 0 such that in the Sobolev norms | - ||; for H;(£)

17N (t, ) &, < C{,ay,ytN—%.

To relate 7V (£, 2) back to the section fV (¢, ), let {1, }m be an orthonormal basis for T'(£) of eigenfunctions of
the Dirac operator lDi Expanding the smooth section

th:E Zam wm

equation (A.8) implies that
tliHEl) ‘am(t)l = 0.

On the other hand, if we expand " (t,2) = 3} by, (t)), () and notice that r ( x) = ((% + lDV) N (t, x) we

find that b,,, = @, + Amay,. Solving this equation with a,,(0) = 0 yields a,, (¢ S (s— t)b (s)ds. The
Cauchy-Schwarz inequality implies that

t t t
(g (£)[2 <f ¢2hn(s=D) dsf b (5)[2 ds < tf b ()2 ds.
0 0 0
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In terms of the Sobolev norm | - || g7, this translates into

t s
(0 <t | 1 sl ds <0 [ Gl s < gy 2702
Since this is true for all [ > 0 and in particular for [ > 7, the Sobolev embedding theorem implies that

sup [N (t,2)|e, < Co ytVTET,
xeM

which in turn means that

sup [pe(z,y) = FN(t,2,9) | g pmex < Cyt™ 541
xTe

Since M is compact, we can pick the constant C' := sup,¢,; Cy to obtain

sup Hpt(x7y) - FN(t7x7y)H£m5;k < CtN—%"rl.
x,yeM

Similarly, we can show that

sup H(’/}fva (pt(xvy) - FN(tvxvy)) H < Ck,othigiki%Jrlv
x,yeM

which proves that

0 0
pi(z,y) ~ F(t,z,y) = @iz, y) D, Po(d(z,9)*)Bj(z,y) = qulw,y) Y, ¥ Bj(x,y).
j=0 3=0
Notice that the powers ¢~3 2 are necessary because of the prefactor q;(x, 7).
Tracing through the proof we find By(z, z) = ¢(d(z,x)?)Bo(z,z) = AZ(0) = 1g,. O

B Mehler’s Formula

In the following section we calculate the heat kernel of the harmonic oscillator as it appears in the rescaling limit
of Getzler’s proof the Atiyah-Singer index theorem.

Let w € R, f € C and consider the harmonic oscillator

d? w?z?

H—-_9% Y
dm2+ 16

+f (B.1)

acting on C-valued functions on R.
Since we are working on the non-compact space R, we have to require slightly more than smoothness of our
solutions. Indeed, we require that our heat kernel lives in the Schwartz space S(R).

Proposition B.1. There exists a heat kernel p, € S(R x R) which is smooth in t > 0 and such that

(O + Hp)pe(z,y) = 0 (B.2)
lim Rpt(x,y)aﬁ(y) dy = ¢(x) Vo e S(R). (B.3)
Aty = 0, it is given by
_ 1 tr/2 H x?
pi(z,0) = (4nt) <blnh(t’/‘/2)) exp (—tr/2 coth(tr/?)E - tf) . (B.4)

Proof. Let’s first consider the case w = 4 and f = 0, such that H = —% + 22,
We guess that the solution to the heat equation looks like a Gaussian in x, y. Since H is self-adjoint, this Gaussian
has to be symmetric in  and y. Thus, we make the ansatz

pe(z,y) = explar(z® + ¥2)/2 + by + c).
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Plugging this in the heat equation we find the following equations for the coefficients
ai/2 =al —1 =17, ¢t = ay.
They have solutions
a; = —coth(2t + C), b =cosech(2t + C), ¢ = —% logsinh(2t + C) + D.
Substituting in the inital condition lim;_,o p¢ (2, y) = 0, (), we obtain
c=o, D = log ((2r)"*)

and therefore the solution

pe(z,y) = <27r sinh(2t)) - exp (—; (coth(2t)(z® + y?) — 2 cosech(2t)xy)> )

By a change of coordinate, we can recover the heat kernel of the full harmonic oscillator H = f% + ‘“ig : 4 f
proving its existence. In particular, for y = 0 we find that

1

1 tr/2 2 x?
0)=Art) 2 | ——= —tr/2coth(tr/2)— —t
pi(o0) = (4t (2 ) e (o /zcomr2) % — o
d? w?a?

solves (0; — 7= + “55— + f)pe(x,0) = 0. O

We will now generalize this result to heat kernels of generalized harmonic oscillators as the operator appearing in
Proposition 2.46.

Definition B.2. Let A be a finite dimensional commutative algebra over C with unit. Let R be an n x n antisym-
metric matrix and let 7' be an N x N matrix, both with values in A. The generalized harmonic oscillator is the
operator

= 1
H=-% (-5 Rijz;)> +F B.5
i:1(6 12 R;jx;)° + (B.5)
acting on A ® End(C")-valued functions on R".

Consider the Taylor expansion of the holomorphic function z — m =1+ Zkoo:1 arz** and define the formal
power series in the parameter ¢ with coefficients in Mat,, x,, (A)

tR/2 ok 2k
— =1 t R/2)°". B.6
smh(R2) ,;1 ar(R/2) (5.6)
Since multiplication and addition of formal power series yields again formal power series, the determinant
tR/2 Ok
t( ———— | =1 t"hi(R B.7
¢ <sinh(tR/2)) i ,CZ::l () B
and its square root
1 tR/2 N Lk
det? | ————— | =1 t R B.8
¢ <sinh(tR/2)> * ];1 Je(B) .8

define formal power series with coefficients in .A. Here hj, and fj are homogenous polynomials of degree k with
respect to the coefficients R;;. We also define the Mat,, ,, (A)-valued formal power series

0 0
tR/2coth (tR/2) =1+ Z t?*bp(R/2)?*,  where zcoth(z) =1+ Z by 22k (B.9)
k=1

k=1

and the Mat y « v (A)-valued formal power series

o0
— 1 n n
e tF — 1 + Zl —t (—F)". (B.10)

We can now calculate the heat kernel of the generalized harmonic oscillator.
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Theorem B.3 (Mehler). The A ® End(CN)-valued formal power series in t

tR/2 z 1
A = — ——z' (tR/2coth(tR/2) — 1 —tF B.11
()= (aet (i ) ) o (~ et OR/2comer2) - D) exp(ep), B
is such that
pe(z) = q:(2)A(t, z) (B.12)
is the unique formal power series solution to the heat equation (0; + H)p;(x) = 0 with A(0,z) = 1.

lzl® .
Here q:(x) = e~ "1t is the Gaussian.

Proof.  'We have to prove that d;p, = —Hp,. Since both sides of the equation are analytic with respect to R;;, it
suffices to prove the result for R;; € R.
Pick an orthonormal basis for R™ such that the antisymmetric matrix R decomposes in a direct sum of 2 x 2-blocks

of the form < S -

0 > Thus, our equation decouples and we are left with proving that the two dimensional

kernel

Pt (&) = qt (&)

Sint(rt{?/Q) exp (_Zt (tr/2 coth(tr/2) — 1)) exp(—tF)

solves the heat equation for

7"2

1 1 1
H=—(0, - imcg)Q — (02 + Zmzl)z +F=—(67+03)+ 57“(35261 — x102) — E(.’L‘% +23) + F.

Since (2201 — x102)|z|? = 0, it follows that

r?]z)?

Hp, = (~(3 + 8) -

+ F)py

Therefore, the statement follows from Proposition B.1 by replacing r by i (which is of course only possible in the
context of formal power series). O
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