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Abstract

We present an infinite number of constructions involving unitary error bases, Hadamard
matrices, quantum Latin squares and controlled families, many of which have not previously
been described. Our results rely on biunitary connections, algebraic objects which play a
central role in the theory of planar algebras. They have an attractive graphical calculus which
allows simple correctness proofs for the constructions we present. We apply these techniques
to construct a unitary error basis that cannot be built using any previously known method.

This is an extended abstract for arXiv:1609.07775

Biunitaries. Biunitary connections (or simply biunitaries) have been widely studied by Jones
and others [7, 8, 14, 17] as a central tool in the classification of subfactors, part of the theory
of von Neumann algebras. They have an attractive graphical calculus, usually expressed in
the language of planar algebras, which describes the linear representation theory of algebraic
structures in the plane. In this calculus, a biunitary can be presented informally as a planar
algebra element U with two inputs and two outputs, which is vertically unitary (1), and which
is horizontally unitary up to a scalar factor λ (2):

U

U†

=

U†

U

= (1)

U U∗ = λ U∗ U = λ (2)

In this paper, diagrams of this sort denote linear algebraic data, in a simple way. Regions are
labelled with finite indexing sets, with blank regions corresponding to the trivial indexing set.
Wires and vertices correspond to families of Hilbert spaces or linear maps, respectively, indexed
by the parameters of regions adjacent to the wire or vertex. In concrete terms, a biunitary
therefore simply corresponds to a family of linear maps satisfying some algebraic equations.

Characterizing quantum structures. It has been shown by Jones [7] that Hadamard
matrices1 can be exactly characterized in terms of biunitaries of the form given in Figure 1(a).
The second author has shown [25, 26] that unitary error bases2 can be characterized similarly,
in terms of biunitaries of the form given in Figure 1(b). In this paper we show that a similar
approach can be used to characterize quantum Latin squares3, as biunitaries of the form

1A Hadamard matrix is a square complex matrix with all entries of modulus 1, which is proportional to a
unitary matrix.

2A unitary error basis is a basis of unitary operators on a finite-dimensional Hilbert space, orthogonal with
respect to the trace inner product.

3A quantum Latin square [16] is a square grid of vectors in a finite-dimensional Hilbert space, such that every
row and every column is an orthonormal basis.
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(a) Hadamard
matrix (Had)

(b) Unitary error
basis (UEB)

(c) Quantum Latin
square (QLS)

(d) Controlled family
of Hadamards (Had∗)

Figure 1: Biunitary characterizations of quantum structures.

illustrated in Figure 1(c). We also show that controlled families of biunitaries can be described
by attaching additional regions in certain ways; we illustrate one example in Figure 1(d), a
controlled family of Hadamard matrices. These images are 3-dimensional; for example, in the
last image, the blue sheet lies beneath the yellow sheet. The colours do not convey mathematical
information, but rather make the geometry easier to understand. Rotations by a quarter-turn,
and reflections about the horizontal or vertical axes, preserve the given interpretations of the
pictures in terms of quantum structures.

Composing biunitaries. Our main results are based on the simple fact that the diagonal
composite of two biunitaries is again biunitary. Given the description of quantum structures
in terms of biunitaries as summarized above, one can immediately write down a large number
of schemes for the construction of certain quantum structures from others, many of which are
not previously known. We give some examples in Figure 2 (only a subset of the constructions
we consider in the full paper), which we briefly explore here. Note that the biunitaries are
connected diagonally in each case, as required.

• Figure 2(a). Two Hadamards give a quantum Latin square, generalizing a known construc-
tion [16] in which one Hadamard gives a quantum Latin square.

• Figure 2(b). Two unitary error bases give a quantum Latin square, a new construction.

• Figure 2(c). A controlled family of Hadamards and a quantum Latin square give a unitary
error basis, recovering the quantum shift-and-multiply construction [16] which generalizes
Werner’s shift-and-multiply construction [27].

• Figure 2(d). Two controlled families of Hadamards give a single Hadamard, recovering a
construction of Hosoya and Suzuki [6] which generalizes a construction of Diţă [3].

• Figure 2(e). Three Hadamards give a unitary error basis, generalizing a known construc-
tion [16] in which one Hadamard gives a unitary error basis.

• Figure 2(f). A double-controlled family of Hadamards (H), two quantum Latin squares
(Q1, Q2) and a unitary error basis (U) give a unitary error basis, a new construction.

Correctness of these constructions follows immediately from diagonality of the composition; no
further details need to be checked. Our approach therefore offers advantages even for those
constructions that are already known, since the traditional proofs of correctness are nontrivial.

Of course, these constructions can be iterated; for example, the schemes of Figure 2(a) and
Figure 2(c) give a way to combine two Hadamards and a further list of Hadamards to produce
a unitary error basis (and in fact Figure 2(e) is the special case when this list is of length one).

Further results. In the main paper, we further show that an infinite number of independent
constructions of the sort shown in Figure 2 can be obtained. We use construction Figure 2(f) to
produce an explicit unitary error basis on an 8-dimensional Hilbert space which we prove cannot
be obtained from any previously-known construction method, yielding a proof of principle that
our biunitary methods give rise to genuinely new concrete structures.
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Figure 2: A variety of biunitary constructions of quantum structures.

Importance and relevance. Hadamard matrices and unitary error bases provide the
mathematical foundation for a variety of quantum informatic phenomena, amongst them the
study of mutually unbiased bases, quantum key distribution, quantum teleportation, dense
coding and quantum error correction [4, 9, 11, 21, 27]. Nevertheless their general structure is
notoriously difficult to understand; in dimension n, Hadamard matrices have only been classified
up to n = 5 [22, 24], and the general structure of unitary error bases is virtually unknown
for n > 2. Quantum Latin squares have been introduced much more recently [1, 15, 16],
generalizing classical Latin squares which have a wide range of applications in classical and
quantum information [2, 13, 20].

By unifying these quantum structures as special cases of the single notion of biunitary, and
providing simple graphical tools to understand the intricate interplay between them, we unify
several already-known and seemingly-unrelated constructions [1, 3, 6, 16, 27], uncover an infinite
number of new constructions, and produce novel, concrete examples. These new tools may lead
to further progress in questions of classification and applications of Hadamard matrices, unitary
error bases and quantum Latin squares.

On the other hand, biunitaries are central tools in the study and classification of
subfactors [7, 8, 14, 17, 19], a highly significant activity in the theory of von Neumann algebras.
We hope that our work leads to the development of further connections between subfactor theory
and quantum information theory.

Criticisms. There are many constructions of quantum structures which we cannot capture
using our biunitary techniques. For unitary error bases, there is the nice error basis construction
of Knill [10]. For Hadamard matrices, an analogue of Knill’s construction are the Fourier
matrices arising from finite abelian groups. Other examples include Petrescu’s construction
of continuous families of Hadamard matrices in prime dimension [18], Wocjan’s and Beth’s
construction [28] and its generalization by Musto [15], or several other less-general constructions
which only work in specific dimensions [5, 12, 22, 23]. In all of these cases, the methods are not
purely compositional; they make use of some additional group-theoretic or algebraic structure
which is out of reach of the biunitary approach.
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mutually unbiased bases. International Journal of Quantum Information, 08(04):535–640,
2010. arXiv:1004.3348, doi:10.1142/s0219749910006502.

[5] Uffe Haagerup. Orthogonal maximal abelian *-subalgebras of the n× n matrices and cyclic
n-roots. Institut for Matematik, U. of Southern Denmark, 29:296–322, 1996.

[6] Rie Hosoya and Hiroshi Suzuki. Type II matrices and their Bose-Mesner algebras. Journal
of Algebraic Combinatorics, 17(1):19–37, 2003. doi:10.1023/a:1021960623533.

[7] Vaughan F. R. Jones. Planar algebras, I. 1999. arXiv:math/9909027.

[8] Vaughan F. R. Jones, Scott Morrison, and Noah Snyder. The classification of subfactors
of index at most 5. Bull. Amer. Math. Soc., 51(2):277–327, 2013. arXiv:1304.6141,
doi:10.1090/s0273-0979-2013-01442-3.
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[24] Wojciech Tadej and Karol Życzkowski. A concise guide to complex Hadamard matrices.
Open Syst. Inf. Dyn., 13(02):133–177, 2006. arXiv:quant-ph/0512154, doi:10.1007/

s11080-006-8220-2.

[25] Jamie Vicary. Higher quantum theory. 2012. arXiv:1207.4563.

[26] Jamie Vicary. Higher semantics of quantum protocols. In 2012 27th Annual IEEE
Symposium on Logic in Computer Science. Institute of Electrical & Electronics Engineers
(IEEE), 2012. doi:10.1109/lics.2012.70.

[27] Reinhard F. Werner. All teleportation and dense coding schemes. J. Phys. A: Math. Gen.,
34(35):7081–7094, 2001. doi:10.1088/0305-4470/34/35/332.

[28] Pawel Wocjan and Thomas Beth. New construction of mutually unbiased bases in square
dimension. 2004. arXiv:quant-ph/0407081.

5

http://dx.doi.org/10.1017/cbo9780511662287.008
http://dx.doi.org/10.1002/j.1538-7305.1949.tb00928.x
http://arxiv.org/abs/quant-ph/9605011
http://dx.doi.org/10.1109/sfcs.1996.548464
http://arxiv.org/abs/1110.5590
http://arxiv.org/abs/1110.5590
http://arxiv.org/abs/1008.0632
http://dx.doi.org/10.1112/jlms/jdr052
http://arxiv.org/abs/quant-ph/0512154
http://dx.doi.org/10.1007/s11080-006-8220-2
http://dx.doi.org/10.1007/s11080-006-8220-2
http://arxiv.org/abs/1207.4563
http://dx.doi.org/10.1109/lics.2012.70
http://dx.doi.org/10.1088/0305-4470/34/35/332
http://arxiv.org/abs/quant-ph/0407081

