Higher algebra in quantum information theory

David Reutter

Department of Computer Science University of Oxford

March 9, 2018

• Part I: Shaded tensor networks & biunitaries

- Part I: Shaded tensor networks & biunitaries
 - shaded tensor networks

- Part I: Shaded tensor networks & biunitaries
 - shaded tensor networks
 - 'biunitary' tensors in them

- Part I: Shaded tensor networks & biunitaries
 - shaded tensor networks
 - 'biunitary' tensors in them
 - composing these tensors

- Part I: Shaded tensor networks & biunitaries
 - shaded tensor networks
 - 'biunitary' tensors in them
 - composing these tensors
- Part II: Untangling quantum circuits

- Part I: Shaded tensor networks & biunitaries
 - shaded tensor networks
 - 'biunitary' tensors in them
 - composing these tensors
- Part II: Untangling quantum circuits
 - a shaded tangle language for quantum circuits

- Part I: Shaded tensor networks & biunitaries
 - shaded tensor networks
 - 'biunitary' tensors in them
 - composing these tensors
- Part II: Untangling quantum circuits
 - a shaded tangle language for quantum circuits
 - biunitaries and error correction

- Part I: Shaded tensor networks & biunitaries
 - shaded tensor networks
 - 'biunitary' tensors in them
 - composing these tensors
- Part II: Untangling quantum circuits
 - a shaded tangle language for quantum circuits
 - biunitaries and error correction

Based on joint work with Jamie Vicary:

Biunitary constructions in quantum information

Shaded tangles for the design and verification of quantum programs

Part 1 Shaded tensor networks & biunitaries

Let's start with a very concrete problem.

Let's start with a very concrete problem.

Hadamard matrices H

$$|H_{i,j}|^2=1$$
 $H^{\dagger}H=n\mathbb{1}$ $\left(egin{smallmatrix} 1 & 1 \ 1 & -1 \end{smallmatrix}
ight)$

Let's start with a very concrete problem.

Hadamard matrices H

$$|H_{i,j}|^2=1$$
 $H^\dagger H=n\mathbb{1}$ $\left(egin{smallmatrix} 1&1\1&-1 \end{smallmatrix}
ight)$

unitary error bases (UEB)
$$\{U_i\}_{1 \leq i \leq n^2}$$
 U_i unitary $\operatorname{Tr}(U_i^{\dagger}U_j) = n\delta_{i,j}$ $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & -i \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$

Let's start with a very concrete problem.

Hadamard matrices
$$H$$
 $|H_{i,j}|^2=1$ $H^\dagger H=n\mathbb{1}$ $\left(rac{1}{1} rac{1}{-1}
ight)$

unitary error bases (UEB)
$$\{U_i\}_{1 \leq i \leq n^2}$$

$$U_i \text{ unitary } \operatorname{Tr}(U_i^{\dagger}U_j) = n\delta_{i,j}$$

$$\binom{1\ 0}{0\ 1}, \binom{0\ 1}{1\ 0}, \binom{0\ 1}{i\ 0}, \binom{0\ -i}{i\ 0}, \binom{1\ 0}{0\ -1}$$

Important in quantum information ...

Let's start with a very concrete problem.

Hadamard matrices
$$H$$
 unitary error bases (UEB) $\{U_i\}_{1 \leq i \leq n^2}$
$$|H_{i,j}|^2 = 1 \quad H^\dagger H = n\mathbb{I} \qquad \qquad U_i \text{ unitary} \quad \operatorname{Tr}(U_i^\dagger U_j) = n\delta_{i,j}$$

$$\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \qquad \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

Important in quantum information ... but hard to construct.

Let's start with a very concrete problem.

Hadamard matrices
$$H$$
 unitary error bases (UEB) $\{U_i\}_{1 \leq i \leq n^2}$
$$|H_{i,j}|^2 = 1 \quad H^\dagger H = n\mathbb{I} \qquad \qquad U_i \text{ unitary} \quad \operatorname{Tr}(U_i^\dagger U_j) = n\delta_{i,j}$$

$$\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \qquad \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

Important in quantum information ... but hard to construct. Only a handful of known constructions, for example:

$$(U_{ab})_{c,d} = \frac{1}{\sqrt{n}} A_{a,d} B_{b,c} C_{c,d}$$

Let's start with a very concrete problem.

Hadamard matrices
$$H$$
 unitary error bases (UEB) $\{U_i\}_{1 \leq i \leq n^2}$
$$|H_{i,j}|^2 = 1 \quad H^\dagger H = n\mathbb{1} \qquad \qquad U_i \text{ unitary} \quad \operatorname{Tr}(U_i^\dagger U_j) = n\delta_{i,j}$$

$$\binom{1\ 1}{1\ -1} \qquad \qquad \binom{1\ 0}{0\ 1}, \binom{0\ 1}{i\ 0}, \binom{0\ -i}{i\ 0}, \binom{1\ 0}{0\ -1}$$

Important in quantum information ... but hard to construct. Only a handful of known constructions, for example:

Hadamard + Hadamard → UEB

$$(U_{ab})_{c,d} = \frac{1}{\sqrt{n}} A_{a,d} B_{b,c} C_{c,d}$$

Why do they work?

Let's start with a very concrete problem.

Hadamard matrices
$$H$$
 unitary error bases (UEB) $\{U_i\}_{1 \leq i \leq n^2}$
$$|H_{i,j}|^2 = 1 \quad H^\dagger H = n\mathbb{I} \qquad \qquad U_i \text{ unitary} \quad \operatorname{Tr}(U_i^\dagger U_j) = n\delta_{i,j}$$

$$\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \qquad \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

Important in quantum information ... but hard to construct. Only a handful of known constructions, for example:

Hadamard + Hadamard → UEB

$$(U_{ab})_{c,d} = \frac{1}{\sqrt{n}} A_{a,d} B_{b,c} C_{c,d}$$

Why do they work? Where do they come from?

Let's start with a very concrete problem.

Hadamard matrices
$$H$$
 unitary error bases (UEB) $\{U_i\}_{1 \leq i \leq n^2}$
$$|H_{i,j}|^2 = 1 \quad H^\dagger H = n\mathbb{I} \qquad \qquad U_i \text{ unitary} \quad \operatorname{Tr}(U_i^\dagger U_j) = n\delta_{i,j}$$

$$\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \qquad \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

Important in quantum information ... but hard to construct. Only a handful of known constructions, for example:

Hadamard + Hadamard → UEB

$$(U_{ab})_{c,d} = \frac{1}{\sqrt{n}} A_{a,d} B_{b,c} C_{c,d}$$

Why do they work? Where do they come from? How can we find them?

Let's start with a very concrete problem.

Hadamard matrices
$$H$$
 unitary error bases (UEB) $\{U_i\}_{1 \le i \le n^2}$ $|H_{i,j}|^2 = 1$ $H^\dagger H = n\mathbb{1}$ U_i unitary $\operatorname{Tr}(U_i^\dagger U_j) = n\delta_{i,j}$ $\binom{1}{1-1}$ Important in quade Only a handful of Hadamard $+$ Hadamard $+$ Hadamard $+$ UEB $(U_{ab})_{c,d} = \frac{1}{\sqrt{n}} A_{a,d} B_{b,c} C_{c,d}$

Why do they work? Where do they come from? How can we find them?

What is higher algebra?

• Ordinary algebra lets us compose along a line:

$$xy^2zyx^3$$

What is higher algebra?

• Ordinary algebra lets us compose along a line:

$$xy^2zyx^3$$

• Higher algebra lets us compose in higher dimensions:

Planar algebra = 2-category theory

The language describing algebra in the plane is 2-category theory:

Planar algebra = 2-category theory

The language describing algebra in the plane is 2-category theory:

$$A \hspace{1cm} A \xrightarrow{f} B \hspace{1cm} A \xrightarrow{f} B$$
 objects 1-morphism 2-morphism

We can compose 2-morphisms like this:

$$A \xrightarrow{\uparrow \epsilon} B \qquad A \xrightarrow{\uparrow \eta} B \xrightarrow{\uparrow \epsilon} C$$

vertical composition

horizontal composition

These are pasting diagrams.

Planar algebra = 2-category theory

The language describing algebra in the plane is 2-category theory:

We can compose 2-morphisms like this:

These are pasting diagrams.

The dual diagrams are the graphical calculus.

We use monoidal dagger pivotal 2-categories:

We use monoidal dagger pivotal 2-categories:

• Dagger pivotal 2-categories have a very flexible graphical calculus.

We use monoidal dagger pivotal 2-categories:

- Dagger pivotal 2-categories have a very flexible graphical calculus.
- In a monoidal 2-category, we can layer surfaces on top of each other.

We use monoidal dagger pivotal 2-categories:

- Dagger pivotal 2-categories have a very flexible graphical calculus.
- In a monoidal 2-category, we can layer surfaces on top of each other.

⇒ surfaces, wires and vertices in three-dimensional space

We work in the 2-category **2Hilb**, a categorification of **Hilb**.

We work in the 2-category **2Hilb**, a categorification of **Hilb**.

• Objects are natural numbers n, m, ...

We work in the 2-category 2Hilb, a categorification of Hilb.

- Objects are natural numbers n, m, ...
- 1-morphisms $n \xrightarrow{H} m$ are matrices of Hilbert spaces

$$\left(\begin{array}{ccc}
H_{11} & \cdots & H_{1n} \\
\vdots & \ddots & \vdots \\
H_{m1} & \cdots & H_{mn}
\end{array}\right)$$

We work in the 2-category 2Hilb, a categorification of Hilb.

- Objects are natural numbers n, m, ...
- 1-morphisms $n \xrightarrow{H} m$ are matrices of Hilbert spaces
- 2-morphisms $H \stackrel{\phi}{\Rightarrow} H'$ are matrices of linear maps

$$\begin{pmatrix} H_{11} & \cdots & H_{1n} \\ \vdots & \ddots & \vdots \\ H_{m1} & \cdots & H_{mn} \end{pmatrix} \qquad \begin{pmatrix} H_{11} \xrightarrow{\phi_{11}} H'_{11} & \cdots & H_{1n} \xrightarrow{\phi_{1n}} H'_{1n} \\ \vdots & \ddots & \vdots \\ H_{m1} \xrightarrow{\phi_{m1}} H'_{m1} & \cdots & H_{mn} \xrightarrow{\phi_{mn}} H'_{mn} \end{pmatrix}$$

We work in the 2-category 2Hilb, a categorification of Hilb.

- Objects are natural numbers n, m, ...
- 1-morphisms $n \xrightarrow{H} m$ are matrices of Hilbert spaces
- 2-morphisms $H \stackrel{\phi}{\Rightarrow} H'$ are matrices of linear maps

$$\begin{pmatrix} H_{11} & \cdots & H_{1n} \\ \vdots & \ddots & \vdots \\ H_{m1} & \cdots & H_{mn} \end{pmatrix} \qquad \begin{pmatrix} H_{11} \xrightarrow{\phi_{11}} H'_{11} & \cdots & H_{1n} \xrightarrow{\phi_{1n}} H'_{1n} \\ \vdots & \ddots & \vdots \\ H_{m1} \xrightarrow{\phi_{m1}} H'_{m1} & \cdots & H_{mn} \xrightarrow{\phi_{mn}} H'_{mn} \end{pmatrix}$$

This well-studied structure plays a key role in higher representation theory.

A direct perspective: tensor networks

A (composed) linear map $E \otimes F \rightarrow A$

indexing set $i \in S$

indexing set $i \in S$

family of vector spaces $V_{i,j}$

indexing set $i \in S$

family of vector spaces $V_{i,j}$

family of linear maps $F_{i,j}: V_{i,j} \rightarrow W_{i,j}$

indexing set $i \in S$

family of vector spaces $V_{i,j}$

family of linear maps $F_{i,i}: V_{i,i} \rightarrow W_{i,i}$

A family of linear maps, indexed by i and j $E_{i,j} \otimes F_j \to A_i$

indexing set $i \in S$

family of vector spaces $V_{i,j}$

family of linear maps $F_{i,j}: V_{i,j} \rightarrow W_{i,j}$

A family of linear maps, indexed by i $E_{i,j} \otimes F_i \to A_i$

A biunitary is a 2-morphism that is

A biunitary is a 2-morphism that is

• (vertically) unitary:

A biunitary is a 2-morphism that is

• (vertically) unitary:

• horizontally unitary:

 $=\lambda$

A biunitary is a 2-morphism that is

• (vertically) unitary:

• horizontally unitary:

$$=\lambda$$

These look just like the second Reidemeister move.

Quantum structures are biunitaries in 2Hilb

Result 1: Hadamards and UEBs are biunitaries of the following type:

Quantum structures are biunitaries in 2Hilb

Result 1: Hadamards and UEBs are biunitaries of the following type:

Result 2: We can compose biunitaries diagonally:

Quantum structures are biunitaries in 2Hilb

Result 1: Hadamards and UEBs are biunitaries of the following type:

Result 2: We can compose biunitaries diagonally:

Had + Had + Had

 $Had + Had + Had \rightsquigarrow UEB$

 $Had + Had + Had \rightsquigarrow UEB$

$$(U_{ab})_{c,d}=rac{1}{\sqrt{n}}A_{a,d}B_{b,c}C_{c,d}$$

 $Had + Had + Had \rightsquigarrow UEB$

$$(U_{ab})_{c,d} = \frac{1}{\sqrt{n}} A_{a,d} B_{b,c} C_{c,d} \qquad \checkmark$$

Composing biunitaries

 $U_{abc,de,fg} = H_{a,eg}^{b,c} P_{e,b,f}^{c,g} Q_{c,g,d}$

 $U_{abc,def,gh} := \sum_{r} V_{a,rf,g}^{b,c} Q_{b,r,d}^{c} W_{rc,e,h}$

 $U_{abc,de,fg} = \sum_{r} H_{a,r}^{b,c} P_{c,r,d} Q_{r,b,f} V_{r,e,g} \quad U_{abcd,ef,gh} = \frac{1}{n} \sum_{r,s} A_{f,h} B_{s,f} C_{r,h} D_{s,r} H_{a,s}^{d} K_{b,r}^{c} Q_{d,s,e} P_{r,c,g}$

Composing biunitaries

Tensor networks:
 see structural properties hidden in conventional matrix notation

- Tensor networks:
 see structural properties hidden in conventional matrix notation
- Shaded tensor networks:
 see structural properties hidden in tensor network notation

- Tensor networks:
 see structural properties hidden in conventional matrix notation
- Shaded tensor networks: see structural properties hidden in tensor network notation
- ⇒ harness combinatorial richness of planar geometry

- Tensor networks:
 see structural properties hidden in conventional matrix notation
- Shaded tensor networks:
 see structural properties hidden in tensor network notation
- ⇒ harness combinatorial richness of planar geometry

But now enough of linear algebra and let's have some fun!

- Tensor networks:
 see structural properties hidden in conventional matrix notation
- Shaded tensor networks:
 see structural properties hidden in tensor network notation
- ⇒ harness combinatorial richness of planar geometry

But now enough of linear algebra and let's have some fun!

Recall:

Hadamard matrix

- Tensor networks:
 see structural properties hidden in conventional matrix notation
- Shaded tensor networks:
 see structural properties hidden in tensor network notation
- ⇒ harness combinatorial richness of planar geometry

But now enough of linear algebra and let's have some fun!

Recall:

Hadamard matrix →

- Tensor networks:
 see structural properties hidden in conventional matrix notation
- Shaded tensor networks:
 see structural properties hidden in tensor network notation
- ⇒ harness combinatorial richness of planar geometry

But now enough of linear algebra and let's have some fun!

Recall:

Hadamard matrix →

~→

Part 2 Untangling quantum circuits

Basic states and gates

$$|+\rangle = |0\rangle + |1\rangle$$

$$|\mathrm{Bell}\rangle = |00\rangle + |11\rangle$$

$$|+\rangle = |0\rangle + |1\rangle \qquad |\mathrm{Bell}\rangle = |00\rangle + |11\rangle \qquad |\mathrm{GHZ}\rangle = |000\rangle + |111\rangle$$

Basic states and gates

$$|+\rangle = |0\rangle + |1\rangle$$

$$|+\rangle = |0\rangle + |1\rangle \qquad |\mathrm{Bell}\rangle = |00\rangle + |11\rangle$$

$$|\mathrm{GHZ}\rangle = |000\rangle + |111\rangle$$

$$|i\rangle\mapsto\sum_{j}H_{ij}|j\rangle$$

$$|i\rangle \otimes |j\rangle \mapsto H_{ij} |i\rangle \otimes |j\rangle$$

Basic states and gates

$$|+\rangle = |0\rangle + |1\rangle$$

$$|\mathrm{Bell}\rangle = |00\rangle + |11\rangle$$

$$|+\rangle = |0\rangle + |1\rangle \qquad |\mathrm{Bell}\rangle = |00\rangle + |11\rangle \qquad |\mathrm{GHZ}\rangle = |000\rangle + |111\rangle$$

Hadamard gate

CZ gate

Creating GHZ states

How to create a GHZ state from $|+\rangle$ states?

Creating GHZ states

How to create a GHZ state from $|+\rangle$ states?

Creating GHZ states

How to create a GHZ state from $|+\rangle$ states?

=

How to create a GHZ state from $|+\rangle$ states?

=

Quantum error correction

A k-local quantum code is an isometry $H \stackrel{\text{enc}}{\longrightarrow} H^{\otimes n}$, s.t.

$$H \stackrel{\mathsf{enc}}{\longrightarrow} H^{\otimes n} \stackrel{E}{\longrightarrow} H^{\otimes n} \stackrel{\mathsf{enc}^\dagger}{\longrightarrow} H$$

is proportional to the identity for every k-local error $E: H^{\otimes n} \to H^{\otimes n}$.

Quantum error correction

A k-local quantum code is an isometry $H \stackrel{\text{enc}}{\longrightarrow} H^{\otimes n}$, s.t.

$$H \xrightarrow{\mathsf{enc}} H^{\otimes n} \xrightarrow{E} H^{\otimes n} \xrightarrow{\mathsf{enc}^{\dagger}} H$$

is proportional to the identity for every k-local error $E: H^{\otimes n} \to H^{\otimes n}$.

phase error

Quantum error correction

A k-local quantum code is an isometry $H \stackrel{\text{enc}}{\longrightarrow} H^{\otimes n}$, s.t.

$$H \stackrel{\mathsf{enc}}{\longrightarrow} H^{\otimes n} \stackrel{E}{\longrightarrow} H^{\otimes n} \stackrel{\mathsf{enc}^\dagger}{\longrightarrow} H$$

is proportional to the identity for every k-local error $E: H^{\otimes n} \to H^{\otimes n}$.

The following is a 2-local phase error code $H \to H^{\otimes 3}$:

New construction of a phase code from unitary error bases.

A 2-local full error correcting code $H \to H^{\otimes 5}$:

Caveat: We cannot yet handle two non-adjacent errors.

Caveat: We cannot yet handle two non-adjacent errors.