Frobenius algebras, Hopf algebras and 3-categories

David Reutter

University of Oxford

Hopf algebras in Kitaev’s quantum double models
Perimeter Institute, Canada

August 3, 2017
The plan

- **Part 1.** Motivation
- **Part 2.** 2-categories
- **Part 3.** 3-categories
- **Part 4.** Hopf algebras
- **Part 5.** Higher linear algebra
- **Part 6.** Lattice models
The plan

- **Part 1.** Motivation
- **Part 2.** 2-categories
- **Part 3.** 3-categories
- **Part 4.** Hopf algebras
- **Part 5.** Higher linear algebra
- **Part 6.** Lattice models
The plan

- **Part 6.** Lattice models
- **Part 5.** Higher linear algebra
- **Part 4.** Hopf algebras
- **Part 3.** 3-categories
- **Part 2.** 2-categories
- **Part 1.** Motivation
Part 1
Motivation
What is higher algebra?

- Ordinary algebra lets us compose along a line:

 \[xy^2 zyx^3 \]
What is higher algebra?

- Ordinary algebra lets us compose along a line:
 \[xy^2 zyx^3 \]

- *Higher algebra* lets us compose in higher dimensions:
A tradeoff between algebra and topology

Frobenius algebras as a ‘shadow’ of a two dimensional theory.

Next hour: Hopf algebras as a ‘shadow’ of a three dimensional theory.

David Reutter
Hopf algebras and 3-categories
August 3, 2017 5 / 34
A tradeoff between algebra and topology

Frobenius algebras
A tradeoff between algebra and topology

Frobenius algebras as a ‘shadow’ of a two dimensional theory.

\[
\begin{array}{ccc}
\begin{array}{c}
\begin{array}{c}
\parbox{1cm}{\includegraphics{diagram1.png}}
\end{array}
\end{array}
& = & \begin{array}{c}
\begin{array}{c}
\parbox{1cm}{\includegraphics{diagram2.png}}
\end{array}
\end{array}
& = & \begin{array}{c}
\begin{array}{c}
\parbox{1cm}{\includegraphics{diagram3.png}}
\end{array}
\end{array}
\\
\begin{array}{c}
\begin{array}{c}
\parbox{1cm}{\includegraphics{diagram4.png}}
\end{array}
\end{array}
& = & \begin{array}{c}
\begin{array}{c}
\parbox{1cm}{\includegraphics{diagram5.png}}
\end{array}
\end{array}
& = & \begin{array}{c}
\begin{array}{c}
\parbox{1cm}{\includegraphics{diagram6.png}}
\end{array}
\end{array}
\end{array}
\]
A tradeoff between algebra and topology

Frobenius algebras as a ‘shadow’ of a two dimensional theory.

\[\text{simpler topology} + \text{harder algebra} \quad \text{or} \quad \text{harder topology} + \text{simpler algebra} \]

Next hour: Hopf algebras as a ‘shadow’ of a three dimensional theory.
A tradeoff between algebra and topology

Frobenius algebras as a ‘shadow’ of a two dimensional theory.

\[
\begin{align*}
\text{lower dimensional topology} & \quad + \quad \text{harder algebra} & \quad = & \quad \text{higher dimensional topology} & \quad + \quad \text{simpler algebra}
\end{align*}
\]
A tradeoff between algebra and topology

Frobenius algebras as a ‘shadow’ of a two dimensional theory.

Study topology in terms of algebra

lower dimensional topology + harder algebra

higher dimensional topology + simpler algebra
A tradeoff between algebra and topology

Frobenius algebras as a ‘shadow’ of a two dimensional theory.

study topology in terms of algebra

lower dimensional topology + harder algebra

higher dimensional topology + simpler algebra

‘outsource’ algebra to topology

Next hour: Hopf algebras as a ‘shadow’ of a three dimensional theory.
A tradeoff between algebra and topology

Frobenius algebras as a ‘shadow’ of a two dimensional theory.

Next hour: Hopf algebras as a ‘shadow’ of a three dimensional theory.
Part 2
2-categories
Algebra in the plane = 2-category theory

The language describing algebra in the plane is 2-category theory:

\[
\begin{array}{ccc}
A & \rightarrow & B \\
\uparrow \eta & & \uparrow \epsilon \\
A & \rightarrow & B
\end{array}
\]

object 1-morphism 2-morphism

We can compose 2-morphisms like this:

\[
\begin{array}{ccc}
A & \rightarrow & B \\
\uparrow \eta & & \uparrow \epsilon \\
A & \rightarrow & B
\end{array}
\]

vertical composition horizontal composition

These are pasting diagrams. The dual diagrams are the graphical calculus.

A 2-category with one object (the 'empty region') is a monoidal category.
Algebra in the plane = 2-category theory

The language describing algebra in the plane is *2-category theory*:

\[
\begin{array}{ccc}
A & \xrightarrow{f} & B \\
\uparrow \eta & & \uparrow \epsilon \\
A & \xrightarrow{g} & B
\end{array}
\]

object \quad 1\text{-morphism} \quad 2\text{-morphism}

We can compose 2-morphisms like this:

\[
\begin{array}{ccc}
A & \xrightarrow{f} & B \\
\uparrow \eta & & \uparrow \epsilon \\
A & \xrightarrow{g} & B
\end{array}
\]

vertical composition \quad horizontal composition

These are *pasting diagrams*.
Algebra in the plane = 2-category theory

The language describing algebra in the plane is 2-category theory:

\[\begin{array}{ccc}
A & \xrightarrow{f} & B \\
\eta & \downarrow & \epsilon \\
A & \xrightarrow{f} & B \\
\end{array} \]

We can compose 2-morphisms like this:

\[\begin{array}{ccc}
A & \xrightarrow{\epsilon} & B \\
\eta & \downarrow & \epsilon \\
A & \xrightarrow{\eta} & B \\
\end{array} \]

vertical composition

\[\begin{array}{ccc}
A & \xrightarrow{\eta} & B \\
\epsilon & \downarrow & \epsilon \\
A & \xrightarrow{\epsilon} & C \\
\end{array} \]

horizontal composition

These are pasting diagrams. The dual diagrams are the graphical calculus.
Algebra in the plane = 2-category theory

The language describing algebra in the plane is 2-category theory:

\[
\begin{array}{ccc}
\text{object} & \downarrow f & \text{2-morphism} \\
\eta & \epsilon & \eta \\
\end{array}
\]

We can compose 2-morphisms like this:

vertical composition horizontal composition
\[
\begin{array}{ccc}
\text{vertical composition} & \downarrow f & \text{horizontal composition} \\
\eta & \epsilon & \eta \\
\end{array}
\]

These are pasting diagrams. The dual diagrams are the graphical calculus. A 2-category with one object (the 'empty region') is a monoidal category.
A 1-morphism $A \xrightarrow{f} B$ has a dual $B \xrightarrow{f^*} A$ if there are 2-morphisms:

\[\begin{array}{c}
f^* \quad f \\
\end{array}\quad \begin{array}{c}
f \quad f^* \\
\end{array}\quad \begin{array}{c}
f \quad f^* \\
\end{array}\quad \begin{array}{c}
f^* \quad f \\
\end{array}\]
A 1-morphism $A \xrightarrow{f} B$ has a dual $B \xrightarrow{f^*} A$ if there are 2-morphisms:

\[
\begin{align*}
\begin{array}{c}
\scalebox{0.7}{
\includegraphics{diagram1.png}} \\
\scalebox{0.7}{
\includegraphics{diagram2.png}} \\
\scalebox{0.7}{
\includegraphics{diagram3.png}} \\
\scalebox{0.7}{
\includegraphics{diagram4.png}}
\end{array}
\end{align*}
\]

such that the following hold:

\[
\begin{align*}
\begin{array}{c}
\scalebox{0.7}{
\includegraphics{diagram5.png}} \\
\scalebox{0.7}{
\includegraphics{diagram6.png}} \\
\scalebox{0.7}{
\includegraphics{diagram7.png}} \\
\scalebox{0.7}{
\includegraphics{diagram8.png}}
\end{array}
\end{align*}
\]

\[
\begin{align*}
\begin{array}{c}
\scalebox{0.7}{
\includegraphics{diagram9.png}} \\
\scalebox{0.7}{
\includegraphics{diagram10.png}} \\
\scalebox{0.7}{
\includegraphics{diagram11.png}} \\
\scalebox{0.7}{
\includegraphics{diagram12.png}}
\end{array}
\end{align*}
\]
Dualizable 1-morphisms

A 1-morphism $A \xrightarrow{f} B$ has a dual $B \xrightarrow{f^*} A$ if there are 2-morphisms:

such that the following hold:

Theorem. Graphical calculus for duals \leftrightarrow oriented wires in the plane
A 1-morphism $A \xrightarrow{f} B$ has a dual $B \xrightarrow{f^*} A$ if there are 2-morphisms:

\[
\begin{align*}
& \begin{array}{ccc}
 & f^* & f \\
 f & & \\
 & f & f^*
\end{array} \\
& \begin{array}{ccc}
 & f & f^* \\
 f & & \\
 & f^* & f
\end{array}
\end{align*}
\]

such that the following hold:

\[
\begin{align*}
& \begin{array}{ccc}
 & f^* & f \\
 f & & \\
 & f & f^*
\end{array} \\
= & \begin{array}{ccc}
 & f & f^* \\
 f & & \\
 & f^* & f
\end{array} \\
= & \begin{array}{ccc}
 & f^* & f \\
 f & & \\
 & f & f^*
\end{array} \\
= & \begin{array}{ccc}
 & f & f^* \\
 f & & \\
 & f^* & f
\end{array}
\end{align*}
\]

Theorem. Graphical calculus for duals \leftrightarrow oriented wires in the plane

Tangle hypothesis.

$\text{Bord}_{1,0}^{2D} \cong$ free monoidal category on a dualizable object
Dualizable 1-morphisms

A 1-morphism $A \xrightarrow{f} B$ has a dual $B \xrightarrow{f^*} A$ if there are 2-morphisms:

\[f^* \xrightarrow{f} B \xleftarrow{f} A \]

such that the following hold:

\[\begin{array}{cccc}
\text{Diagram 1} & \overset{=}{=} & \text{Diagram 2} & \overset{=}{=} \\
\text{Diagram 3} & \overset{=}{=} & \text{Diagram 4} & \overset{=}{=} \\
\end{array} \]

Theorem. Graphical calculus for duals \leftrightarrow oriented wires in the plane

Definition. G directed graph $\Rightarrow \mathcal{F}_2(G) :=$ free 2-category with duals on G.

David Reutter
Hopf algebras and 3-categories
August 3, 2017 8 / 34
Dualizable 1-morphisms

A 1-morphism $A \xrightarrow{f} B$ has a dual $B \xrightarrow{f^*} A$ if there are 2-morphisms:

such that the following hold:

Theorem. Graphical calculus for duals ↔ oriented wires in the plane

Definition. G directed graph $\Rightarrow \mathcal{F}_2(G) :=$ free 2-category with duals on G.

Example. $\mathcal{F}_2 \left(\begin{array}{c} \text{Example} \\ \end{array} \right)$: free 2-category on dualizable 1-morphism
A 1-morphism $A \xrightarrow{f} B$ has a dual $B \xrightarrow{f^*} A$ if there are 2-morphisms:

such that the following hold:

Theorem. Graphical calculus for duals \leftrightarrow oriented wires in the plane

Definition. G directed graph $\Rightarrow \mathcal{F}_2(G) :=$ free 2-category with duals on G.

Example. $\mathcal{F}_2 \left(\begin{array}{c} f^* \rightarrow f \\ f \rightarrow f^* \end{array} \right) :$ free 2-category on dualizable 1-morphism
Frobenius algebras and dualizable 1-morphisms

A Frobenius algebra in a monoidal category is an object with morphisms:

\[\text{such that:} \]

\[
\begin{array}{c}
\text{Frob} \\
\text{Frob} \\
\text{Frob}
\end{array}
\]

\[
\begin{array}{c}
\text{Frob} \\
\text{Frob} \\
\text{Frob}
\end{array}
\]

\[
\begin{array}{c}
\text{Frob} \\
\text{Frob} \\
\text{Frob}
\end{array}
\]

\[
\begin{array}{c}
\text{Frob} \\
\text{Frob} \\
\text{Frob}
\end{array}
\]

Theorem.
This induces a monoidal equivalence
\(\text{Frob} \cong \mathcal{F} \)

open strings in the plane

Frob as a 'shadow' of the theory of dualizable 1-morphisms in 2-categories.
A Frobenius algebra in a monoidal category is an object with morphisms:

\[
\begin{align*}
\text{such that:} & \\
\end{align*}
\]

\[
\begin{align*}
\text{Theorem.} & \\
\end{align*}
\]
A Frobenius algebra in a monoidal category is an object with morphisms:

\[\text{such that:} \]

\[\begin{align*}
\text{Frob} & = \text{Frob} \\
= & = \\
= & = \\
= & = \\
= & = \\
= & = \\
\end{align*} \]
Frobenius algebras and dualizable 1-morphisms

A *Frobenius algebra* in a monoidal category is an object with morphisms:

\[
\begin{align*}
\text{such that:} & \\
\text{Frob} & = \text{Frob} \\
\end{align*}
\]

\[
\begin{align*}
\text{Frob} : & \text{free monoidal category on a Frobenius algebra} \\
\text{Frob} & \rightarrow \text{thickening} \\
\end{align*}
\]

There is a 2-functor \(Frob : \mathcal{C} \rightarrow \mathcal{D} \) for any category \(\mathcal{C} \).

Theorem. This induces a monoidal equivalence \(\text{Frob} \sim \mathcal{F} \).

open strings in the plane

\(\text{Frob} \) as a 'shadow' of the theory of dualizable 1-morphisms in 2-categories.

David Reutter

Hopf algebras and 3-categories

August 3, 2017 9 / 34
A Frobenius algebra in a monoidal category is an object with morphisms:

\[\mathsf{Frob} : \text{free monoidal category on a Frobenius algebra} \]

such that:

\[\mathsf{Frob} \]
Frobenius algebras and dualizable 1-morphisms

A Frobenius algebra in a monoidal category is an object with morphisms:

\[\begin{align*}
\text{Frob} : & \text{free monoidal category on a Frobenius algebra} \\
\text{Thickening} : & F_2 := \mathcal{F}_2 \left(\begin{array}{c}
\hspace{1cm} \\
\end{array} \right).
\end{align*} \]
Frobenius algebras and dualizable 1-morphisms

A Frobenius algebra in a monoidal category is an object with morphisms:

\[
\begin{align*}
\text{Frob}: \text{free monoidal category on a Frobenius algebra}
\end{align*}
\]

There is a 2-functor \(\text{Frob} \xrightarrow{\text{thickening}} F_2 := \mathcal{F}_2 \left(\begin{array}{c}
\includegraphics{frob.png}
\end{array} \right) \).

Theorem. This induces a monoidal equivalence \(\text{Frob} \cong F_2 \left(\begin{array}{c}
\includegraphics{frob.png}
\end{array} \right) \).
Frobenius algebras and dualizable 1-morphisms

A Frobenius algebra in a monoidal category is an object with morphisms:

\[Frob : \text{free monoidal category on a Frobenius algebra} \]

such that:

\[= = = = = = = = = \]

There is a 2-functor \(Frob \) 'thickening' \(F_2 := \mathcal{F}_2 \left(\begin{array}{c} \square \rightarrow \square \end{array} \right) \).

Theorem. This induces a monoidal equivalence \(Frob \cong F_2 (\square, \square) \).
A *Frobenius algebra* in a monoidal category is an object with morphisms:

\[
\begin{align*}
\mathcal{Frob} : \text{free monoidal category on a Frobenius algebra} \\
\end{align*}
\]

such that:

\[
\begin{align*}
\begin{array}{c}
\begin{array}{c}
\text{Frob: free monoidal category on a Frobenius algebra}
\end{array}
\end{array}
\end{align*}
\]

There is a 2-functor \(\mathcal{Frob} \to \mathcal{F}_2 \) such that:

\[
\begin{align*}
\begin{array}{c}
\begin{array}{c}
\text{Theorem. This induces a monoidal equivalence } \mathcal{Frob} \cong \mathcal{F}_2 (\square, \square).
\end{array}
\end{array}
\end{align*}
\]

\(\mathcal{Frob} \) as a ’shadow’ of the theory of dualizable 1-morphisms in 2-categories.
Other algebraic theories?

What about *commutative* Frobenius algebras

\[\begin{array}{c}
\includegraphics[width=0.3\textwidth]{commutative_frobenius_algebra_diagram}
\end{array} \]
What about *commutative* Frobenius algebras or *bialgebras*?

\[
\begin{align*}
\text{Diagram 1} &= \text{Diagram 2} \\
\text{Diagram 3} &= \text{Diagram 4}
\end{align*}
\]
Other algebraic theories?

What about *commutative* Frobenius algebras or *bialgebras*?

Only make sense in (at least) three dimensional space.
Other algebraic theories?

What about *commutative* Frobenius algebras or *bialgebras*?

Only make sense in (at least) three dimensional space.

⇓

Shadows of 3D structures?
Part 3
3-categories
Algebra in three dimensions $= 3$-category theory

The language describing algebra in three dimensions is 3-category theory:

\[
\begin{array}{c}
\text{object} \\
\text{1-morphism} \\
\text{2-morphism} \\
\text{3-morphism}
\end{array}
\]

We can compose 3-morphisms like this:

\[
\begin{array}{c}
\eta \\
\epsilon \\
\epsilon \\
\eta
\end{array}
\]

vertical composition

horizontal composition

layered composition

A one object (the 'empty region') 3-category is a monoidal 2-category.

A one object and one 1-morphism 3-category is a braided monoidal category.
Algebra in three dimensions $=$ 3-category theory

The language describing algebra in three dimensions is 3-category theory:

\[
\begin{array}{c}
A \\
\end{array}
\]

object
Algebra in three dimensions = 3-category theory

The language describing algebra in three dimensions is 3-category theory:

- **object**
- **1-morphism**

- **vertical composition**
- **horizontal composition**
- **layered composition**
Algebra in three dimensions $= 3$-category theory

The language describing algebra in three dimensions is *3-category theory*:

```
A
```

```
B
```

```
F
```

```
g
```

We can compose 3-morphisms like this:

- Vertical composition:

- Horizontal composition:

- Layered composition:

A one object (the ‘empty region’) 3-category is a *monoidal 2-category*.

A one object and one 1-morphism 3-category is a *braided monoidal category*.
Algebra in three dimensions = 3-category theory

The language describing algebra in three dimensions is 3-category theory:

- **Object**
- **1-morphism**
- **2-morphism**
- **3-morphism**

We can compose 3-morphisms like this:

- Vertical composition
- Horizontal composition
- Layered composition

A one object (the ‘empty region’) 3-category is a monoidal 2-category.

A one object and one 1-morphism 3-category is a braided monoidal category.
Algebra in three dimensions = 3-category theory

The language describing algebra in three dimensions is 3-category theory:

We can compose 3-morphisms like this:
Algebra in three dimensions = 3-category theory

The language describing algebra in three dimensions is 3-category theory:

We can compose 3-morphisms like this:
The language describing algebra in three dimensions is 3-category theory:

We can compose 3-morphisms like this:

vertical composition

horizontal composition
The language describing algebra in three dimensions is **3-category theory**:

- **Object**: Single entity.
- **1-Morphism**: Connecting objects.
- **2-Morphism**: Connections between 1-morphisms.
- **3-Morphism**: Connections between 2-morphisms.

We can compose 3-morphisms like this:

- **Vertical composition**
- **Horizontal composition**
- **Layered composition**
Algebra in three dimensions = 3-category theory

The language describing algebra in three dimensions is \textit{3-category theory}:

\begin{align*}
\begin{array}{c}
\text{object} \\
1\text{-morphism} \\
2\text{-morphism} \\
3\text{-morphism}
\end{array}
\end{align*}

We can compose 3-morphisms like this:

\begin{align*}
\begin{array}{c}
\text{vertical composition} \\
\text{horizontal composition} \\
\text{layered composition}
\end{array}
\end{align*}

A one object (the ‘empty region’) 3-category is a \textit{monoidal 2-category}.
Algebra in three dimensions = 3-category theory

The language describing algebra in three dimensions is 3-category theory:

We can compose 3-morphisms like this:

A one object (the ‘empty region’) 3-category is a monoidal 2-category. A one object and one 1-morphism 3-category is a braided monoidal category.
Duals in 3-categories

A 1-morphism A has an *oriented dual* A^* if there are 2-morphisms (*folds*):

\[
\begin{array}{cccc}
A^* & A & A^* & A \\
A^* & A & A^* & A \\
\end{array}
\]
A 1-morphism A has an *oriented dual* A^* if there are 2-morphisms (folds):

and 3-morphisms (*cusps, saddles and births/deaths of the circle*):

+ horizontal and vertical reflections and opposite orientation
A 1-morphism A has an oriented dual A^* if there are 2-morphisms (folds):

and 3-morphisms (cusps, saddles and births/deaths of the circle):

such that the following hold (& reflections and opposite orientation):

David Reutter
Theorem. graphical calculus for duals \leftrightarrow oriented surfaces in 3D space
Theorem. graphical calculus for duals \leftrightarrow oriented surfaces in 3D space

Tangle hypothesis.

$\text{Bord}_{2,1,0}^{3D} \cong \text{free monoidal 2-category on a dualizable object}$
Theorem. graphical calculus for duals \leftrightarrow oriented surfaces in 3D space

Let \mathcal{G} be a 2-globular set $\mathcal{G} = \left(\begin{array}{c} 2\text{-Edges} \leftrightarrow \text{Edges} \leftrightarrow \text{Vertices} \end{array} \right)$
Theorem. graphical calculus for duals \leftrightarrow oriented surfaces in 3D space

Let \mathcal{G} be a 2-globular set $\mathcal{G} = \left(\begin{array}{c} 2\text{-Edges} \leftrightarrow \text{Edges} \leftrightarrow \text{Vertices} \end{array} \right)$
Theorem. graphical calculus for duals \leftrightarrow oriented surfaces in 3D space

Let \mathcal{G} be a 2-globular set $\mathcal{G} = \left(\text{2-Edges} \leftrightarrow \text{Edges} \leftrightarrow \text{Vertices} \right)$

Def. $\mathcal{F}_3(\mathcal{G})$: free 3-category with duals for 2- and 1-morphisms given in \mathcal{G}.

Summary. The graphical calculus of $\mathcal{F}_3(\mathcal{G})$ is given by regions, surfaces and wires in three dimensional space.
Theorem. graphical calculus for duals \leftrightarrow oriented surfaces in 3D space

Let \mathcal{G} be a 2-globular set $\mathcal{G} = \left(\begin{array}{c} 2\text{-Edges} \quad \leftrightarrow \quad \text{Edges} \quad \leftrightarrow \quad \text{Vertices} \end{array} \right)$

Def. $\mathcal{F}_3(\mathcal{G})$: free 3-category with duals for 2- and 1-morphisms given in \mathcal{G}.

Examples.

$\mathcal{F}_3 \left(\begin{array}{c} \text{Defect data} \\ 3-2-1-0 \end{array} \right)$: free 3-category on a dualizable 1-morphism

$\mathcal{F}_3 \left(\begin{array}{c} \text{Defect bordisms} \\ \text{embedded in } \mathbb{R}^3 \end{array} \right)$: free 3-category on \{two dualizable 1-morphisms, one dualizable 2-morphism\}
Duals in 3-categories

Theorem. graphical calculus for duals \leftrightarrow oriented surfaces in 3D space

Let G be a 2-globular set $G = \left(\begin{array}{c} 2\text{-Edges} \leftrightarrow \text{Edges} \leftrightarrow \text{Vertices} \end{array}\right)$

Def. $\mathcal{F}_3(G)$: free 3-category with duals for 2- and 1-morphisms given in G.

Examples.

$\mathcal{F}_3\left(\begin{array}{c} \end{array}\right)$: free 3-category on a dualizable 1-morphism

$\mathcal{F}_3\left(\begin{array}{c} \end{array}\right)$: free 3-category on \{two dualizable 1-morphisms, one dualizable 2-morphism\}

Summary. The graphical calculus of $\mathcal{F}_3(G)$ is given by regions, surfaces and wires in three dimensional space.
Theorem. Graphical calculus for duals \leftrightarrow oriented surfaces in 3D space.

Let \mathcal{G} be a 2-globular set $\mathcal{G} = \left(\text{2-Edges} \leftrightarrow \text{Edges} \leftrightarrow \text{Vertices}\right)$.

Def. $\mathcal{F}_3(\mathcal{G})$: free 3-category with duals for 2- and 1-morphisms given in \mathcal{G}.

Examples.

$\mathcal{F}_3(\mathcal{G})$: free 3-category on a dualizable 1-morphism.

$\mathcal{F}_3(\mathcal{G})$: free 3-category on two dualizable 1-morphisms, one dualizable 2-morphism.

Summary. The graphical calculus of $\mathcal{F}_3(\mathcal{G})$ is given by regions, surfaces and wires in three dimensional space.
A *commutative* Frobenius algebra is a Frobenius algebra such that:

\[
\begin{align*}
\text{Free} \quad & \quad \text{Braided} \quad & \quad \text{Monoidal} \\
\rightarrow & \quad \rightarrow & \quad \rightarrow \\
\end{align*}
\]
A *commutative* Frobenius algebra is a Frobenius algebra such that:

\[
\begin{align*}
\text{cFrob} & = \text{free braided monoidal category on a commutative Frobenius algebra} \\
\end{align*}
\]

cFrob: free *braided* monoidal category on a commutative Frobenius algebra
A commutative Frobenius algebra is a Frobenius algebra such that:

\[\text{cFrob} : \text{free braided monoidal category on a commutative Frobenius algebra} \]

There is a 3-functor \(\text{cFrob} \to \mathcal{F}_3 \) such that:

\[\text{cFrob} \sim \mathcal{F}_3 \]

\(\text{cFrob} \) as a ‘shadow’ of the theory of dualizable 1-morphisms in 3-categories.
A commutative Frobenius algebra is a Frobenius algebra such that:

\[\text{cFrob} : \text{free braided monoidal category on a commutative Frobenius algebra} \]

There is a 3-functor \(\text{cFrob} \) 'thickening' \(\rightarrow \) \(\text{F}_3 := \mathcal{F}_3 \left(\begin{array}{cc} \text{ } & \text{ } \\ \text{ } & \text{ } \end{array} \right) \).

Theorem. This induces a braided monoidal equivalence \(\text{cFrob} \cong \text{F}_3 \left(\begin{array}{cc} \text{ } & \text{ } \\ \text{ } & \text{ } \end{array} \right) \).
Commutative Frobenius algebras

A *commutative* Frobenius algebra is a Frobenius algebra such that:

\[\text{cFrob} \]: free *braided* monoidal category on a commutative Frobenius algebra

There is a 3-functor \(\text{cFrob} \) 'thickening' \(
\rightarrow
F_3 := \mathcal{F}_3 \left(\begin{array}{c} \includegraphics[scale=0.5]{example1} \\ \includegraphics[scale=0.5]{example2} \end{array} \right) \).

Theorem. This induces a braided monoidal equivalence \(\text{cFrob} \cong F_3(\begin{array}{c} \includegraphics[scale=0.5]{example1} \\ \includegraphics[scale=0.5]{example2} \end{array}) \).

\(\text{cFrob} \) as a 'shadow' of the theory of dualizable 1-morphisms in 3-categories.
Part 4
Hopf algebras
A Hopf algebra in a braided monoidal category is a pair of

an algebra \(\left(\begin{array}{c}
\text{green triangle} \\
, \\
\text{green dot}
\end{array} \right) \)

and

a coalgebra \(\left(\begin{array}{c}
\text{red triangle} \\
, \\
\text{red dot}
\end{array} \right) \)
Hopf algebras

A *Hopf algebra* in a braided monoidal category is a pair of

an algebra \((\ , \) \)

a coalgebra \((\ , \) \)

that form a *bialgebra*

\[
\begin{align*}
\begin{array}{c}
\text{Hopf algebras}
\end{array}
\end{align*}
\]

\[
\begin{align*}
\text{and have an antipode } S \text{ fulfilling } S S = S,
\end{align*}
\]

Here, we consider more restrictive algebras.
A Hopf algebra in a braided monoidal category is a pair of

an algebra \((\begin{array}{c}
\text{\includegraphics{algebra.png}}
\end{array}, \begin{array}{c}
\text{\includegraphics{algebra.png}}
\end{array}) \)

a coalgebra \((\begin{array}{c}
\text{\includegraphics{coalgebra.png}}
\end{array}, \begin{array}{c}
\text{\includegraphics{coalgebra.png}}
\end{array}) \)

that form a bialgebra

and have an antipode; an endomorphism \(S \) fulfilling

\[\begin{array}{c}
\text{\includegraphics{antipode.png}}
\end{array} = \begin{array}{c}
\text{\includegraphics{antipode.png}}
\end{array} \]

\[\begin{array}{c}
\text{\includegraphics{antipode.png}}
\end{array} = \begin{array}{c}
\text{\includegraphics{antipode.png}}
\end{array} \]

\[\begin{array}{c}
\text{\includegraphics{antipode.png}}
\end{array} = \begin{array}{c}
\text{\includegraphics{antipode.png}}
\end{array} \]

\[\begin{array}{c}
\text{\includegraphics{antipode.png}}
\end{array} = \begin{array}{c}
\text{\includegraphics{antipode.png}}
\end{array} \]

\[\begin{array}{c}
\text{\includegraphics{antipode.png}}
\end{array} = \begin{array}{c}
\text{\includegraphics{antipode.png}}
\end{array} \]

\[\begin{array}{c}
\text{\includegraphics{antipode.png}}
\end{array} = \begin{array}{c}
\text{\includegraphics{antipode.png}}
\end{array} \]

\[\begin{array}{c}
\text{\includegraphics{antipode.png}}
\end{array} = \begin{array}{c}
\text{\includegraphics{antipode.png}}
\end{array} \]
Hopf algebras

A Hopf algebra in a braided monoidal category is a pair of

an algebra \((\text{\textbullet}, \text{\textbullet}) \)
a coalgebra \((\text{\textbullet}, \text{\textbullet}) \)

that form a bialgebra

\[
\begin{align*}
\begin{tikzpicture}[scale=0.8]
\draw[thick, green, fill=green] (0,0) circle (0.1);
\draw[thick, red, fill=red] (1,0) circle (0.1);
\draw[thick, green, fill=green] (2,0) circle (0.1);
\draw[thick, red, fill=red] (3,0) circle (0.1);
\draw[thick, green, fill=green] (-1,0) circle (0.1);
\draw[thick, red, fill=red] (4,0) circle (0.1);
\end{tikzpicture}
\end{align*}
\]

and have an antipode; an endomorphism \(S \) fulfilling

\[
\begin{align*}
\begin{tikzpicture}[scale=0.8]
\draw[thick, green, fill=green] (0,0) circle (0.1);
\draw[thick, red, fill=red] (1,0) circle (0.1);
\draw[thick, green, fill=green] (2,0) circle (0.1);
\draw[thick, red, fill=red] (3,0) circle (0.1);
\draw[thick, red, fill=red] (0,1) circle (0.1);
\draw[thick, green, fill=green] (1,1) circle (0.1);
\draw[thick, red, fill=red] (2,1) circle (0.1);
\draw[thick, green, fill=green] (3,1) circle (0.1);
\draw[thick, green, fill=green] (-1,0) circle (0.1);
\draw[thick, green, fill=green] (4,0) circle (0.1);
\draw[thick, green, fill=green] (-1,1) circle (0.1);
\draw[thick, green, fill=green] (4,1) circle (0.1);
\end{tikzpicture}
\end{align*}
\]

Here, we consider more restrictive algebras.
A unimodular Hopf algebra is a pair of Frobenius algebras

\[
\left(\begin{array}{c}
\text{ } \\
\text{ } \\
\text{ } \\
\text{ } \\
\end{array} \right) \quad \left(\begin{array}{c}
\text{ } \\
\text{ } \\
\text{ } \\
\text{ } \\
\end{array} \right)
\]
Unimodular Hopf algebras

A *unimodular Hopf algebra* is a pair of Frobenius algebras

\[
\left(\begin{array}{c}
 \text{,} \\
 \text{,} \\
 \text{,} \\
 \text{,} \\
\end{array} \right) \quad \left(\begin{array}{c}
 \text{,} \\
 \text{,} \\
 \text{,} \\
 \text{,} \\
\end{array} \right)
\]

that form a *bialgebra*

\[
\begin{array}{c}
 \text{,} \\
 \text{,} \\
 \text{,} \\
 \text{,} \\
\end{array} = \begin{array}{c}
 \text{,} \\
 \text{,} \\
 \text{,} \\
 \text{,} \\
\end{array} \quad \begin{array}{c}
 \text{,} \\
 \text{,} \\
 \text{,} \\
 \text{,} \\
\end{array} = \begin{array}{c}
 \text{,} \\
 \text{,} \\
 \text{,} \\
 \text{,} \\
\end{array} \quad \begin{array}{c}
 \text{,} \\
 \text{,} \\
 \text{,} \\
 \text{,} \\
\end{array} = \begin{array}{c}
 \text{,} \\
 \text{,} \\
 \text{,} \\
 \text{,} \\
\end{array} = \begin{array}{c}
\end{array}
\]

The antipode of a unimodular Hopf algebra is

\[S \]

U. Hopf algebras in \(\text{Vect}_k \) are finite dimensional unimodular Hopf algebras.

Example. Any finite dimensional semisimple and cosemisimple Hopf algebra.

David Reutter

Hopf algebras and 3-categories

August 3, 2017 18 / 34
A *unimodular Hopf algebra* is a pair of Frobenius algebras that form a bialgebra and such that

\[
\begin{align*}
\text{unimodular Hopf algebra} & \text{ is a pair of Frobenius algebras} \\
\begin{pmatrix}
\begin{array}{c}
\begin{array}{c}
\includegraphics[width=0.2\textwidth]{diagram1.png}
\end{array}
\end{array}
\end{pmatrix}
& \begin{pmatrix}
\begin{array}{c}
\begin{array}{c}
\includegraphics[width=0.2\textwidth]{diagram2.png}
\end{array}
\end{array}
\end{pmatrix}
\end{align*}
\]

and such that

\[
\begin{align*}
\begin{pmatrix}
\begin{array}{c}
\begin{array}{c}
\includegraphics[width=0.2\textwidth]{diagram3.png}
\end{array}
\end{array}
\end{pmatrix}
& \begin{pmatrix}
\begin{array}{c}
\begin{array}{c}
\includegraphics[width=0.2\textwidth]{diagram4.png}
\end{array}
\end{array}
\end{pmatrix}
\end{align*}
\]
A *unimodular Hopf algebra* is a pair of Frobenius algebras
\[
\left(\begin{array}{c}
\text{\textbullet} \\
\text{\textbullet}
\end{array} \right), \quad \left(\begin{array}{c}
\text{\textbullet} \\
\text{\textbullet}
\end{array} \right)
\]
that form a *bialgebra* and such that
\[
\text{uHopf}: \text{free braided monoidal category on a unimodular Hopf algebra}
\]
A *unimodular Hopf algebra* is a pair of Frobenius algebras that form a *bialgebra*

\[
\begin{array}{c}
\text{that form a bialgebra}
\end{array}
\]

\[
\begin{array}{c}
\text{and such that}
\end{array}
\]

\[
\begin{array}{c}
\text{uHopf: free braided monoidal category on a unimodular Hopf algebra}
\end{array}
\]

Theorem. The antipode of a unimodular Hopf algebra is

\[
\begin{array}{c}
\text{The antipode of a unimodular Hopf algebra is}
\end{array}
\]
Unimodular Hopf algebras

A unimodular Hopf algebra is a pair of Frobenius algebras

\[
\left(\begin{array}{cccc}
\alpha & \beta & \gamma & \delta
\end{array} \right)
\quad \left(\begin{array}{cccc}
\wp & \eta & \xi & \iota
\end{array} \right)
\]

that form a bialgebra

\[
\begin{align*}
\begin{array}{cccc}
\alpha & \beta & \gamma & \delta
\end{array} &= \begin{array}{cccc}
\wp & \eta & \xi & \iota
\end{array} = \begin{array}{cccc}
\wp & \eta & \xi & \iota
\end{array} = \begin{array}{cccc}
\wp & \eta & \xi & \iota
\end{array} = \begin{array}{cccc}
\wp & \eta & \xi & \iota
\end{array}
\end{align*}
\]

and such that

\[
\begin{align*}
\begin{array}{cccc}
\wp & \eta & \xi & \iota
\end{array} &= \begin{array}{cccc}
\wp & \eta & \xi & \iota
\end{array} = \begin{array}{cccc}
\wp & \eta & \xi & \iota
\end{array} = \begin{array}{cccc}
\wp & \eta & \xi & \iota
\end{array} = \begin{array}{cccc}
\wp & \eta & \xi & \iota
\end{array}
\end{align*}
\]

\textbf{uHopf}: free braided monoidal category on a unimodular Hopf algebra

\textbf{Theorem}. The antipode of a unimodular Hopf algebra is \(S = \begin{array}{cccc}
\wp & \eta & \xi & \iota
\end{array} = \begin{array}{cccc}
\wp & \eta & \xi & \iota
\end{array} = \begin{array}{cccc}
\wp & \eta & \xi & \iota
\end{array} = \begin{array}{cccc}
\wp & \eta & \xi & \iota
\end{array} \).

U. Hopf algebras in \textbf{Vect}_k are finite dimensional unimodular Hopf algebras.
Unimodular Hopf algebras

A **unimodular Hopf algebra** is a pair of Frobenius algebras

\[
\left(\begin{array}{c}
\text{left side}
\end{array} \right) \quad \left(\begin{array}{c}
\text{right side}
\end{array} \right)
\]

that form a **bialgebra**

\[
\begin{array}{c}
\text{diagram 1}
\end{array}
\quad = \quad \begin{array}{c}
\text{diagram 2}
\end{array}
\quad = \quad \begin{array}{c}
\text{diagram 3}
\end{array}
\quad = \quad \begin{array}{c}
\text{diagram 4}
\end{array}
\quad = \quad \begin{array}{c}
\text{diagram 5}
\end{array}
\]

and such that

\[
\begin{array}{c}
\text{diagram 6}
\end{array}
\quad = \quad \begin{array}{c}
\text{diagram 7}
\end{array}
\quad = \quad \begin{array}{c}
\text{diagram 8}
\end{array}
\quad = \quad \begin{array}{c}
\text{diagram 9}
\end{array}
\quad = \quad \begin{array}{c}
\text{diagram 10}
\end{array}
\]

uHopf: free braided monoidal category on a unimodular Hopf algebra

Theorem. The antipode of a unimodular Hopf algebra is

\[
S = \begin{array}{c}
\text{diagram 11}
\end{array}
\]

U. Hopf algebras in \textbf{Vect}_k are **finite dimensional unimodular Hopf algebras**.

Example. Any finite dimensional semisimple and cosemisimple Hopf algebra.
A topological 3-category

Start with \mathcal{F}_3:

Definition. \mathcal{H} is the free 3-category with duals on two surfaces and a boundary wire, such that the following hold:

Explicitly, invertibility of the saddles means:

This 3-category is new.
A topological 3-category

Start with \mathcal{F}_3:

free 'topological' 3-category on
- a blue surface
- a red surface
- a blue-red boundary wire
A topological 3-category

Start with \mathcal{F}_3:

free 'topological' 3-category on
- a blue surface
- a red surface
- a blue-red boundary wire

Definition. \mathbb{H} is the free 3-category with duals on two surfaces and a boundary wire, such that the following hold:

is inverse to

and

$=$
A topological 3-category

Start with \mathcal{F}_3:

free ‘topological’ 3-category on
- a blue surface
- a red surface
- a blue-red boundary wire

Definition. \mathcal{H} is the free 3-category with duals on two surfaces and a boundary wire, such that the following hold:

is inverse to and

Explicitly, invertibility of the saddles means:
A topological 3-category

Start with \mathcal{F}_3:

free ‘topological’ 3-category on
- a blue surface
- a red surface
- a blue-red boundary wire

Definition. \mathbb{H} is the free 3-category with duals on two surfaces and a boundary wire, such that the following hold:

- is inverse to
- and

Explicitly, invertibility of the saddles means:

- $=$
- $=$
- $=$
- $=$
A Hopf algebra in \mathcal{H}

There is a Hopf algebra in \mathcal{H}.

\[
\left(\begin{array}{c}

\end{array}\right)
\left(\begin{array}{c}

\end{array}\right)
\]
A Hopf algebra in \mathbb{H}

There is a Hopf algebra in \mathbb{H}. It lives on the following ‘thickened’ wire:
There is a Hopf algebra in \mathbb{H}. It lives on the following ‘thickened’ wire:
A Hopf algebra in \mathbb{H}

There is a Hopf algebra in \mathbb{H}. It lives on the following ‘thickened’ wire:
A Hopf algebra in \mathbb{H}

There is a Hopf algebra in \mathbb{H}. It lives on the following ‘thickened’ wire:
A Hopf algebra in \mathcal{H}

There is a Hopf algebra in \mathcal{H}. It lives on the following ‘thickened’ wire:

The two interacting Frobenius structures are:

$$\left(\begin{array}{cccc} \text{green}, & \text{green}, & \text{green}, & \text{green} \\ \text{red}, & \text{red}, & \text{red}, & \text{red} \end{array}\right)$$
There is a Hopf algebra in H. It lives on the following ‘thickened’ wire:

The two interacting Frobenius structures are:
A Hopf algebra in \mathbb{H}

There is a Hopf algebra in \mathbb{H}. It lives on the following ‘thickened’ wire:

The two interacting Frobenius structures are:

\[
\left(\begin{array}{c}
\left(\begin{array}{c}
A, \\
Y
\end{array}\right), \\
\end{array}\right)
\]
Let’s check (some of) the axioms of unimodular Hopf algebras:
Let’s check (some of) the axioms of unimodular Hopf algebras:
A Hopf algebra in H

Let’s check (some of) the axioms of unimodular Hopf algebras:
A Hopf algebra in \mathbb{H}

Let’s check (some of) the axioms of unimodular Hopf algebras:
A Hopf algebra in H

Let’s check (some of) the axioms of unimodular Hopf algebras:
The bialgebra laws correspond to the invertibility of the saddle:
A Hopf algebra in H

The bialgebra laws correspond to the invertibility of the saddle:

\[= \]
A Hopf algebra in \mathbb{H}

The bialgebra laws correspond to the invertibility of the saddle:

\[= \quad = \]
A Hopf algebra in \mathbb{H}

The bialgebra laws correspond to the invertibility of the saddle:
A Hopf algebra in \mathbb{H}

The bialgebra laws correspond to the invertibility of the saddle:

![Diagram](attachment:hopf_diagram.png)
A Hopf algebra in \mathbb{H}

The bialgebra laws correspond to the invertibility of the saddle:
A Hopf algebra in \mathbb{H}

The bialgebra laws correspond to the invertibility of the saddle:

\[
\begin{align*}
\text{Definition.} & \quad H \text{ is this 3-category with the additional restriction that the} \\
& \text{following two saddles are inverse to each other:} \\
& \text{Explicitly, this means:} \\
& \text{This 3-category is new.}
\end{align*}
\]
A Hopf algebra in \(\mathbb{H} \)

The bialgebra laws correspond to the invertibility of the saddle:

\[
\begin{align*}
\text{Definition.} & \quad \mathbb{H} \text{ is this 3-category with the additional restriction that the following two saddles are inverse to each other:} \\
& \quad \text{Explicitly, this means:} \\
& \quad \text{This 3-category is new.}
\end{align*}
\]
A Hopf algebra in \mathbb{H}

The bialgebra laws correspond to the invertibility of the saddle:
Summary. \texttt{uHopf} is a shadow of a simpler 3-category.
A Hopf algebra in \mathbb{H}

Summary. uHopf is a shadow of a simpler 3-category.

A unimodular Hopf algebra is a pair of Frobenius algebras

\[
\left(\begin{array}{cc}
\begin{array}{c}
\begin{array}{c}
\text{bialgebra}
\end{array}
\end{array}
\end{array} \right)
\]

that form a bialgebra

\[
\begin{array}{c}
\begin{array}{c}
\text{and such that}
\end{array}
\end{array}
\]

\Rightarrow The antipode is an algebra antihomomorphism.

\Rightarrow In a unimodular Hopf algebra, the antipode squares to the twist.

In particular, in a symmetric monoidal category, its 4th power is trivial.
A Hopf algebra in \(\mathbb{H} \)

Summary. \(u\text{Hopf} \) is a shadow of a simpler 3-category.

\(\mathbb{H} \) is the free 3-category with duals on two surfaces and a boundary wire, such that the following hold:

- is inverse to
- and

\[\begin{array}{c}
\text{is inverse to} \\
\text{and} \\
= \\
\end{array} \]

In a unimodular Hopf algebra, the antipode squares to the twist. In particular, in a symmetric monoidal category, its 4th power is trivial.
Summary. uHopf is a shadow of a simpler 3-category.
Formally, we have defined a 3-functor $u\text{Hopf} \to \mathcal{H}$.
Summary. $\mathfrak{u}\text{Hopf}$ is a shadow of a simpler 3-category. Formally, we have defined a 3-functor $\mathfrak{u}\text{Hopf} \rightarrow \mathbb{H}$.

Conjecture. This induces a braided equivalence $\mathfrak{u}\text{Hopf} \cong \mathbb{H}\left(\begin{array}{c} \bullet \\ \circ \\ \circ \end{array}\right)$.
A Hopf algebra in \mathbb{H}

Summary. $u\text{Hopf}$ is a shadow of a simpler 3-category.

Formally, we have defined a 3-functor $u\text{Hopf} \rightarrow \mathbb{H}$.

Conjecture. This induces a braided equivalence $u\text{Hopf} \cong \mathbb{H}(\text{,})$.

Several Hopf algebraic calculations simplify in this 3D model.
Summary. \textbf{uHopf} is a shadow of a simpler 3-category.

Formally, we have defined a 3-functor \textbf{uHopf} \rightarrow \mathbb{H}.

Conjecture. This induces a braided equivalence \textbf{uHopf} \cong \mathbb{H}(\mathbb{H}(\mathbb{H}(\mathbb{H}(\mathbb{H}(\mathbb{H}(\mathbb{H}(\mathbb{H}(\mathbb{H}(\mathbb{H}(\mathbb{H}(\mathbb{H}(\mathbb{H}(\mathbb{H}(\mathbb{H}(\mathbb{H}else:\text{In a unimodular Hopf algebra, the antipode squares to the twist.}

In particular, in a symmetric monoidal category, its 4th power is trivial.

Several Hopf algebraic calculations simplify in this 3D model. For example, the antipode is the half twist:
A Hopf algebra in \mathbb{H}

Summary. $u\text{Hopf}$ is a shadow of a simpler 3-category.

Formally, we have defined a 3-functor $u\text{Hopf} \rightarrow \mathbb{H}$.

Conjecture. This induces a braided equivalence $u\text{Hopf} \cong \mathbb{H}(\cdot, \cdot)$.

Several Hopf algebraic calculations simplify in this 3D model. For example, the antipode is the half twist:

⇒ The antipode is an algebra antihomomorphism.

\Rightarrow
A Hopf algebra in \mathbb{H}

Summary. $uHopf$ is a shadow of a simpler 3-category.

Formally, we have defined a 3-functor $uHopf : H \to H$.

Conjecture.

This induces a braided equivalence $uHopf \sim H$.

Several Hopf algebraic calculations simplify in this 3D model.

For example, the antipode is the half twist:

\Rightarrow The antipode is an algebra antihomomorphism.
Summary. \(u\text{Hopf}\) is a shadow of a simpler 3-category.

Formally, we have defined a 3-functor \(u\text{Hopf} \rightarrow \mathbb{H}\).

Conjecture. This induces a braided equivalence \(u\text{Hopf} \simeq \mathbb{H}(\overrightarrow{\bullet}, \overrightarrow{\bullet})\).

Several Hopf algebraic calculations simplify in this 3D model. For example, the antipode is the half twist:

\[\Rightarrow\text{ The antipode is an algebra antihomomorphism.}\]
\[\Rightarrow\text{ In a unimodular Hopf algebra, the antipode squares to the twist.}\]

In particular, in a symmetric monoidal category, its 4th power is trivial.
Part 5
Higher linear algebra
Representations

So far: algebraic structures in terms of generators & relations
Representations

So far: algebraic structures in terms of generators & relations

Now: *representations* - instances of these structures in concrete categories
Representations

So far: algebraic structures in terms of generators & relations
Now: \textit{representations} - instances of these structures in concrete categories
U. Hopf algebras in a BMC \mathcal{C}: braided monoidal functors $u\text{Hopf} \rightarrow \mathcal{C}$
Representations

So far: algebraic structures in terms of generators & relations
Now: \textit{representations} - instances of these structures in concrete categories

U. Hopf algebras in a BMC \mathcal{C}: braided monoidal functors \textit{uHopf} $\to \mathcal{C}$

\textit{Linear representations} - representation functors with target \textit{Vect}
Representations

So far: algebraic structures in terms of generators & relations

Now: *representations* - instances of these structures in concrete categories

U. Hopf algebras in a BMC \mathcal{C}: braided monoidal functors $u\text{Hopf} \to \mathcal{C}$

Linear representations - representation functors with target Vect

What are the appropriate *linear* targets for higher categorical theories?
Representations

So far: algebraic structures in terms of generators & relations

Now: *representations* - instances of these structures in concrete categories

U. Hopf algebras in a BMC C: braided monoidal functors $\text{uHopf} \to C$

Linear representations - representation functors with target Vect

What are the appropriate *linear* targets for higher categorical theories?

Expectations:

- symmetric monoidal n-categories $n\text{Vect}$ categorifying Vect
Representations

So far: algebraic structures in terms of generators & relations
Now: **representations** - instances of these structures in concrete categories

U. Hopf algebras in a BMC \mathcal{C}: braided monoidal functors $u\text{Hopf} \to \mathcal{C}$

Linear representations - representation functors with target Vect

What are the appropriate *linear* targets for higher categorical theories?

Expectations:
- symmetric monoidal n-categories \mathbf{nVect} categorifying Vect
- recover \mathbf{nVect} from $(n+1)\text{Vect}$: $(n+1)\text{Vect}(I, I) \cong \mathbf{nVect}$
Representations

So far: algebraic structures in terms of generators & relations

Now: *representations* - instances of these structures in concrete categories

U. Hopf algebras in a BMC \mathcal{C}: braided monoidal functors $u\text{Hopf} \to \mathcal{C}$

Linear representations - representation functors with target Vect

What are the appropriate *linear* targets for higher categorical theories?

Expectations:

- symmetric monoidal n-categories nVect categorifying Vect
- recover nVect from $(n + 1)\text{Vect}$: $(n + 1)\text{Vect}(I, I) \cong \text{nVect}$

nVect a ‘shadow’ of $(n + 1)\text{Vect} \iff (n + 1)\text{Vect}$ a ‘thickening’ of nVect

\[\text{Diagram}\]

\[\text{Diagram}\]

\[\text{Diagram}\]
Higher linear algebra

<table>
<thead>
<tr>
<th>Objects</th>
<th>Morphisms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vect</td>
<td>f.d. vector spaces</td>
</tr>
</tbody>
</table>

They are symmetric monoidal 1-, 2- and 3-categories with duals.

3Vect(I, I) ∼ = 2Vect(I, I) ∼ = Vect(I, I) = C

Various generalizations are possible.
Higher linear algebra

<table>
<thead>
<tr>
<th></th>
<th>objects</th>
<th>1-morphisms</th>
<th>2-morphisms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vect</td>
<td>f.d. vector spaces</td>
<td>linear maps</td>
<td></td>
</tr>
<tr>
<td>2Vect</td>
<td>finite semisimple categories</td>
<td>linear functors</td>
<td>natural transformations</td>
</tr>
</tbody>
</table>

They are symmetric monoidal 1-, 2- and 3-categories with duals.

$$3Vect((I, I)) \cong 2Vect \cong Vect((I, I)) = C$$

Various generalizations are possible.
Higher linear algebra

<table>
<thead>
<tr>
<th></th>
<th>objects</th>
<th>1-morphisms</th>
<th>2-morphisms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vect</td>
<td>f.d. vector spaces</td>
<td>linear maps</td>
<td></td>
</tr>
<tr>
<td>2Vect</td>
<td>finite semisimple categories</td>
<td>linear functors</td>
<td>natural transformations</td>
</tr>
<tr>
<td></td>
<td>f.d. semisimple algebras</td>
<td>f.d. bimodules</td>
<td>intertwiners</td>
</tr>
</tbody>
</table>

They are symmetric monoidal 1-, 2- and 3-categories with duals.

\[3\text{Vect}(\mathcal{I}, \mathcal{I}) \cong 2\text{Vect}(\mathcal{I}, \mathcal{I}) \cong \text{Vect}(\mathcal{I}, \mathcal{I}) = \mathbb{C}\]

Various generalizations are possible.
Higher linear algebra

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>objects</th>
<th>1-morphisms</th>
<th>2-morphisms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vect</td>
<td></td>
<td>f.d. vector spaces</td>
<td>linear maps</td>
<td></td>
</tr>
<tr>
<td>2Vect</td>
<td>![Rep(-)]</td>
<td>finite semisimple categories</td>
<td>linear functors</td>
<td>natural transformations</td>
</tr>
<tr>
<td></td>
<td>![Rep(-)]</td>
<td>f.d. semisimple algebras</td>
<td>f.d. bimodules</td>
<td>intertwiners</td>
</tr>
</tbody>
</table>
Higher linear algebra

<table>
<thead>
<tr>
<th></th>
<th>objects</th>
<th>1-morphisms</th>
<th>2-morphisms</th>
<th>3-morphisms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vect</td>
<td></td>
<td></td>
<td>f.d. vector spaces</td>
<td>linear maps</td>
</tr>
<tr>
<td>2Vect</td>
<td></td>
<td>finite semisimple categories</td>
<td>linear functors</td>
<td>natural transformations</td>
</tr>
<tr>
<td></td>
<td></td>
<td>f.d. semisimple algebras</td>
<td></td>
<td>intertwiners</td>
</tr>
<tr>
<td>3Vect</td>
<td>fusion categories</td>
<td>finite semisimple bimodule categories</td>
<td>intertwining functors</td>
<td>natural transformations</td>
</tr>
</tbody>
</table>
Higher linear algebra

<table>
<thead>
<tr>
<th>tensor unit</th>
<th>objects</th>
<th>1-morphisms</th>
<th>2-morphisms</th>
<th>3-morphisms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vect</td>
<td>\mathbb{C}</td>
<td>f.d. vector spaces</td>
<td>linear maps</td>
<td></td>
</tr>
<tr>
<td>2Vect</td>
<td>\mathbb{C}</td>
<td>finite semisimple categories</td>
<td>linear functors</td>
<td>natural transformations</td>
</tr>
<tr>
<td></td>
<td>\mathbb{C}</td>
<td>f.d. semisimple algebras</td>
<td>f.d. bimodules</td>
<td>intertwiners</td>
</tr>
<tr>
<td>3Vect</td>
<td>\mathbb{C}</td>
<td>fusion categories</td>
<td>finite semisimple bimodule categories</td>
<td>intertwining functors</td>
</tr>
</tbody>
</table>

They are symmetric monoidal 1-, 2- and 3-categories with duals. Various generalizations are possible.
Higher linear algebra

<table>
<thead>
<tr>
<th></th>
<th>tensor unit</th>
<th>objects</th>
<th>1-morphisms</th>
<th>2-morphisms</th>
<th>3-morphisms</th>
</tr>
</thead>
<tbody>
<tr>
<td>\mathbb{C}</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>complex numbers</td>
</tr>
<tr>
<td>Vect</td>
<td>\mathbb{C}</td>
<td></td>
<td>f.d. vector spaces</td>
<td></td>
<td>linear maps</td>
</tr>
<tr>
<td>2Vect</td>
<td>Vect</td>
<td>$\text{Rep}(-)$</td>
<td>finite semisimple categories</td>
<td>linear functors</td>
<td>natural transformations</td>
</tr>
<tr>
<td></td>
<td>\mathbb{C}</td>
<td>\cong</td>
<td>f.d. semisimple algebras</td>
<td>f.d. bimodules</td>
<td>intertwiners</td>
</tr>
<tr>
<td>3Vect</td>
<td>Vect</td>
<td>fusion categories</td>
<td>finite semisimple bimodule categories</td>
<td>intertwining functors</td>
<td>natural transformations</td>
</tr>
</tbody>
</table>

They are symmetric monoidal 1-, 2- and 3-categories with duals.

$3\text{Vect}(\mathbb{I}, \mathbb{I}) \cong 2\text{Vect}(\mathbb{I}, \mathbb{I}) \cong \text{Vect}(\mathbb{I}, \mathbb{I}) = \mathbb{C}$

Various generalizations are possible.

David Reutter

Hopf algebras and 3-categories

August 3, 2017 26 / 34
Higher linear algebra

<table>
<thead>
<tr>
<th>tensor unit</th>
<th>objects</th>
<th>1-morphisms</th>
<th>2-morphisms</th>
<th>3-morphisms</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>1</td>
<td></td>
<td></td>
<td>complex numbers</td>
</tr>
<tr>
<td>Vect</td>
<td>C</td>
<td>f.d. vector spaces</td>
<td>linear maps</td>
<td></td>
</tr>
<tr>
<td>2Vect</td>
<td>Vect</td>
<td>finite semisimple categories</td>
<td>linear functors</td>
<td>natural transformations</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>f.d. semisimple algebras</td>
<td>f.d. bimodules</td>
<td>intertwiners</td>
</tr>
<tr>
<td>3Vect</td>
<td>Vect</td>
<td>fusion categories</td>
<td>finite semisimple bimodule categories</td>
<td>intertwining functors</td>
</tr>
</tbody>
</table>

Various generalizations are possible.

They are *symmetric monoidal* 1-, 2- and 3-categories with duals.
Higher linear algebra

<table>
<thead>
<tr>
<th>tensor unit</th>
<th>objects</th>
<th>1-morphisms</th>
<th>2-morphisms</th>
<th>3-morphisms</th>
</tr>
</thead>
<tbody>
<tr>
<td>\mathbb{C}</td>
<td>1</td>
<td></td>
<td></td>
<td>complex numbers</td>
</tr>
<tr>
<td>Vect</td>
<td>\mathbb{C}</td>
<td>finite semisimple categories</td>
<td>linear functors</td>
<td>natural transformations</td>
</tr>
<tr>
<td>2Vect</td>
<td>$\text{Rep}(-)$</td>
<td>\mathbb{C}</td>
<td>f.d. semisimple algebras</td>
<td>f.d. bimodules</td>
</tr>
<tr>
<td>3Vect</td>
<td>Vect</td>
<td>fusion categories</td>
<td>finite semisimple bimodule categories</td>
<td>intertwining functors</td>
</tr>
</tbody>
</table>

They are *symmetric monoidal* 1-, 2- and 3-categories with duals.

$$3\text{Vect}(I, I) \cong 2\text{Vect} \quad 2\text{Vect}(I, I) \cong \text{Vect} \quad \text{Vect}(I, I) = \mathbb{C}$$
Higher linear algebra

<table>
<thead>
<tr>
<th></th>
<th>tensor unit</th>
<th>objects</th>
<th>1-morphisms</th>
<th>2-morphisms</th>
<th>3-morphisms</th>
</tr>
</thead>
<tbody>
<tr>
<td>\mathbb{C}</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>complex numbers</td>
</tr>
<tr>
<td>Vect</td>
<td>\mathbb{C}</td>
<td></td>
<td></td>
<td>f.d. vector spaces</td>
<td>linear maps</td>
</tr>
<tr>
<td>2Vect</td>
<td>Vect</td>
<td>$\text{Rep}(-)$</td>
<td>finite semisimple categories</td>
<td>linear functors</td>
<td>natural transformations</td>
</tr>
<tr>
<td>\mathbb{C}</td>
<td></td>
<td></td>
<td>f.d. semisimple algebras</td>
<td>f.d. bimodules</td>
<td>intertwiners</td>
</tr>
<tr>
<td>3Vect</td>
<td>Vect</td>
<td>fusion categories</td>
<td>finite semisimple bimodule categories</td>
<td>intertwining functors</td>
<td>natural transformations</td>
</tr>
</tbody>
</table>

They are symmetric monoidal 1-, 2- and 3-categories with duals.

$$3\text{Vect}(I, I) \cong 2\text{Vect} \quad 2\text{Vect}(I, I) \cong \text{Vect} \quad \text{Vect}(I, I) = \mathbb{C}$$

Various generalizations are possible.
The 3-category $\mathbf{3Vect}$

<table>
<thead>
<tr>
<th>C</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
</table>

fusion category
The 3-category $\mathbf{3Vect}$

- Fusion category C
- Bimodule category M
- Intertwining functor $C \to M$
- Relative Deligne product $M \mathbin{\bowtie} C$
- Natural transformation η

\Rightarrow

$\mathbf{3Vect} :$

- A fusion category C
- Two right C-module categories M, N
- An intertwining functor $M \to N$

David Reutter
Hopf algebras and 3-categories
August 3, 2017 27 / 34
The 3-category $\mathbf{3Vect}$

- **Fusion category**
- **Bimodule category**
- **Intertwining functor**

A fusion category C, two right C-module categories M, N, and an intertwining functor $F : M \to N$ relative Deligne product $M \bowtie_C N \to \mathbf{3Vect}$.
The 3-category $\mathbf{3Vect}$

- **Fusion category**
- **Bimodule category**
- **Intertwining functor**
- **Natural transformation**

$\mathbf{3Vect}$: a fusion category \mathcal{C}, two right \mathcal{C}-module categories \mathcal{M}, \mathcal{N}, an intertwining functor $\mathcal{M} \rightarrow \mathcal{N}$, and a natural transformation η. The \mathcal{C}-module categories \mathcal{M} and \mathcal{N} are related by the relative Deligne product $\mathcal{M} \sqcup^\mathcal{C} \mathcal{N} \rightarrow \mathbf{3Vect}$.

David Reutter

Hopf algebras and 3-categories
The 3-category $\mathbf{3Vect}$

- Fusion category
- Bimodule category
- Intertwining functor
- Natural transformation

Right C-module \mathcal{M}
The 3-category 3Vect

- Fusion category
- Bimodule category
- Intertwining functor
- Natural transformation

Right C-module \mathcal{M}
Left C-module \mathcal{N}
The 3-category $\mathbf{3Vect}$

- fusion category
- bimodule category
- intertwining functor
- natural transformation

- right C-module \mathcal{M}
- left C-module \mathcal{N}

relative Deligne product $\mathcal{M} \boxtimes_C \mathcal{N}$
The 3-category $\mathbf{3Vect}$

- **Fusion category**
- **Bimodule category**
- **Intertwining functor**
- **Natural transformation**

Relative Deligne product: universal for C-bilinear functors out of $M \times N$.
The 3-category $\mathbf{3Vect}$

- **fusion category**
- **bimodule category**
- **intertwining functor**
- **natural transformation**

- right C-module \mathcal{M}
- left C-module \mathcal{N}

$$\Rightarrow$$

relative Deligne product $\mathcal{M} \boxtimes_C \mathcal{N}$

$$\mathcal{F}_3 \left(\begin{array}{ccc} \mathcal{C} & \mathcal{M} & \mathcal{D} \\ \mathcal{C} & \mathcal{N} & \mathcal{D} \end{array} \right) \rightarrow \mathbf{3Vect}$$
The 3-category $\mathbf{3Vect}$

$\xymatrix{\mathcal{C} \ar[rr] & & \mathcal{D} \ar[rr] & & \mathcal{M} \ar[rr] & & \mathcal{C} \ar[rr] & & \mathcal{D} \ar[rr] & & \mathcal{M} \ar[rr] & & \mathcal{N} \ar[rr] & & \mathcal{F} \ar[rr] & & \eta \ar[rr] & & \mathcal{G}}$

- fusion category
- bimodule category
- intertwining functor
- natural transformation

right \mathcal{C}-module \mathcal{M} left \mathcal{C}-module \mathcal{N} relative Deligne product $\mathcal{M} \boxtimes_{\mathcal{C}} \mathcal{N}$

$\mathcal{F}_3 \left(\begin{array}{c} \mathcal{C} \\ \mathcal{M} \\ \mathcal{N} \end{array} \right) \rightarrow \mathbf{3Vect} : \begin{cases} \text{a fusion category } \mathcal{C} \\ \text{two right } \mathcal{C}\text{-module categories } \mathcal{M}, \mathcal{N} \\ \text{an intertwining functor } \mathcal{M} \rightarrow \mathcal{N} \end{cases}$
This 3-functor factors through \mathbb{H} if the following hold:

\[
\begin{array}{c}
\text{is inverse to} \\
& \text{and}
\end{array}
\]

In other words, $M \boxtimes C \cong N^\sim$ is an adjoint equivalence.
This 3-functor factors through \mathbb{H} if the following hold:

- is inverse to

and

\Rightarrow is isomorphic to
This 3-functor factors through \mathbb{H} if the following hold:

1. is inverse to

2. \Rightarrow is isomorphic to

and

3. \Rightarrow is isomorphic to

Data of a 3-functor $\mathbb{H} \to 3\text{Vect}$:

- a fusion category \mathbb{C}
- a left and a right module category \mathbb{M}, \mathbb{N}
- an adjoint equivalence $\mathbb{M} \triangleright \mathbb{C} \mathbb{N}^{-} \to \text{Vect}$

If \mathbb{M} is the regular module \mathbb{C}, then $\mathbb{C} \triangleright \mathbb{C} \mathbb{N} \cong \mathbb{N}$.

A \mathbb{C}-module structure on Vect is the same as a monoidal functor $\mathbb{C}^{-} \to \text{Vect}$.
This 3-functor factors through \mathbb{H} if the following hold:

\[
\Rightarrow \quad \text{is inverse to} \quad \quad \text{and} \quad \quad =
\]

\[
\Rightarrow \quad \text{is isomorphic to} \quad \quad \text{and} \quad \quad \text{is isomorphic to}
\]

In other words, $\mathcal{M} \boxtimes_C \mathcal{N} \to \textbf{Vect}$ is an adjoint equivalence!
Hopf algebras and fusion categories - a sketch

This 3-functor factors through \mathbb{H} if the following hold:

\[\text{is inverse to} \quad \Rightarrow \quad \text{is isomorphic to} \quad \text{and} \quad \text{is isomorphic to} \]

In other words, $\mathbb{H} \to 3\text{Vect}$ is an adjoint equivalence!

Data of a 3-functor $\mathbb{H} \to 3\text{Vect}$:

- a fusion category \mathcal{C}
- a left and a right module category \mathcal{M}, \mathcal{N}
- an adjoint equivalence $\mathcal{M} \boxtimes_{\mathcal{C}} \mathcal{N} \to \text{Vect}$
Hopf algebras and fusion categories - a sketch

This 3-functor factors through \mathcal{H} if the following hold:

\Rightarrow is inverse to $\Rightarrow = \Rightarrow$

\Rightarrow is isomorphic to \Rightarrow and \Rightarrow is isomorphic to \Rightarrow

In other words, $\Rightarrow : \mathcal{M} \boxtimes \mathcal{C} \mathcal{N} \rightarrow \text{Vect}$ is an adjoint equivalence!

Data of a 3-functor $\mathcal{H} \rightarrow 3\text{Vect}$:

- a fusion category \mathcal{C}
- a left and a right module category \mathcal{M}, \mathcal{N}
- an adjoint equivalence $\mathcal{M} \boxtimes \mathcal{C} \mathcal{N} \rightarrow \text{Vect}$

If \mathcal{M} is the regular module \mathcal{C}, then $\mathcal{C} \boxtimes \mathcal{C} \mathcal{N} \cong \mathcal{N}$
Hopf algebras and fusion categories - a sketch

This 3-functor factors through \mathbb{H} if the following hold:

$$\Rightarrow \quad \text{is inverse to} \quad \text{and} \quad \text{is isomorphic to}$$

In other words, $\mathbb{H} : \mathcal{M} \boxtimes_{\mathcal{C}} \mathcal{N} \to \text{Vect}$ is an \textit{adjoint equivalence}!

Data of a 3-functor $H : 3\text{Vect} \to \mathcal{C}$:

\begin{align*}
\{ & \text{a fusion category } \mathcal{C} \\
& \text{a left and a right module category } \mathcal{M}, \mathcal{N} \\
& \text{an adjoint equivalence } \mathcal{M} \boxtimes_{\mathcal{C}} \mathcal{N} \to \text{Vect} \}
\end{align*}

If \mathcal{M} is the \textit{regular} module \mathcal{C}, then $\mathcal{C} \boxtimes_{\mathcal{C}} \mathcal{N} \cong \mathcal{N} \cong \text{Vect}$.
This 3-functor factors through \mathcal{H} if the following hold:

\Rightarrow is inverse to \Rightarrow and \Rightarrow is isomorphic to \Rightarrow and \Rightarrow is isomorphic to \Rightarrow

In other words, $\Rightarrow : \mathcal{M} \boxtimes_{\mathcal{C}} \mathcal{N} \rightarrow \textbf{Vect}$ is an adjoint equivalence!

Data of a 3-functor $\mathcal{H} \rightarrow 3\textbf{Vect}$:

- a fusion category \mathcal{C}
- a left and a right module category \mathcal{M}, \mathcal{N}
- an adjoint equivalence $\mathcal{M} \boxtimes_{\mathcal{C}} \mathcal{N} \rightarrow \textbf{Vect}$

If \mathcal{M} is the regular module \mathcal{C}, then $\mathcal{C} \boxtimes_{\mathcal{C}} \mathcal{N} \cong \mathcal{N} \cong \textbf{Vect}$.

A \mathcal{C}-module structure on \textbf{Vect} is the same as a monoidal functor $\mathcal{C} \rightarrow \textbf{Vect}$.
This 3-functor factors through \mathbb{H} if the following hold:

- \mathbb{H} is inverse to \mathbb{H}
- $\mathbb{H} = \emptyset$

\Rightarrow \mathbb{H} is isomorphic to \emptyset and \mathbb{H} is isomorphic to \emptyset.

In other words, $\mathbb{H} : M \boxtimes_C N \to \text{Vect}$ is an adjoint equivalence!

Data of a 3-functor $\mathbb{H} : 3\text{Vect} \to 3\text{Vect}$:

- a fusion category C
- a left and a right module category M, N
- an adjoint equivalence $M \boxtimes_C N \to \text{Vect}$

If M is the regular module C, then $C \boxtimes_C N \cong N \cong \text{Vect}$.

A C-module structure on Vect is the same as a monoidal functor $C \to \text{Vect}$.

Data of a 3-functor $\mathbb{H} : 3\text{Vect}$ with $M = C$:

- a fusion category C
- a monoidal functor $C \to \text{Vect}$
Tannaka reconstruction

Given a fusion category \mathcal{C} with a monoidal functor $\mathcal{C} \xrightarrow{F} \text{Vect}$
Tannaka reconstruction

Given a fusion category C with a monoidal functor $C \xrightarrow{F} \text{Vect}$, the following vector space is a unimodular Hopf algebra:

![Diagram](image-url)

This is a version of Tannaka reconstruction: If $C = \text{Rep}(H)$ and $\text{forget} : C \rightarrow \text{Vect}$, this recovers the Hopf algebra H. Conversely, any fusion category with fibre functor $C \rightarrow \text{Vect}$ is of the form $\text{Rep}(H)$ with H constructed as above.

Proof. Follows from an old result of M. M"uger.

Question. Is there a completely graphical proof, independent of the target 3Vect?
Tannaka reconstruction

Given a fusion category \mathcal{C} with a monoidal functor $\mathcal{C} \xrightarrow{F} \text{Vect}$
⇒ The following vector space is a unimodular Hopf algebra:

\[
\begin{array}{c}
\text{a scalar 2-morphism in } 3\text{Vect} \\
= \text{a vector space}
\end{array}
\]
Tannaka reconstruction

Given a fusion category C with a monoidal functor $C \xrightarrow{F} \text{Vect}$
⇒ The following vector space is a unimodular Hopf algebra:

This is a version of Tannaka reconstruction:
If $C = \text{Rep}(H) \xrightarrow{\text{forget}} \text{Vect}$, this recovers the Hopf algebra H.
Tannaka reconstruction

Given a fusion category C with a monoidal functor $C \xrightarrow{F} \text{Vect}$ ⇒ The following vector space is a unimodular Hopf algebra:

This is a version of Tannaka reconstruction:
If $C = \text{Rep}(H) \xrightarrow{\text{forget}} \text{Vect}$, this recovers the Hopf algebra H.

Conversely, any fusion category with fibre functor $C \rightarrow \text{Vect}$ is of the form $\text{Rep}(H)$ with H constructed as above.

Proof. Follows from an old result of M. Müger.

Question. Is there a completely graphical proof, independent of the target 3Vect?
Tannaka reconstruction

Given a fusion category C with a monoidal functor $C \xrightarrow{F} \text{Vect}$

\Rightarrow The following vector space is a unimodular Hopf algebra:

This is a version of Tannaka reconstruction:
If $C = \text{Rep}(H) \xrightarrow{\text{forget}} \text{Vect}$, this recovers the Hopf algebra H.

Conversely, any fusion category with fibre functor $C \rightarrow \text{Vect}$ is of the form $\text{Rep}(H)$ with H constructed as above.

Proof. Follows from an old result of M. Müger.1

1Theorem 6.20 in [Müger, From subfactors to categories and topology I, 2003]
Tannaka reconstruction

Given a fusion category \mathcal{C} with a monoidal functor $\mathcal{C} \xrightarrow{F} \text{Vect}$

⇒ The following vector space is a unimodular Hopf algebra:

This is a version of Tannaka reconstruction:

If $\mathcal{C} = \text{Rep}(H)$

Conversely, a $\text{Rep}(H)$ with

\[H. \]

is of the form \mathcal{C}

\[\text{Question.} \]

Is there a completely graphical proof, independent of the target 3Vect?

\[\text{Proof.} \] Follows from an old result of M. Müger.\(^1\)

\[\text{1Theorem 6.20 in [Müger, From subfactors to categories and topology I, 2003]} \]
Part 6
Lattice models
Lattice models and $\textbf{3Vect}$

Kitaev or Levin-Wen lattice models with boundaries \Rightarrow defect TQFTs
Lattice models and $\textbf{3Vect}$

Kitaev or Levin-Wen lattice models with boundaries \Rightarrow defect TQFTs

bulk of lattice \leftrightarrow a fusion category \mathcal{C}
boundary of lattice \leftrightarrow a \mathcal{C}-module category \mathcal{M}
Lattice models and 3Vect

Kitaev or Levin-Wen lattice models with boundaries \Rightarrow defect TQFTs

bulk of lattice \leftrightarrow a fusion category \mathcal{C}
boundary of lattice \leftrightarrow a \mathcal{C}-module category \mathcal{M}
Lattice models and $\mathbf{3Vect}$

Kitaev or Levin-Wen lattice models with boundaries \Rightarrow defect TQFTs

bulk of lattice \leftrightarrow a fusion category \mathcal{C}
boundary of lattice \leftrightarrow a \mathcal{C}-module category \mathcal{M}

Ground space

\[
\begin{pmatrix}
\vdots \\
\vdots \\
\vdots \\
\end{pmatrix}
\]

=

\[
\begin{array}{c}
\mathcal{N} \\
\mathcal{M} \\
\mathcal{M} \\
\mathcal{N}
\end{array}
\]

$\mathcal{N} = \mathbf{Vect}_{\mathbb{Z}_2}$

two possible boundaries:
smooth and rough

$\mathbf{Vect}_{\mathbb{Z}_2}$ and $\mathbf{Vect}_{\mathbb{Z}_2}$
Lattice models and \textbf{3Vect}

Kitaev or Levin-Wen lattice models with boundaries \Rightarrow defect TQFTs

bulk of lattice \leftrightarrow a fusion category \mathcal{C}
boundary of lattice \leftrightarrow a \mathcal{C}-module category \mathcal{M}

Ground space

\[
\begin{pmatrix}
\ldots & \ldots & \ldots & \ldots \\
\end{pmatrix}
\]

$=$

\[
\begin{pmatrix}
\mathcal{N} \\
\mathcal{M} \\
\end{pmatrix}
\]

\[
\begin{pmatrix}
\mathcal{M} \\
\mathcal{N} \\
\end{pmatrix}
\]

a scalar 2-morphism in \textbf{3Vect}

$=$ a vector space
Kitaev or Levin-Wen lattice models with boundaries \Rightarrow defect TQFTs

bulk of lattice \leftrightarrow a fusion category \mathcal{C}
boundary of lattice \leftrightarrow a \mathcal{C}-module category \mathcal{M}

Ground space $\begin{pmatrix} \vdots \\ \vdots \\ \vdots \\ \vdots \end{pmatrix} = \mathbb{Vect}_{\mathbb{Z}_2}$

surface codes $\mathcal{C} = \mathbb{Vect}_{\mathbb{Z}_2}$
Lattice models and 3Vect

Kitaev or Levin-Wen lattice models with boundaries \Rightarrow defect TQFTs

bulk of lattice \leftrightarrow a fusion category \mathcal{C}
boundary of lattice \leftrightarrow a \mathcal{C}-module category \mathcal{M}

<table>
<thead>
<tr>
<th>Surface codes</th>
<th>$\mathcal{C} = \text{Vect}_{\mathbb{Z}_2}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>two possible boundaries: smooth and rough</td>
<td>two module categories: $\text{Vect}_{\mathbb{Z}_2}$ and Vect</td>
</tr>
</tbody>
</table>
Lattice surgery

topologically protected operations on surface codes via
splitting or merging of lattices along smooth or rough boundaries²

²[Horsman et al., Surface code quantum computing by lattice surgery, 2012]
Lattice surgery

topologically protected operations on surface codes via splitting or merging of lattices along smooth or rough boundaries

\[^2\text{[Horsman et al., Surface code quantum computing by lattice surgery, 2012]}\]
Lattice surgery

topologically protected operations on surface codes via *splitting* or *merging* of lattices along smooth or rough boundaries\(^2\)

\(^2\)[Horsman et al., *Surface code quantum computing by lattice surgery*, 2012]
Lattice surgery

topologically protected operations on surface codes via \textit{splitting} or \textit{merging} of lattices along smooth or rough boundaries2

2[Horsman et al., \textit{Surface code quantum computing by lattice surgery}, 2012]
Lattice surgery

topologically protected operations on surface codes via *splitting* or *merging* of lattices along smooth or rough boundaries\(^2\)

\(^2\)[Horsman et al., *Surface code quantum computing by lattice surgery*, 2012]
Many open questions:

- Can we drop dualizabilities in \mathbb{H} to get more general Hopf algebras?
- Can we make \mathbb{H} into a symmetric monoidal 3-category with duals to talk about actual fully extended defect TQFTs?
- For a Frobenius algebra in a monoidal category \mathcal{C}, there is a 2-category $\mathcal{C} \hookrightarrow \hat{\mathcal{C}}$ such that the Frobenius algebra comes from a dualizable 1-morphism in $\hat{\mathcal{C}}$. Is something similar true for Hopf algebras?
- ...
Many open questions:

- Can we drop dualizabilities in \mathbb{H} to get more general Hopf algebras?
- Can we make \mathbb{H} into a symmetric monoidal 3-category with duals to talk about actual fully extended defect TQFTs?
- For a Frobenius algebra in a monoidal category \mathcal{C}, there is a 2-category $\mathcal{C} \hookrightarrow \hat{\mathcal{C}}$ such that the Frobenius algebra comes from a dualizable 1-morphism in $\hat{\mathcal{C}}$. Is something similar true for Hopf algebras?
- ...

Maybe most interestingly:

For a defect TQFT, what is the physical meaning of the conditions:
Many open questions:

- Can we drop dualizabilities in \mathbb{H} to get more general Hopf algebras?
- Can we make \mathbb{H} into a symmetric monoidal 3-category with duals to talk about actual fully extended defect TQFTs?
- For a Frobenius algebra in a monoidal category \mathcal{C}, there is a 2-category $\mathcal{C} \rightarrow \hat{\mathcal{C}}$ such that the Frobenius algebra comes from a dualizable 1-morphism in $\hat{\mathcal{C}}$. Is something similar true for Hopf algebras?
- ...

Maybe most interestingly:

For a defect TQFT, what is the physical meaning of the conditions:

Thanks for listening!

David Reutter Hopf algebras and 3-categories August 3, 2017 33 / 34
Weak Hopf algebras

If we *drop* the second condition

![Diagram of weak Hopf algebra]

In fact, every fusion category induces such a functor. The corresponding Hopf algebra coincides with the Kitaev-Kong construction.
Weak Hopf algebras

If we *drop* the second condition

![Diagram]

we only obtain a *weak* Hopf algebra on

![Diagram]

but have more functors \(\mathbb{H} \to 3\text{Vect} \).
Weak Hopf algebras

If we *drop* the second condition

we only obtain a *weak* Hopf algebra on

but have more functors $\mathbb{H} \to 3\text{Vect}$. In fact, *every* fusion category induces such a functor.
Weak Hopf algebras

If we *drop* the second condition

we only obtain a *weak* Hopf algebra on

but have more functors \(\mathbb{H} \to 3\text{Vect} \).

In fact, *every* fusion category induces such a functor. The corresponding Hopf algebra coincides with the Kitaev-Kong construction.