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Abstract

This paper considers an application of arrows. We extend the normal error monad with an
extra arrow-style combinator to enable multiple errors from independent computations to be
collected. We look at the data-independence property of the extra combinator which allows
the extended capabilities. We also demonstrate an applicative notation and give examples of
structuring computations to take advantage of the additional combinator.

Background

The reader will be familiar with the use of monadic combinators for structuring functional pro-
grams. A common example is the error monad for structuring programs that can raise errors.

data ErrorMonad a = Fail String

| Return a

bind :: ErrorMonad a -> (a -> ErrorMonad b) -> ErrorMonad b

(Return x) ‘bind‘ f = f x

(Fail e) ‘bind‘ f = Fail e

instance Monad ErrorMonad a where

return = Return

fail = Fail

(>>=) = bind

Motivation

This standard formulation is certainly useful. We could extend it with a more complex error state
and a try/catch function to create a scheme resembling the error handling of a imperative language
like C++ or Java.

This kind of error handling is fine when errors are exceptional but is somewhat limited if error
handling is intended to be part of the normal execution of the program, as for example in a
compiler.

The prime limitation is that we cannot return more than a single error. In a compiler for example
we want to report more than the first error, if possible. However, once we can produce more than
a single error we have the secondary problem of not producing too many errors. We are all familiar
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with compilers that report the first error then get confused and spew out reams of spurious error
messages. To abuse a famous quotation: a compiler should detect as many errors as possible but
no more.

The key issue is that of dependency. We do not want to report an error that is dependent upon
another error, since these would often be false hits.

In a linear algorithm this gains us nothing since all errors raised after the first are dependent
upon that first error. However in branching algorithms, such as a depth first traversal over a tree
structure, we could raise errors in different branches confident that the errors are independent.
So in our compiler example we would like to report errors in independent subtrees of the abstract
syntax tree.

What we want is a function for combining two computations that may raise errors. The re-
sult should be a computation that can raise errors from both component computations if both
computations fail.

The type signature would be:

combine :: (a -> b -> c) -> ErrorsMonad a -> ErrorsMonad b -> ErrorsMonad c

The problem

It turns out that the desired behaviour is impossible to implement with the monadic bind operator.
Intuitively the problem is that the way of combining monadic values is fundamentally sequential,
which is why we can use it for IO. There is no way of executing both actions and inspecting the
result without executing one first. In this case if the first raises an error, the second will not be
executed and so we cannot return both errors.

The function is easy to implement if we allow ourselves direct access to the representation. Note
of course that we have changed the representation so it can now hold multiple errors, ie the error
state is now a list of error messages.

data ErrorsMonad a = Fail [String]

| Return a

combine f (Return x) (Return y) = Return (f x y)

combine f (Return x) (Fail ey) = Fail ey

combine f (Fail ex) (Return y) = Fail ex

combine f (Fail ex) (Fail ey) = Fail (ex ++ ey)

This works but is not very satisfactory since it only allows us to combine two actions and it feels
insufficiently abstract.

New combinator

We would like to be able to chain actions in a similar way that the monadic bind operator allows:

actionA >>= \outputA ->

actionB >>= \outputB ->

actionC
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We can arrive at such an operator by considering the function for combining two actions, one for
three actions and then generalising. The resulting function has the following type:

combine :: ErrorsMonad (a -> b) -> ErrorsMonad a -> ErrorsMonad b

A more abstract presentation can be obtained if we create a new class of which our error monad
will be an instance.

class Monad m => CombineMonad m where

(<&>) :: m (a -> b) -> m a -> m b

infixl 1 <&>

Implementing it as an extension to the monad class, rather than as an independent class, allows
us to reuse the return function for lifting values to actions. As we will see it is useful for an error
handling scheme to have both combinators.

Now with this formulation and the appropriate operator fixity we can chain several actions together

return triple <&> actionA <&> actionB <&> actionC

and by adding an extra derived operator

infixl 1 &>

f &> x = return f <&> x

we achieve a notation that reminds us of function application.

f &> x <&> y <&> z

In fact it behaves very much like function application, but with the interpretation that the argu-
ments are evaluated in parallel.

We can now implement our new error monad. The monad functions are unchanged.

(Return x) ‘bind‘ f = f x

(Fail e) ‘bind‘ f = Fail e

instance Monad ErrorsMonad a where

return = Return

fail = Fail . (\e -> [e])

(>>=) = bind

instance CombineMonad ErrorsMonad where

Return f <&> Return x = Return (f x)

Fail ef <&> Return x = Fail ef

Return f <&> Fail ex = Fail ex

Fail ef <&> Fail ex = Fail (ef ++ ex)
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Data dependence

Notice the similarity of the two operators:

(<&>) :: CombineMonad m => m (a -> b) -> m a -> m b

(=<<) :: Monad m => (a -> m b) -> m a -> m b

where (=<<) = reverse (>>=)

Is it obvious why one is data dependent and the other is not? Here is an interpretation: with the
combine operator the two parameters are actions, both can be executed immediately. For the bind
operator, the first argument is a function returning an action. So we cannot obtain the action
without supplying a value of type ’a’. We cannot get a value of type ’a’ without executing the ’m
a’ action. So the bind operator requires an order of execution. With the combine operator on the
other hand, since both arguments are actions we cannot do anything with them except execute
them. The first action returns a function which can be supplied with the result of the second
action, but the action itself cannot depend on the result of the second action. This is the crucial
data dependence property.

An analogy is of function evaluation in pure and impure languages. In Java for example function
parameters are evaluated in left to right order and they can interact by modifying some shared
state. In a referentially transparent language such as Haskell, parameters are completely indepen-
dent and could be evaluated in any order1 or indeed in parallel. Another analogy is with with
sequencing and parallel operators in a parallel imperative language. The monad bind operator
corresponds to ‘A;B’ and our new combinator corresponds to ‘A ‖ B’.

It is possible to implement the type signature of our new operator using just the monad bind
operator in fact this is exactly what the ‘ap’ function from the standard library does. But as we
noted earlier it will always serialise the actions. We can see in the following implementation that
essentially it is irrelevant in which order the ‘f’ and the ‘x’ actions are performed as they do not
depend on each other2.

ap :: (Monad m) => m (a -> b) -> m a -> m b

ap f x = do

f’ <- f

x’ <- x

return (f’ x’)

Derived combinators

We can define derived functions similar to the monad’s (>>), sequence, mapM and zipWithM

functions.

(<&>>) :: CombineMonad m => m a -> m b -> m b

x <&>> y = (\x y -> y) &> x <&> y

combine :: CombineMonad m => [m a] -> m [a]

combine = foldr (\x xs -> (:) &> x <&> xs) (return [])

1as long as the function is strict
2in general the order in which the actions are performed may be observable depending upon how the monad’s

state is combined by the bind operator. It does not matter in our errors monad example if we consider our collection

of errors to be unordered.
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combine :: CombineMonad m => [m a] -> m ()

combine = foldr (<&>>) (return ())

mapCM :: CombineMonad m => (a -> m b) -> [a] -> m [b]

mapCM f = combine . map f

mapCM :: CombineMonad m => (a -> m b) -> [a] -> m ()

mapCM f = combine . map f

zipWithCM :: CombineMonad m => (a -> b -> m c) -> [a] -> [b] -> m [c]

zipWithCM f xs ys = combine (zipWith f xs ys)

Each of these functions can be used in a similar way to their monadic counterparts but with the
extra interpretation that all the actions take place in parallel. In the case of our error monad this
means that errors from all failing actions are reported.

Notice that we cannot find a counterpart to foldM since this threads a state through the actions
creating a linear data dependency between the actions. We cannot do any better than foldM in
terms of parallel error reporting unless we resort to ugly hacks which I will not expand upon here.

Using a combination of the two flavours of operators we can write algorithms which sometimes
use branching and sometimes serialise their error handling.

Examples

In a compiler front end we make several passes over an abstract syntax tree. On the assumption
that errors detected in independent subtrees are independent we can use our extended error monad.
Heres is an example from the semantic checking phase of a compiler for a traditional imperative
language.

checkExprs :: Env -> [Expr] -> ErrorsMonad [Expr]

checkExprs env = mapCM (checkExpr env)

checkExpr :: Env -> Expr -> ErrorsMonad Expr

checkExpr env = ... checkFunc ...

checkFunc :: Env -> Ident -> [Expr] -> ErrorsMonad Expr

checkFunc env fname exprs

= checkFuncDeclared env id

>> checkFuncNumArgs env id (length exprs)

<&>> (ExprFunc fname &> checkExprs env exprs)

Notice that we mix the two forms of combinator to match the dependencies of the different classes
of checks. Here we do not bother to check if the function has been called with the right number of
arguments if the function has not even been declared. If it has been declared however, we check
both for the correct number of arguments and the validity of the arguments themselves.
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The next example is similar in that we are mixing the two forms. In this case we use a tuple to do
two checks at once. This demonstrates how to insert a parallel check into an existing algorithm
written using the ‘do’ monad syntax.

checkBranch :: Env -> Expr -> Stmts -> ErrorsMonad (Expr, Stmts)

checkBranch env expr stmts =

do

(expr’, stmts’) <- pair

&> checkExpr env expr

<&> checkStmts env stmts

requireTypeBool expr’

return (expr’, stmts’)

Further work

It would be good to discover or decide what laws this operator should obey. Some laws will be
inherited from the fact that it is an arrow.

I conjecture that it is possible to prove the data independance property directly from the type
signature of the operator, in particular without knowing the implementation. That is for all
implementations of the <&> class method the data independance property holds.

Further reading

This form of combinator was used first by S. Swierstra and L. Duponcheel[SD96] in their parser
combinator library. They made use of the data independence property to statically analyse and
optimise the parser. This would not have been possible with a monadic formulation since the data
dependence means that the control flow is not known until the parser is invoked.

D. Leijen and E. Meijer[LM01] point out an advantage of monadic parser combinators, which is
that they can parse context sensitive grammars, whereas the arrow style parser combinators are
restricted to context free grammars. Again, this is a direct consequence of the data dependence
property. This is the flip side to the advantage of static analysis.

It was this form of combinator, as used by Swierstra and Duponcheel which inspired John Hughes[Hug00]
to seek the generalisation he termed arrows.
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