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Introduction

What do quantum programmers do?
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Introduction

What do quantum programmers do?

Simon’s algorithm

f:Z5 — 75 : x — f(x)

-z — 23" x,y — x, f(X) @y

U : €% — CZ : x,y) = X, f(X) @y)

Simon = (H®M®id)Us(H®" ®id) |0,0)
= > (-1)**z,f(x))

X,z€ZY
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Introduction

What do quantum programmers do?

Simon’s algorithm

f:Z5 — 75 : x — f(x)

-z — 23" x,y — x, f(X) @y

U : €% — CZ : x,y) = X, f(X) @y)

Simon = (H®M®id)Us(H®" ®id) |0,0)
= > (-1)**z,f(x))

X,z€ZY

...to find a hidden subgroup
measurement ~ find ¢ such that f (x + ¢) = f(x)
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What do quantum programmers do?

Shor’s algorithm

f:Zm—>Zg:Xr—>aX

q mod g

'z — Zg§™"  x,y = x, @ +y modq

U : €4 — & |x,y) — |x,a* +y mod q)

Shor = (FTm®id)Us(FTm ®id) |0,0)
= Y (~1%z,f(x))

X,z€Zg

...to find a hidden subgroup
measurement ~ find ¢ such that a**¢ = a* mod q
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Introduction

What do quantum programmers do?

Hallgren’s algorithm

h:Z™ — Z" : x — Iy (fraction ideal)

h': Z™" — 7™ Xy X,y — h(X)

Up: CZ"" — 2" 1 Ix,y) =[x,y — h(x))

Hallgren = (FTp ®id)Un(FTm®id) |[d,d)
= D (-1)*z,h(x))

X,zeZm

... to find a hidden subgroup
measurement ~- find R such that h(x + R) = h(x)
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Introduction

Standard type universes where quantum programmers work

CLASS ~ FSet, FSet°? | FFModg...

©P?

=)
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Introduction

Function abstraction in quantum programming

CLASS[X] ~ FSet[x],FSet}h, [x], FFModg X]...

=)

QUANTIX] ~  FHilb[x], CPM(FHilb)[x]...

£
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Introduction
Function abstraction in quantum programming

CLASSIX] - KL (X x)
=)
QUANTIX] = KL (X®)
£
MEAS'T{x} ~  EM(X®)
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A-abstraction in cartesian closed categories

p(x):B inS[x:X]

M. p(x):BXinS

X
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A-abstraction in cartesian closed categories
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A-abstraction in cartesian closed categories

Apxxx 58 S[x](A,B) A%

I )]

A-L.BX S(A, BX) A/\ﬂX)BX
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A-abstraction in cartesian closed categories

Theorem (Lambek, Adv. in Math. 79)

Let S be a cartesian closed category, and S[x] the free
cartesian closed category generated by S and x : 1 — X.

Geometry of
quantum
abstraction

Dusko Pavlovic
Introduction

Quantum programming
A-abstraction

Graphical
notation

Geometry of
abstraction

Geometry of
f-abstraction

Measurements

Future work



A-abstraction in cartesian closed categories

Theorem (Lambek, Adv. in Math. 79)

Let S be a cartesian closed category, and S[x] the free

cartesian closed category generated by S and x : 1 — X.

Then the inclusion ady : S — S[x] has a right adjoint
aby : S[x] — S : A — AX and the transpositions

AXexx 5B S[x](adxA,B) A%p

! ()

A-SBX S(A,ab,B) AIpx

model A-abstraction and application.
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A-abstraction in cartesian closed categories

Theorem (Lambek, Adv. in Math. 79)

Let S be a cartesian closed category, and S[x] the free

cartesian closed category generated by S and x : 1 — X.

Then the inclusion ady : S — S[x] has a right adjoint
aby : S[x] — S : A — AX and the transpositions

AXexx 5B S[x](adxA,B) A%p

! ()

A-SBX S(A,ab,B) AIpx

model A-abstraction and application.

S[x] is isomorphic with the Kleisli category for the power
monad (—)*.
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r-abstraction in cartesian categories S

abstraction

Theorem (Lambek, Adv. in Math. 79) Dusko Pavlovic
Introduction
Let S be a cartesian category, and S[x] the free BT
cartesian category generatedby Sand x : 1 — X.  cuaphica
notation
Then the inclusion ady : S — S[x] has a left adjoint Geometry of

aby : S[x] — S : A X x A and the transpositions st"“l“"”f
eometry o

(x,id) f-abstraction

S XAﬁ)B S[X] (A7 adx B) Af—X)B Measurements
I ( ) I Future work
X xA-2-B S(abyA,B)  xxA%XB
model first order abstraction and application.

S[x] is isomorphic with the Kleisli category for the product
comonad X x (—).



r-abstraction in monoidal categories

Theorem (DP, MSCS 95)

Let C be a monoidal category, and C[x] the free

monoidal category generated by Cand x : 1 — X.

Then the strong adjunctions aby 4 ady : C — C[x] are in
one-to-one correspondence with the internal comonoid
structures on X. The transpositions

AxentB  C[x](A,adyB) A-XB

I ()

X@A-"-B C(abyA,B) xeA™XB

model action abstraction and application.

C[x] is isomorphic with the Kleisli category for the
comonad X ® (—), induced by any of the comonoid
structures.
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Task
Extend this to £-monoidal categories.
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r-abstraction in monoidal categories

Task
Extend this to £-monoidal categories.

Problem
Lots of complicated diagram chasing.
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r-abstraction in monoidal categories

Task
Extend this to £-monoidal categories.

Problem
Lots of complicated diagram chasing.

Solution?
What does abstraction mean graphically?
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X®A®BRD
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Tensor (parallel composition)

B&X®C
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Sequential composition

B&X®C
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Polynomials

B®X
TB@X@b
BRX®C
Th@f
XQARKD®B®X
I id®x
XRARD®B®I
XQARC®r
XRARB®D
X®ARB®Y
XRA®BRDRD®X
Tx®a®D®D®x
I®1DRDXI

Geometry of
quantum
abstraction

Dusko Pavlovic

Introduction

Graphical
notation

Geometry of
abstraction

Geometry of
f-abstraction

Measurements

Future work



Outline

Geometry of abstraction
Abstraction with pictures
Consequences

Geometry of
quantum
abstraction

Dusko Pavlovic

Introduction

Graphical
notation

Abstraction with pictures

Consequences

Geometry of
f-abstraction

Measurements

Future work



Abstraction with pictures

Theorem (again)

Let C be a symmetric monoidal category, and C[x] the
free symmetric monoidal category generated by C and
Xx:1— X.

Then there is a one-to-one correspondence between
» adjunctions aby - ady : C — C[x] satisfying
1. aby(A®B) =aby(A)®B
2. n(A®B)=n(A) B
3. m =X

and
» commutative comonoids on X.
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Abstraction with pictures

Theorem (again)

Let C be a symmetric monoidal category, and C[x] the
free symmetric monoidal category generated by C and
Xx:1— X.

Then there is a one-to-one correspondence between
» adjunctions aby - ady : C — C[x] satisfying
1. aby(A®B)=abs(A)®B
2. n(A®B)=n(A) B
3. m =X
and
» commutative comonoids on X.

C[x] is isomorphic with the Kleisli category for the
commutative comonad X ® (—), induced by any of the
comonoid structures.
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Proof (])

Given aby 4 ady : C — C[x],
conditions 1.-3. imply
» n(A)=x®A
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Proof (])

Therefore the correspondence

C(abx(A),B)

CC[X](A adx (B))
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Proof (])

...is actually

C(X ®A,B)

<~ _eKmB)
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Proof (])

... with
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Proof ()

.and

KX
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Proof (])

The bijection corresponds to the conversion:

C(X ® A,B)

(kX. (X)) o (x ® A) = p(X)

rx. (fo(x @A) =f

/E\A
\;/

Geometry of
quantum
abstraction

Dusko Pavlovic

Introduction

Graphical
notation

Geometry of

abstraction
Abstraction with pictures
Consequences

Geometry of
f-abstraction

Measurements

Future work



Proof (])

The comonoid structure (X, A, T) is

L

id,
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Proof (])

The conversion rules imply the comonoid laws

4

T
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Proof (1)

Given (X, A, T), use its copying and deleting power, and

the symmetries, to normalize every C[x]-arrow:

p(x)

o (x®A)

[ h J[f]

[ 9 ]

v
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Proof ()

Then set kx. ¢(x) = P to get

C(X ® A,B)

(kX. (X)) o (X ® A) = p(X)

rx. (fo(x @A) =f

<\%/
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Remark

> C[x] 2 Cxg and C[X,y] = Cxeye = KL(X @ Y ®),
reduce the finite polynomials to the Kleisli

morphisms.
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Remark

> C[x] 2 Cxg and C[X,y] = Cxeye = KL(X @ Y ®),
reduce the finite polynomials to the Kleisli
morphisms.

» But the extensions C[X'], where X is large
are also of interest.
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Remark

> C[x] 2 Cxg and C[X,y] = Cxeye = KL(X @ Y ®),
reduce the finite polynomials to the Kleisli
morphisms.

» But the extensions C[X'], where X is large
are also of interest.

» Cf. N[N], Set[Set], and CPM(C).
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Interpretation

Upshot

In symmetric monoidal categories,
abstraction applies just to copiable and deletable data.
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Interpretation

Upshot

In symmetric monoidal categories,
abstraction applies just to copiable and deletable data.

Definition

A vector ¢ € C(l, X) is a base vector (or a set-like
element) with respect to the abstraction operation xx if it
can be copied and deleted in C[x]

(kXX ®X)op = PR
(kx.id) o = id
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Interpretation S

abstraction

UpShOt Dusko Pavlovic
In symmetric monoidal categories, Introduction
abstraction applies just to copiable and deletable data. hotetion
0 _onno Geometry of
abstraction
Definition bstract
. . Abstraction with pictures
A vector ¢ € C(I,X) is a base vector (or a set-like Conseauences

element) with respect to the abstraction operation xx if it Geometry of
can be copied and deleted in C[x] '

Measurements

(HLX.X X X) op = R @) Future work
(kx.id)) o = id

Proposition

¢ € C(I,X) is a base vector with respect to xx if and only
if it is a homomorphism for the comonoid structure

XoxX & x 1 corresponding to kX.



Interpretation

Upshot
In other words,
only the base vectors can be substituted for variables.
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Interpretation

Upshot

In other words,
only the base vectors can be substituted for variables.

Definition
Substitution is a structure preserving ioof C[x] — C.
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Interpretation

Upshot
In other words,

only the base vectors can be substituted for variables.

Definition
Substitution is a structure preserving ioof C[x] — C.

Corollary

The substitution functors C[x] — C are in one-to-one
correspondence with the base vectors of type X.
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I-monoidal categories
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A i-category C is given with an involutive ioof Setration
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I-monoidal categories

Definitions
A I-category C is given with an involutive ioof
1:C° — C.

A morphism f in a -category C is called unitary if
fi=f-1,
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I-monoidal categories

Definitions
A I-category C is given with an involutive ioof
1:C° — C.

A morphism f in a -category C is called unitary if
fi=f-1,

A (symmetric) monoidal category C is -monoidal if its
monoidal isomorphisms are unitary.
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I-monoidal categories

Using the monoidal notations for:
» vectors: C(A) =C(l,A)
» scalars: I=C(l,I)
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I-monoidal categories

Using the monoidal notations for:
» vectors: C(A) =C(l,A)
» scalars: I=C(l,I)

in every I-monoidal category we can define
» abstract inner product
(=1=)a : C(A)xC(A) — 1
(1 —A) — (lﬂAﬁ|>
» partial inner product
(=[-)as : C(A®B) xC(A) — C(B)

i
(p:1 >ARB,Y: 1 5 A) — (|ﬁ>A®B“ﬁBB)
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I-monoidal categories

Using the monoidal notations for:
» vectors: C(A) =C(l,A)
» scalars: I=C(l,I)

in every I-monoidal category we can define
» abstract inner product
(=1=)a : C(A)xC(A) — 1
(1 —A) — <I ﬂAﬁ|>
» partial inner product
(=[-)as : C(A®B) xC(A) — C(B)
(0:1 = A®B,y:1 = A) — (| ﬁA@Bwl@?B)

» entangled vectors n € C(A ® A), such that Vo € C(A)
(nlelan = ¢
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I-monoidal categories
Using
» entangled vectors nA : | — A ® A and,
nB: 1 — B ® Band

» their adjoints éA = nfA: A® A — | and
eB=nB:B®B — |
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I-monoidal categories
Using

» entangled vectors nA : | — A ® A and,
nB: 1 — B ® Band

» their adjoints éA = nfA: A® A — | and
eB=nB:B®B — |

we can define for everyf : A — B

» thedual f*:B — A

f* = B 2% BAA B BBA A A
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I-monoidal categories
Using

» entangled vectors nA : | — A ® A and,
nB: 1 — B ® Band

» their adjoints éA = nfA: A® A — | and
eB=nB:B®B — |

we can define for everyf : A — B

» thedual f*:B — A

f* = B 2% BaA B BBA A A
» the conjugate f, : A— B

f, = 4 = i
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I-monoidal categories

Proposition

For every object A in a {-monoidal category C holds
(@) < (b) < (c),
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I-monoidal categories

Proposition
For every object A in a {-monoidal category C holds
(@) < (b) < (c), where

(@) n € C(A®A)is entangled
(b) e =n* € C(A® A, 1) internalizes the inner product

eo(hu®p) = (oY)
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I-monoidal categories

Proposition

For every object A in a {-monoidal category C holds
(@) < (b) < (c), where

(@) n € C(A®A)is entangled
(b) e =n* € C(A® A, 1) internalizes the inner product

eo(Pu®9) = (plY)

(©) (n,¢) realize the self-adjunction A 4 A, in the sense

AEAOADALES A = idy
ALIA O ADA A A = idy

The three conditions are equivalent if | generates C.
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I-monoidal categories
Proposition in pictures

For every object A in a {-monoidal category C holds
(@) < (b) < (c), where

(a) =

> 4

LN

(b) =
W 4
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Quantum objects

Definition

A gquantum object in a f-monoidal category is an object
equipped with the structure from the preceding
proposition.

Remark

The subcategory of quantum objects in any {-monoidal
category is {-compact (strongly compact) — with all
objects self-adjoint.
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Abstraction in f-monoidal categories N

abstraction

Theorem Dusko Pavlovic

Introduction

Let C be a -monoidal category,

A T ) i Graphical
and X ® X «— X — | a comonoid that induces notation
abx Hady : ¢ — C[x].
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Abstraction in {-monoidal categories

Theorem

Let C be a {-monoidal category,

and X ® X A ox 1 a comonoid that induces
aby Hady : C — C[x].

Then the following conditions are equivalent:
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Abstraction in {-monoidal categories

Theorem

Let C be a {-monoidal category,

and X ® X <2 X - | a comonoid that induces
aby 4ady : C — C[x].

Then the following conditions are equivalent:

(a) ady : C — C[x] creates 1 : C[x]°P — C[X]
such that (x|x) = x* ox = id|.
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Abstraction in {-monoidal categories

Theorem

Let C be a {-monoidal category,

and X ® X <2 X - | a comonoid that induces
aby 4ady : C — C[x].

Then the following conditions are equivalent:

(a) ady : C — C[x] creates 1 : C[x]°P — C[X]
such that (x|x) = x* ox = id|.

(b) n=AoLande =n' =VoT realize X - X.
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Abstraction in {-monoidal categories

Theorem

Let C be a {-monoidal category,

and X ® X A ox 1 a comonoid that induces
aby Hady : C — C[x].

Then the following conditions are equivalent:
(a) ady : C — C[x] creates 1 : C[x]°P — C[X]
such that (x|x) = x* ox = id|.

(b) n=AoLande =n' =VoT realize X - X.

© X®V)o(ARX)=AoV =(VeX)o(X®A)
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Abstraction in f-monoidal categories i

abstraction

Dusko Pavlovic

Theorem

Introduction

Let C be a {-monoidal category,

A T ) i Graphical
and X ® X «— X — | a comonoid that induces B0
aby 4ady : C — C[x]. Geometry of
Then the following conditions are equivalent: f_gf;,g‘ﬁggug;
J-monoidal categories
(a) ady : C — C[x] creates 1 : C[x]°P — C[X] unn
. straction in
such that <X |X> = Xi oX = |d| . é—movnoi‘dalbvcategories
assical objects
Base
(b) n= Aol ande = ni =VoT realize X - X. Measurements

Future work
© X®V)o(A®X)=AoV=(VaX)o(X®A)
where X ® X - X <= | is the induced monoid

vV = Al
1 = Tt



Abstraction in {-monoidal categories

Theorem in pictures
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Proof of (b)=(c)

Lemma 1

If (b) holds then
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Proof of Lemma 1

Lemma 2

then 5
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Proof of Lemma 1

Using Lemma 2, and the fact that (b) implies

V = At = A*, we get

€
Vv
n
/N N\
v
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The message of the proof
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Classical objects

Definition
A classical object in a I-monoidal category C is a

comonoid X ® X <2 X - | satisfying the equivalent
conditions from the preceding theorem.
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Classical objects

Definition
A classical object in a I-monoidal category C is a

comonoid X ® X <2 X - | satisfying the equivalent
conditions from the preceding theorem.

Let Ca be the category of classical objects and comonoid
homomorphismsin C.
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Classical objects

Definition
A classical object in a I-monoidal category C is a

comonoid X ® X <2 X - | satisfying the equivalent
conditions from the preceding theorem.

Let Ca be the category of classical objects and comonoid
homomorphismsin C.

Question: What is classical about classical objects?
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Classical objects

Definition
A classical object in a I-monoidal category C is a

comonoid X ® X <2 X - | satisfying the equivalent
conditions from the preceding theorem.

Let Ca be the category of classical objects and comonoid
homomorphismsin C.

Question: What is classical about classical objects?
» classical structure --» quantum structure
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Classical objects

Definition

A classical object in a I-monoidal category C is a
comonoid X ® X <2 X - | satisfying the equivalent
conditions from the preceding theorem.

Let Ca be the category of classical objects and comonoid
homomorphismsin C.

Question: What is classical about classical objects?
» classical structure --» quantum structure
Answer: classical elements = base vectors
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Classical objects

Definition
A classical object in a I-monoidal category C is a

comonoid X @ X <2 X - | satisfying the equivalent
conditions from the preceding theorem.

Let Ca be the category of classical objects and comonoid
homomorphismsin C.

Question: What is classical about classical objects?
» classical structure --» quantum structure
Answer: classical elements = base vectors
» --»is neither injective or surjective
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Consequences

Upshot

The Frobenius condition (c) assures the preservation of
the abstraction operation under i.

This leads to entanglement.
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Consequences

Proposition

The vectors C(X) of any classical object X form a
*-algebra.

p-p = Vo(p®)
e = L

o = ot = ot
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Base

Definition

Two vectors ¢, € C(A) in a f-monoidal category are
orthonormal if their inner product is idempotent:
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Base

Definition

Two vectors ¢, € C(A) in a f-monoidal category are
orthonormal if their inner product is idempotent:

(lv) = (olp)?

Proposition

Any two base vectors are orthonormal.
In particular, any two variables in a polynomial category
are orthonormal.
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Base

Definition

A classical object X is standard if it is (regularly)
generated by its base vectors

B(X)

{foelCX)| (kx.x@X)p=p®¢
A (HX. |d|)§0 = |d|}
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Base

Definition

A classical object X is standard if it is (regularly)
generated by its base vectors

B(X) = {pelCX)|(kx.X@X)p=¢pR¢p
A (HX. |d|)90 = |d|}

in the sense
Vi, g € C(X,Y). Vo e B(X).fop=0p)=1=g

A base is regular if C(X,Y) — C(Y)BX) splits.
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Base

Proposition 1.

All standard classical structures, that an object X € C
may carry, induce the bases with the same number of

elements.
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Base

Proposition 1.

All standard classical structures, that an object X € C
may carry, induce the bases with the same number of
elements.

Proposition 2.

Let X € C be a classical object with a regular base. Then
the equipotent regular bases on any Y € C are in
one-to-one correspondence with the unitaries X — Y.
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Base

Definition

A qubit type in an arbitrary {-monoidal category C is a
classical object B with a unitary H of order 2. The induced
bases are usually denoted by |0), |1), and |+),|—).
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Base

Definition

A qubit type in an arbitrary {-monoidal category C is a
classical object B with a unitary H of order 2. The induced
bases are usually denoted by |0), |1), and |+),|—).

Computing with qubits
A i-monoidal category with B suffices for the basic
qguantum algorithms.
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Base

Definition

A qubit type in an arbitrary {-monoidal category C is a
classical object B with a unitary H of order 2. The induced
bases are usually denoted by |0), |1), and |+),|—).

Computing with qubits

A i-monoidal category with B suffices for the basic
qguantum algorithms.

A Klein group of unitaries on B suffices for all
teleportation and dense coding schemes.
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The classical structure is induced by a base st"ai“"”f
B(X) = {|I> | i S n}1 Wlth i-abstracytion
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Moreover,

FHilbp ~ FSet



Proof

A x-algebra in FHilb is a C*-algebra.
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Proof

A x-algebra in FHilb is a C*-algebra.

Thus for a classical X € FHilb,
V : FHilb(X) — FHilb(X,X)
(15x) — x==xex LX)

is a representation of a commutative C*-algebra.
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Proof

Working through the Gelfand-Naimark duality, we get

X

a4

(Cn
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Proof

Working through the Gelfand-Naimark duality, we get

X = C"

— because the spectrum of a commutative finitely
dimensional C*-algebra is a discrete set n of minimal
central projections, while the representing spaces are the
full matrix algebras C(1)
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Future work

Claim:

Task:

Simple quantum algorithms have simple
categorical semantics.

Implement and analyze quantum algorithms
in nonstandard models: network
computation, data mining.
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