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What do quantum programmers do?

f
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|x〉 |x〉∈B⊗m= C
Z
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Introduction
What do quantum programmers do?

f

Uf

H⊗m H⊗m

|y〉

|x〉 |x〉

|f (x)⊕y〉

|z〉

|x〉=
P

z(−1)x·z |z〉
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P
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Introduction
What do quantum programmers do?

Simon’s algorithm

f : Z
m
2 −→ Z

n
2 : x 7→ f (x)

f ′ : Z
m+n
2 −→ Z

m+n
2 : x , y 7→ x , f (x)⊕ y

Uf : C
Z

m+n
2 −→ C

Z
m+n
2 : |x , y〉 7→ |x , f (x)⊕ y〉

Simon = (H⊗m ⊗ id)Uf (H
⊗m ⊗ id) |0,0〉

=
∑

x,z∈Zm
2

(−1)x·z |z, f (x)〉
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Introduction
What do quantum programmers do?

Simon’s algorithm

f : Z
m
2 −→ Z

n
2 : x 7→ f (x)

f ′ : Z
m+n
2 −→ Z

m+n
2 : x , y 7→ x , f (x)⊕ y

Uf : C
Z

m+n
2 −→ C

Z
m+n
2 : |x , y〉 7→ |x , f (x)⊕ y〉

Simon = (H⊗m ⊗ id)Uf (H
⊗m ⊗ id) |0,0〉

=
∑

x,z∈Zm
2

(−1)x·z |z, f (x)〉

. . . to find a hidden subgroup
measurement find c such that f (x + c) = f (x)
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Introduction
What do quantum programmers do?

Shor’s algorithm

f : Z
m
q −→ Z

n
q : x 7→ ax mod q

f ′ : Z
m+n
q −→ Z

m+n
q : x , y 7→ x ,ax + y mod q

Uf : C
Z

m+n
q −→ C

Z
m+n
q : |x , y〉 7→ |x ,ax + y mod q〉

Shor = (FTm ⊗ id)Uf (FTm ⊗ id) |0,0〉
=

∑

x,z∈Zm
q

(−1)x·z |z, f (x)〉

. . . to find a hidden subgroup
measurement find c such that ax+c = ax mod q
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Introduction
What do quantum programmers do?

Hallgren’s algorithm

h : Z
m −→ Z

n : x 7→ Ix (fraction ideal)

h′ : Z
m+n −→ Z

m+n : x , y 7→ x , y − h(x)

Uh : C
Zm+n −→ C

Zm+n
: |x , y〉 7→ |x , y − h(x)〉

Hallgren = (FTm ⊗ id)Uh(FTm ⊗ id) |d , d̃〉
=

∑

x,z∈Zm

(−1)x·z |z,h(x)〉

. . . to find a hidden subgroup
measurement find R such that h(x + R) = h(x)
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Introduction
General design pattern of quantum software engineering ;)

CLASS

QUANT

MEAS ′T

|−〉

∡

CLASS

|−|
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Introduction
Quantum prog. = functional prog. + superposition + entanglement

CLASS

QUANT

MEAS ′T

|−〉

∡

CLASS

superposition

entanglement

|−|
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Introduction
Standard type universes where quantum programmers work

CLASS

QUANT

MEAS ′T

|−〉

∡

CLASS

 FHilb, CPM(FHilb)...

 FHilb, CPM(FHilb)...

 FSet, FSetop
℘℘, FFModR ...

|−|
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Introduction
Function abstraction in quantum programming

CLASS[x ]

QUANT [x ]

MEAS ′T {x}

|−〉

∡

CLASS

 FHilb[x], CPM(FHilb)[x]...

 FHilb{x}, CPM(FHilb){x}...

 FSet[x],FSetop
℘℘[x], FFModR [x]...

|−|
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Introduction
Function abstraction in quantum programming

CLASS[x ]

QUANT [x ]

MEAS ′T {x}

|−〉

∡

CLASS

∼= KL (X⊗)

≃ EM (X⊗)

∼= KL (X×)

|−|
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λ-abstraction

S
f

x

a

fa

adx
Z[x ]

Z

2x3 + 3x + 1 in Z[x ]

λx . 2x3 + 3x + 1 in Z −→ Z
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λ-abstraction in cartesian closed categories

adx
1 x−→ X

1 a−→ FX

S

S[x ]

F

Fa

C

λx . p(x) : BX in S

p(x) : B in S[x : X ]
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λ-abstraction in cartesian closed categories

adx
1 x−→ X

1 a−→ FX

S

S[x ]

F

Fa

C

A
λx.q(x)−→ BX in S

A
q(x)−→ B in S[x : X ]
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λ-abstraction in cartesian closed categories

adx
1 x−→ X

1 a−→ FX

S

S[x ]

F

Fa

C

S(A,BX )

S[x ](A,B) A
q(x)
−→B

A
λx.q(x)
−→ BX

A
〈ϕ,x〉
−→ BX×X ǫ

→B

A
ϕ

−→BX
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λ-abstraction in cartesian closed categories

Theorem (Lambek, Adv. in Math. 79)

Let S be a cartesian closed category, and S[x ] the free
cartesian closed category generated by S and x : 1→ X.
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λ-abstraction in cartesian closed categories

Theorem (Lambek, Adv. in Math. 79)

Let S be a cartesian closed category, and S[x ] the free
cartesian closed category generated by S and x : 1→ X.

Then the inclusion adx : S −→ S[x ] has a right adjoint
abx : S[x ] −→ S : A 7→ AX and the transpositions

S(A,abxB)

S[x ](adxA,B) A
q(x)
−→B

A
λx.q(x)
−→ BX

A
〈ϕ,x〉
−→ BX×X

ǫ
→B

A
ϕ

−→BX

model λ-abstraction and application.
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λ-abstraction in cartesian closed categories

Theorem (Lambek, Adv. in Math. 79)

Let S be a cartesian closed category, and S[x ] the free
cartesian closed category generated by S and x : 1→ X.

Then the inclusion adx : S −→ S[x ] has a right adjoint
abx : S[x ] −→ S : A 7→ AX and the transpositions

S(A,abxB)

S[x ](adxA,B) A
q(x)
−→B

A
λx.q(x)
−→ BX

A
〈ϕ,x〉
−→ BX×X

ǫ
→B

A
ϕ

−→BX

model λ-abstraction and application.

S[x ] is isomorphic with the Kleisli category for the power
monad (−)X .
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κ-abstraction in cartesian categories

Theorem (Lambek, Adv. in Math. 79)

Let S be a cartesian category, and S[x ] the free
cartesian category generated by S and x : 1→ X.

Then the inclusion adx : S −→ S[x ] has a left adjoint
abx : S[x ] −→ S : A 7→ X × A and the transpositions

S(abxA,B)

S[x ](A,adxB) A
fx−→B

X×A
κx .fx−→B

A
〈x,id〉
−→ X×A

ϕ
→B

X×A
ϕ

−→B

model first order abstraction and application.

S[x ] is isomorphic with the Kleisli category for the product
comonad X × (−).
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κ-abstraction in monoidal categories

Theorem (DP, MSCS 95)

Let C be a monoidal category, and C[x ] the free
monoidal category generated by C and x : 1→ X.

Then the strong adjunctions abx ⊣ adx : C −→ C[x ] are in
one-to-one correspondence with the internal comonoid
structures on X. The transpositions

C(abxA,B)

C[x ](A,adxB) A
fx−→B

X⊗A
κx .fx−→B

A
x⊗A
−→X⊗A

ϕ
→B

X⊗A
ϕ

−→B

model action abstraction and application.

C[x ] is isomorphic with the Kleisli category for the
comonad X ⊗ (−), induced by any of the comonoid
structures.
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κ-abstraction in monoidal categories

Task
Extend this to ‡-monoidal categories.
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κ-abstraction in monoidal categories

Task
Extend this to ‡-monoidal categories.

Problem
Lots of complicated diagram chasing.



Geometry of
quantum

abstraction

Dusko Pavlovic

Introduction
Quantum programming

λ-abstraction

Graphical
notation

Geometry of
abstraction

Geometry of
‡-abstraction

Measurements

Future work

κ-abstraction in monoidal categories

Task
Extend this to ‡-monoidal categories.

Problem
Lots of complicated diagram chasing.

Solution?
What does abstraction mean graphically?



Geometry of
quantum

abstraction

Dusko Pavlovic

Introduction

Graphical
notation

Geometry of
abstraction

Geometry of
‡-abstraction

Measurements

Future work

Outline
Introduction

Quantum programming
λ-abstraction

Graphical notation

Geometry of abstraction
Abstraction with pictures
Consequences

Geometry of ‡-abstraction
‡-monoidal categories
Quantum objects
Abstraction in ‡-monoidal categories
Classical objects
Base

Category of measurements

Future work



Geometry of
quantum

abstraction

Dusko Pavlovic

Introduction

Graphical
notation

Geometry of
abstraction

Geometry of
‡-abstraction

Measurements

Future work

Objects

X A B D X⊗A⊗B⊗D
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Identities

X A B D X⊗A⊗B⊗D

DX A B X⊗A⊗B⊗D

id
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Morphisms

h

X A

B X

B D

h

B⊗X

X⊗A⊗B⊗D
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Tensor (parallel composition)

h

X A

f

X

B X C

B D

B⊗X⊗C

h⊗f

X⊗A⊗B⊗D⊗X
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Sequential composition

h

X

X

A

g

f

X

B X C

D D

B D

X⊗A⊗B⊗D⊗D⊗X

B⊗X⊗C

X⊗A⊗B⊗g

h⊗f

X⊗A⊗B⊗D⊗X
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Elements (vectors) and coelements (functionals)

h

X

X

A

g

f

X

B X C

D D

B D

X⊗A⊗B⊗D⊗D⊗X

B⊗X⊗C

b

a

B⊗X

B⊗X⊗b

X⊗A⊗B⊗g

h⊗f

X⊗I⊗D⊗D⊗X
X⊗a⊗D⊗D⊗X

X⊗A⊗B⊗D⊗X
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Symmetry

h

X XA

g

f

X

B X C

c

D D

B

B

D

X⊗A⊗B⊗D⊗D⊗X

B⊗X⊗C

b

a

B⊗X

B⊗X⊗b

X⊗A⊗B⊗g

X⊗A⊗D⊗B⊗X

h⊗f

X⊗I⊗D⊗D⊗X
X⊗a⊗D⊗D⊗X

X⊗A⊗B⊗D⊗X

X⊗A⊗c⊗X
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Polynomials

h

X XA

g

f

X

B X C

c

D D

B

B

D

I⊗I⊗D⊗D⊗I

X⊗A⊗B⊗D⊗D⊗X

X⊗A⊗B⊗D

X⊗A⊗D⊗B⊗I

B⊗X⊗C

X⊗A⊗c⊗r

x⊗a⊗D⊗D⊗x

b

a

B⊗X

B⊗X⊗b

X⊗A⊗B⊗g

X⊗A⊗D⊗B⊗X

id⊗x

h⊗f
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Abstraction with pictures

Theorem (again)

Let C be a symmetric monoidal category, and C[x ] the
free symmetric monoidal category generated by C and
x : 1→ X.

Then there is a one-to-one correspondence between
◮ adjunctions abx ⊣ adx : C −→ C[x ] satisfying

1. abx (A⊗ B) = abx (A)⊗ B
2. η(A⊗ B) = η(A) ⊗ B
3. ηI = x

and
◮ commutative comonoids on X.
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Abstraction with pictures

Theorem (again)

Let C be a symmetric monoidal category, and C[x ] the
free symmetric monoidal category generated by C and
x : 1→ X.

Then there is a one-to-one correspondence between
◮ adjunctions abx ⊣ adx : C −→ C[x ] satisfying

1. abx (A⊗ B) = abx (A)⊗ B
2. η(A⊗ B) = η(A) ⊗ B
3. ηI = x

and
◮ commutative comonoids on X.

C[x ] is isomorphic with the Kleisli category for the
commutative comonad X ⊗ (−), induced by any of the
comonoid structures.



Geometry of
quantum

abstraction

Dusko Pavlovic

Introduction

Graphical
notation

Geometry of
abstraction
Abstraction with pictures

Consequences

Geometry of
‡-abstraction

Measurements

Future work

Proof (↓)

Given abx ⊣ adx : C −→ C[x ],
conditions 1.-3. imply

◮ abx (A) = X ⊗ A
◮ η(A) = x ⊗ A
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Proof (↓)

Therefore the correspondence

C
(
abx(A),B

)
C[x ]

(
A,adx(B)

)
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Proof (↓)

. . . is actually

C(X ⊗ A,B) C[x ](A,B)
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Proof (↓)

. . . with

C(X ⊗ A,B) C[x ](A,B)

f f

X A

B B

A

(−)◦(x⊗A)
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Proof (↓)

. . . and

C(X ⊗ A,B) C[x ](A,B)

h

g

fh

g

f

X

∆

κx.
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Proof (↓)

The bijection corresponds to the conversion:

C(X ⊗ A,B) C[x ](A,B)

(
κx . ϕ(x)

)
◦

(
x ⊗ A) = ϕ(x)

κx .
(
f ◦ (x ⊗ A)

)
= f

κx.

(−)◦(x⊗A)

(η-rule

(β-rule

∼=
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Proof (↓)

The comonoid structure (X ,∆,⊤) is

⊤

∆ =

=

κx .

κx .

X X

idI
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Proof (↓)

The conversion rules imply the comonoid laws

⊤

∆

∆
=

∆

∆

∆

=

∆

=

∆
=

⊤
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Proof (↑)

Given (X ,∆,⊤), use its copying and deleting power, and
the symmetries, to normalize every C[x ]-arrow:

h

g

f h

g

f

∆

=ϕ(x) ϕ ◦ (x ⊗ A)
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Proof (↑)

Then set κx . ϕ(x) = ϕ to get

C(X ⊗ A,B) C[x ](A,B)

(
κx . ϕ(x)

)
◦

(
x ⊗ A) = ϕ(x)

κx .
(
f ◦ (x ⊗ A)

)
= f

κx.

(−)◦(x⊗A)

(η-rule

(β-rule

∼=
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Remark

◮ C[x ] ∼= CX⊗ and C[x , y ] ∼= CX⊗Y⊗ = KL(X ⊗ Y⊗),
reduce the finite polynomials to the Kleisli
morphisms.



Geometry of
quantum

abstraction

Dusko Pavlovic

Introduction

Graphical
notation

Geometry of
abstraction
Abstraction with pictures

Consequences

Geometry of
‡-abstraction

Measurements

Future work

Remark

◮ C[x ] ∼= CX⊗ and C[x , y ] ∼= CX⊗Y⊗ = KL(X ⊗ Y⊗),
reduce the finite polynomials to the Kleisli
morphisms.

◮ But the extensions C[X ], where X is large
are also of interest.
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Remark

◮ C[x ] ∼= CX⊗ and C[x , y ] ∼= CX⊗Y⊗ = KL(X ⊗ Y⊗),
reduce the finite polynomials to the Kleisli
morphisms.

◮ But the extensions C[X ], where X is large
are also of interest.

◮ Cf. N[N], Set[Set], and CPM(C).
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Interpretation
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Interpretation

Upshot
In symmetric monoidal categories,
abstraction applies just to copiable and deletable data.
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Interpretation

Upshot
In symmetric monoidal categories,
abstraction applies just to copiable and deletable data.

Definition
A vector ϕ ∈ C(I,X ) is a base vector (or a set-like
element) with respect to the abstraction operation κx if it
can be copied and deleted in C[x ]

(κx .x ⊗ x) ◦ ϕ = ϕ⊗ ϕ
(κx .idI) ◦ ϕ = idI
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Interpretation

Upshot
In symmetric monoidal categories,
abstraction applies just to copiable and deletable data.

Definition
A vector ϕ ∈ C(I,X ) is a base vector (or a set-like
element) with respect to the abstraction operation κx if it
can be copied and deleted in C[x ]

(κx .x ⊗ x) ◦ ϕ = ϕ⊗ ϕ
(κx .idI) ◦ ϕ = idI

Proposition
ϕ ∈ C(I,X ) is a base vector with respect to κx if and only
if it is a homomorphism for the comonoid structure

X ⊗ X ∆←− X ⊤−→ I corresponding to κx .
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Interpretation

Upshot
In other words,
only the base vectors can be substituted for variables.
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Interpretation

Upshot
In other words,
only the base vectors can be substituted for variables.

Definition
Substitution is a structure preserving ioof C[x ] −→ C.
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Interpretation

Upshot
In other words,
only the base vectors can be substituted for variables.

Definition
Substitution is a structure preserving ioof C[x ] −→ C.

Corollary
The substitution functors C[x ] −→ C are in one-to-one
correspondence with the base vectors of type X .
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Outline
Introduction

Quantum programming
λ-abstraction

Graphical notation

Geometry of abstraction
Abstraction with pictures
Consequences

Geometry of ‡-abstraction
‡-monoidal categories
Quantum objects
Abstraction in ‡-monoidal categories
Classical objects
Base

Category of measurements

Future work
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‡-monoidal categories

Definitions

A ‡-category C is given with an involutive ioof
‡ : Cop −→ C.
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‡-monoidal categories

Definitions

A ‡-category C is given with an involutive ioof
‡ : Cop −→ C.

A morphism f in a ‡-category C is called unitary if
f ‡ = f−1.
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‡-monoidal categories

Definitions

A ‡-category C is given with an involutive ioof
‡ : Cop −→ C.

A morphism f in a ‡-category C is called unitary if
f ‡ = f−1.

A (symmetric) monoidal category C is ‡-monoidal if its
monoidal isomorphisms are unitary.
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‡-monoidal categories
Using the monoidal notations for:
◮ vectors: C(A) = C(I,A)
◮ scalars: I = C(I, I)
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‡-monoidal categories
Using the monoidal notations for:
◮ vectors: C(A) = C(I,A)
◮ scalars: I = C(I, I)

in every ‡-monoidal category we can define

◮ abstract inner product

〈−|−〉A : C(A)× C(A) −→ I

(ϕ, ψ : I −→ A) 7−→
(

I
ϕ→ A

ψ‡

→ I
)
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‡-monoidal categories
Using the monoidal notations for:
◮ vectors: C(A) = C(I,A)
◮ scalars: I = C(I, I)

in every ‡-monoidal category we can define

◮ abstract inner product

〈−|−〉A : C(A)× C(A) −→ I

(ϕ, ψ : I −→ A) 7−→
(

I
ϕ→ A

ψ‡

→ I
)

◮ partial inner product

〈−|−〉AB : C(A⊗ B)× C(A) −→ C(B)

(ϕ : I → A⊗ B, ψ : I → A) 7−→
(

I
ϕ→ A⊗ B

ψ‡⊗B−→ B
)
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‡-monoidal categories
Using the monoidal notations for:
◮ vectors: C(A) = C(I,A)
◮ scalars: I = C(I, I)

in every ‡-monoidal category we can define

◮ abstract inner product

〈−|−〉A : C(A)× C(A) −→ I

(ϕ, ψ : I −→ A) 7−→
(

I
ϕ→ A

ψ‡

→ I
)

◮ partial inner product

〈−|−〉AB : C(A⊗ B)× C(A) −→ C(B)

(ϕ : I → A⊗ B, ψ : I → A) 7−→
(

I
ϕ→ A⊗ B

ψ‡⊗B−→ B
)

◮ entangled vectors η ∈ C(A⊗ A), such that ∀ϕ ∈ C(A)

〈η|ϕ〉AA = ϕ
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‡-monoidal categories
Using

◮ entangled vectors ηA : I −→ A⊗ A and,
ηB : I −→ B ⊗ Band

◮ their adjoints εA = η‡A : A⊗ A −→ I and
εB = η‡B : B ⊗ B −→ I
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‡-monoidal categories
Using

◮ entangled vectors ηA : I −→ A⊗ A and,
ηB : I −→ B ⊗ Band

◮ their adjoints εA = η‡A : A⊗ A −→ I and
εB = η‡B : B ⊗ B −→ I

we can define for every f : A −→ B

◮ the dual f ∗ : B −→ A

f ∗ = B
Bη−→ BAA BfA−→ BBA εA−→ A
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‡-monoidal categories
Using

◮ entangled vectors ηA : I −→ A⊗ A and,
ηB : I −→ B ⊗ Band

◮ their adjoints εA = η‡A : A⊗ A −→ I and
εB = η‡B : B ⊗ B −→ I

we can define for every f : A −→ B

◮ the dual f ∗ : B −→ A

f ∗ = B
Bη−→ BAA BfA−→ BBA εA−→ A

◮ the conjugate f∗ : A −→ B

f∗ = f ∗‡ = f ‡∗
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‡-monoidal categories

Proposition
For every object A in a ‡-monoidal category C holds
(a) ⇐⇒ (b)⇐= (c),
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‡-monoidal categories

Proposition
For every object A in a ‡-monoidal category C holds
(a) ⇐⇒ (b)⇐= (c), where

(a) η ∈ C(A ⊗ A) is entangled
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‡-monoidal categories

Proposition
For every object A in a ‡-monoidal category C holds
(a) ⇐⇒ (b)⇐= (c), where

(a) η ∈ C(A ⊗ A) is entangled

(b) ε = η‡ ∈ C(A⊗ A, I) internalizes the inner product

ε ◦ (ψ∗ ⊗ ϕ) = 〈ϕ|ψ〉
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‡-monoidal categories

Proposition
For every object A in a ‡-monoidal category C holds
(a) ⇐⇒ (b)⇐= (c), where

(a) η ∈ C(A ⊗ A) is entangled

(b) ε = η‡ ∈ C(A⊗ A, I) internalizes the inner product

ε ◦ (ψ∗ ⊗ ϕ) = 〈ϕ|ψ〉

(c) (η, ε) realize the self-adjunction A ⊣ A, in the sense

A
η⊗A−→ A⊗ A⊗ A A⊗ε−→ A = idA

A
A⊗η−→ A⊗ A⊗ A ε⊗A−→ A = idA

The three conditions are equivalent if I generates C.
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‡-monoidal categories

Proposition in pictures
For every object A in a ‡-monoidal category C holds
(a) ⇐⇒ (b)⇐= (c), where

= =(c)
η‡

X

η‡

ηη

=
η‡

(b)

(a)

ϕψ ϕ

ψ‡

=
ψ‡

η ψ
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Quantum objects

Definition

A quantum object in a ‡-monoidal category is an object
equipped with the structure from the preceding
proposition.
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Quantum objects

Definition

A quantum object in a ‡-monoidal category is an object
equipped with the structure from the preceding
proposition.

Remark
The subcategory of quantum objects in any ‡-monoidal
category is ‡-compact (strongly compact) — with all
objects self-adjoint.
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Abstraction in ‡-monoidal categories

Theorem

Let C be a ‡-monoidal category,

and X ⊗ X ∆←− X ⊤−→ I a comonoid that induces
abx ⊣ adx : C −→ C[x ].
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Abstraction in ‡-monoidal categories

Theorem

Let C be a ‡-monoidal category,

and X ⊗ X ∆←− X ⊤−→ I a comonoid that induces
abx ⊣ adx : C −→ C[x ].

Then the following conditions are equivalent:
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Abstraction in ‡-monoidal categories

Theorem

Let C be a ‡-monoidal category,

and X ⊗ X ∆←− X ⊤−→ I a comonoid that induces
abx ⊣ adx : C −→ C[x ].

Then the following conditions are equivalent:

(a) adx : C −→ C[x ] creates ‡ : C[x ]op −→ C[x ]
such that 〈x |x〉 = x‡ ◦ x = idI .
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Abstraction in ‡-monoidal categories

Theorem

Let C be a ‡-monoidal category,

and X ⊗ X ∆←− X ⊤−→ I a comonoid that induces
abx ⊣ adx : C −→ C[x ].

Then the following conditions are equivalent:

(a) adx : C −→ C[x ] creates ‡ : C[x ]op −→ C[x ]
such that 〈x |x〉 = x‡ ◦ x = idI .

(b) η = ∆ ◦ ⊥ and ε = η‡ = ∇ ◦⊤ realize X ⊣ X.
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Abstraction in ‡-monoidal categories

Theorem

Let C be a ‡-monoidal category,

and X ⊗ X ∆←− X ⊤−→ I a comonoid that induces
abx ⊣ adx : C −→ C[x ].

Then the following conditions are equivalent:

(a) adx : C −→ C[x ] creates ‡ : C[x ]op −→ C[x ]
such that 〈x |x〉 = x‡ ◦ x = idI .

(b) η = ∆ ◦ ⊥ and ε = η‡ = ∇ ◦⊤ realize X ⊣ X.

(c) (X ⊗∇) ◦ (∆⊗ X ) = ∆ ◦ ∇ = (∇⊗ X ) ◦ (X ⊗∆)
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Abstraction in ‡-monoidal categories

Theorem

Let C be a ‡-monoidal category,

and X ⊗ X ∆←− X ⊤−→ I a comonoid that induces
abx ⊣ adx : C −→ C[x ].

Then the following conditions are equivalent:

(a) adx : C −→ C[x ] creates ‡ : C[x ]op −→ C[x ]
such that 〈x |x〉 = x‡ ◦ x = idI .

(b) η = ∆ ◦ ⊥ and ε = η‡ = ∇ ◦⊤ realize X ⊣ X.

(c) (X ⊗∇) ◦ (∆⊗ X ) = ∆ ◦ ∇ = (∇⊗ X ) ◦ (X ⊗∆)

where X ⊗ X ∇−→ X ⊥←− I is the induced monoid

∇ = ∆‡

⊥ = ⊤‡
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Abstraction in ‡-monoidal categories

Theorem in pictures

∇

∆

=
∇

∆

=(b)

⊥ ⊥

⊤⊤

X
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Abstraction in ‡-monoidal categories

Theorem in pictures

∇

∆ ∇

∆
=

∇

∆

=(c)
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Proof of (b)=⇒(c)

Lemma 1

If (b) holds then

∇

∆

∆=
∇

∆

=

⊥ ⊥
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Proof of (b)=⇒(c)

Then (c) also holds because

∇

∆

∇

∆

=

=

∇
∆

∇

⊥

= ∇
∆

∇

⊥

=
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Proof of Lemma 1

Lemma 2

= =
ε

X

ε

ηη

then

If

= =
ε

X η

ε

η

ε

η

ε

η

X
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Proof of Lemma 1

Using Lemma 2, and the fact that (b) implies
∇ = ∆‡ = ∆∗, we get

=
η

η

∆ =
∇

ε

η

η

∇

ε

=

=
η

∇
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The message of the proof
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The message of the proof

There is more to categories than just diagram chasing.
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The message of the proof

There is more to categories than just diagram chasing.

There is also picture chasing.



Geometry of
quantum

abstraction

Dusko Pavlovic

Introduction

Graphical
notation

Geometry of
abstraction

Geometry of
‡-abstraction
‡-monoidal categories

Quantum objects

Abstraction in
‡-monoidal categories

Classical objects

Base

Measurements

Future work

Classical objects

Definition

A classical object in a ‡-monoidal category C is a

comonoid X ⊗ X ∆←− X ⊤−→ I satisfying the equivalent
conditions from the preceding theorem.
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Classical objects

Definition

A classical object in a ‡-monoidal category C is a

comonoid X ⊗ X ∆←− X ⊤−→ I satisfying the equivalent
conditions from the preceding theorem.

Let C∆ be the category of classical objects and comonoid
homomorphisms in C.
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Classical objects

Definition

A classical object in a ‡-monoidal category C is a

comonoid X ⊗ X ∆←− X ⊤−→ I satisfying the equivalent
conditions from the preceding theorem.

Let C∆ be the category of classical objects and comonoid
homomorphisms in C.

Question: What is classical about classical objects?
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Classical objects

Definition

A classical object in a ‡-monoidal category C is a

comonoid X ⊗ X ∆←− X ⊤−→ I satisfying the equivalent
conditions from the preceding theorem.

Let C∆ be the category of classical objects and comonoid
homomorphisms in C.

Question: What is classical about classical objects?
◮ classical structure 99K quantum structure
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Classical objects

Definition

A classical object in a ‡-monoidal category C is a

comonoid X ⊗ X ∆←− X ⊤−→ I satisfying the equivalent
conditions from the preceding theorem.

Let C∆ be the category of classical objects and comonoid
homomorphisms in C.

Question: What is classical about classical objects?
◮ classical structure 99K quantum structure

Answer: classical elements = base vectors
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Classical objects

Definition

A classical object in a ‡-monoidal category C is a

comonoid X ⊗ X ∆←− X ⊤−→ I satisfying the equivalent
conditions from the preceding theorem.

Let C∆ be the category of classical objects and comonoid
homomorphisms in C.

Question: What is classical about classical objects?
◮ classical structure 99K quantum structure

Answer: classical elements = base vectors
◮ 99K is neither injective or surjective
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Consequences

Upshot

The Frobenius condition (c) assures the preservation of
the abstraction operation under ‡.
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Consequences

Upshot

The Frobenius condition (c) assures the preservation of
the abstraction operation under ‡.
This leads to entanglement.
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Consequences

Proposition

The vectors C(X ) of any classical object X form a
⋆-algebra.
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Proposition

The vectors C(X ) of any classical object X form a
⋆-algebra.

ϕ · ψ = ∇ ◦ (ϕ⊗ ψ)

ǫ = ⊥
ϕ⋆ = ϕ‡∗ = ϕ∗‡
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Base

Definition

Two vectors ϕ,ψ ∈ C(A) in a ‡-monoidal category are
orthonormal if their inner product is idempotent:

〈ϕ | ψ〉 = 〈ϕ | ψ〉2
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Definition

Two vectors ϕ,ψ ∈ C(A) in a ‡-monoidal category are
orthonormal if their inner product is idempotent:

〈ϕ | ψ〉 = 〈ϕ | ψ〉2

Proposition

Any two base vectors are orthonormal.
In particular, any two variables in a polynomial category
are orthonormal.
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Definition

A classical object X is standard if it is (regularly)
generated by its base vectors

B(X ) = {ϕ ∈ C(X )| (κx . x ⊗ x)ϕ = ϕ⊗ ϕ
∧ (κx . idI)ϕ = idI}
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Base

Definition

A classical object X is standard if it is (regularly)
generated by its base vectors

B(X ) = {ϕ ∈ C(X )| (κx . x ⊗ x)ϕ = ϕ⊗ ϕ
∧ (κx . idI)ϕ = idI}

in the sense

∀f ,g ∈ C(X ,Y ). (∀ϕ ∈ B(X ). fϕ = gϕ) =⇒ f = g

A base is regular if C(X ,Y ) C(Y )B(X) splits.
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Base

Proposition 1.
All standard classical structures, that an object X ∈ C
may carry, induce the bases with the same number of
elements.
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Base

Proposition 1.
All standard classical structures, that an object X ∈ C
may carry, induce the bases with the same number of
elements.

Proposition 2.
Let X ∈ C be a classical object with a regular base. Then
the equipotent regular bases on any Y ∈ C are in
one-to-one correspondence with the unitaries X −→ Y .
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Base

Definition
A qubit type in an arbitrary ‡-monoidal category C is a
classical object B with a unitary H of order 2. The induced
bases are usually denoted by |0〉, |1〉, and |+〉, |−〉.
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Base

Definition
A qubit type in an arbitrary ‡-monoidal category C is a
classical object B with a unitary H of order 2. The induced
bases are usually denoted by |0〉, |1〉, and |+〉, |−〉.

Computing with qubits
A ‡-monoidal category with B suffices for the basic
quantum algorithms.
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Base

Definition
A qubit type in an arbitrary ‡-monoidal category C is a
classical object B with a unitary H of order 2. The induced
bases are usually denoted by |0〉, |1〉, and |+〉, |−〉.

Computing with qubits
A ‡-monoidal category with B suffices for the basic
quantum algorithms.
A Klein group of unitaries on B suffices for all
teleportation and dense coding schemes.
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Proposition (Coecke, Vicary, P)

Every classical object X in FHilb is regular, and X ∼= C
n.

The classical structure is induced by a base
B(X ) =

{
|i〉 | i ≤ n

}
, with

∆|i〉 = |ii〉

⊤ =
1√
n

n∑

i=1

|i〉
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Base

Proposition (Coecke, Vicary, P)

Every classical object X in FHilb is regular, and X ∼= C
n.

The classical structure is induced by a base
B(X ) =

{
|i〉 | i ≤ n

}
, with

∆|i〉 = |ii〉

⊤ =
1√
n

n∑

i=1

|i〉

Moreover,

FHilb∆ ≃ FSet
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Proof

A ⋆-algebra in FHilb is a C⋆-algebra.
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Proof

A ⋆-algebra in FHilb is a C⋆-algebra.

Thus for a classical X ∈ FHilb,

∇ : FHilb(X ) −→ FHilb(X ,X )
(

I
ϕ−→ X

)
7−→

(
X

ϕ⊗X−→ X ⊗ X ∇−→ X
)

is a representation of a commutative C⋆-algebra.



Geometry of
quantum

abstraction

Dusko Pavlovic

Introduction

Graphical
notation

Geometry of
abstraction

Geometry of
‡-abstraction
‡-monoidal categories

Quantum objects

Abstraction in
‡-monoidal categories

Classical objects

Base

Measurements

Future work

Proof

Working through the Gelfand-Naimark duality, we get

X ∼= C
n
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Proof

Working through the Gelfand-Naimark duality, we get

X ∼= C
n

— because the spectrum of a commutative finitely
dimensional C∗-algebra is a discrete set n of minimal
central projections, while the representing spaces are the
full matrix algebras C(1)
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Category of measurements
((this was not presented))
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Future work

Claim: Simple quantum algorithms have simple
categorical semantics.

Task: Implement and analyze quantum algorithms
in nonstandard models: network
computation, data mining.
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