Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Graphical notation

Geometry of abstraction

Geometry of ‡-abstraction

Measurements

Future work

Geometry of abstraction in quantum computation

Dusko Pavlovic

Kestrel Institute and Oxford University

Oxford, August 2008

▲□▶▲□▶▲□▶▲□▶ □ のへで

Outline

Introduction Quantum programming λ -abstraction
Graphical notation
Geometry of abstraction Abstraction with pictures Consequences
Geometry of ‡-abstraction ‡-monoidal categories Quantum objects Abstraction in ‡-monoidal categories Classical objects Base
Category of measurements
Future work

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Graphical notation

Geometry of abstraction

Geometry of ‡-abstraction

Measurements

Future work

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

Outline

Introduction Quantum programming λ -abstraction
Graphical notation
Geometry of abstraction Abstraction with pictures Consequences
Geometry of ‡-abstraction ‡-monoidal categories Quantum objects Abstraction in ‡-monoidal categories Classical objects Base
Category of measurements
Future work

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Quantum programming λ -abstraction

Graphical notation

Geometry of abstraction

Geometry of ‡-abstraction

Measurements

Future work

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

What do quantum programmers do?

Introduction Quantum programming λ-abstraction

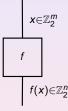
Graphical notation

Geometry of abstraction

Geometry of ‡-abstraction

Measurements

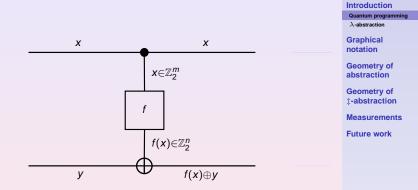
Future work



What do quantum programmers do?

Geometry of quantum abstraction

Dusko Pavlovic

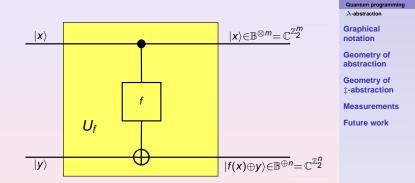


▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□ ● ● ●

What do quantum programmers do?

Geometry of quantum abstraction Dusko Pavlovic

Introduction



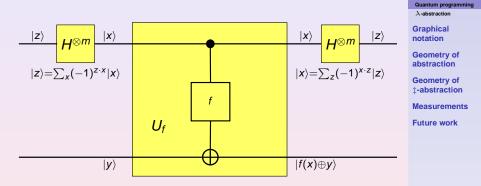
▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへぐ

What do quantum programmers do?

Geometry of quantum abstraction

Dusko Pavlovic

Introduction



What do quantum programmers do?

Simon's algorithm

◆□▶ ◆□▶ ◆ □▶ ★ □▶ □ □ ● のへで

Geometry of quantum abstraction

Dusko Pavlovic

Introduction Quantum programming λ -abstraction

al

ry of tion

ry of iction

ments

vork

What do quantum programmers do?

Simon's algorithm

$$\begin{aligned} f: \mathbb{Z}_{2}^{m} \longrightarrow \mathbb{Z}_{2}^{n} : x \mapsto f(x) \\ \hline f': \mathbb{Z}_{2}^{m+n} \longrightarrow \mathbb{Z}_{2}^{m+n} : x, y \mapsto x, f(x) \oplus y \\ \hline U_{f}: \mathbb{C}^{\mathbb{Z}_{2}^{m+n}} \longrightarrow \mathbb{C}^{\mathbb{Z}_{2}^{m+n}} : |x, y\rangle \mapsto |x, f(x) \oplus y\rangle \\ \hline Simon &= (H^{\otimes m} \otimes id) U_{f}(H^{\otimes m} \otimes id) |0, 0\rangle \\ &= \sum_{x, z \in \mathbb{Z}_{2}^{m}} (-1)^{x \cdot z} |z, f(x)\rangle \end{aligned}$$

... to find a hidden subgroup

measurement \rightsquigarrow find *c* such that f(x + c) = f(x)

Geometry of quantum abstraction

Dusko Pavlovic

Introduction Quantum programming

 λ -abstraction

Graphical notation

Geometry of abstraction

Geometry of ‡-abstraction

Measurements

What do quantum programmers do?

Shor's algorithm

$$\frac{f: \mathbb{Z}_q^m \longrightarrow \mathbb{Z}_q^n: \mathbf{x} \mapsto \mathbf{a}^{\mathbf{x}} \mod q}{f': \mathbb{Z}_q^{m+n} \longrightarrow \mathbb{Z}_q^{m+n}: \mathbf{x}, \mathbf{y} \mapsto \mathbf{x}, \mathbf{a}^{\mathbf{x}} + \mathbf{y} \mod q}$$
$$U_f: \mathbb{C}^{\mathbb{Z}_q^{m+n}} \longrightarrow \mathbb{C}^{\mathbb{Z}_q^{m+n}}: |\mathbf{x}, \mathbf{y}\rangle \mapsto |\mathbf{x}, \mathbf{a}^{\mathbf{x}} + \mathbf{y} \mod q\rangle$$

Shor =
$$(FT_m \otimes id)U_f(FT_m \otimes id) |0,0\rangle$$

= $\sum_{x,z \in \mathbb{Z}_q^m} (-1)^{x \cdot z} |z, f(x)\rangle$

... to find a hidden subgroup

measurement \rightsquigarrow find *c* such that $a^{x+c} = a^x \mod q$

Geometry of quantum abstraction

Dusko Pavlovic

Introduction Quantum programming λ -abstraction

Graphical notation

Geometry of abstraction

Geometry of ‡-abstraction

Measurements

What do quantum programmers do?

Hallgren's algorithm

$$\frac{h: \mathbb{Z}^{m} \longrightarrow \mathbb{Z}^{n}: x \mapsto I_{x} \text{ (fraction ideal)}}{h': \mathbb{Z}^{m+n} \longrightarrow \mathbb{Z}^{m+n}: x, y \mapsto x, y - h(x)}$$

$$\overline{U_{h}: \mathbb{C}^{\mathbb{Z}^{m+n}} \longrightarrow \mathbb{C}^{\mathbb{Z}^{m+n}}: |x, y\rangle \mapsto |x, y - h(x)\rangle}$$
Hallgren = (FT_{m} \otimes id) U_{h}(FT_{m} \otimes id) |d, \tilde{d}\rangle
$$= \sum_{x \in [-1)^{x \cdot x} |z, h(x)\rangle}$$

... to find a hidden subgroup measurement \rightsquigarrow find R such that h(x + R) = h(x)

Geometry of quantum abstraction

Dusko Pavlovic

Introduction Quantum programming

 λ -abstraction

Graphical notation

Geometry of abstraction

Geometry of **±**-abstraction

Measurements

General design pattern of quantum software engineering ;)

Quantum programming CLASS λ -abstraction Graphical notation $\downarrow |-\rangle$ QUANT Geometry of abstraction Geometry of **±**-abstraction Measurements \checkmark Future work $\mathcal{MEAS'T}$ CLASS

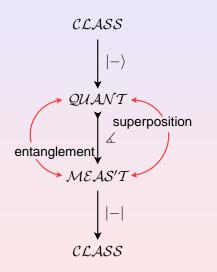
・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Geometry of

quantum abstraction

Dusko Pavlovic

Quantum prog. = functional prog. + superposition + entanglement



Geometry of quantum abstraction

Dusko Pavlovic

Introduction Quantum programming

 λ -abstraction

Graphical notation

Geometry of abstraction

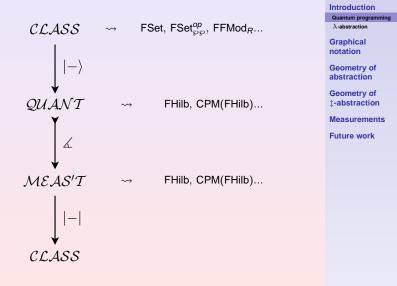
Geometry of ‡-abstraction

Measurements

Future work

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへぐ

Standard type universes where quantum programmers work



・ロト・西ト・モン・モー もんぐ

Geometry of

quantum abstraction

Dusko Pavlovic

Function abstraction in quantum programming

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Geometry of quantum abstraction

Dusko Pavlovic

Introduction Quantum programming λ-abstraction

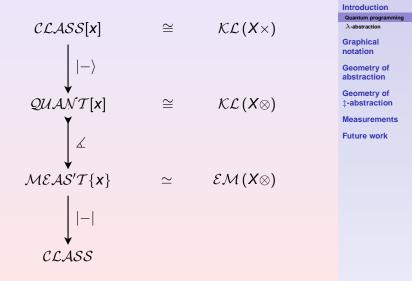
Graphical notation

Geometry of abstraction

Geometry of ‡-abstraction

Measurements

Function abstraction in quantum programming



・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Geometry of quantum abstraction

Dusko Pavlovic

λ -abstraction

Geometry of quantum abstraction

Dusko Pavlovic

Introduction Quantum programming

 λ -abstraction

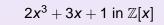
Graphical notation

Geometry of abstraction

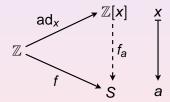
Geometry of ‡-abstraction

Measurements

Future work

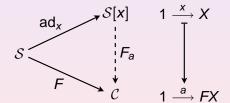


 $\lambda x. 2x^3 + 3x + 1 \text{ in } \mathbb{Z} \longrightarrow \mathbb{Z}$



 $p(x): B \text{ in } \mathcal{S}[x:X]$

$$\lambda x. p(x) : B^{X} \text{ in } S$$



Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Quantum programming λ -abstraction

Graphical notation

Geometry of abstraction

Geometry of ‡-abstraction

Measurements

Future work

◆□▶ ◆母▶ ◆ヨ▶ ◆日 ◆ ◆ ◆

$$\frac{A \xrightarrow{q(x)} B \text{ in } \mathcal{S}[x:X]}{A \xrightarrow{\lambda x. q(x)} B^X \text{ in } \mathcal{S}}$$

Dusko Pavlovic

Introduction Quantum programming

 λ -abstraction

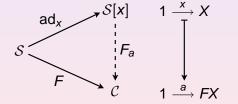
Graphical notation

Geometry of abstraction

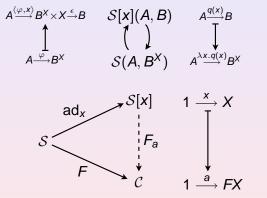
Geometry of ‡-abstraction

Measurements

Future work



▲□▶▲□▶▲□▶▲□▶ □ のQ@



Geometry of quantum abstraction

Dusko Pavlovic

Introduction Quantum programming

 λ -abstraction

Graphical notation

Geometry of abstraction

Geometry of ‡-abstraction

Measurements

Future work

Theorem (Lambek, Adv. in Math. 79)

Let S be a cartesian closed category, and S[x] the free cartesian closed category generated by S and $x : 1 \rightarrow X$.

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Quantum programming λ -abstraction

Graphical notation

Geometry of abstraction

Geometry of ‡-abstraction

Measurements

Future work

Theorem (Lambek, Adv. in Math. 79)

Let S be a cartesian closed category, and S[x] the free cartesian closed category generated by S and $x : 1 \rightarrow X$.

Then the inclusion $ad_x : S \longrightarrow S[x]$ has a right adjoint $ab_x : S[x] \longrightarrow S : A \mapsto A^X$ and the transpositions

$$A^{\stackrel{\langle \varphi, x \rangle}{\longrightarrow} B^{\chi} \times X \stackrel{\epsilon}{\longrightarrow} B} \mathcal{S}[x](ad_{x}A, B) \xrightarrow{A^{\frac{q(x)}{\longrightarrow} B}} I$$

$$A^{\stackrel{\varphi}{\longrightarrow} B^{\chi}} \qquad () \qquad \downarrow$$

$$A^{\stackrel{\lambda x.q(x)}{\longrightarrow} B^{\chi}} \mathcal{S}(A, ab_{x}B) \xrightarrow{A^{\lambda x.q(x)} B^{\chi}} B^{\chi}$$

model λ -abstraction and application.

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Quantum programming λ -abstraction

Graphical notation

Geometry of abstraction

Geometry of ‡-abstraction

Measurements

Future work

◆□▶ ◆□▶ ◆三≯ ◆三≯ ○○ ○○○

Theorem (Lambek, Adv. in Math. 79)

Let S be a cartesian closed category, and S[x] the free cartesian closed category generated by S and $x : 1 \rightarrow X$.

Then the inclusion $ad_x : S \longrightarrow S[x]$ has a right adjoint $ab_x : S[x] \longrightarrow S : A \mapsto A^X$ and the transpositions

$$A^{\stackrel{\langle \varphi, x \rangle}{\longrightarrow} B^{X} \times X \stackrel{\epsilon}{\longrightarrow} B} \mathcal{S}[x](ad_{x}A, B) \xrightarrow{A^{\frac{q(x)}{\longrightarrow} B}} I$$

$$A^{\stackrel{\varphi}{\longrightarrow} B^{X}} \qquad (1) \qquad \downarrow$$

$$A^{\stackrel{\lambda x.q(x)}{\longrightarrow} B^{X}} \mathcal{S}(A, ab_{x}B) \xrightarrow{A^{\lambda x.q(x)} B^{X}} I$$

model λ -abstraction and application.

S[x] is isomorphic with the Kleisli category for the power monad $(-)^{X}$.

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Quantum programming λ -abstraction

Graphical notation

Geometry of abstraction

Geometry of ‡-abstraction

Measurements

Future work

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ○ ○ ○

κ -abstraction in cartesian

Theorem (Lambek, Adv. in Math. 79)

Let *S* be a cartesian category, and S[x] the free cartesian category generated by *S* and $x : 1 \rightarrow X$.

Then the inclusion $ad_x : S \longrightarrow S[x]$ has a left adjoint $ab_x : S[x] \longrightarrow S : A \mapsto X \times A$ and the transpositions

$$A^{(\underline{x},\underline{id})}_{X\times A\xrightarrow{\varphi} B} \mathcal{S}[x](A, \mathrm{ad}_{x}B) \xrightarrow{A\xrightarrow{f_{x}} B} \begin{pmatrix} 1 \\ 1 \\ X \times A\xrightarrow{\varphi} B \\ \mathcal{S}(\mathrm{ab}_{x}A, B) \\ \mathcal{S}(\mathrm{ab}_{x}A, B) \xrightarrow{X \times A\xrightarrow{\kappa_{x},f_{x}} B} \end{pmatrix}$$

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Quantum programming λ -abstraction

Graphical notation

Geometry of abstraction

Geometry of ‡-abstraction

Measurements

Future work

model first order abstraction and application.

S[x] is isomorphic with the Kleisli category for the product comonad $X \times (-)$.

▲□▶▲□▶▲□▶▲□▶ □ のへで

categories

κ-abstraction in *monoidal*

Theorem (DP, MSCS 95)

Then the strong adjunctions $ab_x \dashv ad_x : \mathcal{C} \longrightarrow \mathcal{C}[x]$ are in one-to-one correspondence with the internal comonoid structures on X. The transpositions

 $A^{\stackrel{X\otimes A}{\longrightarrow} X\otimes A\stackrel{\varphi}{\rightarrow} B} \quad \mathcal{C}[x](A, \operatorname{ad}_{x}B) \quad A\stackrel{f_{x}}{\longrightarrow} B} \\ \bigwedge_{X\otimes A\stackrel{\varphi}{\longrightarrow} B} \quad \begin{pmatrix} 1 \\ 0 \\ C(\operatorname{ab}_{x}A, B) \\ X\otimes A\stackrel{\kappa_{x}, f_{x}}{\longrightarrow} B \\ C(\operatorname{ab}_{x}A, B) \\ C(\operatorname{ab}_{x}A, B) \\ X\otimes A\stackrel{\kappa_{x}, f_{x}}{\longrightarrow} B \\ C(\operatorname{ab}_{x}A, B) \\ C(\operatorname{ab}_{x}$

model action abstraction and application.

C[x] is isomorphic with the Kleisli category for the comonad $X \otimes (-)$, induced by any of the comonoid structures.

categories

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Quantum programming λ -abstraction

Graphical notation

Geometry of abstraction

Geometry of ‡-abstraction

Measurements

κ -abstraction in monoidal categories

Task Extend this to ‡-monoidal categories. Geometry of quantum abstraction

Dusko Pavlovic

Introduction Quantum programming λ-abstraction

Graphical notation

Geometry of abstraction

Geometry of ‡-abstraction

Measurements

Future work

(日)

κ -abstraction in monoidal categories

Task Extend this to ‡-monoidal categories.

Problem

Lots of complicated diagram chasing.

Geometry of quantum abstraction

Dusko Pavlovic

Introduction Quantum programming

Graphical notation

Geometry of abstraction

Geometry of ‡-abstraction

Measurements

Future work

・ロト・日本・日本・日本・日本・日本

κ -abstraction in monoidal categories

Task Extend this to ‡-monoidal categories.

Problem

Lots of complicated diagram chasing.

Solution?

What does abstraction mean graphically?

Geometry of quantum abstraction

Dusko Pavlovic

Introduction Quantum programming λ -abstraction

Graphical notation

Geometry of abstraction

Geometry of ‡-abstraction

Measurements

Future work

▲□▶▲□▶▲□▶▲□▶ □ のへで

Outline

ntroduction Quantum programming λ-abstraction

Graphical notation

Geometry of abstraction

Abstraction with pictures Consequences

Geometry of ‡-abstraction

‡-monoidal categories Quantum objects Abstraction in ‡-monoidal categories Classical objects Base

Category of measurements

Future work

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Graphical notation

Geometry of abstraction

Geometry of ‡-abstraction

Measurements

Future work

▲□▶▲□▶▲□▶▲□▶ ▲□ ● ● ●

Objects

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Graphical notation

Geometry of abstraction

Geometry of ‡-abstraction

 $X \otimes A \otimes B \otimes D$

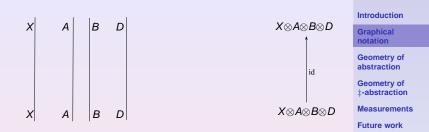
Measurements

Future work

X A B D

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

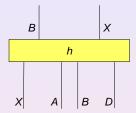
Identities



.

Geometry of

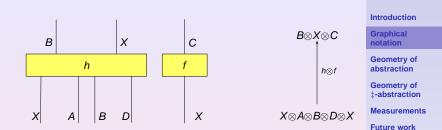
Morphisms



Geometry of quantum abstraction **Dusko Pavlovic** Introduction B⊗X Graphical notation Geometry of abstraction h Geometry of ‡-abstraction Measurements $X \otimes A \otimes B \otimes D$ **Future work**

◆□▶ ◆□▶ ◆ □▶ ★ □▶ □ □ ● のへで

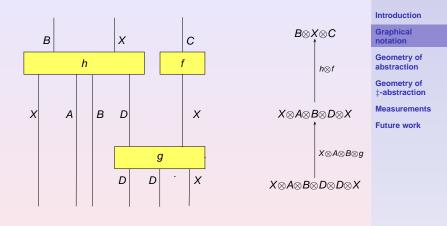
Tensor (parallel composition)



▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□▶ ▲□

Geometry of

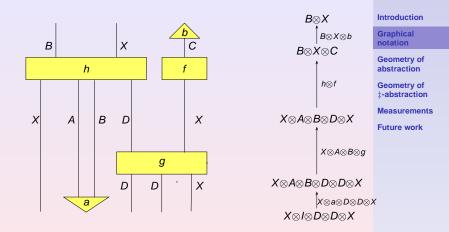
Sequential composition



・ロト・西ト・モート ヨー シタウ

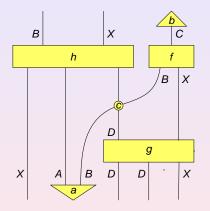
Geometry of

Elements (vectors) and coelements (functionals)



Geometry of

Symmetry

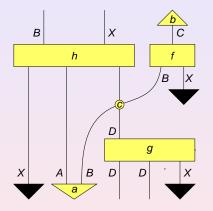


Geometry of quantum abstraction

Dusko Pavlovic

Introduction Graphical notation Geometry of abstraction Geometry of ‡-abstraction Measurements

Polynomials



B⊗X B⊗X⊗b B⊗X⊗C h⊗f $X \otimes A \otimes D \otimes B \otimes X$ id⊗x $X \otimes A \otimes D \otimes B \otimes I$ X⊗A⊗c⊗r X⊗A⊗B⊗D $X \otimes A \otimes B \otimes g$ $X \otimes A \otimes B \otimes D \otimes D \otimes X$ x⊗a⊗D⊗D⊗x $I \otimes I \otimes D \otimes D \otimes I$

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Graphical notation

Geometry of abstraction

Geometry of ‡-abstraction

Measurements

Future work

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Outline

Introduction Quantum programming λ -abstraction
Graphical notation
Geometry of abstraction Abstraction with pictures Consequences
Geometry of ‡-abstraction ‡-monoidal categories Quantum objects Abstraction in ‡-monoidal categories Classical objects Base
Category of measurements

Future work

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Graphical notation

Geometry of abstraction

Abstraction with pictures Consequences

Geometry of ‡-abstraction

Measurements

Future work

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

Abstraction with pictures

Theorem (again)

Let C be a symmetric monoidal category, and C[x] the free symmetric monoidal category generated by C and $x : 1 \rightarrow X$.

Then there is a one-to-one correspondence between

• adjunctions $ab_x \dashv ad_x : \mathcal{C} \longrightarrow \mathcal{C}[x]$ satisfying

1.
$$\operatorname{ab}_{x}(A \otimes B) = \operatorname{ab}_{x}(A) \otimes B$$

2.
$$\eta(A \otimes B) = \eta(A) \otimes B$$

3. $m = x$

and

commutative comonoids on X.

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Graphical notation

Geometry of abstraction

Abstraction with pictures Consequences

Geometry of ‡-abstraction

Measurements

Future work

Abstraction with pictures

Theorem (again)

Let C be a symmetric monoidal category, and C[x] the free symmetric monoidal category generated by C and $x : 1 \rightarrow X$.

Then there is a one-to-one correspondence between

• adjunctions $ab_x \dashv ad_x : \mathcal{C} \longrightarrow \mathcal{C}[x]$ satisfying

1.
$$ab_x(A \otimes B) = ab_x(A) \otimes B$$

2.
$$\eta(A \otimes B) = \eta(A) \otimes B$$

3. $\eta_I = x$

and

commutative comonoids on X.

C[x] is isomorphic with the Kleisli category for the commutative comonad $X \otimes (-)$, induced by any of the comonoid structures.

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Graphical notation

Geometry of abstraction

Abstraction with pictures Consequences

Geometry of ‡-abstraction

Measurements

Future work

Proof (↓)

Given $ab_x \dashv ad_x : \mathcal{C} \longrightarrow \mathcal{C}[x]$, conditions 1.-3. imply

•
$$\operatorname{ab}_{X}(A) = X \otimes A$$

$$\blacktriangleright \eta(A) = \mathbf{X} \otimes A$$

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Graphical notation

Geometry of abstraction

Abstraction with pictures Consequences

Geometry of ‡-abstraction

Measurements

Future work

Proof (↓)

Therefore the correspondence

 $\mathcal{C}(ab_x(A), B)$ $\mathcal{C}[x](A, \operatorname{ad}_{x}(B))$

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Graphical notation

Geometry of abstraction

Abstraction with pictures Consequences

Geometry of ‡-abstraction

Measurements

Future work

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへぐ

Proof (\downarrow)

... is actually

 $\mathcal{C}(X \otimes A, B)$ $\mathcal{C}[\mathbf{x}](\mathbf{A},\mathbf{B})$

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Graphical notation

Geometry of abstraction

Abstraction with pictures Consequences

Geometry of ‡-abstraction

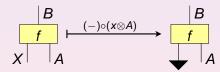
Measurements

Future work

・ロト・日本・ エー・ 日・ うらぐ

Proof (\downarrow)

... with



Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Graphical notation

Geometry of abstraction

Abstraction with pictures Consequences

Geometry of ‡-abstraction

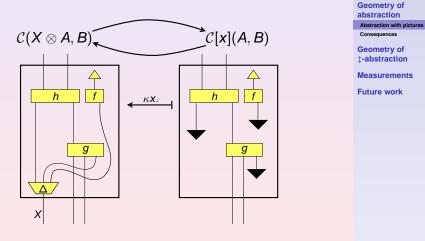
Measurements

Future work

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへぐ

Proof (\downarrow)

...and

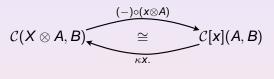


Geometry of

quantum abstraction Dusko Pavlovic

Graphical notation

The bijection corresponds to the conversion:



$$(\kappa \mathbf{x}. \varphi(\mathbf{x})) \circ (\mathbf{x} \otimes \mathbf{A}) = \varphi(\mathbf{x})$$
 (β -rule

$$\kappa \mathbf{x}. \ (f \circ (\mathbf{x} \otimes \mathbf{A})) = f \qquad (\eta \text{-rule})$$

Geometry of quantum abstraction Dusko Pavlovic Introduction Graphical notation Geometry of abstraction with pictures Consequences Geometry of i-abstraction

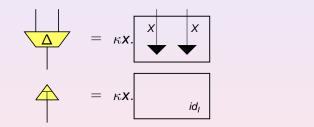
Measurements

Future work

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Proof (↓)

The comonoid structure (X, Δ, \top) is



Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Graphical notation

Geometry of abstraction

Abstraction with pictures Consequences

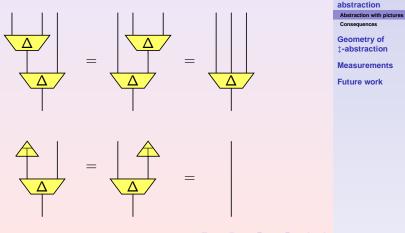
Geometry of ‡-abstraction

Measurements

Future work

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへぐ

The conversion rules imply the comonoid laws



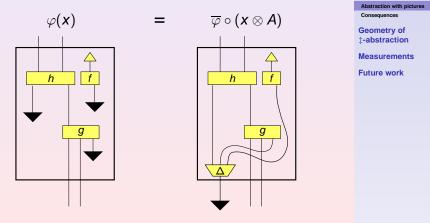
・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Geometry of

quantum abstraction Dusko Pavlovic

Graphical notation Geometry of Proof (↑)

Given (X, Δ, \top) , use its copying and deleting power, and the symmetries, to normalize every C[x]-arrow:



▲□▶▲□▶▲□▶▲□▶ ▲□ ● ● ●

Geometry of

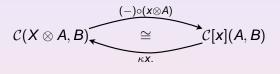
quantum abstraction Dusko Pavlovic

Graphical

notation Geometry of abstraction

Proof (↑)

Then set κx . $\varphi(x) = \overline{\varphi}$ to get



$$(\kappa \mathbf{x}. \varphi(\mathbf{x})) \circ (\mathbf{x} \otimes \mathbf{A}) = \varphi(\mathbf{x})$$
 (β -rule

$$\kappa \mathbf{x}. \ (f \circ (\mathbf{x} \otimes \mathbf{A})) = f \qquad (\eta \text{-rule})$$

Geometry of quantum abstraction Dusko Pavlovic Introduction Graphical notation Geometry of abstraction

Abstraction with pictures Consequences

Geometry of ‡-abstraction

Measurements

Future work

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Remark

C[x] ≅ C_{X⊗} and C[x, y] ≅ C_{X⊗Y⊗} = KL(X ⊗ Y⊗), reduce the finite polynomials to the Kleisli morphisms.

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Graphical notation

Geometry of abstraction

Abstraction with pictures Consequences

Geometry of ‡-abstraction

Measurements

Future work

Remark

- C[x] ≅ C_{X⊗} and C[x, y] ≅ C_{X⊗Y⊗} = KL(X ⊗ Y⊗), reduce the finite polynomials to the Kleisli morphisms.
- But the extensions C[X], where X is large are also of interest.

Graphical notation

Geometry of abstraction

Abstraction with pictures Consequences

Geometry of ‡-abstraction

Measurements

Future work

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Remark

- C[x] ≅ C_{X⊗} and C[x, y] ≅ C_{X⊗Y⊗} = KL(X ⊗ Y⊗), reduce the finite polynomials to the Kleisli morphisms.
- But the extensions C[X], where X is large are also of interest.
 - Cf. $\mathbb{N}[\mathbb{N}]$, Set[Set], and $CPM(\mathcal{C})$.

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Graphical notation

Geometry of abstraction

Abstraction with pictures Consequences

Geometry of ‡-abstraction

Measurements

Future work

・ロト・日本・日本・日本・日本

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Graphical notation

Geometry of abstraction Abstraction with pictures Consequences

Geometry of ‡-abstraction

Measurements

Future work

▲□▶▲圖▶▲臣▶▲臣▶ 臣 のへぐ

Upshot

In symmetric monoidal categories, abstraction applies just to copiable and deletable data.

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Graphical notation

Geometry of abstraction Abstraction with pictures Consequences

Geometry of ‡-abstraction

Measurements

Future work

・ロト・日本・日本・日本・日本・日本

Upshot

In symmetric monoidal categories, abstraction applies just to copiable and deletable data.

Definition

A vector $\varphi \in C(I, X)$ is a *base vector* (or a *set-like element*) with respect to the abstraction operation κx if it can be copied and deleted in C[x]

$$(\kappa \mathbf{X} . \mathbf{X} \otimes \mathbf{X}) \circ \varphi = \varphi \otimes \varphi (\kappa \mathbf{X} . \mathrm{id}_{l}) \circ \varphi = \mathrm{id}_{l}$$

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Graphical notation

Geometry of abstraction Abstraction with pictures Consequences

Geometry of ‡-abstraction

Measurements

Future work

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Upshot

In symmetric monoidal categories, abstraction applies just to copiable and deletable data.

Definition

A vector $\varphi \in C(I, X)$ is a *base vector* (or a *set-like element*) with respect to the abstraction operation κx if it can be copied and deleted in C[x]

$$(\kappa \mathbf{X}.\mathbf{X} \otimes \mathbf{X}) \circ \varphi = \varphi \otimes \varphi (\kappa \mathbf{X}.\mathrm{id}_{I}) \circ \varphi = \mathrm{id}_{I}$$

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Graphical notation

Geometry of abstraction Abstraction with pictures Consequences

Geometry of ‡-abstraction

Measurements

Future work

Proposition

 $\varphi \in \mathcal{C}(I, X)$ is a *base vector* with respect to κx if and only if it is a homomorphism for the comonoid structure $X \otimes X \xleftarrow{\Delta} X \xrightarrow{\top} I$ corresponding to κx .

Upshot

In other words, only the base vectors can be substituted for variables. Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Graphical notation

Geometry of abstraction Abstraction with pictures Consequences

Geometry of ‡-abstraction

Measurements

Future work

▲□▶▲圖▶▲臣▶▲臣▶ 臣 のへで

Upshot

In other words, only the base vectors can be substituted for variables.

Definition

Substitution is a structure preserving ioof $C[x] \longrightarrow C$.

Coomotry of

Measurements

Future work

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Upshot

In other words, only the base vectors can be substituted for variables.

Definition

Substitution is a structure preserving ioof $\mathcal{C}[x] \longrightarrow \mathcal{C}$.

Corollary

The substitution functors $C[x] \longrightarrow C$ are in one-to-one correspondence with the base vectors of type *X*.

Geometry of quantum abstraction Dusko Pavlovic Introduction Graphical notation Geometry of abstraction

Abstraction with pictures Consequences

Geometry of ‡-abstraction

Measurements

Future work

Outline

Geometry of *‡*-abstraction t-monoidal categories Quantum objects Abstraction in ±-monoidal categories Classical objects Base

Category of measurements

Future work

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Graphical notation

Geometry of abstraction

Geometry of ‡-abstraction

‡-monoidal categories
 Quantum objects
 Abstraction in
 ‡-monoidal categories
 Classical objects
 Base

Measurements

Future work

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Definitions

A \ddagger -category C is given with an involutive ioof $\ddagger : C^{op} \longrightarrow C$.

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Graphical notation

Geometry of abstraction

Geometry of ‡-abstraction

‡-monoidal categories

Quantum objects

Abstraction in ‡-monoidal categories Classical objects Base

Measurements

Future work

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Definitions

A \ddagger -category C is given with an involutive ioof $\ddagger : C^{op} \longrightarrow C$.

A morphism *f* in a \ddagger -category *C* is called *unitary* if $f^{\ddagger} = f^{-1}$.

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Graphical notation

Geometry of abstraction

Geometry of ‡-abstraction

‡-monoidal categories

Quantum objects

Abstraction in ‡-monoidal categories Classical objects Base

Measurements

Future work

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Definitions

A \ddagger -category C is given with an involutive ioof $\ddagger : C^{op} \longrightarrow C$.

A morphism *f* in a \ddagger -category *C* is called *unitary* if $f^{\ddagger} = f^{-1}$.

A (symmetric) monoidal category C is \ddagger -monoidal if its monoidal isomorphisms are unitary.

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Graphical notation

Geometry of abstraction

Geometry of ‡-abstraction

‡-monoidal categories

Quantum objects

Abstraction in ‡-monoidal categories Classical objects Base

Measurements

Future work

・ロト・日本・日本・日本・日本・日本

Using the monoidal notations for:

- vectors: C(A) = C(I, A)
- scalars: $\mathbb{I} = \mathcal{C}(I, I)$

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Graphical notation

Geometry of abstraction

Geometry of ‡-abstraction

‡-monoidal categories

Quantum objects

Abstraction in ‡-monoidal categories Classical objects Base

Measurements

Future work

▲□▶▲圖▶▲臣▶▲臣▶ 臣 のへぐ

Using the monoidal notations for:

- vectors: C(A) = C(I, A)
- scalars: $\mathbb{I} = \mathcal{C}(I, I)$

in every ‡-monoidal category we can define

abstract inner product

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Graphical notation

Geometry of abstraction

Geometry of ‡-abstraction

‡-monoidal categories Quantum objects Abstraction in

‡-monoidal categories
 Classical objects
 Base

Measurements

Future work

Using the monoidal notations for:

- vectors: C(A) = C(I, A)
- scalars: $\mathbb{I} = \mathcal{C}(I, I)$

in every ‡-monoidal category we can define

► abstract inner product $\langle -|-\rangle_{A} : C(A) \times C(A) \longrightarrow \mathbb{I}$ $(\varphi, \psi: I \longrightarrow A) \longmapsto (I \xrightarrow{\varphi} A \xrightarrow{\psi^{\ddagger}} I)$

$$\begin{array}{ll} & \quad \text{partial inner product} \\ & \langle -|-\rangle_{AB} \ : \ \mathcal{C}(A \otimes B) \times \mathcal{C}(A) & \longrightarrow & \mathcal{C}(B) \\ & \quad (\varphi : I \to A \otimes B, \psi : I \to A) & \longmapsto & \left(I \stackrel{\varphi}{\to} A \otimes B \stackrel{\psi^{\ddagger} \otimes B}{\longrightarrow} B\right) \end{array}$$

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Graphical notation

Geometry of abstraction

Geometry of ‡-abstraction ‡-monoidal categories Quantum objects

Abstraction in ‡-monoidal categories Classical objects Base

Measurements

Future work

・ロト・日本・日本・日本・日本・日本

Using the monoidal notations for:

- vectors: C(A) = C(I, A)
- scalars: $\mathbb{I} = \mathcal{C}(I, I)$

in every ‡-monoidal category we can define

► abstract inner product $\langle -|-\rangle_{A} : C(A) \times C(A) \longrightarrow \mathbb{I}$ $(\varphi, \psi: I \longrightarrow A) \longmapsto (I \xrightarrow{\varphi} A \xrightarrow{\psi^{\dagger}} I)$

Partial inner product
$$\langle -|-\rangle_{AB} : C(A \otimes B) \times C(A) \longrightarrow C(B)$$

$$(\varphi : I \to A \otimes B, \psi : I \to A) \longmapsto \left(I \xrightarrow{\varphi} A \otimes B \xrightarrow{\psi^{\ddagger} \otimes B} B \right)$$

• entangled vectors $\eta \in C(A \otimes A)$, such that $\forall \varphi \in C(A)$

$$\langle \eta | \varphi \rangle_{AA} = \varphi$$

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Graphical notation

Geometry of abstraction

Geometry of ‡-abstraction ‡-monoidal categories Quantum objects Abstraction in

Abstraction in ‡-monoidal categories Classical objects Base

Measurements

Future work

Using

- entangled vectors $\eta A : I \longrightarrow A \otimes A$ and, $\eta B : I \longrightarrow B \otimes B$ and
- their adjoints εA = η[‡]A : A ⊗ A → I and εB = η[‡]B : B ⊗ B → I

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Graphical notation

Geometry of abstraction

Geometry of ‡-abstraction

‡-monoidal categories

Quantum objects

Abstraction in ‡-monoidal categories Classical objects Base

Measurements

Future work

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Using

- entangled vectors $\eta A : I \longrightarrow A \otimes A$ and, $\eta B : I \longrightarrow B \otimes B$ and
- ▶ their adjoints $\varepsilon A = \eta^{\ddagger} A : A \otimes A \longrightarrow I$ and $\varepsilon B = \eta^{\ddagger} B : B \otimes B \longrightarrow I$

we can define for every $f: A \longrightarrow B$

• the dual
$$f^* : B \longrightarrow A$$

$$f^* = B \xrightarrow{B\eta} BAA \xrightarrow{BfA} BBA \xrightarrow{\varepsilon A} A$$

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Graphical notation

Geometry of abstraction

Geometry of ‡-abstraction

‡-monoidal categories Quantum objects Abstraction in ‡-monoidal categories

Classical objects Base

Measurements

Future work

・ロト・日本・日本・日本・日本・日本

Using

- entangled vectors $\eta A : I \longrightarrow A \otimes A$ and, $\eta B : I \longrightarrow B \otimes B$ and
- ▶ their adjoints $\varepsilon A = \eta^{\ddagger} A : A \otimes A \longrightarrow I$ and $\varepsilon B = \eta^{\ddagger} B : B \otimes B \longrightarrow I$

we can define for every $f: A \longrightarrow B$

• the dual
$$f^* : B \longrightarrow A$$

$$f^* = B \xrightarrow{B\eta} BAA \xrightarrow{BfA} BBA \xrightarrow{\varepsilon A} A$$

• the conjugate $f_* : A \longrightarrow B$

$$f_{*} ~=~ f^{*\ddagger} ~=~ f^{\ddagger *}$$

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Graphical notation

Geometry of abstraction

Geometry of ‡-abstraction

‡-monoidal categories Quantum objects Abstraction in

‡-monoidal categories Classical objects Base

Measurements

Future work

◆□▶ ◆□▶ ◆ □▶ ◆ □ ◆ ○ ● ● ○ ○ ○ ○

Proposition

For every object A in a \ddagger -monoidal category C holds (a) \iff (b) \iff (c),

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Graphical notation

Geometry of abstraction

Geometry of ‡-abstraction

‡-monoidal categories

Quantum objects

Abstraction in ‡-monoidal categories Classical objects Base

Measurements

Future work

(日)

Proposition

For every object A in a \ddagger -monoidal category C holds (a) \iff (b) \iff (c), where

(a) $\eta \in C(A \otimes A)$ is entangled

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Graphical notation

Geometry of abstraction

Geometry of ‡-abstraction

‡-monoidal categories

Quantum objects

Abstraction in ‡-monoidal categories Classical objects Base

Measurements

Future work

(日)

Proposition

For every object A in a \ddagger -monoidal category C holds (a) \iff (b) \iff (c), where

(a) η ∈ C(A ⊗ A) is entangled
(b) ε = η[‡] ∈ C(A ⊗ A, I) internalizes the inner product

$$\varepsilon \circ (\psi_* \otimes \varphi) = \langle \varphi | \psi$$

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Graphical notation

Geometry of abstraction

Geometry of ‡-abstraction

‡-monoidal categories

Quantum objects

Abstraction in ‡-monoidal categories Classical objects Base

Measurements

Future work

Proposition

For every object A in a \ddagger -monoidal category C holds (a) \iff (b) \iff (c), where

(a) η ∈ C(A ⊗ A) is entangled
(b) ε = η[‡] ∈ C(A ⊗ A, I) internalizes the inner product

$$\varepsilon \circ (\psi_* \otimes \varphi) = \langle \varphi | \psi \rangle$$

(c) (η, ε) realize the self-adjunction $A \dashv A$, in the sense

$$\begin{array}{rcl} A \xrightarrow{\eta \otimes A} A \otimes A \otimes A \otimes A \xrightarrow{A \otimes \varepsilon} A & = & \operatorname{id}_{A} \\ A \xrightarrow{A \otimes \eta} A \otimes A \otimes A \xrightarrow{\varepsilon \otimes A} A & = & \operatorname{id}_{A} \end{array}$$

The three conditions are equivalent if I generates C.

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Graphical notation

Geometry of abstraction

Geometry of ‡-abstraction

‡-monoidal categories

Quantum objects

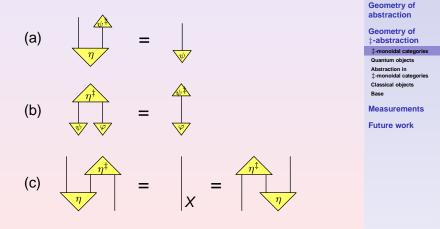
Abstraction in ‡-monoidal categories Classical objects Base

Measurements

Future work

Proposition in pictures

For every object A in a \ddagger -monoidal category C holds (a) \iff (b) \iff (c), where



▲□▶▲□▶▲□▶▲□▶ □ のへで

Geometry of

quantum abstraction Dusko Pavlovic

Introduction

Graphical

notation

Quantum objects

Definition

A *quantum object* in a ‡-monoidal category is an object equipped with the structure from the preceding proposition.

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Graphical notation

Geometry of abstraction

Geometry of ‡-abstraction

‡-monoidal categories

Quantum objects

Abstraction in ‡-monoidal categories Classical objects Base

Measurements

Future work

Quantum objects

Definition

A *quantum object* in a ‡-monoidal category is an object equipped with the structure from the preceding proposition.

Remark

The subcategory of quantum objects in any ‡-monoidal category is ‡-compact (strongly compact) — with all objects self-adjoint.

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Graphical notation

Geometry of abstraction

Geometry of ‡-abstraction

‡-monoidal categories

Quantum objects

t-monoidal categories
 Classical objects
 Base

Measurements

Future work

Theorem

Let \mathcal{C} be a \ddagger -monoidal category, and $X \otimes X \xleftarrow{\Delta} X \xrightarrow{\top} I$ a comonoid that induces $ab_x \dashv ad_x : \mathcal{C} \longrightarrow \mathcal{C}[x].$ Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Graphical notation

Geometry of abstraction

Geometry of ‡-abstraction

‡-monoidal categories

Quantum objects

Abstraction in ‡-monoidal categories

Classical objects

Base

Measurements

Future work

Theorem

Let \mathcal{C} be a \ddagger -monoidal category, and $X \otimes X \xleftarrow{\Delta} X \xrightarrow{\top} I$ a comonoid that induces $ab_x \dashv ad_x : \mathcal{C} \longrightarrow \mathcal{C}[x].$

Then the following conditions are equivalent:

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Graphical notation

Geometry of abstraction

Geometry of ‡-abstraction

‡-monoidal categories

Quantum objects

Abstraction in ‡-monoidal categories

Classical objects Base

0436

Measurements

Future work

Theorem

Let C be a \ddagger -monoidal category, and $X \otimes X \xleftarrow{\Delta} X \xrightarrow{\top} I$ a comonoid that induces $ab_x \dashv ad_x : C \longrightarrow C[x].$

Then the following conditions are equivalent: (a) $\operatorname{ad}_{x} : \mathcal{C} \longrightarrow \mathcal{C}[x]$ creates $\ddagger : \mathcal{C}[x]^{op} \longrightarrow \mathcal{C}[x]$ such that $\langle x | x \rangle = x^{\ddagger} \circ x = \operatorname{id}_{l}$. Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Graphical notation

Geometry of abstraction

Geometry of ‡-abstraction

‡-monoidal categories

Quantum objects

Abstraction in ‡-monoidal categories

Classical objects Base

Measurements

Future work

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Theorem

Let \mathcal{C} be a \ddagger -monoidal category, and $X \otimes X \xleftarrow{\Delta} X \xrightarrow{\top} I$ a comonoid that induces $ab_x \dashv ad_x : \mathcal{C} \longrightarrow \mathcal{C}[x].$

Then the following conditions are equivalent: (a) $\operatorname{ad}_{x} : \mathcal{C} \longrightarrow \mathcal{C}[x]$ creates $\ddagger : \mathcal{C}[x]^{op} \longrightarrow \mathcal{C}[x]$ such that $\langle x | x \rangle = x^{\ddagger} \circ x = \operatorname{id}_{I}$.

(b)
$$\eta = \Delta \circ \bot$$
 and $\varepsilon = \eta^{\ddagger} = \nabla \circ \top$ realize $X \dashv X$.

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Graphical notation

Geometry of abstraction

Geometry of ‡-abstraction

‡-monoidal categories

Quantum objects

Abstraction in ‡-monoidal categories

Classical objects Base

Measurements

Future work

▲□▶▲□▶▲□▶▲□▶ □ のへで

Theorem

Let \mathcal{C} be a \ddagger -monoidal category, and $X \otimes X \xleftarrow{\Delta} X \xrightarrow{\top} I$ a comonoid that induces $ab_x \dashv ad_x : \mathcal{C} \longrightarrow \mathcal{C}[x].$

Then the following conditions are equivalent: (a) $\operatorname{ad}_{x} : \mathcal{C} \longrightarrow \mathcal{C}[x]$ creates $\ddagger : \mathcal{C}[x]^{op} \longrightarrow \mathcal{C}[x]$ such that $\langle x | x \rangle = x^{\ddagger} \circ x = \operatorname{id}_{I}$.

(b)
$$\eta = \Delta \circ \bot$$
 and $\varepsilon = \eta^{\ddagger} = \nabla \circ \top$ realize $X \dashv X$.

(c) $(X \otimes \nabla) \circ (\Delta \otimes X) = \Delta \circ \nabla = (\nabla \otimes X) \circ (X \otimes \Delta)$

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Graphical notation

Geometry of abstraction

Geometry of ‡-abstraction

‡-monoidal categories

Quantum objects

Abstraction in ‡-monoidal categories

Classical objects Base

Measurements

Future work

Theorem

Let \mathcal{C} be a \ddagger -monoidal category, and $X \otimes X \xleftarrow{\Delta} X \xrightarrow{\top} I$ a comonoid that induces $ab_x \dashv ad_x : \mathcal{C} \longrightarrow \mathcal{C}[x].$

Then the following conditions are equivalent: (a) $\operatorname{ad}_{x} : \mathcal{C} \longrightarrow \mathcal{C}[x]$ creates $\ddagger : \mathcal{C}[x]^{op} \longrightarrow \mathcal{C}[x]$ such that $\langle x | x \rangle = x^{\ddagger} \circ x = \operatorname{id}_{l}$.

(b)
$$\eta = \Delta \circ \bot$$
 and $\varepsilon = \eta^{\ddagger} = \nabla \circ \top$ realize $X \dashv X$.

(c) $(X \otimes \nabla) \circ (\Delta \otimes X) = \Delta \circ \nabla = (\nabla \otimes X) \circ (X \otimes \Delta)$

where $X \otimes X \xrightarrow{\nabla} X \xleftarrow{\perp} I$ is the induced monoid

$$\begin{array}{rcl} \nabla & = & \Delta^{\ddagger} \\ \bot & = & \top^{\ddagger} \end{array}$$

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Graphical notation

Geometry of abstraction

Geometry of ‡-abstraction

‡-monoidal categories

Quantum objects

‡-monoidal categories

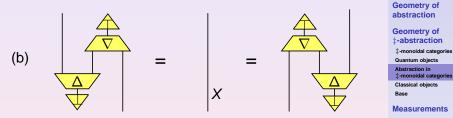
Classical objects Base

Measurements

Future work

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 善臣 … 釣へ(で)

Theorem in pictures



Future work

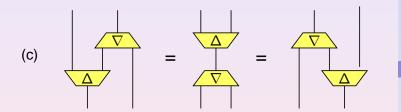
Geometry of

quantum abstraction Dusko Pavlovic

Introduction Graphical notation

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

Theorem in pictures



Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Graphical notation

Geometry of abstraction

Geometry of ‡-abstraction

‡-monoidal categories Quantum objects

Quantum objects

Abstraction in ‡-monoidal categories

Classical objects Base

Measurements

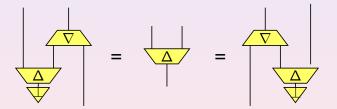
Future work

◆□▶ ◆舂▶ ◆臣▶ ◆臣▶ 臣 のへで

Proof of (b) \Longrightarrow (c)

Lemma 1

If (b) holds then



Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Graphical notation

Geometry of abstraction

Geometry of ‡-abstraction

‡-monoidal categories Quantum objects

Quantum objects

Abstraction in ‡-monoidal categories

Classical objects Base

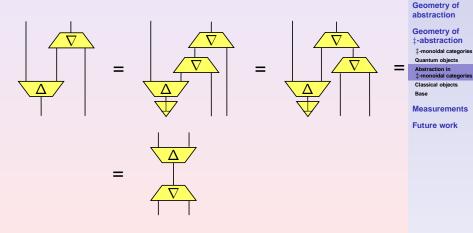
Measurements

Future work

(日)

Proof of (b) \Longrightarrow (c)

Then (c) also holds because



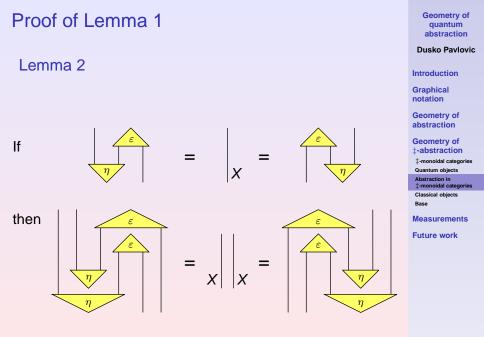
◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ◆○◆

Geometry of

quantum abstraction Dusko Pavlovic

Introduction Graphical notation

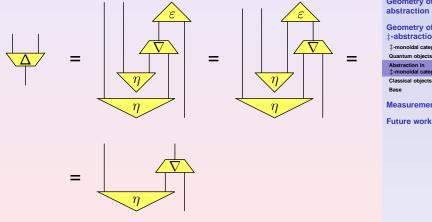
±-monoidal categories



◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Proof of Lemma 1

Using Lemma 2, and the fact that (b) implies $\nabla = \Delta^{\ddagger} = \Delta^*$, we get



▲□▶▲□▶▲□▶▲□▶ □ のQ@

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Graphical notation

Geometry of abstraction

Geometry of ±-abstraction

±-monoidal categories

‡-monoidal categories

Measurements

The message of the proof

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Graphical notation

Geometry of abstraction

Geometry of ‡-abstraction

‡-monoidal categories

Quantum objects

Abstraction in ‡-monoidal categories

Classical objects

Base

Measurements

Future work

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

The message of the proof

There is more to categories than just diagram chasing.

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Graphical notation

Geometry of abstraction

Geometry of ‡-abstraction

‡-monoidal categories

Quantum objects

Abstraction in ‡-monoidal categories

Classical objects

Base

Measurements

Future work

(日)

The message of the proof

There is more to categories than just diagram chasing.

There is also picture chasing.

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Graphical notation

Geometry of abstraction

Geometry of ‡-abstraction

‡-monoidal categories

Quantum objects

Abstraction in ‡-monoidal categories

Classical objects Base

Measurements

Future work

(日)

Definition

A *classical object* in a \ddagger -monoidal category C is a comonoid $X \otimes X \xleftarrow{\Delta} X \xrightarrow{\top} I$ satisfying the equivalent conditions from the preceding theorem.

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Graphical notation

Geometry of abstraction

Geometry of ‡-abstraction

‡-monoidal categories

Quantum objects

‡-monoidal categories

Classical objects

Base

Measurements

Future work

Definition

A *classical object* in a \ddagger -monoidal category C is a comonoid $X \otimes X \xleftarrow{\Delta} X \xrightarrow{\top} I$ satisfying the equivalent conditions from the preceding theorem.

Let \mathcal{C}_{Δ} be the category of classical objects and comonoid homomorphisms in \mathcal{C} .

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Graphical notation

Geometry of abstraction

Geometry of ‡-abstraction

‡-monoidal categories
 Quantum objects
 Abstraction in
 ‡-monoidal categories
 Classical objects

Base

Measurements

Future work

Definition

A *classical object* in a \ddagger -monoidal category C is a comonoid $X \otimes X \xleftarrow{\Delta} X \xrightarrow{\top} I$ satisfying the equivalent conditions from the preceding theorem.

Let \mathcal{C}_{Δ} be the category of classical objects and comonoid homomorphisms in \mathcal{C} .

Question: What is classical about classical objects?

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Graphical notation

Geometry of abstraction

Geometry of ‡-abstraction

‡-monoidal categories
 Quantum objects
 Abstraction in
 ‡-monoidal categories
 Classical objects
 Base
 Measurements

Future work

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Definition

A *classical object* in a \ddagger -monoidal category C is a comonoid $X \otimes X \xleftarrow{\Delta} X \xrightarrow{\top} I$ satisfying the equivalent conditions from the preceding theorem.

Let \mathcal{C}_{Δ} be the category of classical objects and comonoid homomorphisms in \mathcal{C} .

Question: What is classical about classical objects?

classical structure --→ quantum structure

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Graphical notation

Geometry of abstraction

Geometry of ‡-abstraction

‡-monoidal categories
 Quantum objects
 Abstraction in
 ‡-monoidal categories
 Classical objects
 Base

Measurements

Definition

A *classical object* in a \ddagger -monoidal category C is a comonoid $X \otimes X \xleftarrow{\Delta} X \xrightarrow{\top} I$ satisfying the equivalent conditions from the preceding theorem.

Let \mathcal{C}_{Δ} be the category of classical objects and comonoid homomorphisms in \mathcal{C} .

Question: What is classical about classical objects? ► classical structure ---> quantum structure Answer: classical elements = base vectors

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Graphical notation

Geometry of abstraction

Geometry of ‡-abstraction

‡-monoidal categories
 Quantum objects
 Abstraction in
 ‡-monoidal categories
 Classical objects
 Base

Measurements

Definition

A *classical object* in a \ddagger -monoidal category C is a comonoid $X \otimes X \xleftarrow{\Delta} X \xrightarrow{\top} I$ satisfying the equivalent conditions from the preceding theorem.

Let \mathcal{C}_{Δ} be the category of classical objects and comonoid homomorphisms in \mathcal{C} .

Question: What is classical about classical objects?

► classical structure ---> quantum structure

Answer: classical elements = base vectors

► ---> is neither injective or surjective

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Graphical notation

Geometry of abstraction

Geometry of ‡-abstraction

‡-monoidal categories
 Quantum objects
 Abstraction in
 ‡-monoidal categories
 Classical objects
 Base

Measurements

Upshot

The Frobenius condition (c) assures the preservation of the abstraction operation under \ddagger .

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Graphical notation

Geometry of abstraction

Geometry of ‡-abstraction

‡-monoidal categories Quantum objects Abstraction in

‡-monoidal categories

Classical objects

Base

Measurements

Future work

(日)

Upshot

The Frobenius condition (c) assures the preservation of the abstraction operation under \ddagger .

This leads to entanglement.

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Graphical notation

Geometry of abstraction

Geometry of ‡-abstraction

‡-monoidal categories Quantum objects Abstraction in

‡-monoidal categories Classical objects

Base

Measurements

Future work

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Proposition

The vectors C(X) of any classical object X form a \star -algebra.

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Graphical notation

Geometry of abstraction

Geometry of ‡-abstraction

‡-monoidal categories Quantum objects

Abstraction in ‡-monoidal categories

Classical objects

Base

Measurements

Future work

(日)

Proposition

The vectors C(X) of any classical object X form a \star -algebra.

$$egin{array}{rcl} arphi \cdot \psi &=&
abla \circ (arphi \otimes \psi) \ \epsilon &=& ot \ arphi^{\star} &=& arphi^{\ddagger \star} &=& arphi^{st st} \end{array}$$

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Graphical notation

Geometry of abstraction

Geometry of ‡-abstraction

‡-monoidal categories Quantum objects

Abstraction in ‡-monoidal categories

Classical objects

Base

Measurements

Future work

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Definition

Two vectors $\varphi, \psi \in C(A)$ in a \ddagger -monoidal category are *orthonormal* if their inner product is idempotent:

$$\langle \varphi \mid \psi \rangle = \langle \varphi \mid \psi \rangle^2$$

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Graphical notation

Geometry of abstraction

Geometry of ‡-abstraction

‡-monoidal categories Quantum objects Abstraction in ‡-monoidal categories Classical objects

Base

Measurements

Future work

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Definition

Two vectors $\varphi, \psi \in C(A)$ in a \ddagger -monoidal category are *orthonormal* if their inner product is idempotent:

 $\langle \varphi \mid \psi \rangle = \langle \varphi \mid \psi \rangle^2$

Proposition

Any two base vectors are orthonormal. In particular, any two variables in a polynomial category are orthonormal. Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Graphical notation

Geometry of abstraction

Geometry of ‡-abstraction

‡-monoidal categories Quantum objects Abstraction in ‡-monoidal categories Classical objects Base

Measurements

Future work

Definition

A classical object *X* is *standard* if it is (regularly) generated by its base vectors

$$\mathcal{B}(X) = \{\varphi \in \mathcal{C}(X) | (\kappa \mathbf{X}. \ \mathbf{X} \otimes \mathbf{X})\varphi = \varphi \otimes \varphi \\ \land (\kappa \mathbf{X}. \ \mathrm{id}_I)\varphi = \mathrm{id}_I \}$$

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Graphical notation

Geometry of abstraction

Geometry of ‡-abstraction

‡-monoidal categories Quantum objects Abstraction in ‡-monoidal categories Classical objects Base

Measurements

Future work

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Definition

A classical object X is *standard* if it is (regularly) generated by its base vectors

$$\mathcal{B}(X) = \{ \varphi \in \mathcal{C}(X) | (\kappa \mathbf{x} \cdot \mathbf{x} \otimes \mathbf{x}) \varphi = \varphi \otimes \varphi \\ \wedge (\kappa \mathbf{x} \cdot \operatorname{id}_{l}) \varphi = \operatorname{id}_{l} \}$$

in the sense

 $\forall f, g \in \mathcal{C}(X, Y). \ (\forall \varphi \in \mathcal{B}(X). \ f\varphi = g\varphi) \Longrightarrow f = g$

A base is *regular* if $\mathcal{C}(X, Y) \rightarrow \mathcal{C}(Y)^{\mathcal{B}(X)}$ splits.

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Graphical notation

Geometry of abstraction

Geometry of ‡-abstraction

‡-monoidal categories Quantum objects Abstraction in ‡-monoidal categories Classical objects Base

Measurements

Future work

Proposition 1.

All standard classical structures, that an object $X \in C$ may carry, induce the bases with the same number of elements.

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Graphical notation

Geometry of abstraction

Geometry of ‡-abstraction

‡-monoidal categories Quantum objects Abstraction in

‡-monoidal categories
 Classical objects

Base

Measurements

Future work

Proposition 1.

All standard classical structures, that an object $X \in C$ may carry, induce the bases with the same number of elements.

Proposition 2.

Let $X \in C$ be a classical object with a regular base. Then the equipotent regular bases on any $Y \in C$ are in one-to-one correspondence with the unitaries $X \longrightarrow Y$. Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Graphical notation

Geometry of abstraction

Geometry of ‡-abstraction

‡-monoidal categories Quantum objects Abstraction in ‡-monoidal categories Classical objects Base

Measurements

Future work

Definition

A *qubit type* in an arbitrary \ddagger -monoidal category C is a classical object \mathbb{B} with a unitary H of order 2. The induced bases are usually denoted by $|0\rangle$, $|1\rangle$, and $|+\rangle$, $|-\rangle$.

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Graphical notation

Geometry of abstraction

Geometry of ‡-abstraction

‡-monoidal categories Quantum objects Abstraction in ‡-monoidal categories Classical objects Base

Measurements

Future work

◆□▶ ◆□▶ ◆ 三 ◆ 三 ・ つ へ (?)

Definition

A *qubit type* in an arbitrary \ddagger -monoidal category C is a classical object \mathbb{B} with a unitary H of order 2. The induced bases are usually denoted by $|0\rangle$, $|1\rangle$, and $|+\rangle$, $|-\rangle$.

Computing with qubits

A \ddagger -monoidal category with $\mathbb B$ suffices for the basic quantum algorithms.

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Graphical notation

Geometry of abstraction

Geometry of ‡-abstraction

‡-monoidal categories Quantum objects Abstraction in ‡-monoidal categories Classical objects Base

Measurements

Future work

Definition

A *qubit type* in an arbitrary \ddagger -monoidal category C is a classical object \mathbb{B} with a unitary H of order 2. The induced bases are usually denoted by $|0\rangle$, $|1\rangle$, and $|+\rangle$, $|-\rangle$.

Computing with qubits

A $\ddagger\mbox{-monoidal}$ category with $\mathbb B$ suffices for the basic quantum algorithms.

A Klein group of unitaries on \mathbb{B} suffices for all teleportation and dense coding schemes.

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Graphical notation

Geometry of abstraction

Geometry of ‡-abstraction

+-monoidal categories
 Quantum objects
 Abstraction in
 +-monoidal categories
 Classical objects
 Base

Measurements

Future work

Proposition (Coecke, Vicary, P)

Every classical object X in **FHilb** is regular, and $X \cong \mathbb{C}^n$. The classical structure is induced by a base $\mathcal{B}(X) = \{|i\rangle \mid i \le n\}$, with

$$\Delta |i\rangle = |ii\rangle$$

 $\top = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} |i\rangle$

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Graphical notation

Geometry of abstraction

Geometry of ‡-abstraction

‡-monoidal categories
 Quantum objects
 Abstraction in
 ‡-monoidal categories
 Classical objects
 Base

Measurements

Future work

Proposition (Coecke, Vicary, P)

Every classical object X in **FHilb** is regular, and $X \cong \mathbb{C}^n$. The classical structure is induced by a base $\mathcal{B}(X) = \{|i\rangle \mid i \le n\}$, with

$$\Delta |i\rangle = |ii\rangle$$

 $\top = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} |i\rangle$

Moreover,

$\mathsf{FHilb}_\Delta \simeq \mathsf{FSet}$

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Graphical notation

Geometry of abstraction

Geometry of ‡-abstraction

‡-monoidal categories
 Quantum objects
 Abstraction in
 ‡-monoidal categories
 Classical objects
 Base

Measurements

Future work

A \star -algebra in **FHilb** is a C^{\star}-algebra.

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Graphical notation

Geometry of abstraction

Geometry of ‡-abstraction

‡-monoidal categories Quantum objects Abstraction in ‡-monoidal categories Classical objects

Base

Measurements

Future work

A \star -algebra in **FHilb** is a C^{\star} -algebra.

Thus for a classical $X \in \mathbf{FHilb}$,

$$\nabla : \operatorname{FHilb}(X) \longrightarrow \operatorname{FHilb}(X, X)$$
$$\begin{pmatrix} I \xrightarrow{\varphi} X \end{pmatrix} \longmapsto \begin{pmatrix} X \xrightarrow{\varphi \otimes X} X \otimes X \xrightarrow{\nabla} X \end{pmatrix}$$

is a representation of a commutative C^* -algebra.

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Graphical notation

Geometry of abstraction

Geometry of ‡-abstraction

‡-monoidal categories Quantum objects Abstraction in ‡-monoidal categories Classical objects Base

Measurements

Future work

Working through the Gelfand-Naimark duality, we get

$$X \cong \mathbb{C}^n$$

Dusko Pavlovic

Introduction

Graphical notation

Geometry of abstraction

Geometry of ‡-abstraction

‡-monoidal categories
 Quantum objects
 Abstraction in
 ‡-monoidal categories
 Classical objects

Base

Measurements

Future work

◆□▶ ◆母▶ ◆ヨ▶ ◆日 ◆ ◆ ◆

Working through the Gelfand-Naimark duality, we get

$$X \cong \mathbb{C}^n$$

— because the spectrum of a commutative finitely dimensional C^* -algebra is a discrete set *n* of minimal central projections, while the representing spaces are the full matrix algebras $\mathbb{C}(1)$ Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Graphical notation

Geometry of abstraction

Geometry of ‡-abstraction

‡-monoidal categories
 Quantum objects
 Abstraction in
 ‡-monoidal categories
 Classical objects
 Base

Measurements

Future work

Outline

Introduction Quantum programming λ -abstraction
Graphical notation
Geometry of abstraction Abstraction with pictures Consequences
Geometry of ‡-abstraction ‡-monoidal categories Quantum objects Abstraction in ‡-monoidal categ Classical objects Base

Category of measurements

Future work

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Graphical notation

Geometry of abstraction

Geometry of ‡-abstraction

Measurements

Future work

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

Category of measurements

((this was not presented))

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Graphical notation

Geometry of abstraction

Geometry of ‡-abstraction

Measurements

Future work

Outline

Introduction Quantum programming ∂-abstraction
Graphical notation
Geometry of abstraction Abstraction with pictures Consequences
Geometry of ‡-abstraction ‡-monoidal categories Quantum objects Abstraction in ‡-monoidal categories Classical objects Base
Category of measurements

Future work

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Graphical notation

Geometry of abstraction

Geometry of ‡-abstraction

Measurements

Future work

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

Future work

Claim: Simple quantum algorithms have simple categorical semantics.

Task: Implement and analyze quantum algorithms in nonstandard models: network computation, data mining. Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Graphical notation

Geometry of abstraction

Geometry of ‡-abstraction

Measurements

Future work