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Problem of latent semantics
E.g., the Netflix recommender system challenge:

Given a matrix of movie ratings:

"Nemo" "Solaris" "Crash" "Ikiru"

Abby ⋆ ⋆ ⋆⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆⋆

Dusko ⋆⋆ ⋆ ⋆ ⋆ ⋆⋆ ⋆ ⋆ ⋆⋆

Stef ⋆⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

Temra ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆⋆

Luka ⋆ ⋆ ⋆ ⋆ ⋆ ⋆
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Problem of latent semantics
E.g., the Netflix recommender system challenge:

Given a matrix of movie ratings:

"Nemo" "Solaris" "Crash" "Ikiru"

Abby 1 2 −1
Dusko −1 0 −1 1
Stef −1 −2 2 −2

Temra −2 0 1
Luka 2 −2
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Problem of latent semantics
E.g., the Netflix recommender system challenge:

Given a matrix of movie ratings:

"Nemo" "Solaris" "Crash" "Ikiru"

Abby 1 2 −1
Dusko −1 0 −1 1
Stef −1 −2 2 −2

Temra −2 0 1
Luka 2 −2

predict Luka’s ratings for "Solaris" and "Crash".
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Solution by classification

Analyze the matrix minors:

"Nemo" "Solaris" "Crash"

Abby 1 2 −1
Dusko −1 0 −1
Stef −1 −2 2
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Solution by classification

Analyze the matrix minors:

"Nemo" "Crash" "Ikiru"

Dusko −1 0 1
Stef −1 −2 −2

Temra −2 0 1
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Solution by classification

Analyze the matrix minors:

"Nemo" "Solaris" "Crash" "Ikiru"

Dusko −1 0 −1 1
Stef −1 −2 2 −2

to classify the movie styles,
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Solution by classification

. . . and the transposes:

Dusko Stef Temra Luka

"Nemo" −1 −1 −2 2
"Ikiru" 1 −2 1 −2
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. . . and the transposes:

Abby Dusko Stef Temra

"Nemo" 1 −1 −1 −2
"Crash" −1 −1 2 0
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. . . and the transposes:

Abby Dusko Stef

"Nemo" 1 −1 −1
"Solaris" −2 0 −2
"Crash" 1 −1 2
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Solution by classification

. . . and the transposes:

Abby Dusko Stef

"Nemo" 1 −1 −1
"Solaris" −2 0 −2
"Crash" 1 −1 2

to classify viewers’ tastes.



On quantum
statistics in data

analysis

Dusko Pavlovic

Introduction
Problem of latent
semantics

Classification

Latent semantics

Similarity and
prediction

Conclusions and
future work

Solution by classification

. . . and the transposes:

Abby Dusko Stef

"Nemo" 1 −1 −1
"Solaris" −2 0 −2
"Crash" 1 −1 2

to classify viewers’ tastes.

Relate Luka’s taste to other viewer’s tastes.
Extrapolate his future ratings.
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Summary of the approach

Latent semantics
Extract the tastes and the styles from pattern matrices.



On quantum
statistics in data

analysis

Dusko Pavlovic

Introduction
Problem of latent
semantics

Classification

Latent semantics

Similarity and
prediction

Conclusions and
future work

Summary of the approach

Latent semantics
Extract the tastes and the styles from pattern matrices.

Prediction from similarity.
Predict future ratings
from past ratings
of similar movies
by similar users.
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Pattern matrices

Latent semantics is mined from a map

J × U
A−→ R

where

◮ J is a set of objects, or items,

◮ U is a set of properties, or users,

◮ R is a set of values, or ratings.

This map is conveniently presented as a pattern matrix
A = (Aiu)J×U.
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Examples

domain J U R Aiu

text analysis documents terms N occurrence
measurement instances quantities R outcome

user preference items users {0, . . . , 5} rating
topic search authorities hubs N hyperlinks

concept analysys objects attributes {0, 1} satisfaction
elections candidates voters {1, . . . , n} preference
market producers consumers Z deliveries

digital images images pixels [0, 1] intensity
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Pattern algebra
Matrix algebra over a rig

Pattern matrices induce linear operators

J × U
A−→ R

U
A−→ RJ

U = RU B−→ RJ = J

which map tastes x, y . . . ∈ RU to styles a, b . . . ∈ RJ.
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Rigs of ratings

Definition
A rig1 is a structure

R = (R,+, ·, 0, 1)

where

◮ (R,+, 0) and (R, ·, 1) are commutative monoids, with

◮ a(b + c) = ab + ac and a0 = 0.

1"ring without the negative elements"
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Rigs of ratings

Definition
A rig1 is a structure

R = (R,+, ·, 0, 1)

where

◮ (R,+, 0) and (R, ·, 1) are commutative monoids, with

◮ a(b + c) = ab + ac and a0 = 0.

Examples

◮ natural numbers: (N,+, ·, 0, 1)

◮ non-negative reals: (R+,+, ·, 0, 1)

◮ any distributive lattice: (D,∨,∧,⊥,⊤)

1"ring without the negative elements"
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Conjugation

Definition
A rig with conjugation is rig R given with an automorphism
(or antiisomorphism)

(−) : R −→ R

such that

a = a
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Conjugation

Definition
A rig with conjugation is rig R given with an automorphism
(or antiisomorphism)

(−) : R −→ R

such that

a = a

Examples

◮ any complex cone: C+, with a + ib = a − ib

◮ any boolean algebra: B with a = ¬a,

◮ any rig R with a = a.
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Adjunction and inner product

Definition
Over a rig with conjugation R, the operation of adjunction
maps the pattern matrices as follows:

J × U
A−→ R

U × J
A‡−→ R

where the entries of A‡ are

A‡ui = A iu
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Adjunction and inner product

Definition
Over a rig with conjugation R, the operation of adjunction
maps the pattern matrices as follows:

J × U
A−→ R

U × J
A‡−→ R

where the entries of A‡ are

A‡ui = A iu

Inner product
The inner product of vectors x , y ∈ RU is defined

〈x |y〉 = y‡ ◦ x



On quantum
statistics in data

analysis

Dusko Pavlovic

Introduction

Latent semantics
Pattern matrices

Formal Concept Analysis

Latent Semantic Indexing

Concept lattices

Similarity and
prediction

Conclusions and
future work

Isometries and unitaries

Definition
An operator U : U −→ J is an isometry if

〈x |y〉 = 〈Ux |Uy〉

holds for all x , y ∈ U.
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Isometries and unitaries

Definition
An operator U : U −→ J is an isometry if

〈x |y〉 = 〈Ux |Uy〉

holds for all x , y ∈ U.
Equivalently, this means that U‡U = idU.
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Isometries and unitaries

Definition
An operator U : U −→ J is an isometry if

〈x |y〉 = 〈Ux |Uy〉

holds for all x , y ∈ U.
Equivalently, this means that U‡U = idU.

U is a unitary if both U and U‡ are isometries.
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Isometries and unitaries

Definition
An operator U : U −→ J is an isometry if

〈x |y〉 = 〈Ux |Uy〉

holds for all x , y ∈ U.
Equivalently, this means that U‡U = idU.

U is a unitary if both U and U‡ are isometries.

A vector u ∈ U is a unit if 〈u|u〉 = 1.
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Upshot

Similarity is angle: the inner product of unit vectors.
◮ represent tastes by x ∈ RU, 〈x |x〉 = 1
◮ the similarity x , y ∈ RU is 〈x |y〉 .
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Upshot

Similarity is angle: the inner product of unit vectors.
◮ represent tastes by x ∈ RU, 〈x |x〉 = 1
◮ the similarity x , y ∈ RU is 〈x |y〉 .

Concepts are geometric invariants: stalks of unit vectors
◮ preserved by isometries
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Isometric decomposition of pattern operators

Definition
An isometric decomposition of an operator B : U −→ J is in
the form B = W̃B̃Ṽ‡

U B

Ṽ‡

J
W̃‡

Ũ
B̃

Ṽ

J̃
W̃

where Ṽ and W̃ are isometries.
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Spectral decomposition of pattern operators

Definition
The spectral decomposition B = WBV

‡
is minimal among

B ’s isometric decompositions:

U B

V
‡

Ṽ‡

J
W̃‡

Ũ
B̃

Ṽ

V̂‡

J̃

Ŵ‡

W̃

U

V̂

B
J

Ŵ
W
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Spectral decomposition of pattern operators

Definition
The spectral decomposition B = WBV

‡
is minimal among

B ’s isometric decompositions:

U B

V
‡

Ṽ‡

J
W̃‡

Ũ
B̃

Ṽ

V̂‡

J̃

Ŵ‡

W̃

U

V̂

B
J

Ŵ
W

For every isometric decomposition B = W̃B̃Ṽ‡

there is an isometric decomposition B̃ = ŴBV̂‡,
such that W = W̃Ŵ and V = ṼV̂ .
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Formal Concept Analysis

Let the rig of ratings be

R = (2,∨,∧, 0, 1)

where 2 = {0, 1}
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Formal Concept Analysis

Let the rig of ratings be

R = (2,∨,∧, 0, 1)

where 2 = {0, 1}

The conjugation

ı = ¬i

is an automorphism (2,∨,∧, 0, 1) −→ (̃2,∧,∨, 1, 0).
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Formal Concept Analysis

A pattern matrix is a binary relation J × U
A−→ 2.
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Formal Concept Analysis

A pattern matrix is a binary relation J × U
A−→ 2.

The induced linear operators are antitone, so we write

J × U
A−→ R

U
¬A−→ RJ

2U B−→ 2J ¬−→ 2̃J

2̃J ¬̃−→ 2J B‡−→ 2U

where

B(X) = {i ∈ J | ∃u ∈ X . ¬uAi}
B‡(Y) = {u ∈ U | ∀i < Y . uAi}
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Formal Concept Analysis

The adjunction

B(X) ⊆ Y ⇐⇒ X ⊆ B‡(Y)

yields the Galois connection

Y ⊆ ¬B(X) ⇐⇒ X ⊆ B‡(¬Y)

which induces the closure operators

MU = B‡¬̃◦̃¬B(X) = {u ∈ U | ∀i ∈ J. (∀v ∈ X . iAv)⇒ iAu}
MJ = ¬B ◦ B‡(¬̃Y) = {i ∈ J | ∀u ∈ U. (∀j ∈ Y . jAu)⇒ iAu}

where ◦̃ is the matrix multiplication over 2̃:

(P◦̃Q)ik =
∧

j

Pij ∨ Qkl
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Formal Concept Analysis

The lattices of closed sets

U = {X ∈ 2U | MU(X) = X }
J = {Y ∈ 2J | MJ(Y) = Y }

are isomorphic, because they are both isomorphic with

L =
{
〈X ,Y〉 ∈ ℘U ×℘J |¬B(X) = Y ∧

B‡(¬Y) = X
}
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Formal Concept Analysis

The spectral decomposition

2U
¬B

V‡

2J

B‡¬ W‡

U L

V

J
W

is induced by this isomorphism of

◮ the strongest tastes inU, and

◮ the strongest styles in J .
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Example

The pattern matrix

Dusko Stef Temra Luka

"Nemo" −1 −1 −2 2
"Ikiru" 1 −2 1 −2
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Example

. . . induces the relation

Dusko Stef Temra Luka

"Nemo" 0 0 0 1
"Ikiru" 1 0 1 0
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Example

. . . induces the relation

Dusko Stef Temra Luka

"Nemo" 0 0 0 1
"Ikiru" 1 0 1 0

. . . and the taste vectors in the form

x = MUx = B‡ ◦̃ B(x) =



0 1
0 0
0 1
1 0


◦̃
(
1 1 1 0
0 1 0 1

)
◦



x0

x1

x2

x3
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Example

. . . induces the relation

Dusko Stef Temra Luka

"Nemo" 0 0 0 1
"Ikiru" 1 0 1 0

. . . and the taste vectors in the form

x = MUx = B‡ ◦̃ B(x) =



1 1 1 0
0 1 0 0
1 1 1 0
0 1 0 0


◦



x0

x1

x2

x3
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Example

. . . induces the relation

Dusko Stef Temra Luka

"Nemo" 0 0 0 1
"Ikiru" 1 0 1 0

. . . and the tastes in the form



x0

x1

x2

x3


= · · · =



x0 ∨ x1 ∨ x2

x1

x0 ∨ x1 ∨ x2

x1 ∨ x3


=





1
0
1
0


,



0
0
0
1


,



1
1
1
1
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Latent Semantic Indexing

The rig of ratings R = R is the field of real numbers,
the conjugation a = a is trivial,
adjunction A‡ = AT is matrix transposition.
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Latent Semantic Indexing

The rig of ratings R = R is the field of real numbers,
the conjugation a = a is trivial,
adjunction A‡ = AT is matrix transposition.

Spectral decomposition of A : RU −→ RJ is the Singular
Value Decomposition.
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Latent Semantic Indexing

The rig of ratings R = R is the field of real numbers,
the conjugation a = a is trivial,
adjunction A‡ = AT is matrix transposition.

Spectral decomposition of A : RU −→ RJ is the Singular
Value Decomposition.

The styles are the eigenspaces of AA‡, while
the tastes are the eigenspaces of A‡A .
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Concepts as geometric invariants

Summary so far
Isometric decomposition gives concepts (e.g. styles, or
tastes) as invariant sets.
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Concepts as geometric invariants

Summary so far
Isometric decomposition gives concepts (e.g. styles, or
tastes) as invariant sets.

Consequence
Concept lattices are not distributive.
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Concepts as geometric invariants

van Rijsbergen (2004)
The problems of Information Retrieval and Classification
lead to quantum statistics:
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Concepts as geometric invariants

van Rijsbergen (2004)
The problems of Information Retrieval and Classification
lead to quantum statistics:

◮ pure concepts are rays,
mixed concepts density operators,
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Concepts as geometric invariants

van Rijsbergen (2004)
The problems of Information Retrieval and Classification
lead to quantum statistics:

◮ pure concepts are rays,
mixed concepts density operators,

◮ operations are unitary,
not stochastic
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Concepts as geometric invariants

van Rijsbergen (2004)
The problems of Information Retrieval and Classification
lead to quantum statistics:

◮ pure concepts are rays,
mixed concepts density operators,

◮ operations are unitary,
not stochastic

◮ measurable spaces are orthomodular,
not boolean,
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Concepts as geometric invariants

van Rijsbergen (2004)
The problems of Information Retrieval and Classification
lead to quantum statistics:

◮ pure concepts are rays,
mixed concepts density operators,

◮ operations are unitary,
not stochastic

◮ measurable spaces are orthomodular,
not boolean,

◮ probability measures are à la Mackey-Gleason,
not Kolmogorov.
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Problems of using quantum statistics in classification
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Concepts as geometric invariants

Problems of using quantum statistics in classification

◮ no simultaneous spectral decomposition of two or more
pattern matrices

◮ unless they commute with each other
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Concepts as geometric invariants

Problems of using quantum statistics in classification

◮ no simultaneous spectral decomposition of two or more
pattern matrices

◮ unless they commute with each other

◮ concepts may be indistinguishable by measurement
(sampling)

◮ unless they are orthogonal
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Concepts as geometric invariants

Problems of using quantum statistics in classification

◮ no simultaneous spectral decomposition of two or more
pattern matrices

◮ unless they commute with each other

◮ concepts may be indistinguishable by measurement
(sampling)

◮ unless they are orthogonal

◮ concepts may not be copied or deleted by semantical
(isometric) operations

◮ unless derived from a spectral decomposition
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Similarity

Task: Prediction from similarity
Predict future ratings
from past ratings
of similar movies
by similar users.
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Similarity

Task: Prediction from similarity
Predict future ratings
from past ratings
of similar movies
by similar users.

Definition
The similarity of the tastes x , y ∈ RU is the angle of the
styles to which they correspond by A

S(x , y) = 〈x |A‡A |y〉 = 〈Ax |Ay〉
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Deriving future agreement from past similarity

Data

◮ normalized vectors x , y : J −→ R
◮ past preferences

◮ random variables X ,Y : J′ −→ {0, 1}
◮ future approvals
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Deriving future agreement from past similarity

Data

◮ normalized vectors x , y : J −→ R
◮ past preferences

◮ random variables X ,Y : J′ −→ {0, 1}
◮ future approvals

Task

◮ given S(x , y) ∈ [−1, 1]
◮ similarity

◮ predict P(X = Y) ∈ [0, 1]
◮ probability of agreement
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Deriving future agreement from past similarity

Data

◮ normalized vectors x , y : J −→ R
◮ past preferences

◮ random variables X ,Y : J′ −→ {0, 1}
◮ future approvals

Task

◮ given S(x , y) ∈ [−1, 1]
◮ similarity

◮ predict P(X = Y) ∈ [0, 1]
◮ probability of agreement

Try

◮ P(X = Y) = 2S(x , y) − 1
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Lemma

Any three random variables X ,Y ,Z : J′ −→ {0, 1} satisfy

P(X , Z) ≤ P(X , Y) + P(Y , Z) (1)
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Proof

Let WXY : U −→ {0, 1} be the random variable

WXY (i) =


1 if X(i) , Y(i)

0 if X(i) = Y(i)

We claim that

WXZ ≤ WXY + WYZ
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Proof (2)

Towards the contradiction, suppose that there is j ∈ J with

WXZ(j) > WXY (j) + WYZ(j)
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Proof (2)

Towards the contradiction, suppose that there is j ∈ J with

WXZ(j) > WXY (j) + WYZ(j)

This means

WXZ(j) = 1 and

WXY (j) = WYZ(j) = 0
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Proof (2)

Towards the contradiction, suppose that there is j ∈ J with

WXZ(j) > WXY (j) + WYZ(j)

This means

WXZ(j) = 1 and

WXY (j) = WYZ(j) = 0

and thus

X(j) , Z(j) but

X(j) = Y(j) ∧ Y(j) = Z(j)
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Proof (2)

Towards the contradiction, suppose that there is j ∈ J with

WXZ(j) > WXY (j) + WYZ(j)

This means

WXZ(j) = 1 and

WXY (j) = WYZ(j) = 0

and thus

X(j) , Z(j) but

X(j) = Y(j) ∧ Y(j) = Z(j)

which is impossible.
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Proof (3)

Hence

WXZ ≤ WXY + WYZ
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Proof (3)

Hence

WXZ ≤ WXY + WYZ

But since P(X , Y) = E(WXY ), this gives

P(X , Z) ≤ P(X , Y) + P(Y , Z)
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Proposition

Let the past preferences of the tastes x0, x1, y0, y1 be given
as unit vectors x0, x1, y0, y1 ∈ RU.

If the probability of their future agreement is proportional to
the similarity of their past preferences

P(X = Y) = 2S(x , y) − 1

then they must satisfy

S(x0, y1) + S(x1, y1) + S(x1, y0) − S(x0, y0) ≤ 2
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Proof

Since

P(X , Y) = 1 − P(X = Y) and

P(X = Y) =
1 + S(x , y)

2

it follows that

P(X , Y) =
1 − S(x , y)

2



On quantum
statistics in data

analysis

Dusko Pavlovic

Introduction

Latent semantics

Similarity and
prediction
Similarity

Predicting preferences

Conclusions and
future work

Proof

Since

P(X , Y) = 1 − P(X = Y) and

P(X = Y) =
1 + S(x , y)

2

it follows that

P(X , Y) =
1 − S(x , y)

2

From the Lemma it follows that

P(X0 , Y0) ≤



P(X0 , Y1)+

P(Y1 , X1)+

P(X1 , Y0)
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Proof

Since

P(X , Y) = 1 − P(X = Y) and

P(X = Y) =
1 + S(x , y)

2

it follows that

P(X , Y) =
1 − S(x , y)

2

. . . which becomes

1 − S(x0, y0) ≤



1 − S(x0, y1)+

1 − S(x1, y1)+

1 − S(x1, y0)
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Proof

Since

P(X , Y) = 1 − P(X = Y) and

P(X = Y) =
1 + S(x , y)

2

it follows that

P(X , Y) =
1 − S(x , y)

2

. . . and finally

S(x0, y1) + S(x1, y1) + S(x1, y0) − S(x0, y0) ≤ 2
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Corollary

The probability of future agreement cannot be derived by
rescaling past similarity.
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Proof

The vectors

x0 = (1, 0) x1 =

−
1
2
,

√
3

2



y0 = (−1, 0) y1 =


1
2
,

√
3

2



provide a counterexample for the Proposition

S(x0, y1) + S(x1, y1) + S(x1, y0) − S(x0, y0) ≤ 2
1
2

1
2

1
2 (−1)
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Interpretation

Question
Why is it not justified to predict future agreements from past
similarities?
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Interpretation

Question
Why is it not justified to predict future agreements from past
similarities?

Possible explanations

◮ independence assumptions violated

◮ hidden variables: off network interactions
◮ entanglement: inseparable distributions
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Interpretation

Question
Why is it not justified to predict future agreements from past
similarities?

Possible explanations

◮ independence assumptions violated

◮ hidden variables: off network interactions
◮ entanglement: inseparable distributions

◮ dependencies introduced in modeling
◮ joint sampling/measure space does not exist
◮ statistical mixing not justified
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Interpretation

Question
Why is it not justified to predict future agreements from past
similarities?

Possible explanations

◮ independence assumptions violated

◮ hidden variables: off network interactions
◮ entanglement: inseparable distributions

◮ dependencies introduced in modeling
◮ joint sampling/measure space does not exist
◮ statistical mixing not justified

Try

◮ test spaces: probability beyond simplices
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Conclusion

not: "The mysteries of Quantum Statistics
propagate through Ordinary Data"

but: "There are Ordinary Data where Quantum
Statistics applies"
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Conclusion

not: "The mysteries of Quantum Statistics
propagate through Ordinary Data"

but: "There are Ordinary Data where Quantum
Statistics applies"

◮ as soon as the past correspondences do
not warrant joint sampling, or statistical
mixing
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