On quantum statistics in data analysis

Dusko Pavlovic

Introduction

Latent semantics

Similarity and prediction

Conclusions and future work

On quantum statistics in data analysis

Dusko Pavlovic

Kestrel Institute and Oxford University

Quantum Interaction Oxford, March 2008

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Outline

Introduction

Problem of latent semantics Classification

Latent semantics

Pattern matrices Formal Concept Analysis Latent Semantic Indexing Concept lattices

Similarity and prediction

Similarity Predicting preferences

Conclusions and future work

On quantum statistics in data analysis

Dusko Pavlovic

Introduction

Latent semantics

Similarity and prediction

Conclusions and future work

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Outline

Introduction

Problem of latent semantics Classification

Latent semantics

Pattern matrices Formal Concept Analysis Latent Semantic Indexing Concept lattices

Similarity and prediction

Similarity Predicting preferences

Conclusions and future work

On quantum statistics in data analysis

Dusko Pavlovic

Introduction

Problem of latent semantics Classification

Latent semantics

Similarity and prediction

Conclusions and future work

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Problem of latent semantics

E.g., the Netflix recommender system challenge:

Given a matrix of movie ratings:

	"Nemo"	"Solaris"	"Crash"	"lkiru"
Abby	* * **	****	**	
Dusko	**	***	**	* * **
Stef	**	*	****	*
Temra	*		***	* * **
Luka	****			*

On quantum statistics in data analysis

Dusko Pavlovic

Introduction

Problem of latent semantics Classification

Latent semantics

Similarity and prediction

Problem of latent semantics

E.g., the Netflix recommender system challenge:

Given a matrix of movie ratings:

	"Nemo"	"Solaris"	"Crash"	"Ikiru"
Abby	1	2	-1	
Dusko	-1	0	-1	1
Stef	-1	-2	2	-2
Temra	-2		0	1
Luka	2			-2

On quantum statistics in data analysis

Dusko Pavlovic

Introduction

Problem of latent semantics Classification

Latent semantics

Similarity and prediction

Problem of latent semantics

E.g., the Netflix recommender system challenge:

Given a matrix of movie ratings:

	"Nemo"	"Solaris"	"Crash"	"lkiru"
Abby	1	2	-1	
Dusko	-1	0	-1	1
Stef	-1	-2	2	-2
Temra	-2		0	1
Luka	2			-2

predict Luka's ratings for "Solaris" and "Crash".

On quantum statistics in data analysis

Dusko Pavlovic

Introduction

Problem of latent semantics Classification

Latent semantics

Similarity and prediction

Conclusions and future work

・ロト・西ト・山田・山田・山下

Analyze the matrix minors:

	"Nemo"	"Solaris"	"Crash"
Abby	1	2	-1
Dusko	-1	0	-1
Stef	-1	-2	2

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

On quantum statistics in data analysis

Dusko Pavlovic

Introduction

Problem of latent semantics Classification

Latent semantics

Similarity and prediction

Analyze the matrix minors:

	"Nemo"	"Crash"	"lkiru"
Dusko	-1	0	1
Stef	-1	-2	-2
Temra	-2	0	1

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

On quantum statistics in data analysis

Dusko Pavlovic

Introduction

Problem of latent semantics Classification

Latent semantics

Similarity and prediction

Analyze the matrix minors:

	"Nemo"	"Solaris"	"Crash"	"lkiru"
Dusko	-1	0	-1	1
Stef	-1	-2	2	-2

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 </

On quantum statistics in data analysis

Dusko Pavlovic

Introduction

Problem of latent semantics Classification

Latent semantics

Similarity and prediction

Analyze the matrix minors:

	"Nemo"	"Solaris"	"Crash"	"lkiru"
Dusko	-1	0	-1	1
Stef	-1	-2	2	-2

to classify the movie styles,

On quantum statistics in data analysis

Dusko Pavlovic

Introduction

Problem of latent semantics Classification

Latent semantics

Similarity and prediction

Conclusions and future work

ロ><
 4 国>
 4 G>
 <l

... and the transposes:

	Dusko	Stef	Temra	Luka
"Nemo"	-1	-1	-2	2
"lkiru"	1	-2	1	-2

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

On quantum statistics in data analysis

Dusko Pavlovic

Introduction

Problem of latent semantics Classification

Latent semantics

Similarity and prediction

... and the transposes:

	Abby	Dusko	Stef	Temra
"Nemo"	1	-1	-1	-2
"Crash"	-1	-1	2	0

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

On quantum statistics in data analysis

Dusko Pavlovic

Introduction

Problem of latent semantics Classification

Latent semantics

Similarity and prediction

... and the transposes:

	Abby	Dusko	Stef
"Nemo"	1	-1	-1
"Solaris"	-2	0	-2
"Crash"	1	-1	2

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

On quantum statistics in data analysis

Dusko Pavlovic

Introduction

Problem of latent semantics Classification

Latent semantics

Similarity and prediction

... and the transposes:

	Abby	Dusko	Stef
"Nemo"	1	-1	-1
"Solaris"	-2	0	-2
"Crash"	1	-1	2

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

On quantum statistics in data analysis

Dusko Pavlovic

Introduction

Problem of latent semantics Classification

Latent semantics

Similarity and prediction

Conclusions and future work

to classify viewers' tastes.

... and the transposes:

	Abby	Dusko	Stef
"Nemo"	1	-1	-1
"Solaris"	-2	0	-2
"Crash"	1	-1	2

On quantum statistics in data analysis

Dusko Pavlovic

Introduction

Problem of latent semantics Classification

Latent semantics

Similarity and prediction

Conclusions and future work

to classify viewers' tastes.

Relate Luka's taste to other viewer's tastes. Extrapolate his future ratings.

Summary of the approach

Latent semantics

Extract the tastes and the styles from pattern matrices.

On quantum statistics in data analysis

Dusko Pavlovic

Introduction

Problem of latent semantics Classification

Latent semantics

Similarity and prediction

Conclusions and future work

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Summary of the approach

Latent semantics

Extract the tastes and the styles from pattern matrices.

Prediction from similarity.

Predict future ratings from past ratings of similar movies by similar users.

On quantum statistics in data analysis

Dusko Pavlovic

Introduction

Problem of latent semantics Classification

Latent semantics

Similarity and prediction

Conclusions and future work

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ シ へ (?)

Outline

Introduction

Problem of latent semantics Classification

Latent semantics

Pattern matrices Formal Concept Analysis Latent Semantic Indexing Concept lattices

Similarity and prediction

Similarity Predicting preferences

Conclusions and future work

On quantum statistics in data analysis

Dusko Pavlovic

Introduction

Latent semantics

Pattern matrices Formal Concept Analysis Latent Semantic Indexing Concept lattices

Similarity and prediction

Conclusions and future work

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 → のへで

Pattern matrices

Latent semantics is mined from a map

$$J \times U \xrightarrow{A} R$$

where

- J is a set of objects, or items,
- U is a set of properties, or users,
- R is a set of values, or ratings.

This map is conveniently presented as a *pattern matrix* $A = (A_{iu})_{J \times U}$.

On quantum statistics in data analysis

Dusko Pavlovic

Introduction

Latent semantics Pattern matrices Formal Concept Analysis

Latent Semantic Indexing Concept lattices

Similarity and prediction

Conclusions and future work

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ シ へ (?)

Examples

On quantum statistics in data analysis

Dusko Pavlovic

Introduction

Latent semantics

Pattern matrices

Formal Concept Analysis Latent Semantic Indexing Concept lattices

Similarity and prediction

domain	J	U	R	A _{iu}
text analysis	documents	terms	\mathbb{N}	occurrence
measurement	instances	quantities	R	outcome
user preference	items	users	$\{0, \dots, 5\}$	rating
topic search	authorities	hubs	\mathbb{N}	hyperlinks
concept analysys	objects	attributes	{0, 1}	satisfaction
elections	candidates	voters	{1,, <i>n</i> }	preference
market	producers	consumers	\mathbb{Z}	deliveries
digital images	images	pixels	[0, 1]	intensity

Pattern algebra

Matrix algebra over a rig

Pattern matrices induce linear operators

$$\frac{J \times U \xrightarrow{A} R}{U \xrightarrow{\overline{A}} R^{J}}$$
$$\mathcal{U} = R^{U} \xrightarrow{B} R^{J} = \mathcal{J}$$

On quantum statistics in data analysis

Dusko Pavlovic

Introduction

Latent semantics Pattern matrices Formal Concept Analysis Latent Semantic Indexing Concept lattices

Similarity and prediction

Conclusions and future work

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

which map tastes $x, y \ldots \in \mathbb{R}^{U}$ to styles $a, b \ldots \in \mathbb{R}^{J}$.

Rigs of ratings

Definition A *rig*¹ is a structure

$$R = (R, +, \cdot, 0, 1)$$

where

- (R, +, 0) and $(R, \cdot, 1)$ are commutative monoids, with
- a(b + c) = ab + ac and a0 = 0.

On quantum statistics in data analysis

Dusko Pavlovic

Introduction

Latent semantics Pattern matrices

Formal Concept Analysis Latent Semantic Indexing Concept lattices

Similarity and prediction

¹"ring without the negative elements" $\langle \Box \rangle \langle \Box \rangle \langle \Xi \rangle$

Rigs of ratings

Definition A *rig*¹ is a structure

$$R = (R, +, \cdot, 0, 1)$$

where

- (R, +, 0) and $(R, \cdot, 1)$ are commutative monoids, with
- a(b + c) = ab + ac and a0 = 0.

Examples

- natural numbers: $(\mathbb{N}, +, \cdot, 0, 1)$
- non-negative reals: $(\mathbb{R}_+, +, \cdot, 0, 1)$
- any distributive lattice: $(\mathbb{D}, \lor, \land, \bot, \top)$

On quantum statistics in data analysis

Dusko Pavlovic

Introduction

Latent semantics

Formal Concept Analysis Latent Semantic Indexing Concept lattices

Similarity and prediction

Conjugation

Definition

A *rig with conjugation* is rig R given with an automorphism (or antiisomorphism)

$$\overline{(-)}$$
 : $R \longrightarrow R$

such that

$$\overline{a} = a$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

On quantum statistics in data analysis

Dusko Pavlovic

Introduction

Latent semantics

Formal Concept Analysis Latent Semantic Indexing Concept lattices

Similarity and prediction

Conjugation

Definition

A *rig with conjugation* is rig R given with an automorphism (or antiisomorphism)

$$\overline{(-)}$$
 : $R \longrightarrow R$

such that

$$\overline{a} = a$$

Dusko Pavlovic

Introduction

Latent semantics Pattern matrices Formal Concept Analysis

Latent Semantic Indexing Concept lattices

Similarity and prediction

Conclusions and future work

Examples

- any complex cone: \mathbb{C}_+ , with $\overline{a + ib} = a ib$
- any boolean algebra: \mathbb{B} with $\overline{a} = \neg a$,
- any rig R with $\overline{a} = a$.

Adjunction and inner product

Definition

Over a rig with conjugation R, the operation of *adjunction* maps the pattern matrices as follows:

$$\frac{J \times U \xrightarrow{A} R}{U \times J \xrightarrow{A^{\ddagger}} R}$$

where the entries of A^{\ddagger} are

$$A_{ui}^{\ddagger} = \overline{A}_{iu}$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

On quantum statistics in data analysis

Dusko Pavlovic

Introduction

Latent semantics

Pattern matrices

Formal Concept Analysis Latent Semantic Indexing Concept lattices

Similarity and prediction

Adjunction and inner product

Definition

Over a rig with conjugation R, the operation of *adjunction* maps the pattern matrices as follows:

$$\frac{J \times U \xrightarrow{A} R}{U \times J \xrightarrow{A^{\ddagger}} R}$$

where the entries of A^{\ddagger} are

$$A_{ui}^{\ddagger} = \overline{A}_{i\iota}$$

Inner product

The *inner product* of vectors $x, y \in \mathbb{R}^{U}$ is defined

$$\langle x|y\rangle = y^{\ddagger} \circ x$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 の々ぐ

On quantum statistics in data analysis

Dusko Pavlovic

Introduction

Latent semantics

Formal Concept Analysis Latent Semantic Indexing Concept lattices

Similarity and prediction

Definition

An operator $U: \mathcal{U} \longrightarrow \mathcal{J}$ is an *isometry* if

 $\langle x|y\rangle = \langle Ux|Uy\rangle$

holds for all $x, y \in \mathcal{U}$.

On quantum statistics in data analysis

Dusko Pavlovic

Introduction

Latent semantics

Formal Concept Analysis Latent Semantic Indexing Concept lattices

Similarity and prediction

Conclusions and future work

Definition

An operator $U: \mathcal{U} \longrightarrow \mathcal{J}$ is an *isometry* if

 $\langle x|y\rangle = \langle Ux|Uy\rangle$

holds for all $x, y \in \mathcal{U}$. Equivalently, this means that $U^{\ddagger}U = id_{\mathcal{U}}$. On quantum statistics in data analysis

Dusko Pavlovic

Introduction

Latent semantics Pattern matrices

Formal Concept Analysis Latent Semantic Indexing Concept lattices

Similarity and prediction

Conclusions and future work

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

Definition

An operator $U: \mathcal{U} \longrightarrow \mathcal{J}$ is an *isometry* if

 $\langle x|y\rangle = \langle Ux|Uy\rangle$

holds for all $x, y \in \mathcal{U}$. Equivalently, this means that $U^{\ddagger}U = id_{\mathcal{U}}$.

U is a *unitary* if both U and U^{\ddagger} are isometries.

On quantum statistics in data analysis

Dusko Pavlovic

Introduction

Latent semantics

Formal Concept Analysis Latent Semantic Indexing Concept lattices

Similarity and prediction

Conclusions and future work

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Definition

An operator $U: \mathcal{U} \longrightarrow \mathcal{J}$ is an *isometry* if

$$\langle x|y\rangle = \langle Ux|Uy\rangle$$

holds for all $x, y \in \mathcal{U}$. Equivalently, this means that $U^{\ddagger}U = id_{\mathcal{U}}$.

U is a *unitary* if both U and U^{\ddagger} are isometries.

A vector $u \in \mathcal{U}$ is a *unit* if $\langle u | u \rangle = 1$.

On quantum statistics in data analysis

Dusko Pavlovic

Introduction

Latent semantics Pattern matrices

Formal Concept Analysis Latent Semantic Indexing Concept lattices

Similarity and prediction

Conclusions and future work

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Upshot

Similarity is angle: the inner product of unit vectors.

- represent tastes by $x \in \mathbb{R}^{U}$, $\langle x | x \rangle = 1$
- the similarity $x, y \in \mathsf{R}^{\mathsf{U}}$ is $\langle x | y \rangle$.

On quantum statistics in data analysis

Dusko Pavlovic

Introduction

Latent semantics

Pattern matrices

Formal Concept Analysis Latent Semantic Indexing Concept lattices

Similarity and prediction

Conclusions and future work

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ●

Upshot

Similarity is angle: the inner product of unit vectors.

• represent tastes by $x \in \mathbb{R}^{U}$, $\langle x | x \rangle = 1$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• the similarity $x, y \in \mathbb{R}^{U}$ is $\langle x | y \rangle$.

Concepts are geometric invariants: stalks of unit vectors

preserved by isometries

On quantum statistics in data analysis

Dusko Pavlovic

Introduction

Latent semantics

Pattern matrices

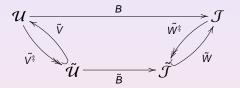
Formal Concept Analysis Latent Semantic Indexing Concept lattices

Similarity and prediction

Isometric decomposition of pattern operators

Definition

An isometric decomposition of an operator $B : \mathcal{U} \longrightarrow \mathcal{J}$ is in the form $B = \widetilde{W}\widetilde{B}\widetilde{V}^{\ddagger}$



where \widetilde{V} and \widetilde{W} are isometries.

On quantum statistics in data analysis

Dusko Pavlovic

Introduction

Latent semantics

Formal Concept Analysis Latent Semantic Indexing Concept lattices

Similarity and prediction

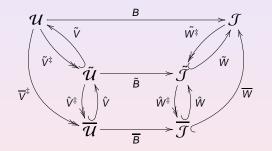
Conclusions and future work

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□ ◆ ◇ ◇ ◇

Spectral decomposition of pattern operators

Definition

The spectral decomposition $B = \overline{WBV}^{\ddagger}$ is minimal among *B*'s isometric decompositions:



▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

On quantum statistics in data analysis

Dusko Pavlovic

Introduction

Latent semantics

Pattern matrices

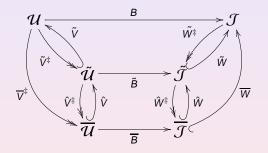
Formal Concept Analysis Latent Semantic Indexing Concept lattices

Similarity and prediction

Spectral decomposition of pattern operators

Definition

The spectral decomposition $B = \overline{WBV}^{\ddagger}$ is minimal among *B*'s isometric decompositions:



For every isometric decomposition $B = \widetilde{W}\widetilde{B}\widetilde{V}^{\ddagger}$ there is an isometric decomposition $\widetilde{B} = \widehat{W}\overline{B}\widetilde{V}^{\ddagger}$, such that $\overline{W} = \widetilde{W}\widehat{W}$ and $\overline{V} = \widetilde{V}\widehat{V}$. On quantum statistics in data analysis

Dusko Pavlovic

Introduction

Latent semantics

Pattern matrices

Formal Concept Analysis Latent Semantic Indexing Concept lattices

Similarity and prediction

Let the rig of ratings be

$$\mathsf{R} = (2, \lor, \land, 0, 1)$$

where $2 = \{0, 1\}$

On quantum statistics in data analysis

Dusko Pavlovic

Introduction

Latent semantics

Pattern matrices Formal Concept Analysis Latent Semantic Indexing Concept lattices

Similarity and prediction

Conclusions and future work

Let the rig of ratings be

$$\mathsf{R} = (2, \lor, \land, 0, 1)$$

where $2 = \{0, 1\}$

The conjugation

$$\overline{\imath} = \neg i$$

is an automorphism $(2, \lor, \land, 0, 1) \longrightarrow (\widetilde{2}, \land, \lor, 1, 0)$.

On quantum statistics in data analysis

Dusko Pavlovic

Introduction

Latent semantics Pattern matrices Formal Concept Analysis Latent Semantic Indexing Concept lattices

Similarity and prediction

A pattern matrix is a binary relation $J \times U \xrightarrow{A} 2$.

On quantum statistics in data analysis

Dusko Pavlovic

Introduction

Latent semantics

Pattern matrices Formal Concept Analysis Latent Semantic Indexing Concept lattices

Similarity and prediction

Conclusions and future work

・ロト・日本・日本・日本・日本・日本

A pattern matrix is a binary relation $J \times U \xrightarrow{A} 2$.

2

The induced linear operators are antitone, so we write

$$\begin{array}{c}
J \times U \xrightarrow{A} R \\
\hline
U \xrightarrow{\neg A} R^{J} \\
\hline
2^{U} \xrightarrow{B} 2^{J} \xrightarrow{\neg} \widetilde{2}^{J} \\
\overbrace{2}^{J} \xrightarrow{\overline{\gamma}} 2^{J} \xrightarrow{B^{\dagger}} 2^{U}
\end{array}$$

On quantum statistics in data analysis

Dusko Pavlovic

Introduction

Latent semantics Pattern matrices Formal Concept Analysis Latent Semantic Indexing Concept lattices

Similarity and prediction

Conclusions and future work

where

$$B(X) = \{i \in J \mid \exists u \in X. \neg uAi\}$$

$$B^{\ddagger}(Y) = \{u \in U \mid \forall i \notin Y. uAi\}$$

The adjunction

$$B(X) \subseteq Y \quad \Longleftrightarrow \quad X \subseteq B^{\ddagger}(Y)$$

yields the Galois connection

$$Y \subseteq \neg B(X) \quad \Longleftrightarrow \quad X \subseteq B^{\ddagger}(\neg Y)$$

which induces the closure operators

$$M^{\mathsf{U}} = B^{\ddagger} \neg \circ \neg B(X) = \{ u \in \mathsf{U} \mid \forall i \in \mathsf{J}. (\forall v \in X. iAv) \Rightarrow iAu \}$$
$$M^{\mathsf{J}} = \neg B \circ B^{\ddagger} (\neg Y) = \{ i \in \mathsf{J} \mid \forall u \in \mathsf{U}. (\forall j \in Y. jAu) \Rightarrow iAu \}$$

where $\tilde{\circ}$ is the matrix multiplication over $\tilde{2}$:

$$(P \tilde{\circ} Q)_{ik} = \bigwedge_{j} P_{ij} \vee Q_{kl}$$

On quantum statistics in data analysis

Dusko Pavlovic

Introduction

Latent semantics Pattern matrices Formal Concept Analysis Latent Semantic Indexing Concept lattices

Similarity and prediction

Conclusions and future work

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

The lattices of closed sets

$$\overline{\mathcal{U}} = \{X \in 2^{\mathsf{U}} \mid M^{\mathsf{U}}(X) = X\}$$

$$\overline{\mathcal{J}} = \{Y \in 2^{\mathsf{J}} \mid M^{\mathsf{J}}(Y) = Y\}$$

are isomorphic, because they are both isomorphic with

$$\mathcal{L} = \left\{ \langle X, Y \rangle \in \mathcal{O} \mathsf{U} \times \mathcal{O} \mathsf{J} \mid \neg B(X) = Y \land \\ B^{\ddagger}(\neg Y) = X \right\}$$

On quantum statistics in data analysis

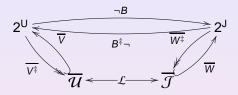
Dusko Pavlovic

Introduction

Latent semantics Pattern matrices Formal Concept Analysis Latent Semantic Indexing Concept lattices

Similarity and prediction

The spectral decomposition



is induced by this isomorphism of

- the strongest tastes in $\overline{\mathcal{U}}$, and
- the strongest styles in $\overline{\mathcal{J}}$.

On quantum statistics in data analysis

Dusko Pavlovic

Introduction

Latent semantics Pattern matrices Formal Concept Analysis Latent Semantic Indexing

Concept lattices

Similarity and prediction

Conclusions and future work

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ シ へ (?)

The pattern matrix

	Dusko	Stef	Temra	Luka
"Nemo"	-1	-1	-2	2
"lkiru"	1	-2	1	-2

On quantum statistics in data analysis

Dusko Pavlovic

Introduction

Latent semantics

Pattern matrices Formal Concept Analysis Latent Semantic Indexing Concept lattices

Similarity and prediction

Conclusions and future work

... induces the relation

	Dusko	Stef	Temra	Luka
"Nemo"	0	0	0	1
"lkiru"	1	0	1	0

On quantum statistics in data analysis

Dusko Pavlovic

Introduction

Latent semantics

Pattern matrices Formal Concept Analysis Latent Semantic Indexing Concept lattices

Similarity and prediction

Conclusions and future work

... induces the relation

	Dusko	Stef	Temra	Luka
"Nemo"	0	0	0	1
"lkiru"	1	0	1	0

... and the taste vectors in the form

$$x = M^{\cup}x = B^{\ddagger} \tilde{\circ} B(x) = \begin{pmatrix} 0 & 1 \\ 0 & 0 \\ 0 & 1 \\ 1 & 0 \end{pmatrix} \tilde{\circ} \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{pmatrix} \circ \begin{pmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

On quantum statistics in data analysis

Dusko Pavlovic

Introduction

Latent semantics

Pattern matrices Formal Concept Analysis Latent Semantic Indexing Concept lattices

Similarity and prediction

Conclusions and future work

◆□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

... induces the relation

	Dusko	Stef	Temra	Luka
"Nemo"	0	0	0	1
"lkiru"	1	0	1	0

... and the taste vectors in the form

$$x = M^{\mathsf{U}}x = B^{\ddagger} \ \tilde{\circ} \ B(x) = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} \circ \begin{pmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

On quantum statistics in data analysis

Dusko Pavlovic

Introduction

Latent semantics

Pattern matrices Formal Concept Analysis Latent Semantic Indexing Concept lattices

Similarity and prediction

Conclusions and future work

◆□▶ ◆□▶ ◆ 三▶ ◆ 三▶ ・ 三 ・ のへぐ

... induces the relation

	Dusko	Stef	Temra	Luka
"Nemo"	0	0	0	1
"lkiru"	1	0	1	0

... and the tastes in the form

$$\begin{pmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \end{pmatrix} = \cdots = \begin{pmatrix} x_0 \lor x_1 \lor x_2 \\ x_1 \\ x_0 \lor x_1 \lor x_2 \\ x_1 \lor x_3 \end{pmatrix} = \begin{cases} \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} \end{cases}$$

On quantum statistics in data analysis

Dusko Pavlovic

Introduction

Latent semantics

Pattern matrices Formal Concept Analysis Latent Semantic Indexing Concept lattices

Similarity and prediction

Conclusions and future work

Latent Semantic Indexing

The rig of ratings $R = \mathbb{R}$ is the field of real numbers, the conjugation $\overline{a} = a$ is trivial, adjunction $A^{\ddagger} = A^{T}$ is matrix transposition.

On quantum statistics in data analysis

Dusko Pavlovic

Introduction

Latent semantics Pattern matrices Formal Concept Analysis Latent Semantic Indexing Concept lattices

Similarity and prediction

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Latent Semantic Indexing

The rig of ratings $R = \mathbb{R}$ is the field of real numbers, the conjugation $\overline{a} = a$ is trivial, adjunction $A^{\ddagger} = A^{T}$ is matrix transposition.

Spectral decomposition of $A : \mathbb{R}^U \longrightarrow \mathbb{R}^J$ is the Singular Value Decomposition.

On quantum statistics in data analysis

Dusko Pavlovic

Introduction

Latent semantics

Pattern matrices Formal Concept Analysis Latent Semantic Indexing Concept lattices

Similarity and prediction

Latent Semantic Indexing

The rig of ratings $R = \mathbb{R}$ is the field of real numbers, the conjugation $\overline{a} = a$ is trivial, adjunction $A^{\ddagger} = A^{T}$ is matrix transposition.

Spectral decomposition of $A : \mathbb{R}^U \longrightarrow \mathbb{R}^J$ is the Singular Value Decomposition.

The styles are the eigenspaces of AA^{\ddagger} , while the tastes are the eigenspaces of $A^{\ddagger}A$.

On quantum statistics in data analysis

Dusko Pavlovic

Introduction

Latent semantics

Pattern matrices Formal Concept Analysis Latent Semantic Indexing Concept lattices

Similarity and prediction

Summary so far

Isometric decomposition gives concepts (e.g. styles, or tastes) as invariant sets.

On quantum statistics in data analysis

Dusko Pavlovic

Introduction

Latent semantics

Pattern matrices Formal Concept Analysis Latent Semantic Indexing Concept lattices

Similarity and prediction

Conclusions and future work

▲□▶▲□▶▲□▶▲□▶ □ ● ● ●

Summary so far

Isometric decomposition gives concepts (e.g. styles, or tastes) as invariant sets.

Consequence

Concept lattices are not distributive.

On quantum statistics in data analysis

Dusko Pavlovic

Introduction

Latent semantics

Pattern matrices Formal Concept Analysis Latent Semantic Indexing Concept lattices

Similarity and prediction

Conclusions and future work

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ シ へ (?)

van Rijsbergen (2004)

The problems of Information Retrieval and Classification lead to quantum statistics:

On quantum statistics in data analysis

Dusko Pavlovic

Introduction

Latent semantics

Pattern matrices Formal Concept Analysis Latent Semantic Indexing Concept lattices

Similarity and prediction

Conclusions and future work

▲□▶▲□▶▲□▶▲□▶ □ ● ● ●

van Rijsbergen (2004)

The problems of Information Retrieval and Classification lead to quantum statistics:

 pure concepts are rays, mixed concepts density operators, On quantum statistics in data analysis

Dusko Pavlovic

Introduction

Latent semantics

Pattern matrices Formal Concept Analysis Latent Semantic Indexing Concept lattices

Similarity and prediction

Conclusions and future work

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ シ へ (?)

van Rijsbergen (2004)

The problems of Information Retrieval and Classification lead to quantum statistics:

- pure concepts are rays, mixed concepts density operators,
- operations are unitary, not stochastic

On quantum statistics in data analysis

Dusko Pavlovic

Introduction

Latent semantics

Pattern matrices Formal Concept Analysis Latent Semantic Indexing Concept lattices

Similarity and prediction

van Rijsbergen (2004)

The problems of Information Retrieval and Classification lead to quantum statistics:

- pure concepts are rays, mixed concepts density operators,
- operations are unitary, not stochastic
- measurable spaces are orthomodular, not boolean,

On quantum statistics in data analysis

Dusko Pavlovic

Introduction

Latent semantics

Pattern matrices Formal Concept Analysis Latent Semantic Indexing Concept lattices

Similarity and prediction

Conclusions and future work

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

van Rijsbergen (2004)

The problems of Information Retrieval and Classification lead to quantum statistics:

- pure concepts are rays, mixed concepts density operators,
- operations are unitary, not stochastic
- measurable spaces are orthomodular, not boolean,
- probability measures are à la Mackey-Gleason, not Kolmogorov.

On quantum statistics in data analysis

Dusko Pavlovic

Introduction

Latent semantics

Pattern matrices Formal Concept Analysis Latent Semantic Indexing Concept lattices

Similarity and prediction

Conclusions and future work

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Problems of using quantum statistics in classification

On quantum statistics in data analysis

Dusko Pavlovic

Introduction

Latent semantics

Pattern matrices Formal Concept Analysis Latent Semantic Indexing Concept lattices

Similarity and prediction

Conclusions and future work

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□ ◆ ◇ ◇ ◇

Problems of using quantum statistics in classification

- no simultaneous spectral decomposition of two or more pattern matrices
 - unless they commute with each other

On quantum statistics in data analysis

Dusko Pavlovic

Introduction

Latent semantics

Pattern matrices Formal Concept Analysis Latent Semantic Indexing Concept lattices

Similarity and prediction

Conclusions and future work

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ シ へ (?)

Problems of using quantum statistics in classification

- no simultaneous spectral decomposition of two or more pattern matrices
 - unless they commute with each other
- concepts may be indistinguishable by measurement (sampling)
 - unless they are orthogonal

On quantum statistics in data analysis

Dusko Pavlovic

Introduction

Latent semantics

Pattern matrices Formal Concept Analysis Latent Semantic Indexing Concept lattices

Similarity and prediction

Conclusions and future work

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ シ へ (?)

Problems of using quantum statistics in classification

- no simultaneous spectral decomposition of two or more pattern matrices
 - unless they commute with each other
- concepts may be indistinguishable by measurement (sampling)
 - unless they are orthogonal
- concepts may not be copied or deleted by semantical (isometric) operations
 - unless derived from a spectral decomposition

On quantum statistics in data analysis

Dusko Pavlovic

Introduction

Latent semantics

Pattern matrices Formal Concept Analysis Latent Semantic Indexing Concept lattices

Similarity and prediction

Outline

Introduction

Problem of latent semantics Classification

Latent semantics

Pattern matrices Formal Concept Analysis Latent Semantic Indexing Concept lattices

Similarity and prediction

Similarity Predicting preferences

Conclusions and future work

On quantum statistics in data analysis

Dusko Pavlovic

Introduction

Latent semantics

Similarity and prediction

Similarity Predicting preferences

Conclusions and future work

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 → のへで

Similarity

Task: Prediction from similarity

Predict future ratings from past ratings of similar movies by similar users. On quantum statistics in data analysis

Dusko Pavlovic

Introduction

Latent semantics

Similarity and prediction

Similarity

Predicting preferences

Conclusions and future work

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ シ へ (?)

Similarity

Task: Prediction from similarity

Predict future ratings from past ratings of similar movies by similar users.

Definition

The *similarity* of the tastes $x, y \in \mathbb{R}^{U}$ is the angle of the styles to which they correspond by *A*

$$\mathsf{S}(x,y) \;\;=\;\; \langle x | A^{\ddagger} A | y
angle = \langle A x | A y
angle$$

On quantum statistics in data analysis

Dusko Pavlovic

Introduction

Latent semantics

Similarity and prediction

Similarity

Predicting preferences

Conclusions and future work

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 → �� ♡ � (?)

Deriving future agreement from past similarity

Data

- normalized vectors $x, y : J \longrightarrow R$
 - past preferences
- random variables $X, Y : J' \longrightarrow \{0, 1\}$
 - future approvals

On quantum statistics in data analysis

Dusko Pavlovic

Introduction

Latent semantics

Similarity and prediction

Similarity

Predicting preferences

Conclusions and future work

・ロト・日本・ キャー キャー ひゃく

Deriving future agreement from past similarity

Data

- normalized vectors $x, y : J \longrightarrow R$
 - past preferences
- random variables $X, Y : J' \longrightarrow \{0, 1\}$
 - future approvals

Task

- given $S(x, y) \in [-1, 1]$
 - similarity
- predict $P(X = Y) \in [0, 1]$
 - probability of agreement

On quantum statistics in data analysis

Dusko Pavlovic

Introduction

Latent semantics

Similarity and prediction

Similarity

Predicting preferences

Conclusions and future work

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Deriving future agreement from past similarity

Data

- normalized vectors $x, y : J \longrightarrow R$
 - past preferences
- random variables $X, Y : J' \longrightarrow \{0, 1\}$
 - future approvals

Task

- given $S(x, y) \in [-1, 1]$
 - similarity
- predict $P(X = Y) \in [0, 1]$
 - probability of agreement

Try

•
$$P(X = Y) = 2S(x, y) - 1$$

On quantum statistics in data analysis

Dusko Pavlovic

Introduction

Latent semantics

Similarity and prediction

Similarity

Predicting preferences

Conclusions and future work

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Lemma

On quantum statistics in data analysis

Dusko Pavlovic

Introduction

prediction Similarity

Latent semantics Similarity and

Any three random variables $X, Y, Z : J' \longrightarrow \{0, 1\}$ satisfy

$$\mathsf{P}(X \neq Z) \leq \mathsf{P}(X \neq Y) + \mathsf{P}(Y \neq Z)$$
(1)

Predicting preferences Conclusions and future work

(日)

Proof

Let W_{XY} : U \longrightarrow {0, 1} be the random variable

$$W_{XY}(i) = \begin{cases} 1 & \text{if } X(i) \neq Y(i) \\ 0 & \text{if } X(i) = Y(i) \end{cases}$$

We claim that

$$W_{XZ} \leq W_{XY} + W_{YZ}$$

Dusko Pavlovic

Introduction

Latent semantics

Similarity and prediction

Similarity

Predicting preferences

Conclusions and future work

(日)

Proof (2)

Towards the contradiction, suppose that there is $j \in J$ with

 $W_{XZ}(j) > W_{XY}(j) + W_{YZ}(j)$

On quantum statistics in data analysis

Dusko Pavlovic

Introduction

Latent semantics

Similarity and prediction

Similarity

Predicting preferences

Conclusions and future work

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ●

Proof (2)

Towards the contradiction, suppose that there is $j \in J$ with

$$W_{XZ}(j) > W_{XY}(j) + W_{YZ}(j)$$

This means

 $W_{XZ}(j) = 1$ and $W_{XY}(j) = W_{YZ}(j) = 0$ On quantum statistics in data analysis

Dusko Pavlovic

Introduction

Latent semantics

Similarity and prediction

Similarity

Predicting preferences

Proof (2)

Towards the contradiction, suppose that there is $j \in J$ with

$$W_{XZ}(j) > W_{XY}(j) + W_{YZ}(j)$$

This means

 $W_{XZ}(j) = 1$ and $W_{XY}(j) = W_{YZ}(j) = 0$

and thus

 $X(j) \neq Z(j)$ but $X(i) = Y(i) \land Y(i) = Z(i)$

On quantum statistics in data analysis

Dusko Pavlovic

Introduction

Latent semantics

Similarity and prediction

Similarity

Predicting preferences

Conclusions and future work

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Proof (2)

Towards the contradiction, suppose that there is $j \in J$ with

$$W_{XZ}(j) > W_{XY}(j) + W_{YZ}(j)$$

This means

 $W_{XZ}(j) = 1$ and $W_{XY}(j) = W_{YZ}(j) = 0$

and thus

$$X(j) \neq Z(j) \text{ but}$$
$$X(j) = Y(j) \land Y(j) = Z(j)$$

which is impossible.

On quantum statistics in data analysis

Dusko Pavlovic

Introduction

Latent semantics

Similarity and prediction

Similarity

Predicting preferences

Conclusions and future work

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 → のへで

Proof (3)

Hence

 $W_{XZ} \leq W_{XY} + W_{YZ}$

On quantum statistics in data analysis

Dusko Pavlovic

Introduction

Latent semantics

Similarity and prediction

Similarity

Predicting preferences

Conclusions and future work

(日)

Proof (3)

Hence

$$W_{XZ} \leq W_{XY} + W_{YZ}$$

But since $P(X \neq Y) = E(W_{XY})$, this gives

 $P(X \neq Z) \leq P(X \neq Y) + P(Y \neq Z)$

On quantum statistics in data analysis

Dusko Pavlovic

Introduction

Latent semantics

Similarity and prediction

Similarity

Predicting preferences

Conclusions and future work

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ●

Proposition

Let the past preferences of the tastes x_0, x_1, y_0, y_1 be given as unit vectors $x_0, x_1, y_0, y_1 \in \mathbb{R}^U$.

If the probability of their future agreement is proportional to the similarity of their past preferences

$$\mathsf{P}(X=Y) = 2\mathsf{S}(x,y)-1$$

then they must satisfy

$$S(x_0, y_1) + S(x_1, y_1) + S(x_1, y_0) - S(x_0, y_0) \le 2$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

On quantum statistics in data analysis

Dusko Pavlovic

Introduction

Latent semantics

Similarity and prediction

Similarity

Predicting preferences

Since

$$P(X \neq Y) = 1 - P(X = Y)$$
 and
 $P(X = Y) = \frac{1 + S(x, y)}{2}$

it follows that

$$\mathsf{P}(X \neq Y) = \frac{1 - \mathsf{S}(x, y)}{2}$$

On quantum statistics in data analysis

Dusko Pavlovic

Introduction

Latent semantics

Similarity and prediction

Similarity

◆□▶ ◆□▶ ◆ 三▶ ◆ 三▶ 三三 - のへぐ

Predicting preferences

Since

$$P(X \neq Y) = 1 - P(X = Y) \text{ and}$$
$$P(X = Y) = \frac{1 + S(x, y)}{2}$$

it follows that

$$\mathsf{P}(X \neq Y) = \frac{1 - \mathsf{S}(x, y)}{2}$$

From the Lemma it follows that

$$P(X_{0} \neq Y_{0}) \leq \begin{cases} P(X_{0} \neq Y_{1}) + \\ P(Y_{1} \neq X_{1}) + \\ P(X_{1} \neq Y_{0}) \end{cases}$$

On quantum statistics in data analysis

Dusko Pavlovic

Introduction

Latent semantics

Similarity and prediction

Similarity

Predicting preferences

Since

$$P(X \neq Y) = 1 - P(X = Y) \text{ and}$$
$$P(X = Y) = \frac{1 + S(x, y)}{2}$$

it follows that

$$\mathsf{P}(X \neq Y) = \frac{1 - \mathsf{S}(x, y)}{2}$$

... which becomes

$$1 - S(x_0, y_0) \leq \begin{cases} 1 - S(x_0, y_1) + \\ 1 - S(x_1, y_1) + \\ 1 - S(x_1, y_0) \end{cases}$$

On quantum statistics in data analysis

Dusko Pavlovic

Introduction

Latent semantics

Similarity and prediction

Similarity

Predicting preferences

Conclusions and future work

Since

$$P(X \neq Y) = 1 - P(X = Y) \text{ and}$$
$$P(X = Y) = \frac{1 + S(x, y)}{2}$$

it follows that

$$\mathsf{P}(X \neq Y) = \frac{1 - \mathsf{S}(x, y)}{2}$$

... and finally

$$S(x_0, y_1) + S(x_1, y_1) + S(x_1, y_0) - S(x_0, y_0) \le 2$$

On quantum statistics in data analysis

Dusko Pavlovic

Introduction

Latent semantics

Similarity and prediction

Similarity

Predicting preferences

Conclusions and future work

Corollary

The probability of future agreement cannot be derived by rescaling past similarity.

On quantum statistics in data analysis

Dusko Pavlovic

Introduction

Latent semantics

Similarity and prediction

Similarity

Predicting preferences

Conclusions and future work

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

The vectors

$$x_0 = (1,0) x_1 = \left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$$
$$y_0 = (-1,0) y_1 = \left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$$

provide a counterexample for the Proposition

◆□▶ ◆□▶ ◆ 三▶ ◆ 三▶ 三三 - のへぐ

Predicting preferences

Outline

Introduction

Problem of latent semantics Classification

Latent semantics

Pattern matrices Formal Concept Analysis Latent Semantic Indexing Concept lattices

Similarity and prediction

Similarity Predicting preferences

Conclusions and future work

On quantum statistics in data analysis

Dusko Pavlovic

Introduction

Latent semantics

Similarity and prediction

Conclusions and future work

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ シ へ (?)

Question

Why is it not justified to predict future agreements from past similarities?

On quantum statistics in data analysis

Dusko Pavlovic

Introduction

Latent semantics

Similarity and prediction

Conclusions and future work

Question

Why is it not justified to predict future agreements from past similarities?

Possible explanations

- independence assumptions violated
 - hidden variables: off network interactions
 - entanglement: inseparable distributions

On quantum statistics in data analysis

Dusko Pavlovic

Introduction

Latent semantics

Similarity and prediction

Conclusions and future work

Question

Why is it not justified to predict future agreements from past similarities?

Possible explanations

- independence assumptions violated
 - hidden variables: off network interactions
 - entanglement: inseparable distributions
- dependencies introduced in modeling
 - joint sampling/measure space does not exist
 - statistical mixing not justified

On quantum statistics in data analysis

Dusko Pavlovic

Introduction

Latent semantics

Similarity and prediction

Question

Why is it not justified to predict future agreements from past similarities?

Possible explanations

- independence assumptions violated
 - hidden variables: off network interactions
 - entanglement: inseparable distributions
- dependencies introduced in modeling
 - joint sampling/measure space does not exist
 - statistical mixing not justified

Try

test spaces: probability beyond simplices

On quantum statistics in data analysis

Dusko Pavlovic

Introduction

Latent semantics

Similarity and prediction

Conclusion

On quantum statistics in data analysis

Dusko Pavlovic

Introduction

Latent semantics

Similarity and prediction

Conclusions and future work

not: "The mysteries of Quantum Statistics propagate through Ordinary Data"

but: "There are Ordinary Data where Quantum Statistics applies"

Conclusion

not: "The mysteries of Quantum Statistics propagate through Ordinary Data"

- but: "There are Ordinary Data where Quantum Statistics applies"
 - as soon as the past correspondences do not warrant joint sampling, or statistical mixing

On quantum statistics in data analysis

Dusko Pavlovic

Introduction

Latent semantics

Similarity and prediction