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What this paper is about (sort of)

Distributional semantics!
@ “You shall know a word by the company it keeps”.
@ Words are vectors in high dimensional space.

@ Quantitative picture of semantics.

Compositional distributional/distributed semantics!
@ Going from word to sentence.
@ Defining composition operations for distributed representations.

@ Doing cool things with distributed sentence representations.
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Tensors in Compositional Distributional Semantics

Tensors are everywhere:
@ Baroni and Zamparelli: adjectives are matrices;
@ Zanzotto et al.: generalised matrix-based vector addition;
@ Coecke et al. and Grefenstette et al.: everything is a tensor;
@ Socher et al.: recursive matrix-vector models.

@ etc.

Why?
Because tensor representations of words give word representations the power
of functions.
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What this paper is about (really)

This paper is about:
@ Doing logic with tensors.

@ Doing more logic with tensors.

This paper is also about:

@ Not doing logic with tensors.
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Why you should care

@ Not quite sure what the “semantics of distributional semantics” are.
@ Relation between distributional accounts and logic is murky.

@ Should there be one semantic representation to rule them all?

Spoiler Alert
Don't put all your (semantic) eggs in one (mathematical) basket. J
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Tensors: a quick and dirty overview

@ Order 1 — vector:

76A:§:C,-V3,->

@ Order 2 — matrix:

MeA®B=> C} 3 ®b
i

@ Order 3 — cuboid:

ReAeBaC=Y Chaobog
ijk
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Background

Tensor contraction

Tensor contractions:
@ Order 1 x order 1: inner product (dot product)
@ Order 2 x order 1: matrix-vector multiplication
@ Order 2 x order 2: matrix multiplication

Tensor contraction is nothing fancier than a generalisation of these
operations to any order.

@ Order n x order m: sum through shared indices.

Order n x order m contraction yields tensor of order n + m — 2.
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Background

Tensors as functions

Tensor-linear map isomorphism (Bourbaki, 1985; Lee, 1997)

For any multilinear map f : V; — ... — V/,, there is a tensor
Tf € V,®...® Vi such that for any W e Vi,...,Vo_1 € V,_1, the
following equality holds

— — fo = —
f(vl,...,v,,,l):T X vy X ... X Vp1

Tensors therefore act as functions, with tensor contraction as function
application.
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Tensors as fU nctions

Properties of linear maps propagate to tensors
o fog™ Tfx T8
o Tl (Tf)_l
o flax)=af(x)=ZaTf x T* =T/ xaT*
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Public Service Announcement

Friends don't let friends implement tensors
@ http://www.wlandry.net/Projects/FTensor (C++)
@ http://www.sandia.gov/~tgkolda/TensorToolbox/ (MATLAB)

@ numpy.array + numpy.einsum (Python)
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Cuboid Tensors

A simplified notation for m x n x p order-3 tensors (cuboids):

a1 ...  dinl ailp

amil  --- dmnl amip
Tensor-vector multiplication:

Vi aii11 <o dinl ailp

Vp dmil  --- dmnl amip
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Simple Logical Models

A logical model (D, B, {fp,};, {fr. },):
@ D, the set of logical atoms (domain),
e B ={T, L}, the set of truth values,
o {fp, : D — B};, the set of unary truth functions (predicates),

o {fg : D x D — B}, the set of binary truth functions (binary
relations).
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Logical Models with Tensors

Representing (D, B, {fp,}i, {fg;};) with tensors:

@ The set of one-hot vectors in D = R52¢(P) models the logical atoms
of D. For example:

1 0 0
D={a bc} =a=|[0 | b=|1]|c=|0
0 0 1

@ T and L form a basis of B = R?:
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Predicate/Relation Tensors

Logical Models with Tensors

Unary truth functions fp, : D — B translate to linear maps fF’,,_ :D — B,
which we represent as tensors Mp, € B® D.

_( Tifxe{a b} 110
Eg fP(X)_{ 1 otherwise = MP_[O 0 1]

[N
O =
=)
| IS
o =
Il
| —
[N
—_—
Il
—

Pa:Mpxa:[

E. Grefenstette (University of Oxford) Simulating Logical Calculi with Tensors *SEM 2013 14 / 26



Examples

Binary truth functions fg, : D x D — B become linear maps
f,{,j : D x D — B, represented as tensors Mg, € B& D ® D.

[ Tif(xy)e{(a c), (b, b)}
Eg fr(x,y) = { 1 otherwise
 M._]O0 0 1[0 1 0f0 00O
R=11 1 0/1 0 1|1 1 1

Rba = (Mg x b) x a

B {001010000} (1) L
1 1 01 0 1|1 1 1 0 0
1
01 0 0
[V o v f=lT]-e
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Logical Operations with Tensors

Logical operations: fop, : BXx B =+ B =T?*: B B®B.

Step 1: Express truth tables in unary component form by fixing truth value
of first argument.
Unary components:

Sy 1 0 . 10 1
X X 0 1 X > Xl 1 0
1 1 0 0
XHT'[OO] w—)L.[ll]
Example:
a‘b‘a/\b
T T T al| anb
T L 1 = T| b—b
1| T 1 1| b— L
1| L 1
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Logical Operations

Logical Operations with Tensors

Step 2: Combine both unary components into a cuboid.

In our example, to produce the cuboid tensor for conjunction T:

a anb
Tone - m[L o]0 0]
1| b— L1

If the operation is unary (e.g. negation), it is trivially equivalent to its
unary component.
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Logical Operations with Tensors

We can verify that the truth table is reproduced:

1 0 0 0
A _ A _
TxT—{Ol] TxJ_—[ll]
1 0 1 0
[OI}XT_T [OI]XL_L
0 0 0 0
[II}XT_[I 1]><J__J_
a‘b‘ anb
TIT|(MT')xT)xT=T
T L (T'xT)xL=1
LTI (MxL)xT=1
Ll L] (TYxLl)xL=1
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Logical Operations with Tensors

The full set of connectives:

(=T =

o=l
RS
o= [4 )3
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Logical Operations

Logical Operations with Tensors

Some general properties:
@ Formalism works for countably infinite domains.

@ Predicates, relations, truth values and domain individuals can be
probabilistic. For example:

0.8 0.2
Ed_is_awake = ' spartacus = | 0.5
0.2 0.3

M._ |03 00 09/10 10 05|07 02 00
R=107 10 0100 00 05|03 08 1.0

@ Probability normalisation is conserved by logical connectives.
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Initial Limitations

This tensor-based approach does not support quantifiers:
@ To quantify, we need to talk about sets of atoms.
@ Semantic representations are reduced to truth values.
@ No “book-keeping".

@ We need to track which predicates apply to which atoms.
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Overcoming Limitations

We can solve some of these problems by defining a second tensor logic:

@ The sum of a set of domain element vectors represents the set of
those domain elements. For example:

1 0 1
a=|0|c=|0 = {a,c}=1]0
0 1 1

@ We define set union and intersection using non-linear component-wise
min and max maps. For sets U and V modelled as vectors u and v:

UnNV = min(u, v) UUV = max(u, v)

@ Union and intersection model disjunction and conjunction over
set-vectors, respectively.
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Overcoming Limitations

@ Predicates and relations become filters, modelling functions
fp : P(D) — P(D):

a b c

Me =11 2 1.b 1-¢

a 0 O
= Fp= 0 b O
0 0 ¢

@ Applying a filter Fp to a set s returns the subset Fp x s for which the
predicate holds.
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Defining Quantifiers

o We define quantifiers as follows:
e Bound variables, e.g. x are the vector 1.

o Let X and Y be sets obtained by composition (e.g. X = Fp X x).

e Universal quantification:
Vx(X —=Y) = forall(X,Y)= {
e Existential quantification:

Ix(X) = exists(X):{
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if X =min(X,Y)
otherwise

if |X|>0
otherwise
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A Tale of Two Tensor Logics

Pros:
@ Both of these approaches are related.
@ Can go back and forth between predicate and filter tensors.
@ Together, they simulate a fairly full predicate logic.
Cons:
@ Can't use both approaches at the same time.
@ Quantifiers require non-linearity.
@ No scope.
°

Models, not syntactic inference.
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Conclusions

Conclusions

@ You can simulate quite a lot of logic with tensors.
@ Nice properties for some kinds of probabilistic logics.

@ There are some aspects of logic tensor models don't capture well.

@ Not everything can be done in just the distributional setting:
e Make use of non-linearities?

e Use distributional semantics in addition to “real” logical models?
e Stick around for the next talk. ..

Thank you for listening!
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