
Towards a Formal Distributional Semantics:
Simulating Logical Calculi with Tensors

E. Grefenstette

University of Oxford

*SEM 2013

E. Grefenstette (University of Oxford) Simulating Logical Calculi with Tensors *SEM 2013 1 / 26

Introduction

What this paper is about (sort of)

Distributional semantics!

“You shall know a word by the company it keeps”.

Words are vectors in high dimensional space.

Quantitative picture of semantics.

Compositional distributional/distributed semantics!

Going from word to sentence.

Defining composition operations for distributed representations.

Doing cool things with distributed sentence representations.

E. Grefenstette (University of Oxford) Simulating Logical Calculi with Tensors *SEM 2013 2 / 26

Introduction

Tensors in Compositional Distributional Semantics

Tensors are everywhere:

Baroni and Zamparelli: adjectives are matrices;

Zanzotto et al.: generalised matrix-based vector addition;

Coecke et al. and Grefenstette et al.: everything is a tensor;

Socher et al.: recursive matrix-vector models.

etc.

Why?

Because tensor representations of words give word representations the power
of functions.

E. Grefenstette (University of Oxford) Simulating Logical Calculi with Tensors *SEM 2013 3 / 26

Introduction

What this paper is about (really)

This paper is about:

Doing logic with tensors.

Doing more logic with tensors.

This paper is also about:

Not doing logic with tensors.

E. Grefenstette (University of Oxford) Simulating Logical Calculi with Tensors *SEM 2013 4 / 26

Introduction

Why you should care

Not quite sure what the “semantics of distributional semantics” are.

Relation between distributional accounts and logic is murky.

Should there be one semantic representation to rule them all?

Spoiler Alert

Don’t put all your (semantic) eggs in one (mathematical) basket.

E. Grefenstette (University of Oxford) Simulating Logical Calculi with Tensors *SEM 2013 5 / 26

Background

Tensors: a quick and dirty overview

Order 1 — vector:
−→v ∈ A =

∑
i

C v
i
−→ai

Order 2 — matrix:

M ∈ A⊗ B =
∑
ij

CM
ij
−→ai ⊗

−→
bj

Order 3 — cuboid:

R ∈ A⊗ B ⊗ C =
∑
ijk

CR
ijk
−→ai ⊗

−→
bj ⊗−→ck

E. Grefenstette (University of Oxford) Simulating Logical Calculi with Tensors *SEM 2013 6 / 26

Background

Tensor contraction

Tensor contractions:

Order 1 × order 1: inner product (dot product)

Order 2 × order 1: matrix-vector multiplication

Order 2 × order 2: matrix multiplication

Tensor contraction is nothing fancier than a generalisation of these
operations to any order.

Order n × order m: sum through shared indices.

Order n × order m contraction yields tensor of order n + m − 2.

E. Grefenstette (University of Oxford) Simulating Logical Calculi with Tensors *SEM 2013 7 / 26

Background

Tensors as functions

Tensor-linear map isomorphism (Bourbaki, 1985; Lee, 1997)

For any multilinear map f : V1 → . . .→ Vn there is a tensor
T f ∈ Vn ⊗ . . .⊗ V1 such that for any −→v1 ∈ V1, . . . ,

−−→vn−1 ∈ Vn−1, the
following equality holds

f (−→v1 , . . . ,
−−→vn−1) = T f ×−→v1 × . . .×−−→vn−1

Tensors therefore act as functions, with tensor contraction as function
application.

E. Grefenstette (University of Oxford) Simulating Logical Calculi with Tensors *SEM 2013 8 / 26

Background

Tensors as functions

Properties of linear maps propagate to tensors

f ◦ g ∼= T f × T g

f −1 ∼=
(
T f
)−1

f (αx) = αf (x) ∼= αT f × T x = T f × αT x

E. Grefenstette (University of Oxford) Simulating Logical Calculi with Tensors *SEM 2013 9 / 26

Background

Public Service Announcement

Friends don’t let friends implement tensors

http://www.wlandry.net/Projects/FTensor (C++)

http://www.sandia.gov/~tgkolda/TensorToolbox/ (MATLAB)

numpy.array + numpy.einsum (Python)

E. Grefenstette (University of Oxford) Simulating Logical Calculi with Tensors *SEM 2013 10 / 26

http://www.wlandry.net/Projects/FTensor
http://www.sandia.gov/~tgkolda/TensorToolbox/

Background

Cuboid Tensors

A simplified notation for m × n × p order-3 tensors (cuboids):

T =

 a111 . . . a1n1 a11p . . . a1np
...

. . .
... . . .

...
. . .

...
am11 . . . amn1 am1p . . . amnp


Tensor-vector multiplication:

T ×

 v1

...
vp

 = v1

 a111 . . . a1n1

...
. . .

...
am11 . . . amn1

+ . . .+ vp

 a11p . . . a1np

...
. . .

...
am1p . . . amnp



E. Grefenstette (University of Oxford) Simulating Logical Calculi with Tensors *SEM 2013 11 / 26

Predicate/Relation Tensors

Simple Logical Models

A logical model (D, B, {fPi
}i , {fRj

}j):

D, the set of logical atoms (domain),

B = {>, ⊥}, the set of truth values,

{fPi
: D → B}i , the set of unary truth functions (predicates),

{fRj
: D ×D → B}j , the set of binary truth functions (binary

relations).

E. Grefenstette (University of Oxford) Simulating Logical Calculi with Tensors *SEM 2013 12 / 26

Predicate/Relation Tensors

Logical Models with Tensors

Representing (D, B, {fPi
}i , {fRj

}j) with tensors:

The set of one-hot vectors in D ∼= Rsize(D) models the logical atoms
of D. For example:

D = {a, b, c} ⇒ a =

 1
0
0

 b =

 0
1
0

 c =

 0
0
1


> and ⊥ form a basis of B ∼= R2:

> =

[
1
0

]
⊥ =

[
0
1

]

E. Grefenstette (University of Oxford) Simulating Logical Calculi with Tensors *SEM 2013 13 / 26

Predicate/Relation Tensors

Logical Models with Tensors

Unary truth functions fPi
: D → B translate to linear maps f ′Pi

: D → B,
which we represent as tensors MPi

∈ B ⊗ D.

E.g. fP(x) =

{
> if x ∈ {a, b}
⊥ otherwise

⇒ MP =

[
1 1 0
0 0 1

]

Pa = MP × a =

[
1 1 0
0 0 1

] 1
0
0

 =

[
1
0

]
= >

E. Grefenstette (University of Oxford) Simulating Logical Calculi with Tensors *SEM 2013 14 / 26

Predicate/Relation Tensors

Examples

Binary truth functions fRj
: D ×D → B become linear maps

f ′Rj
: D × D → B, represented as tensors MRj

∈ B ⊗ D ⊗ D.

E.g. fR(x , y) =

{
> if (x , y) ∈ {(a, c), (b, b)}
⊥ otherwise

⇒ MR =

[
0 0 1 0 1 0 0 0 0
1 1 0 1 0 1 1 1 1

]

Rba = (MR × b)× a

=

[0 0 1 0 1 0 0 0 0
1 1 0 1 0 1 1 1 1

] 0
1
0

 1
0
0


=

[
0 1 0
1 0 1

] 1
0
0

 =

[
0
1

]
= ⊥

E. Grefenstette (University of Oxford) Simulating Logical Calculi with Tensors *SEM 2013 15 / 26

Logical Operations

Logical Operations with Tensors

Logical operations: fop : B × B → B ⇒ Top : B ⊗ B ⊗ B.

Step 1: Express truth tables in unary component form by fixing truth value
of first argument.
Unary components:

x 7→ x :

[
1 0
0 1

]
x 7→ ¬x :

[
0 1
1 0

]
x 7→ > :

[
1 1
0 0

]
x 7→ ⊥ :

[
0 0
1 1

]
Example:

a b a ∧ b

> > >
> ⊥ ⊥
⊥ > ⊥
⊥ ⊥ ⊥

⇒
a a ∧ b

> b 7→ b
⊥ b 7→ ⊥

E. Grefenstette (University of Oxford) Simulating Logical Calculi with Tensors *SEM 2013 16 / 26

Logical Operations

Logical Operations with Tensors

Step 2: Combine both unary components into a cuboid.

In our example, to produce the cuboid tensor for conjunction T∧:

a a ∧ b

> b 7→ b
⊥ b 7→ ⊥

⇒ T∧ =

[
1 0 0 0
0 1 1 1

]

If the operation is unary (e.g. negation), it is trivially equivalent to its
unary component.

E. Grefenstette (University of Oxford) Simulating Logical Calculi with Tensors *SEM 2013 17 / 26

Logical Operations

Logical Operations with Tensors

We can verify that the truth table is reproduced:

T∧ ×> =

[
1 0
0 1

]
T∧ ×⊥ =

[
0 0
1 1

]
[

1 0
0 1

]
×> = >

[
1 0
0 1

]
×⊥ = ⊥

[
0 0
1 1

]
×> =

[
0 0
1 1

]
×⊥ = ⊥

a b a ∧ b

> > (T∧ ×>)×> = >
> ⊥ (T∧ ×>)×⊥ = ⊥
⊥ > (T∧ ×⊥)×> = ⊥
⊥ ⊥ (T∧ ×⊥)×⊥ = ⊥

E. Grefenstette (University of Oxford) Simulating Logical Calculi with Tensors *SEM 2013 18 / 26

Logical Operations

Logical Operations with Tensors

The full set of connectives:

(¬) 7→ T¬ =

[
0 1
1 0

]
(∨) 7→ T∨ =

[
1 1 1 0
0 0 0 1

]
(∧) 7→ T∧ =

[
1 0 0 0
0 1 1 1

]
(→) 7→ T→ =

[
1 0 1 1
0 1 0 0

]

E. Grefenstette (University of Oxford) Simulating Logical Calculi with Tensors *SEM 2013 19 / 26

Logical Operations

Logical Operations with Tensors

Some general properties:

Formalism works for countably infinite domains.

Predicates, relations, truth values and domain individuals can be
probabilistic. For example:

Ed is awake =

[
0.8
0.2

]
spartacus =

 0.2
0.5
0.3



MR =

[
0.3 0.0 0.9 1.0 1.0 0.5 0.7 0.2 0.0
0.7 1.0 0.1 0.0 0.0 0.5 0.3 0.8 1.0

]
Probability normalisation is conserved by logical connectives.

E. Grefenstette (University of Oxford) Simulating Logical Calculi with Tensors *SEM 2013 20 / 26

Quantification

Initial Limitations

This tensor-based approach does not support quantifiers:

To quantify, we need to talk about sets of atoms.

Semantic representations are reduced to truth values.

No “book-keeping”.

We need to track which predicates apply to which atoms.

E. Grefenstette (University of Oxford) Simulating Logical Calculi with Tensors *SEM 2013 21 / 26

Quantification

Overcoming Limitations

We can solve some of these problems by defining a second tensor logic:

The sum of a set of domain element vectors represents the set of
those domain elements. For example:

a =

 1
0
0

 c =

 0
0
1

 ⇒ {a, c} =

 1
0
1


We define set union and intersection using non-linear component-wise
min and max maps. For sets U and V modelled as vectors u and v:

U ∩ V ⇒ min(u, v) U ∪ V ⇒ max(u, v)

Union and intersection model disjunction and conjunction over
set-vectors, respectively.

E. Grefenstette (University of Oxford) Simulating Logical Calculi with Tensors *SEM 2013 22 / 26

Quantification

Overcoming Limitations

Predicates and relations become filters, modelling functions
fP : P(D)→ P(D):

MP =

[
a b c

1− a 1− b 1− c

]
⇒ FP =

 a 0 0
0 b 0
0 0 c


Applying a filter FP to a set s returns the subset FP × s for which the
predicate holds.

E. Grefenstette (University of Oxford) Simulating Logical Calculi with Tensors *SEM 2013 23 / 26

Quantification

Defining Quantifiers

We define quantifiers as follows:

Bound variables, e.g. x are the vector 1.
Let X and Y be sets obtained by composition (e.g. X = FP × x).
Universal quantification:

∀x .(X → Y) ⇒ forall(X, Y) =

{
> if X = min(X, Y)
⊥ otherwise

Existential quantification:

∃x .(X) ⇒ exists(X) =

{
> if |X| > 0
⊥ otherwise

E. Grefenstette (University of Oxford) Simulating Logical Calculi with Tensors *SEM 2013 24 / 26

Conclusions

A Tale of Two Tensor Logics

Pros:

Both of these approaches are related.

Can go back and forth between predicate and filter tensors.

Together, they simulate a fairly full predicate logic.

Cons:

Can’t use both approaches at the same time.

Quantifiers require non-linearity.

No scope.

Models, not syntactic inference.

E. Grefenstette (University of Oxford) Simulating Logical Calculi with Tensors *SEM 2013 25 / 26

Conclusions

Conclusions

You can simulate quite a lot of logic with tensors.

Nice properties for some kinds of probabilistic logics.

There are some aspects of logic tensor models don’t capture well.

Not everything can be done in just the distributional setting:

Make use of non-linearities?
Use distributional semantics in addition to “real” logical models?
Stick around for the next talk. . .

Thank you for listening!

E. Grefenstette (University of Oxford) Simulating Logical Calculi with Tensors *SEM 2013 26 / 26

	Introduction
	Background
	Predicate/Relation Tensors
	Logical Operations
	Quantification
	Conclusions

