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Abstract

With the increasing empirical success of
distributional models of compositional se-
mantics, it is timely to consider the types
of textual logic that such models are ca-
pable of capturing. In this paper, we ad-
dress shortcomings in the ability of cur-
rent models to capture logical operations
such as negation. As a solution we pro-
pose a tripartite formulation for a continu-
ous vector space representation of seman-
tics and subsequently use this representa-
tion to develop a formal compositional no-
tion of negation within such models.

1 Introduction

Distributional models of semantics characterize
the meanings of words as a function of the words
they co-occur with (Firth, 1957). These models,
mathematically instantiated as sets of vectors in
high dimensional vector spaces, have been applied
to tasks such as thesaurus extraction (Grefenstette,
1994; Curran, 2004), word-sense discrimination
(Schütze, 1998), automated essay marking (Lan-
dauer and Dumais, 1997), and so on.

During the past few years, research has shifted
from using distributional methods for modelling
the semantics of words to using them for mod-
elling the semantics of larger linguistic units such
as phrases or entire sentences. This move from
word to sentence has yielded models applied to
tasks such as paraphrase detection (Mitchell and
Lapata, 2008; Mitchell and Lapata, 2010; Grefen-
stette and Sadrzadeh, 2011; Blacoe and Lapata,
2012), sentiment analysis (Socher et al., 2012;
Hermann and Blunsom, 2013), and semantic re-
lation classification (ibid.). Most efforts approach
the problem of modelling phrase meaning through
vector composition using linear algebraic vector
operations (Mitchell and Lapata, 2008; Mitchell

and Lapata, 2010; Zanzotto et al., 2010), matrix
or tensor-based approaches (Baroni and Zampar-
elli, 2010; Coecke et al., 2010; Grefenstette et al.,
2013; Kartsaklis et al., 2012), or through the use
of recursive auto-encoding (Socher et al., 2011;
Hermann and Blunsom, 2013) or neural-networks
(Socher et al., 2012). On the non-compositional
front, Erk and Padó (2008) keep word vectors sep-
arate, using syntactic information from sentences
to disambiguate words in context; likewise Turney
(2012) treats the compositional aspect of phrases
and sentences as a matter of similarity measure
composition rather than vector composition.

These compositional distributional approaches
often portray themselves as attempts to recon-
cile the empirical aspects of distributional seman-
tics with the structured aspects of formal seman-
tics. However, they in fact only principally co-opt
the syntax-sensitivity of formal semantics, while
mostly eschewing the logical aspects.

Expressing the effect of logical operations in
high dimensional distributional semantic models
is a very different task than in boolean logic. For
example, whereas predicates such as ‘red’ are seen
in predicate calculi as functions mapping elements
of some set Mred to > (and all other domain ele-
ments to ⊥), in compositional distributional mod-
els we give the meaning of ‘red’ a vector-like
representation, and devise some combination op-
eration with noun representations to obtain the
representation for an adjective-noun pair. Under
the logical view, negation of a predicate therefore
yields a new truth-function mapping elements of
the complement of Mred to > (and all other do-
main elements to⊥), but the effect of negation and
other logical operations in distributional models is
not so sharp: we expect the representation for “not
red” to remain close to other objects of the same
domain of discourse (i.e. other colours) while be-
ing sufficiently different from the representation of
‘red’ in some manner. Exactly how textual logic



would best be represented in a continuous vector
space model remains an open problem.

In this paper we propose one possible formu-
lation for a continuous vector space based repre-
sentation of semantics. We use this formulation
as the basis for providing an account of logical
operations for distributional models. In particu-
lar, we focus on the case of negation and how it
might work in higher dimensional distributional
models. Our formulation separates domain, value
and functional representation in such a way as to
allow negation to be handled naturally. We ex-
plain the linguistic and model-related impacts of
this mode of representation and discuss how this
approach could be generalised to other semantic
functions.

In Section 2, we provide an overview of work
relating to that presented in this paper, covering
the integration of logical elements in distributional
models, and the integration of distributional el-
ements in logical models. In Section 3, we in-
troduce and argue for a tripartite representation
in distributional semantics, and discuss the issues
relating to providing a linguistically sensible no-
tion of negation for such representations. In Sec-
tion 4, we present matrix-vector models similar to
that of Socher et al. (2012) as a good candidate
for expressing this tripartite representation. We
argue for the elimination of non-linearities from
such models, and thus show that negation cannot
adequately be captured. In Section 5, we present
a short analysis of the limitation of these matrix-
vector models with regard to the task of modelling
non-boolean logical operations, and present an im-
proved model bypassing these limitations in Sec-
tion 6. Finally, in Section 7, we conclude by sug-
gesting future work which will extend and build
upon the theoretical foundations presented in this
paper.

2 Motivation and Related Work

The various approaches to combining logic with
distributional semantics can broadly be put into
three categories: those approaches which use
distributional models to enhance existing logical
tools; those which seek to replicate logic with the
mathematical constructs of distributional models;
and those which provide new mathematical defini-
tions of logical operations within distributional se-
mantics. The work presented in this paper is in the
third category, but in this section we will also pro-

vide a brief overview of related work in the other
two in order to better situate the work this paper
will describe in the literature.

Vector-assisted logic The first class of ap-
proaches seeks to use distributional models of
word semantics to enhance logic-based models of
textual inference. The work which best exempli-
fies this strand of research is found in the efforts of
Garrette et al. (2011) and, more recently, Beltagy
et al. (2013). This line of research converts logi-
cal representations obtained from syntactic parses
using Bos’ Boxer (Bos, 2008) into Markov Logic
Networks (Richardson and Domingos, 2006), and
uses distributional semantics-based models such
as that of Erk and Padó (2008) to deal with issues
polysemy and ambiguity.

As this class of approaches deals with improv-
ing logic-based models rather than giving a dis-
tributional account of logical function words, we
view such models as orthogonal to the effort pre-
sented in this paper.

Logic with vectors The second class of ap-
proaches seeks to integrate boolean-like logical
operations into distributional semantic models us-
ing existing mechanisms for representing and
composing semantic vectors. Coecke et al. (2010)
postulate a mathematical framework generalising
the syntax-semantic passage of Montague Gram-
mar (Montague, 1974) to other forms of syntac-
tic and semantic representation. They show that
the parses yielded by syntactic calculi satisfying
certain structural constraints can be canonically
mapped to vector combination operations in dis-
tributional semantic models. They illustrate their
framework by demonstrating how the truth-value
of sentences can be obtained from the combina-
tion of vector representations of words and multi-
linear maps standing for logical predicates and re-
lations. They furthermore give a matrix interpre-
tation of negation as a ‘swap’ matrix which in-
verts the truth-value of vectorial sentence repre-
sentations, and show how it can be embedded in
sentence structure.

Recently, Grefenstette (2013) showed that the
examples from this framework could be extended
to model a full quantifier-free predicate logic using
tensors of rank 3 or lower. In parallel, Socher et
al. (2012) showed that propositional logic can be
learned using tensors of rank 2 or lower (i.e. only
matrices and vectors) through the use of non-linear



activation functions in recursive neural networks.
The work of Coecke et al. (2010) and Grefen-

stette (2013) limits itself to defining, rather than
learning, distributional representations of logical
operators for distributional models that simulate
logic, and makes no pretense to the provision of
operations which generalise to higher-dimensional
distributional semantic representations. As for
the non-linear approach of Socher et al. (2012),
we will discuss, in Section 4 below, the limita-
tions with this model with regard to the task of
modelling logic for higher dimensional represen-
tations.

Logic for vectors The third and final class of
approaches is the one the work presented here
belongs to. This class includes attempts to de-
fine representations for logical operators in high
dimensional semantic vector spaces. Such ap-
proaches do not seek to retrieve boolean logic and
truth values, but to define what logical operators
mean when applied to distributional representa-
tions. The seminal work in this area is found in the
work of Widdows and Peters (2003), who define
negation and other logical operators algebraically
for high dimensional semantic vectors. Negation,
under this approach, is effectively a binary rela-
tion rather than a unary relation: it expresses the
semantics of statements such as ‘A NOT B’ rather
than merely ‘NOT B’, and does so by projecting
the vector for A into the orthogonal subspace of
the vector for B. This approach to negation is use-
ful for vector-based information retrieval models,
but does not necessarily capture all the aspects of
negation we wish to take into consideration, as
will be discussed in Section 3.

3 Logic in text

In order to model logical operations over semantic
vectors, we propose a tripartite meaning represen-
tation, which combines the separate and distinct
treatment of domain-related and value-related as-
pects of semantic vectors with a domain-driven
syntactic functional representation. This is a unifi-
cation of various recent approaches to the problem
of semantic representation in continuous distribu-
tional semantic modelling (Socher et al., 2012;
Turney, 2012; Hermann and Blunsom, 2013).

We borrow from Socher et al. (2012) and oth-
ers (Baroni and Zamparelli, 2010; Coecke et al.,
2010) the idea that the information words refer to
is of two sorts: first the semantic content of the

word, which can be seen as the sense or reference
to the concept the word stands for, and is typi-
cally modelled as a semantic vector; and second,
the function the word has, which models the effect
the word has on other words it combines with in
phrases and sentences, and is typically modelled
as a matrix or higher-order tensor. We borrow
from Turney (2012) the idea that the semantic as-
pect of a word should not be modelled as a single
vector where everything is equally important, but
ideally as two or more vectors (or, as we do here,
two or more regions of a vector) which stand for
the aspects of a word relating to its domain, and
those relating to its value.

We therefore effectively suggest a tripartite rep-
resentation of the semantics of words: a word’s
meaning is modelled by elements representing its
value, domain, and function, respectively.

The tripartite representation We argue that the
tripartite representation suggested above allows us
to explicitly capture several aspects of semantics.
Further, while there may be additional distinct as-
pects of semantics, we argue that this is a minimal
viable representation.

First of all, the differentiation between do-
main and value is useful for establishing similar-
ity within subspaces of meaning. For instance,
the words blue and red share a common domain
(colours) while having very different values. We
hypothesise that making this distinction explicit
will allow for the definition of more sophisticated
and fine-grained semantics of logical operations,
as discussed below. Although we will represent
domain and value as two regions of a vector, there
is no reason for these not to be treated as separate
vectors at the time of comparison, as done by Tur-
ney (2012).

Through the third part, the functional repre-
sentation, we capture the compositional aspect of
semantics: the functional representation governs
how a term interacts with its environment. In-
spired by the distributional interpretation (Baroni
and Zamparelli, 2010; Coecke et al., 2010) of
syntactically-paramatrized semantic composition
functions from Montogovian semantics (Mon-
tague, 1974), we will also assume the function part
of our representation to be parametrized princi-
pally by syntax and domain rather than value. The
intuition behind taking domain into account in ad-
dition to syntactic class being that all members of
a domain largely interact with their environment



in the same fashion.

Modeling negation The tripartite representation
proposed above allows us to define logical opera-
tions in more detail than competing approaches.
To exemplify this, we focus on the case of nega-
tion.

We define negation for semantic vectors to be
the absolute complement of a term in its domain.
This implies that negation will not affect the do-
main of a term but only its value. Thus, blue and
not blue are assumed to share a common domain.
We call this naive form of negation the inversion
of a term A, which we idealise as the partial inver-
sion Ainv of the region associated with the value
of the word in its vector representation A.
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Figure 1: The semantic representations of a word
W , its inverse W inv and its negation ¬W . The
domain part of the representation remains un-
changed, while the value part will partially be in-
verted (inverse), or inverted and scaled (negation)
with 0 < µ < 1. The (separate) functional repre-
sentation also remains unchanged.

Additionally, we expect negation to have a
diminutive effect. This diminutive effect is best
exemplified in the case of sentiment: good is more
positive than not bad, even though good and bad
are antonyms of each other. By extension not not
good and not not not bad end up somewhere in the
middle—qualitative statements still, but void of
any significant polarity. To reflect this diminutive
effect of negation and double negation commonly
found in language, we define the idealised diminu-
tive negation ¬A of a semantic vectorA as a scalar
inversion over a segment of the value region of its
representation with the scalar µ : 0 < µ < 1, as
shown in Figure 1.

As we defined the functional part of our rep-
resentation to be predominately parametrized by
syntax and domain, it will remain constant under
negation and inversion.

4 A general matrix-vector model

Having discussed, above, how the vector compo-
nent of a word can be partitioned into domain and
value, we now turn to the partition between se-
mantic content and function. A good candidate for
modelling this partition would be a dual-space rep-
resentation similar to that of Socher et al. (2012).
In this section, we show that this sort of represen-
tation is not well adapted to the modelling of nega-
tion.

Models using dual-space representations have
been proposed in several recent publications, no-
tably in Turney (2012) and Socher et al. (2012).
We use the class of recursive matrix-vector mod-
els as the basis for our investigation; for a detailed
introduction see the MV-RNN model described in
Socher et al. (2012).

We begin by describing composition for a gen-
eral dual-space model, and apply this model to the
notion of compositional logic in a tripartite repre-
sentation discussed earlier. We identify the short-
comings of the general model and subsequently
discuss alternative composition models and mod-
ifications that allow us to better capture logic in
vector space models of meaning.

Assume a basic model of compositionality for
such a tripartite representation as follows. Each
term is encoded by a semantic vector v captur-
ing its domain and value, as well as a matrix M
capturing its function. Thus, composition consists
of two separate operations to learn semantics and
function of the composed term:

vp = fv(va,vb,Ma,Mb) (1)

Mp = fM (Ma,Mb)

As we defined the functional representation to be
parametrized by syntax and domain, its compo-
sition function does not require va and vb as in-
puts, with all relevant information already being
contained in Ma,Mb. In the case of Socher et al.
(2012) these functions are as follows:

Mp =WM

[
Ma

Mb

]
(2)

vp = g

(
Wv

[
Mavb
Mbva

])
(3)

where g is a non-linearity.

4.1 The question of non-linearities
While the non-linearity g could be equipped with
greater expressive power, such as in the boolean



logic experiment in Socher et al. (2012)), the aim
of this paper is to place the burden of composition-
ality on the atomic representations instead. For
this reason we treat g as an identity function, and
WM , Wv as simple additive matrices in this inves-
tigation, by setting

g = I Wv =WM = [I I]

where I is an identity matrix. This simplification
is justified for several reasons.

A simple non-linearity such as the commonly
used hyperbolic tangent or sigmoid function will
not add sufficient power to overcome the issues
outlined in this paper. Only a highly complex non-
linear function would be able to satisfy the require-
ments for vector space based logic as discussed
above. Such a function would defeat the point
however, by pushing the “heavy-lifting” from the
model structure into a separate function.

Furthermore, a non-linearity effectively en-
codes a scattergun approach: While it may have
the power to learn a desired behaviour, it similarly
has a lot of power to learn undesired behaviours
and side effects. From a formal perspective it
would therefore seem more prudent to explicitly
encode desired behaviour in a model’s structure
rather than relying on a non-linearity.

4.2 Negation

We have outlined our formal requirements for
negation in the previous section. From these re-
quirements we can deduce four equalities, con-
cerning the effect of negation and double nega-
tion on the semantic representation and function
of a term. The matrices Jµ and Jν (illustrated in
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Figure 2: A partially scaled and inverted identity
matrix Jµ. Such a matrix can be used to trans-
form a vector storing a domain and value repre-
sentation into one containing the same domain but
a partially inverted value, such as W and ¬W de-
scribed in Figure 1.

Figure 2) describe a partially scaled and inverted
identity matrix, where 0 < µ, ν < 1.

fv(not, a) = Jµva (4)

fM (not, a) ≈Ma (5)

fv(not, fv(not, a)) = JνJµva (6)

fM (not, fM (not, a)) ≈Ma (7)

Based on our assumption about the constant do-
main and interaction across negation, we can re-
place the approximate equality with a strict equal-
ity in Equations 5 and 7. Further, we assume that
both Ma 6= I and Ma 6= 0, i.e. that A has a spe-
cific and non-zero functional representation. We
make a similar assumption for the semantic repre-
sentation va 6= 0.

Thus, to satisfy the equalities in Equations 4
through 7, we can deduce the values of vnot and
Mnot as discussed below.

Value and Domain in Negation Under the sim-
plifications of the model explained earlier, we
know that the following is true:

fv(a, b) = g

(
Wv

[
Mavb
Mbva

])
= I

([
I I
] [Mavb
Mbva

])
=Mavb +Mbva

I.e. the domain and value representation of a par-
ent is the sum of the two Mv multiplications of
its children. The matrix Wv could re-weight this
addition, but that would not affect the rest of this
analysis.

Given the idea that the domain stays constant
under negation and that a part of the value is in-
verted and scaled, we further know that these two
equations hold:

∀a ∈ A : fv(not, a) = Jµva

∀a ∈ A : fv(not, fv(not, a)) = JνJµva

Assuming that both semantic and functional
representation across all A varies and is non-zero,
these equalities imply the following conditions for
the representation of not:

Mnot = Jµ = Jν

vnot = 0

These two equations suggest that the term not has
no inherent value (vnot = 0), but merely acts as a
function, inverting part of another terms semantic
representation (Mnot = Jµ).



Functional Representation in Negation We
can apply the same method to the functional rep-
resentation. Here, we know that:

fM (a, b) =WM

[
Ma

Mb

]
=
[
I I
] [Ma

Mb

]
=Ma +Mb

Further, as defined in our discussion of nega-
tion, we require the functional representation to
remain unchanged under negation:

∀a ∈ A : fM (not, a) =Ma

∀a ∈ A : fM (not, fM (not, a)) =Ma

These requirements combined leave us to con-
clude that Mnot = 0. Combined with the result
from the first part of the analysis, this causes a
contradiction:

Mnot = 0

Mnot = Jµ

=⇒ Jµ = 0 

This demonstrates that the MV-RNN as de-
scribed in this paper is not capable of modelling
semantic logic according to the principles we out-
lined. The fact that we would require Mnot = 0
further supports the points made earlier about the
non-linearities and setting WM to

[
I I
]
. Even a

specific WM and non-linearity would not be able
to ensure that the functional representation stays
constant under negation given a non-zero Mnot.

Clearly, any other complex semantic represen-
tation would suffer from the same issue here—the
failure of double-negation to revert a representa-
tion to its (diminutive) original.

5 Analysis

The issue identified with the MV-RNN style mod-
els described above extends to a number of other
models of vector spaced compositionality. It can
be viewed as a problem of uninformed composi-
tion caused by a composition function that fails to
account for syntax and thus for scope.

Of course, identifying the scope of negation is a
hard problem in its own right—see e.g. the *SEM
2012 shared task (Morante and Blanco, 2012).
However, at least for simple cases, we can deduce
scope by considering the parse tree of a sentence:

S

VP

ADJP

JJ

blue

RB

not

VBZ

is

NP

N

car

Det

This

Figure 3: The parse tree for This car is not blue,
highlighting the limited scope of the negation.

If we consider the parse tree for this car is not blue,
it is clear that the scope of the negation expressed
includes the colour but not the car (Figure 3).

While the MV-RNN model in Socher et al.
(2012) incorporates parse trees to guide the order
of its composition steps, it uses a single composi-
tion function across all steps. Thus, the functional
representation of not will to some extent propagate
outside of its scope, leading to a vector capturing
something that is not blue, but also not quite a car.

There are several possibilities for addressing
this issue. One possibility is to give greater weight
to syntax, for instance by parametrizing the com-
position functions fv and fM on the parse struc-
ture. This could be achieved by using specific
weight matrices Wv and WM for each possible
tag. While the power of this approach is limited
by the complexity of the parse structure, it would
be better able to capture effects such as the scoping
and propagation of functional representations.

Another approach, which we describe in greater
detail in the next section, pushes the issue of
propagation onto the word level. While both ap-
proaches could easily be combined, this second
option is more consistent with our aim of avoid-
ing the implicit encoding of logic into fixed model
parameters in favour of the explicit encoding in
model structure.

6 An improved model

As we outlined in this paper, a key requirement
for a compositional model motivated by formal se-
mantics is the ability to propagate functional rep-
resentations, but also to not propagate these repre-
sentations when doing so is not semantically ap-
propriate. Here, we propose a modification of the
MV-RNN class of models that can capture this dis-



tinction without the need to move the composition
logic into the non-linearity.

We add a parameter α to the representation of
each word, controlling the degree to which its
functional representation propagates after having
been applied in its own composition step.

Thus, the composition step of the new model
requires three equations:

Mp =WM

[
αa

αa+αb
Ma

αb
αa+αb

Mb

]
(8)

vp = g

(
Wv

[
Mavb
Mbva

])
(9)

αp = max(αa, αb) (10)

Going back to the discussion of negation, this
model has the clear advantage of being able to cap-
ture negation in the way we defined it. As fv(a, b)
is unchanged, these two equations still hold:

Mnot = Jµ = Jν

vnot = 0

However, as fM (a, b) is changed, the second
set of equations changes. We use Z as the α-
denominator (Z = αa + αB) for simplification:

fM (a, b) =WM

[
αa
Z Ma
αb
Z Mb

]
=

[
I
I

] [
αa
Z Ma
αb
Z Mb

]
=
αa
Z
Ma +

αb
Z
Mb

Further, we still require the functional representa-
tion to remain constant under negation:

∀a ∈ A : fM (not, a) =Ma

∀a ∈ A : fM (not, fM (not, a)) =Ma

Thus, we can infer the following two conditions
on the new model:

αnot
Z

Mnot ≈ 0

αa
Z
Ma ≈Ma

From our previous investigation we already know
that Mnot = Jµ 6= 0, i.e. that not has a non-
zero functional representation. While this caused
a contradiction for the original MV-RNN model,

the design of the improved model can resolve this
issue through the α-parameter:

αnot = 0

Thus, we can use this modified MV-RNN model
to represent negation according to the principles
outlined in this paper. The result αnot = 0 is in
accordance with our intuition about the propaga-
tion of functional aspects of a term: We commonly
expect negation to directly affect the things un-
der its scope (not blue) by choosing their semantic
complement. However, this behaviour should not
propagate outside of the scope of the negation. A
not blue car is still very much a car, and when a
film is not good, it is still very much a film.

7 Discussion and Further Work

In this paper, we investigated the capability of con-
tinuous vector space models to capture the seman-
tics of logical operations in non-boolean cases.
Recursive and recurrent vector models of meaning
have enjoyed a considerable amount of success in
recent years, and have been shown to work well on
a number of tasks. However, the complexity and
subsequent power of these models comes at the
price that it can be difficult to establish which as-
pect of a model is responsible for what behaviour.
This issue was recently highlighted by an inves-
tigation into recursive autoencoders for sentiment
analysis (Scheible and Schütze, 2013). Thus, one
of the key challenges in this area of research is the
question of how to control the power of these mod-
els. This challenge motivated the work in this pa-
per. By removing non-linearities and other param-
eters that could disguise model weaknesses, we fo-
cused our work on the basic model design. While
such features enhance model power, they should
not be used to compensate for inherently flawed
model designs.

As a prerequisite for our investigation we estab-
lished a suitable encoding of textual logic. Distri-
butional representations have been well explained
on the word level, but less clarity exists as to the
semantic content of compositional vectors. With
the tripartite meaning representation we proposed
one possible approach in that direction, which we
subsequently expanded by discussing how nega-
tion should be captured in this representation.

Having established a suitable and rigorous sys-
tem for encoding meaning in compositional vec-
tors, we were thus able to investigate the repre-



sentative power of the MV-RNN model. We fo-
cused this paper on the case of negation, which
has the advantage that it does not require many
additional assumptions about the underlying se-
mantics. Our investigation showed that the basic
MV-RNN model is incompatible with our notion
of negation and thus with any textual logic build-
ing on this proposal.

Subsequently, we analysed the reasons for this
failure. We explained how the issue of nega-
tion affects the general class of MV-RNN models.
Through the issue of double-negation we further
showed how this issue is largely independent on
the particular semantic encoding used. Based on
this analysis we proposed an improved model that
is able to capture such textual logic.

In summary, this paper has two key contribu-
tions. First, we developed a tripartite represen-
tation for vector space based models of seman-
tics, incorporating multiple previous approaches
to this topic. Based on this representation, the
second contribution of this paper was a modified
MV-RNN model that can capture effects such as
negation in its inherent structure.

In future work, we would like to build on the
proposals in this paper, both by extending our
work on textual logic to include formulations for
e.g. function words, quantifiers, or locative words.
Similarly, we plan to experimentally validate these
ideas. Possible tasks for this include sentiment
analysis and relation extraction tasks such as in
Socher et al. (2012) but also more specific tasks
such as the *SEM shared task on negation scope
and reversal (Morante and Blanco, 2012).
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