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Abstract

The concept of a Document Similarity Measure is ill-defined due to the wide
variety of existing metrics measuring a range of often very different notions
of similarity. The crucial role of measuring document similarity in a wide
variety of text and language processing tasks calls not only for a better
understanding of how metrics work in general terms, but also a better way
of analysing, comparing and improving document similarity measures.

This dissertation supplies an overview of different theoretical positions on the
notion of similarity, discusses the construction of a framework for analysing
and comparing a wide variety of metrics against a testbed corpus subdi-
vided into categories by similarity type, and finally presents the results of an
experiment run using this framework.

We found that the metric rankings and breakdown of results justified the
theoretical position we developed while considering the nature of similarity,
and that there is no deep distinction between syntactic, lexical and semantic
similarity features. The results of our experiments also allowed us to posit
various methods for developing better document similarity measures, using
the output of the analysis framework to motivate their construction.
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Chapter 1

Introduction

Evaluating the similarity between two documents is an operation which lies
at the heart of most text and language processing tasks. Once we con-
sider ‘document’ to mean not a file or placeholder for information content
as dictated by the everyday use of the term, but rather a delineable unit
of information (be it a paragraph, an article, a sentence or even a word, in
the case of textually represented information), then the fact that evaluat-
ing document similarity is an essential operation to such tasks should be-
come intuitively clear by examination of a few common examples of text or
language-processing tasks. We give systems which perform such evaluations
the name of document similarity measures (DSMs) or document similarity
metrics1.

To give a few examples: when we make use of a search engine, we request
web-page documents which bear some similarity to the keywords or string(s)
which constitute the query document; when we ask for a text in some lan-
guage A to be translated into some language B, we request a document in
language B which has some similarity to the document in language A; when
we summarise one document, we seek to produce another document which is
similar in some ways (e.g. core meaning being preserved), which however is
also different in other ways (the summary must be shorter than the original
document, sentences are more compact). Naturally, such use of document
similarity could easily involve other media than text, such as pictures, film,

1Both terms are generally used interchangeably in the literature, and will be used so
here.

15



16 CHAPTER 1. INTRODUCTION

audio, etc. However, the metrics for such media can understandably be very
different (and often more primitive) from the ones we will be considering
in text processing, and therefore we will consider non-text documents to be
outside of the scope of this discussion.

The above few examples illustrate an interesting point, which would be
equally observed in any further examples of document similarity use: al-
though the abstract task being completed in each example—that of attempt-
ing to compute some sort of similarity between sets of documents in order
to achieve some practical goal (classification, validation, generation, etc.)—is
the same in each case, the notion of similarity at play is not. Indeed, the
similarity we draw upon when ranking documents according to word-count
is much different than that which we use when translating sentences, which
itself is very different from that which we use when summarising text. In
the word-count case, we care only about superficial syntactic features; in
the translation case, perhaps we look for shared lexical features, and in the
summarisation case we not only draw upon semantic features, but also upon
syntactic features similar to those exploited in the word-count case (since we
want a shorter summary document).

The observation that DSMs are systems that perform the same abstract task
while drawing upon very different aspects of documents depending on the
comparison goals raises a few questions about the nature of DSMs. What is
the common thread to DSM design? Is it a software engineering problem,
or are there general principles underlying their construction? Are metrics
designed for one purpose suitable for another? How would we determine
this if they were? How do DSMs deal with different kinds of input (words,
sentences, sets of paragraphs)? On what grounds can we compare metrics?
How do we choose a ‘better’ metric relative to a task?

This jumble of questions justifies further investigation, but leaves us with
little clue as to how to begin. Attempts have been made in the computational
linguistics literature to answer some of these questions with regard to small
groups of metrics, particularly within the context of comparing two specific
types of metrics (e.g. see (Agirre et al. 2009)), however we found no attempt
at giving a general theory of DSM design and analysis in the literature, and
have resolved to approach the problem ourselves.

The common theme to the above questions can be synthesised into the fol-
lowing three key questions which will form the basis of our investigation.
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Firstly, how are common DSMs designed and implemented? We wish, in
answering this question, to learn more about the kinds of metrics commonly
used in text processing, and the sort of difficulties arising when considering
how to use them in practice. Secondly, how can we analyse DSMs? In an-
swering this question—which will form the bulk of our project—we wish to
discover how DSMs can be compared and ranked relative to different types of
document similarity, thus giving us some insight into their performance for
a variety of text processing tasks. Thirdly and finally, how can the results
of such analysis be leveraged to improve existing DSMs or produce better
DSMs?

In order to answer these questions, we designed and implemented a tripartite
DSM evaluation system structured as follows: we first constructed a system
capable of generating and annotating a structured corpus composed of pairs
of documents categorised by the type of similarity associating them, in ad-
dition to a gold-standard similarity score; we then built a framework which
uses the aforementioned corpus as a testbed for evaluating a variety of DSMs
by checking the metric score for each document pair in the corpus against the
gold-standard similarity score; and finally we wrote an analysis framework
which breaks down the results of the evaluation and produces finer anal-
ysis of the results, allowing for a better understanding of different DSM’s
performances for different similarity types, as well as clearer inter-metric
comparison.

The subsidiary goals of this project were therefore to produce an extensible
framework for evaluating, comparing and analysing metrics, in addition to
our main goal of producing results which might allow us to answer the three
main questions discussed above. To present how we have attempted to reach
these goals, we have structured this dissertation as follows: in Chapter 2
we will briefly present some of the linguistic and philosophical background
to the definition of similarity in order to clarify the concepts we will be
dealing with throughout this work; in Chapter 3, we will present the concept
of the tripartite framework we constructed in more detail and discuss some
issues we considered before beginning the design process; in Chapter 4 we will
present the structure of the corpus generation framework, and discuss specific
issues with designing the corpus categories we used in our final experimental
analysis; in Chapter 5 we will discuss the general structure of DSM evaluation
framework, as well as discuss the difficulties faced while implementing the
specific metrics used in our experiment (particularly the semantic similarity
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metrics, discussed in §§5.4–5.5); and in Chapter 6 we will discuss the design
of our evaluation framework, but also present and comment upon the results
of our experiment, wherein we aim to discover how well individual DSMs
perform for the corpus section corresponding to the sort of similarity they
were designed to measure, and whether there are any ‘surprises’—i.e. DSMs
which perform well for similarity types they were not originally designed to
deal with. Finally, in the conclusion—Chapter 7—we will review the results
of previous chapters, see how far we have come towards reaching the goals and
answering the questions set out in the present chapter, and discuss how the
results of analysis could be used to improve existing metrics and/or design
new metrics capable of dealing with complex kinds of similarity (typically
sorts of semantic similarity) in future work.

Additionally, although we will discuss some potential further work in our
conclusion, because our project revolved around constructing an extensible
framework for the construction of a testbed corpus and the evaluation and
analysis of DSMs, we will mostly be synthesising the suggestions for future
work and further improvements which we will be making throughout this dis-
sertation. The general purpose of this project is thus not just to learn about
DSMs and how to improve them, but to condone (and hopefully exemplify)
a more rigorous, scientific approach to text processing and computational
linguistics as a whole.



Chapter 2

Background and Theory

In this chapter, we wish to clarify the core concepts we will be discussing
throughout the dissertation (cf. §2.1), in particular that of what ‘similar-
ity’ could be taken to mean in the context of ‘document similarity’. Using
such definitions as a basis, we will attempt to clarify what different kinds
of document similarity there might be (cf. §2.2). Discussion of the theo-
retical background for individual DSMs, which one might expect to find in
this chapter, will instead be provided when discussing individual metrics in
Chapter 5. Finally we will attempt to draw conclusions relating the results
of the discussion in this chapter to the structure and goals of this project in
§2.3.

2.1 Philosophical Foundations

The definition of ‘similarity’ in the philosophical domain seems as nebu-
lous as the domain itself. Indeed, the absence of a definition for the term
in the otherwise-well-rounded Oxford Dictionary of Philosophy (Blackburn
1996) may serve as an indication that the term lacks a definite description.
However, a broad notion of similarity exists in the philosophical literature
since Hellenic times, usually implicitly understood as the fidelity of property-
conservation between an object and its reference. However, this broad defi-
nition does not always fully fit the notion of similarity involved in DSMs, as
we shall see below.

19



20 CHAPTER 2. BACKGROUND AND THEORY

2.1.1 Platonist Similarity

For instance, in Plato’s Republic (cf. Griffith and Ferrari (2000), books
VI–VII), it is discussed how what defines a class of objects is the sharing
of features of ideal objects. For instance, a chair is similar to another chair
because they both have properties relating them to an ideal chair which Plato
calls the (conceptual) form of a chair (e.g. back and seat, one or more legs
elevating it from ground level, etc.), even though they may differ with regard
to other properties (e.g. colour, construction material, presence of arm-rests,
etc.).

Judging the similarity of entities by examining their sharing of an ideal form
may seem intuitive enough, but there are several problems. First, it seems we
must commit ourselves to the possibility of abstract/general enough forms
for non-trivial comparisons to be made: to illustrate, a stool and a chair are
intuitively similar, but if we do not commit to their being a hierarchy of forms
in which some ideal amalgamate of the forms of chairs and stools exists, we
cannot evaluate their similarity under a such platonist-inspired system.

However, if we do allow for such a hierarchy, we must not only specify how
degree of similarity is to be judged, but more importantly we must also de-
scribe limiting conditions for the stipulation of such amalgamations of forms,
lest we allow for any two objects to be qualified as similar through the pos-
tulation that there exists some ideal amalgamation of their corresponding
forms (for example we might say that a chair and a whale are similar be-
cause both have essential properties of the ideal form of things that exist
physically). This objection, it turns out, is fairly similar one presented by
Davidson, which we will discuss below.

2.1.2 Similarity and the Foundation of Mathematics

Later metaphysicalists followed more refined variations on the standard pla-
tonist attitude towards similarity, in particular in the area of philosophy of
mathematics. Early developments of set-theory, in the work of (Cantor 1874)
who describes sets ‘a collection of objects taken as a whole’, implicitly allow
for the grouping of objects according to some identifying properties. This is
made more explicit in the development of näıve set-theory underlying Frege’s
logicism (cf. Frege’s 1884 Foundations of Arithmetic and 1893 Basic Laws
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of Arithmetic), where sets are carved from a domain of objects according to
the truth of second-order logical statements. Since Frege takes the extension
of second-order predicates to be concepts (i.e. properties), we get the idea
that both in language and in mathematics, we can group together entities
according to shared properties. This is a more rigorous formulation of what
was effectively a platonist idea to begin with.

The core objection to Fregean logicism was, of course, the inconsistency
posed for näıve set-theory by Russell’s paradox, but revised mathematical
set-theories (e.g. ZFC) retain the interpretation of set definitions of the for-
mat {x|logical conditions(x)}1 as being groupings of (implicitly similar) ob-
jects according to shared properties. While this definition evades the rigidity
(and metaphysical baggage) of purely platonist definitions, we still are left
without a way to cash out a plausible notion of degree of similarity (after all,
a chair is more similar to a another chair than to a stool, but is more similar
to a stool than to a whale), and the problem remains that anything is plau-
sibly similar under some criterion of association. These two problems will
obviously need to be addressed to reconcile a technical definition of similarity
with our linguistic intuitions and practises.

2.1.3 Davidson on Similarity in Metaphors

(Davidson 1978) attempts to respond to one of these qualms by considering
the sort of similarity at play in metaphors. This kind of similarity suits our
task of clarifying the concept of similarity at play in DSMs well since it is a
purely abstract notion of similarity (rather than a specific one, such as the
length of words, the meaning of two segments of text, etc.), since metaphors
can be built on the basis of any imaginable similarity between the literary
construct and its real-world counterpart.

Davidson (ibid. pp33–34) frames this sort of abstract linguistic notion of
similarity as a pragmatic issue: similarity is the sharing of one or more
properties by entities; if we limit our definition to this, then I, for instance,
am similar to Tolstoy by virtue of us both having been infants at some point
in our lives; therefore any non-“garden variety” notion of similarity must

1Namely the set of all elements of a given domain satisfying a set of logical conditions
(e.g. “x is prime”, “x is Greek and Mortal”).
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be not only the sharing of properties between entities, but specifically the
sharing of properties which are relevant to the context of evaluation and use of
similarity. Simply put, we select the properties we use to evaluate similarity
based on pragmatic goals of similarity evaluation (e.g. if we seek to group
documents by length, we will look at syntactic features like word-count or
character-count, and ignore the particular words used, etc.). However, we
still need a conceptual way of defining degree of similarity.

2.1.4 Similarity in the Cognitive Sciences

Relatively more recent work on the pragmatics of similarity assessment have
sought to tackle the issue of degree of similarity. In the 1980s cognitive
scientists such as Douglas Medin aimed to characterise the relation between
properties and degree of similarity (neatly summarised in Gärdenfors, P.
(2004, p111)) as follows:

[...] two objects falling under different concepts are similar be-
cause they have many properties in common. [...] Medin for-
mulates four criteria for this view on similarity: (1) similarity
between two objects increases as a function of the number of
properties they share; (2) properties can be treated as indepen-
dent and additive; (3) the properties determining similarity are
all roughly the same level of abstractness; and (4) these similar-
ities are sufficient to describe conceptual structure: a concept is
equivalent to its list of properties.

This almost seems to provide us with what we want, in that we now can
formulate a more rigorous definition of what similarity within a pragmatic
context is: it is the sharing of contextually-relevant properties or features, and
the degree of similarity between two objects is evaluated based on the degree
of correspondence between contextually-significant properties of the object.
However, we must also add that some properties may be more important than
others in assessing similarity, a point which Medin ignores and perhaps even
contradicts with point (3). This point will be important when considering
how to improve metrics as will be discussed in the conclusion.
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2.1.5 Wittgenstein on Similarity

While the view of similarity we have arrived at in §2.1.4 seems to fit our in-
tuitions about how the term similarity is used in DSMs, there are two other
views on how we could consider similarity in DSMs, one of which emerges
from Wittgenstein’s discussion of ‘family resemblance’, and the other which
is derived from Wittgenstein’s language game account of natural language
semantics. Both these views are drawn from (Wittgenstein 1953), and may
prove to be of interest in our discussion of different kinds of document simi-
larity in §2.2.

(Wittgenstein 1953) considers language to be a form of life (ibid. §23), it
is a series of “language games” which we develop, acquire and reject as we
practise them or enter communities where new language games supplant our
own. It is something the terms and structure of which are “not something
fixed, given once and for all” (ibid.). The key idea is that the meaning of
expressions of our language is entirely set by our use of them. An example
Wittgenstein (ibid. §2) gives is a “complete primitive language”—the only
language a tribe of builders possesses—entirely composed of the expressions
“block!”, “pillar!”, “slab!” and “beam!”. Let us call this language LT . In
LT , the utterance of such expressions by one individual A to another, B,
causes the B to bring a particular type of object (i.e. a block, pillar, slab
or beam, depending upon the utterance used) to A. We speakers of English
can interpret “slab!” as meaning “Bring me a slab!”. Is this to say that
this is what “slab!” means? Recall that LT is primitive and complete, so
that to the tribe speaking only LT , “slab!” cannot be analysed in such a
way, yet they communicate successfully. Therefore we must not give in to
the temptation to analyse another language in terms of our own, when the
practitioners of that language have ability to apply and understand their
language while not possessing ours (ibid. §20). What then is the meaning of
“slab!”? Wittgenstein posits that in LT , the fact of “slab!” having the same
meaning across the tribe is equivalent to its having the same use across the
tribe, and nothing else. Wittgenstein (ibid. §7) calls all this, “[the] language
[LT ] and the actions into which it is woven” a ‘language game’.

How is this notion of language game significant for the evaluation of simi-
larity? According to this view, the semantics of a language are graspable
through understanding how it used, and hence nothing is hidden, everything
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is plain view. This first of all reinforces the pragmatic nature of similarity
evaluation as underlined in our discussion of Davidson in §2.1.3, but more
importantly, presents similarity between two linguistic entities as being not
the sharing of hidden properties, but similarity of use. This attitude towards
language will come up again when we discuss semantic vectors in §5.5. This
view effectively conflates pragmatics and semantics of language, and addi-
tionally makes it more difficult to distinguish semantic properties of text from
syntactico-lexical ones (since these also are features of how text is used), an
aspect we will discuss further in §2.2.

The second view, that of ‘family resemblance’, actually stems from Wittgen-
stein’s clarification of what a language game is (cf. Wittgenstein (1953,
§§65–75)). Wittgenstein (ibid. §65) claims that there is no such thing as
the ‘general form of propositions of language’, and that language is in fact
a set of acts related to each other in a variety of ways. In doing so, he is
calling upon an abstract notion of similarity, which he clarifies in the state-
ments that follow—principally §66. Here he describes family resemblance as
“a complicated network of similarities overlapping and criss-crossing: some-
times overall similarities, sometimes similarities in detail”. For instance it is
hard to say what the essence of a game is, namely how all games are similar.
After all, poker is not like football, but is like blackjack; some games have
rules, others (such as those played by children) operate without the need
for determinate guidelines; some games have goals and finishing conditions,
others (e.g. juggling a hackey-sack) have no ‘purpose’ and can be played
forever. To search for a common property to fit our intuition that these all
share some fundamental property of being a game would tell us little about
how we come to understand that property, or even if it exists. In fact, it
seems more intuitive to claim that it is the sharing of the same kind of simi-
larity with several other games that makes each game part of this network,
even though it may not share that similarity with all games on the network.

We retain from this that complex forms of document similarity may be—if
we hold Wittgenstein’s position—quite different from that we had conceived
of in §§2.1.3–2.1.4, above. Instead of two objects being similar by virtue
shared properties or features, they could be considered similar by virtue of
holding the same broad kind of similarity to some intermediate objects, which
recursively may only be similar to one another by the same transitive notion
of similarity. This appears to be a more complicated view than the first
Wittgensteinian view described earlier to conceive of in practice, but is will
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be relevant to our discussion in §2.3.

2.2 Different kinds of Document Similarity

In §§2.1.3–2.1.4, we arrived at a plausible definition of the sort of similarity
we believe to be at play in DSMs, namely that sharing features relevant to
the nature of comparison is what determines the similarity between docu-
ments, and the frequency of observation of such shared features is used to
determine degree of similarity. This definition is that of an abstract, general
notion of similarity, that we will now attempt to add granularity to this over-
all picture of similarity by considering its relation to more specific kinds of
similarity used in text processing, and what problems may arise during such
consideration.

2.2.1 Three Classes of Document Similarity

In the linguistics (both computational and non-computational) literature, it
is common to classify features of text documents into three broad feature
classes, namely syntactic, semantic, and lexical.2 Naturally, segments of
language can have other feature classes depending on the media, for example
spoken words have phonetic features on top of the above three, but we shall
restrict our considerations to textual features.

Syntactic aspects of language cover how we form correct sentences and the
superficial rules that govern their organisation, namely relating to grammar
and the structural relations between words (for example how an adjective usu-
ally qualifies the noun that follows it most immediately). Lexical aspects of
language govern the grouping of words by theme, usually also involving some
notion of hypernym/hyponym-defined hierarchy of terms3. Finally semantic

2Certain authors such as (Allen 1987, pp6–8) also add to this set of feature classes the
class of pragmatic features, under which we consider how words and expressions contained
in a document are used. These are, without a doubt, important features when determining
the meaning of text, but for that reason precisely I would consider such features to be
semantic.

3‘Feline’ is a hypernym of both ‘lynx’ and ‘cat’ (and others), which are its hyponyms,
because it holds an ISA (literally ‘is a’) relation to them in that a cat is a feline, equally
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aspects of language are the most complex, and qualify how we understand
the meaning of our utterances and writings. We shall have more opportunity
to understand how these broad classes of similarity are illustrated when we
examine their features, below.

According to the Davidsonian view, and considering the three classes of docu-
ment features presented above, we might wish to represent the organisation of
the various types of document similarity and their relation to the classes and
properties as shown in Figure 2.1. We now discuss how features/properties
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Figure 2.1: Classes, Properties and Types of Document Similarity

of documents could be clustered and fall into the broad classes of similarity
we have just defined.

2.2.2 Similarity Features

Consider features such as word-length, the presence or absence of individual
parts of speech or of particular words, all of these could be considered to be
clearly syntactic properties. To exemplify lexical features, we would consider

a lynx is a feline, but it makes little sense to say that a feline is a cat or a lynx.
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document tokens belonging to particular lexical groups (e.g. a document
containing words such as ‘drive’, ‘wheel’, ‘motor’ would have the property
of having member-words of the ‘mechanical’ or ‘automobile’ lexical groups,
amongst others).

As for what constitutes semantic properties, specifying what exactly qualifies
is undoubtedly a philosophical matter; however we can suggest features such
as the truth value of the propositions within, implicated propositions4, sense
and reference of words in the document5, and other such features related
to the meaning of words and expressions constituting the documents being
compared.

The difficulty in coming up with specific examples for clearly semantic fea-
tures of language serves as an early indication that determining whether
features fall clearly in a category is not always obvious. We must therefore
also consider the case of cross-category features—features that do not cleanly
fall into one category or another.

2.2.3 Cross-Category Similarity Features

Certain tokens representing document properties in Figure 2.1 have been
shown overlapping the boundaries between similarity classes. This is because
some document features one can conceive of fall into categories ambiguously.
For instance, we consider the presence or absence or particular terms in a
document to be a syntactic feature, yet the presence of groups of terms
holding some lexical relation to be a lexical feature. Thus evidently there is

4The implicated propositions are taken to be the contextually-determined subtext of
component sentences of a document, as discussed by (Grice 1975), and makes use of what
(Allen 1987, p6) refers to as “pragmatic knowledge”. For example, if when asked “May I
borrow your stapler?” one replies “My office door is unlocked”, one is in fact also stating
something akin to a positive response to the question, despite the actual reply having no
obvious thematic relation to staplers or permission.

5We here take the notion of sense/reference distinction to be that first presented by
(Frege 1948)—originally in 1892—where the reference of a term or expression is the real-
world object or concept it ‘point to’, and the sense is its mode of presentation, i.e. the
way by which we come to grasp the reference. For example both ‘Superman’ and ‘Clark
Kent’ indicate the same individual, and therefore share reference. However they are have a
different sense, exemplified by the fact I can believe ‘Superman can fly’ without believing
‘Clark Kent can fly’.
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a syntactic aspect to some lexical features, and possibly vice-versa.

Likewise, lexical relations within a text play some role in determining the
meaning of the text, thus semantic features of texts arguably rest upon some
lexical features, and vice-versa since lexical groupings are intuitively under-
standable in the terms of the relation between the meaning of the terms: a
regular speaker of English can associate ‘car’ with ‘engine’, ‘steering wheel’
and ‘drive’ rather than with ‘number’ or ‘solar system’ because he under-
stands the meanings of the words and knows them to bear some closer onto-
logical relation than words external to the lexical group of automobile parts.

This last point will be important when we consider the effectiveness of
Wordnet-based metrics in §5.4 and of distributional approaches to seman-
tic similarity in §5.5, following the dictum of (Firth 1957) that “you shall
know a word by the company it keeps”, a sentiment which appears fairly
similar to the above point about the relation between lexical features and
semantic features. However, before that we must discuss how such cross-
category features feed into the larger problem of cross-category similarity
types.

2.2.4 Classifying Similarity Types

Since, as discussed throughout §2.1, we have taken the evaluation of doc-
ument similarity to be based on identifying and exploiting the identifying
features of the kind of similarity we wish to measure, it is clear that the
different specific kinds of document similarity we will encounter during real-
word text processing tasks will be built upon the properties discussed above,
and thus will also share the same problems when it comes to classifying them
into the three broad similarity classes presented in Figure 2.1 and §2.2.1.

Naturally, there are specific notions of document similarity that fit snugly
within the confines of the three similarity classes. There is no need for—or
possibility of—appealing to semantic or lexical properties when attempting
to compare the word length or syntactic differences between two texts.

Likewise, raw lexical comparison is devoid of any need for semantic compre-
hension or syntactic analysis, since for example the strings “The big ball is
red, not blue.” and “Not the big blue ball, the red ball!” are fairly different
syntactically (this is not to say there is no syntactic relation between them,
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just that it is not what we call upon to compare them in this context) yet are
lexically similar according to any lexical metric treating strings which can be
compiled into identical lexicons as being lexically identical.

Finally, we can conceive of examples where semantic similarity can be eval-
uated without direct appeal to syntactic or lexical relations between the
compared documents. For example, the English sentence “the colour of crys-
tallised frozen water falling from the sky is a saturation of primary colours”
and the Japanese sentence transliterated as “yuki-wa shiroi desu” (“snow
is white”) share the same proposition while being lexically and syntactically
disassociated (since both the lexemes and the sentence syntax differ between
languages and sentences). A more radical example yet is the semantic cor-
respondence between a sentence and its logical form, such as the relation
between “if Socrates is Greek the Socrates is mortal” and “Gs ⊃ Ms” (for
the valuation G =‘is Greek’, M =‘is mortal’, s =‘Socrates’ and ⊃ as logical
consequence).

The above examples are not idealised cases, since each corresponds to a kind
of document similarity called upon in real-world text-processing tasks (for in-
stance: measuring the size of a document, evaluating lexical correspondence,
and translating from Japanese to English, respectively). Nonetheless they
are not representative of the usual admixture of similarity types one would
expect to find in specific notions of document similarity associated with a
variety of text-processing tasks.

Syntactic and lexical features of two documents may be exploited to deter-
mine topical relation between them, as exemplified by distributional models
of semantic similarity inspired by the ubiquitous quote by (Firth 1957) first
mentioned in §2.2.3. Effectively, we evaluate the lexical similarity of the
linguistic context of two words to attempt to determine their semantic sim-
ilarity, possibly determining context according to syntactic features such as
grammatical relations, as suggested by (Grefenstette 1992), for instance.

Similarly, while part-of-speech (POS) tagging can be performed using purely
stochastic methods, linguistics students may also be familiar with the prac-
tice of considering what other words may take the place of a word they are
attempting to tag in order to aid manual POS-tagging. Thus the task of
comparing the syntax of two sentences could, conceivably, be lexically moti-
vated, rendering such an obviously syntactic notion of document similarity
(at least) partially lexical as well.
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Finally, while lexical comparison of sentences of different languages may be
treated automatically using translation dictionaries or aligned parallel cor-
pora, human translation frequently calls upon semantic knowledge of the
source and target languages, especially when a word in the source sentence
is unusual, ambiguous or unknown to the translator: we can nonetheless use
natural language understanding of the rest of the sentence to derive the use
of the word and attempt to evaluate lexical relations as a result.

The point being made here is that many text processing tasks involve a
specific notion of document similarity which does not neatly fall into the three
broad classes of document similarity we defined above. If we are to—as the
philosophical background discussed earlier suggests—treat the work of DSMs
as identifying contextually-relevant key features of documents and exploiting
them to determine similarity between them, then how can we account for the
difficulty in classifying certain (typically more complex) kinds of similarity?
The answer we propose in §2.3 is that such a classification problem is not so
much of a problem, but rather a feature when it comes to the goal of this
project.

2.3 Dropping the Class Distinction

In §2.1.5 we discussed a Wittgensteinian alternative to the position we de-
rived from Davidson’s discussion of similarity. The two—possibly compatible—
views we presented were the following: the first stated that the semantics of
natural language were entirely determined by the uses of our expressions—
ergo that in short, one could not purely distinguish semantic properties from
from syntactico-lexical properties, since semantic features reside one the ‘sur-
face’ of language rather than being hidden from view; the second was that
similarity between two entities did not always have to be the direct sharing
of properties, but is sometimes determined by both entities being similar to
some same body of entities, being part of a the same network of similarity,
without being evidently similar to each other (as could be determined by the
sharing of properties).

Our problems in §2.2 with determining the classification of more complex
types of similarity, and even of more complex properties (namely those re-
lating the meaning, but also possessing syntactic and lexical aspects) seem
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to give some weight to these Wittgensteinian views being a picture of docu-
ment similarity more in line with our intuitions. If this is true, what are the
consequences for our project, our goal of better understanding how metrics
work in order to improve them?

The claim we make here to conclude this chapter is that considering this
new view will guide us in the following three ways. First, it will help us
understand why Wordnet-based (cf. §5.4) and vector-based (cf. §5.5) metrics
can be successful in computing semantic similarity, as hinted at at the end
of §2.1.5.

Second, it gives better justification for our project of measuring the success of
a variety of metrics against a testbed containing a variety of similarity types.
If we were to observe the abnormal success of a metric designed for syntactic
comparison, rather than write off such results as flukes or abnormalities, we
instead would find justification in that the document features it exploits to
determine similarity are not only syntactic (as they might appear at first
blush), but also plausibly semantic features, since the Wittgensteinian view
discourages the strict classification of such features.

Third and finally, since according to Wittgenstein some complex forms of
similarity may be composite, constructed from the overlap or networking of
other forms of similarity, then we have some justification for one of the final
goals of this project: to provide methods for creating better metrics through
the construction of hybrid metrics, constructed according to the results of
our analysis.

In the following chapters, we will present the project we designed after con-
sidering the Wittgensteinian view, alongside results we believe will confirm
the theoretical discussion presented in this chapter.
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Chapter 3

Methodology

In the introduction, we first presented the goal of the project: to evaluate
a variety of DSMs using a testbed containing documents paired according
to a variety of similarity types, and to analyse and compare them based on
the results of the evaluation. This, we stated, required the construction of a
framework—which we wanted to be as extensible as possible in order for it
to useful for future work—which would generate the testbed corpus, run the
metric evaluations, and analyse the results. In this chapter, we will discuss
the general design goals we considered before constructing the framework,
and problems we had to take into account. A more detailed account of the
implementation of such a framework and implementation problems will be
presented in Chapters 4–6.

The first step towards analysis we shall discuss (§3.1) is that of constructing a
corpus. We will present the similarity types such a corpus would ideally have
for our experiment, the structure of such a corpus as well as methods used
to increase the volume of the corpus without the need for new sources. The
second step (§3.2) we shall discuss is the task of evaluating DSMs, alongside
the general problems one would expect to encounter during implementation,
the format of the evaluation output, and scientific aspects such as result
normalisation. The third and final step (§3.3) is the analysis itself. We shall
discuss what methods were considered for interpreting evaluation results, and
what methods were used to get finer granularity in comparing and evaluating
metrics.

33
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3.1 Constructing a Corpus

Constructing a testbed corpus was a crucial part of the experiment. The
richness of the results depended upon the variety of similarity types we could
get involved. Additionally, we would have to consider how to format the
corpus so that as much information as possible could be processed in advance,
and that accessing the information for different kinds of similarity would ‘look
the same’ so that metric evaluation scripts would not need to be tailor-made
for individual sections of the corpus. In this section, we will discuss what
factors would affect the design of the corpus generation framework we will
present in detail in Chapter 4, and what requirements we needed to keep in
mind while designing it.

3.1.1 Selecting Document Similarity Types

Obviously, there is an extremely wide range of subtly different notions of
document similarity to be concerned with. Not only does attempting to
test a selection of DSMs against every or even most seem intractable, it is
also a simply unrealistic task since by the Davidsonian notion of similarity
discussed in §2.1, if any identifying property can be used to draw similarity
between two entities, then we arrive at a trivial notion of similarity. However
even when we restrict the notion of similarity at play in document similarity
to that built upon document properties related to the pragmatic context
of comparison, it would be difficult to build a definitive list of document
similarity types against which to evaluate metrics, seeing how there is no
definitive list of pragmatic contexts in which document similarity may be
used (indeed, new applications of DSMs come up with new applications in
text and language processing).

To render the experiment interesting, the goal should therefore be to collect
document similarity types associated with popular DSMs, rather than aim for
the construction of an exhaustive list—a task which may not even be possible
to complete. In this section, we will list the types of specific document
similarity used in this experiment, discuss a few of the applications in which
they play a role, before discussing how we implement them in the evaluation
corpus in Chapter 4.
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Despite the fact that we presented and argued for, in §2.1.5 and §2.3 a
Wittgensteinian account of similarity which denies the existence of any deep
divides between semantic, syntactic, and lexical kinds of similarity, we do
not deny that similarity types can appear to fall into one class of similarity
more than another on a superficial level; and equally DSMs are designed to
deal with similarity of a certain class, although the whole point of §2.3 was
to show that there was theoretical justification for DSMs performing better
than expected in evaluating other similarity types from other classes. As a
result, we wanted to have, in our experiment, a few similarity types from
all three main classes of similarity (syntactic, lexical and semantic), if only
for the purpose of having a corpus such that for each metric, there is at
least one section where it is expected to perform decently well (since that
section would associate documents based on the similarity type the metric
was designed for, or something close).

Therefore we wished to have one or more corpus sections where documents
were paired by syntactic relationships, based on superficial differences such
as random edits, or on different words but with similar grammatical struc-
ture. We built corpus generating classed for both these kinds of similarities,
although the resulting document pairs are not always realistic examples of
English due to the crude methods of generation. We will discuss such syn-
tactic ‘toy’ corpora in §4.2.

We also needed some lexical corpus sections. As we will discuss below, most
of the semantic sections of the testbed corpus also contain lexical relations
between the document pairs (sometimes as a factor of similarity, sometimes
not). However, we aimed to have at least one section where documents were
associated on ‘purely’ lexical grounds without obvious semantic factors. We
obtained this by grouping sets of paragraphs from different literary genres.
We shall discuss the implementation details in §4.3.

Finally, we wanted a set of corpus sections to represent a variety of semantic
similarity types. Here is an account of three such types used in our experi-
ment.

Paraphrase is a form of semantic similarity, since it exhibits interesting syn-
tactic features (length and grammatical structure) as well as lexical attributes
(similar choice of words). We sourced three different forms of paraphrase
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(intentionally-generated paraphrase1, and two different types of translation-
generated paraphrase2) to create a large corpus section which could be split
into three sub-sections, using sources provided by another project (cf. Cohn
et al. (2008), Dolan et al. (2004)). We shall discuss the implementation of
this part of the corpus in §4.5.

We wanted to include another type of semantic similarity which also exhib-
ited lexical/semantic relations between the documents, as well as a kind of
syntactic relation different from that present in paraphrase. This kind of
semantic similarity is that present in summarisation, where one document
is shorter than the other, but presents the core meaning of the larger doc-
ument. For this section, we match academic articles with their abstracts,
using only articles from the same subject-area so as to minimise the role of
lexical relations in the corpus (since papers from the same subject area all
share a lexical relation, the rendering lexical features less important in the
evaluation of similarity). We will describe this part of the corpus in §4.6.

The last kind of semantic similarity we wished to include in our corpus is
a bit harder to describe. We wanted to choose documents about the exact
same topic, and which therefore could be paired up according to lexical and
semantic features while being structured in a different manner. If you will, we
wanted a counter-part to the abstract-article pair section. We consider using
academic papers paired up by specific topic (e.g. two papers on Lewis’ modal
realism, two papers on the inconsistency of Robinson arithmetic, etc.), but it
quickly became clear that doing so would involve a lot of manual processing,
since most pairs would have to be checked by a human annotator. The
solution we came up with was to use for our document pairs the English
version of a Wikipedia article paired with the Simple English3 version. This
was an ideal source since the documents were pre-matched (i.e. we could find
the Simple English version of an article, if it existed, from the regular English
version of the article), and the document pairs bear a loose semantico-lexical

1By ‘intentionally-generated paraphrase’ we mean a pair of documents where one was
directly written to be a paraphrase of the other.

2By ‘translation-generated paraphrase’ we mean document pairs where both documents
are English translations of a foreign phrase, each document therefore being an ‘indirect’
paraphrase of the other.

3Simple English Wikipedia (http://simple.wikipedia.org/) is a version of
Wikipedia where many English articles are reproduced using shorter sentences and simpler
vocabulary, aimed at children and individuals in the early stages of learning English.
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relation to each other, whereas syntactic aspects are quasi-irrelevant since the
articles can be written quite differently, and the difference in length varies.
We describe the implementation of this part of the corpus in §4.4.

3.1.2 Designing a Corpus Construction Framework

As stated in the chapter introduction, the twin goals of our project were
both to construct a framework capable of generating the particular corpus
for running an experiment from which we could derive some novel conclusion,
and to do so while keeping in mind that the work—if successful—could be
reproduced for different (or a larger set of) metrics, and for larger, more
complex corpora. In short, our corpus generation system should be modular
and easily extensible. We will discuss how we achieved implementation of a
general extensible framework in §4.1.

But before any implementation work was to be done, we had to think about
the format and structure of such a corpus. Since we want to create a testbed
against which to evaluate DSMs, with the goal of telling us how well each
metric works for each kind of document similarity featured in the corpus, we
naturally have to divide the corpus into sections, where each section contains
documents paired according to a certain type of document similarity. We
then had to think about what corpus sections would look like. The idea was
not only to associate documents according to a type of similarity, but also to
give some indication of how similar they were relative to the similarity type
characterising the section the pair was in.

Each entry in the sections of the testbed corpus would therefore be a triplet,
the first two members of which are the pair of documents the similarity of
which is being determined, and the third member is a gold-standard similar-
ity score which is an ‘absolute’ degree of similarity between the documents,
and should be a value between 0.0 and 1.0. We will explain the notion of
gold-standard in a bit more detail in §3.1.3 below. The gold-standard is
therefore important, as two documents may be paired in different sections of
the corpus, but must be considered different entries from one another since
the gold-standard score is set relative to the type of similarity defining each
section of the testbed.

The possibility that the gold-standard score for a document might be 0.0
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(complete dissimilarity) also means we have the ability to match up docu-
ments that are dissimilar in any category. Indeed, we must do this, since if
all documents are matched (high similarity score) in some section, a dummy
metric always stating that documents are similar will nearly always be cor-
rect (i.e. in agreement with the gold-standard score). We therefore need a
mechanism by which to balance each section of the corpus in terms of high-
score/low-score document pairs. I’ll present a general mechanism by which
to do this in §3.1.4.

3.1.3 Setting the Gold-Standard

One of the essential elements in each corpus entry, in addition to the two doc-
uments paired up according to some notion of similarity, is the gold-standard
score, which we take to be an objective representation of the similarity be-
tween the two documents in the entry, against which we shall evaluate the
metrics (as will be explained in §3.2). As stated above, we conceive of it as
a real value between 0.0 and 1.0, allowing for pairing of dissimilar or vaguely
similar documents.

An example entry in a hypothetical “word-count” section of the testbed—
where similarity between documents is determined by the difference in word-
count between the documents (lower difference, higher similarity)—might be
represented4 as follows (using pseudo-XML tags):

<doc1 ID=id1> The quick brown fox jumped over the lazy

dog . </doc1>

<doc2 ID=id1> I saw a film that was not very good . </doc2>

<gold standard ID=id1> 1.0 </gold standard>

Here the gold-standard is 1.0 since both documents of the entry (identified
by a unique identifier id1) have the same word-count. In contrast, some
other entry in the same section might look like:

<doc1 ID=id24> The quick brown fox jumped over the lazy

dog in the middle of the breezy afternoon . </doc1>

4In practice, we only represent the entries like this in order to share the corpus. For
the duration of the experiment, the data will be contained in Python objects, and we will
not interact with the entries directly.
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<doc2 ID=id24> I am here . </doc2>

<gold standard ID=id24> 0.325 </gold standard>

In this case, the objective similarity is given to be much lower since there is
a great disparity between the word-count of the first document and that of
the second.

One might ask how we obtain the gold-standard score. The methods for set-
ting the objective similarity score are essentially up to the experimenter, but
in most cases, some heuristic will be used (as is the case in this experiment).
For instance, when we create a section matching academic articles with their
abstracts as an instance of summarisation, we can simply assume that each
abstract is the best summarisation (amongst all the abstracts we have) of the
article it was provided with in the first place, and thus we assume a similar-
ity of 1.0 for each original abstract-article pair. To obtain mismatched (low
objective score) pairs we will use another heuristic described in §3.1.4. In
some other corpus sections, we used a more sophisticated heuristic to obtain
a more subtle gradation of objective scores. We will discuss such heuristics
in Chapter 4. Ultimately, the most precise way to obtain an objective score
would be to have trained scorers familiar with what the kind of similarity at
play is go through the corpus and set the objective scores manually. However,
not only is this tedious, it may also not always be correct, since as discussed
in Chapter 2, some notions of similarity are difficult to define and classify
precisely.

The use of heuristics to set the gold-standard scores—acting as objective
reference similarity measures for the evaluation phase—may also cause some
worry. This is a reasonable objection, but we will discuss the merits of this
approach relative to other options in §3.3.1, once the evaluation and analysis
procedures are clearer.

3.1.4 Mixing Things Up (If Needed)

As mentioned earlier, if we are using a heuristic to determine the gold-
standard score for document pairs, especially if we are using a simple one
which exploits the structure of the source data from which we construct
corpus sections, assuming matched documents from source data to have a
gold-standard score of 1.0 (cf. abstract-article pair example in §3.1.3), then



40 CHAPTER 3. METHODOLOGY

we are in danger of having a skewed score distribution where a majority (if
not all) document pairs in certain sections of the corpus have a high objec-
tive similarity scores. Imagine now a metric which latches onto some feature
which all documents of such an unbalanced corpus section possess, and as a
result, giving each document pair a high metric similarity score; the result
would be that the metric score would be close to the objective similarity
score almost every time (which, as we will discuss in §3.3, would give the
metric an unwarrantedly high rank).

To prevent such a thing from happening, and simultaneously to increase the
size of our testbed corpus, we can apply another heuristic to add a bit of
diversity to skewed corpus sections. The heuristic is similar to the one we
used, when assuming that document pairs that are matched in the source
material (e.g. the abstract for an article) have highest objective similarity
(i.e. 1.0), we now assume that by randomly mixing elements of matching
pairs to form non-matching pairs that the similarity of the thus-obtained
mismatched pairs must be minimal.

For instance, in the abstract-article section of the corpus, we have n entries
of abstract-article pairs given a gold-standard score of 1.0. Now we can
easily generate an additional n entries of abstract-article pairs with a gold-
standard score of 0.0. By taking all the abstract documents we have and
all the article documents we have, and randomly assigning an abstract to
an article (obviously checking that we don’t assign it to the correct article
which it originally came from). We simply assume that an abstract assigned
to a random article will actually have little relation to that article, and not
be a summary of its contents. It could happen that two articles in our
source corpora are close enough for the abstract to actually vaguely match
the article, but the odds of this are low, and if our corpus is large enough,
such occurrences should not affect the overall results.

However there are certain cases where we must not use this method. For
example, if our method of generating the corpus already creates an even
distribution for a section, which we will take the case when:∑

i∈section IDs

gold standard(i) ≈ 0.5

then obviously generating any number of entries with an arbitrary gold-
standard score of 0.0 will skew the distribution of scores towards 0.0. Ad-
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ditionally, the odds of randomly pairing up similar documents (especially in
syntactic sections) are non-negligible, and in these cases expanding the cor-
pus through random mismatching should be proscribed. We will discuss how
to regulate this corpus expansion step when discussing the implementation
of the general framework in §4.1.

3.2 Evaluating Metrics: Considerations and

Concerns

The evaluation section of the experiment is the second large part of the anal-
ysis process. Once more, we are concerned with the creation of an extensible
evaluation framework which will, for each entry in the corpus test, evaluate
the similarity of the document pair in the entry using the provided metrics,
and, for each metric, record the closeness to the gold-standard score (i.e.
to the objective similarity score)—which we will call the CGS score—of the
metric’s determined score for that document pair.

As was the case for our testbed corpus, we wished to collect a wide variety
of DSMs in order to produce rich and interesting results for our experiment.
There are, as one may expect, a large number of exotic DSMs available, so
we focussed on metrics which seemed to come up most frequently in the
literature, or be discussed in highly-quoted papers.

We first assembled a selection of purely syntactic metrics, of which we will
briefly discuss the theory and implementation later, in §5.2. These include
word and character-count-based metrics, and well known distance metrics
(Jaccard distance, Levenshtein edit distance, etc.).

We implemented the BLEU metric from the world of machine translation,
discussed in §5.3, which exploits both syntactic/structural and lexical fea-
tures.

We assembled a collection of DSMs making use of the Wordnet corpus to
determine lexical similarity. These will be discussed in §5.4. It will be inter-
esting to see, later on, how these perform on semantic similarity evaluation
tasks, bringing us back to the Wittgensteinian idea that there exist no deep
divide between the similarity classes.
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Finally we collected a semantic similarity metric based on the distributional
approach to semantic evaluation. We will discuss the theory and implemen-
tation of this approach in §5.5.

However before anything else, we will, in this section, describe the general
problems we had to consider before beginning the implementation phase
which we will discuss in Chapter 5.

3.2.1 Dealing with the Corpus

The first thing we need to consider is how DSMs will deal with the corpus
passed onto them by the corpus construction framework. This is a fairly
trivial matter, since the structure of the corpus is fairly simple: two strings
representing the document pair, and a float value representing the gold-
standard score. While it may look like nothing needs to be done, consider
the following two sentences:

1. “The man, dressed in black, walked onto the stage.”

2. “The man , dressed in black , walked onto the stage .”

The difference may seem stylistic, but the first one has 49 characters, the sec-
ond has 52; the first sentence has 9 words, the second has 12. These may seem
like trivial differences to a human reader, but to a simple word counter the
numerical difference, especially across a longer document, is non-negligible.
Despite word-count and character-count being fairly superficial aspects of
a document, we are testing a wide variety of metrics, and therefore cannot
prejudge what matters and what does not. This is especially important since
we might end up wanting to consider ‘superficial’ syntactic metrics for the
construction of hybrid metrics, as will be discussed in the conclusion, so we
must normalise the corpus before presenting it to the metrics. This is a fairly
simple task, albeit necessary. We shall explain how we did it and what other
non-crucial pre-processing tasks we did before testing the metrics in §5.1.

Having addressed the above problems, we run DSMs against the testbed
corpus as discussed in the introduction to this chapter. For each DSM metric
and for each testbed corpus entry entry the metric closeness to the gold-
standard (CGS score) is evaluated using the following equation:

CGS(metric, entry) = 1.0−|GSS(entry)−score(metric, doc1(entry), doc2(entry))|
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where score(doc1(entry), doc2(entry)) is the normalised result of measuring
the similarity of the entry’s documents (doc1(entry) and doc2(entry)) using
the DSM metric; GSS(entry) is the gold-standard score for doc1(entry)
and doc2(entry) in this entry of the corpus. Therefore, when the DSM
metric scores very closely to the gold-standard score, then |GSS(entry) −
score(metric, doc1(entry), doc2(entry))| tends towards 0.0, and the CGS
score of the metric (CGS(metric, entry)) for that corpus entry tends to-
wards 1.0.

The CGS score is what we will use during analysis to rank metrics, as will
be discussed in §3.3. However before we move onto this discussion, we
take note that the score provided by score(metric, doc1(entry), doc2(entry))
needs to be normalised in order to be compared to the gold-standard score
GSS(entry). We will discuss how we go about this in the following section
§3.2.2.

3.2.2 Normalising the Results

For each corpus entry the gold-standard score—symbolising the objective,
‘correct’ assessment of the similarity between the two documents according
to the notion of similarity defining the testbed section in question—is a value
between 0.0 and 1.0. In order to derive the CGS score per entry as defined
in §3.2.1, we need each DSM to produce a similarity score between 0.0 and
1.0. Some metrics already do this, or score on a scale which is reducible to
the same scale as the gold-standard score by multiplying the score by some
constant factor.

However other DSMs, especially syntactic metrics, produce simple numerical
output, (for example the difference between the word-count of two docu-
ments) which can vary greatly. For such DSMs, we had to consider how to
normalise the results in a sensible manner, as will be discussed in Chapter 5.

3.2.3 Adapting Word/Character-based Metrics

One more thing we had to consider was how to deal with DSMs which eval-
uate the similarity between tokens, rather than documents: a fair few of the
semantic and lexical similarity metrics we collected compare words rather
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than sentences. In order to compare these DSMs with other DSMs, capable
of computing a similarity score for sentences, paragraphs, or even entire arti-
cles, we needed to determine a way to scale these DSMs from word-based to
a string-based metrics. In short, we had to write ‘wrappers’ that would use
the word-based DSM and some scoring heuristic to obtain a similarity score
for documents of any length.

We had reservations about doing this because it is hard to say whether we
are evaluating the original DSM or our adaptation. Since the heterogeneous
nature of DSMs is part of the motivation for this entire project in the first
place, it became clear we would have to accept this issue as a necessary evil.
However, we did want our adaptation to interfere as little as possible with the
way the original DSM runs. As such, we usually opted for the simplest scoring
heuristic giving good results, rather than attempt to construct sophisticated
heuristics which might give better rankings, but places more emphasis on
how the heuristic works than how the original DSM performs.

We will discuss the implementation of such heuristics in §5.4 and §5.5.

3.3 Analysis: The Devil in the Details

The final step of the experiment is to get results. To do this, we wrote an
analysis script which, in line with the rest of the project, had to be general
enough to be usable for further work (i.e. different/bigger testbed corpus,
different metrics) without any (significant) modifications. As was the case
for the corpus construction and the metric evaluation, we will present the
implementation details in a later chapter (Chapter 6), alongside the actual
results of our experiment. Here we will discuss the general idea behind the
design of our evaluation script, and how we planned to rank and compare
the metrics.

In §3.2.1 we discussed how to calculate the metric closeness to the gold-
standard (CGS) for each entry in the corpus. This CGS score, a value be-
tween 0.0 and 1.0, corresponds to how similar—for a particular entry—the
metric’s evaluation of document similarity was to the objective standard set
during corpus construction; higher scores means the metric’s evaluation is
correct for that particular corpus entry, lower scores means it differs greatly
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from the gold-standard score.

In running the experiment, we collect the CGS score for all entries of each
section of the corpus, for every DSM. Thus, for every metric we can get a
metric score for each corpus section by calculating the average CGS for the
entries of that section. This allows us to get rankings for each section of
the testbed corpus, where metrics with a higher average CGS score for some
section are considered to be more effective DSMs for the kind of similarity
characterising that section than lower-scoring metrics.

This may seem simple and effective, but two questions come to mind. First,
is this the best way to go about evaluating metrics? Second, while this gives
us definite rankings, the basis for comparison may seem a little superficial.
Is there no way to obtain more detailed information while ranking and com-
paring metrics? We will attempt to respond to both questions below.

3.3.1 Gold-Standard Ranking vs. Retrieval

Is using average CGS per section the best method for ranking and comparing
metrics? It is hard to answer such a question, since one would need to
exhaust all other options, including ones we had not considered. The idea
behind this approach is fairly intuitive in the first place: we see how well
each DSM’s evaluation of similarity compares to that of an ideal metric (as
represented by the gold-standard score). Naturally the actual gold-standard
score is usually imperfect, since we have used heuristics to set it and expect
anyone constructing a large testbed corpus would have to do the same, but
the heuristics we have used are, we claim, reasonable (as discussed in §3.1.3);
therefore the imperfection is intended to be mostly negligible for the purpose
of our analysis, since all metrics are tested against the same gold-standard
scores.

Another option that came to mind when we were considering how to go
about analysing and comparing metrics was to use the following protocol
inspired from information retrieval. We would first match up all the similar
document pairs in the corpus, which would be divided up into sections as done
previously. For the metric evaluation, for each section, we would randomly
select a document (not a document pair) from the pairs in that section and
call it the query, compute the similarity of the query with all other documents
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in the pairs of the section and rank them according to metric similarity score
for each DSM, and then see where the document originally paired with the
query appears in the rankings for each DSM. Using this information, we can
calculate the precision, recall, and F-measure for each metric. By repeating
this operation a fixed number of times (presumably depending on the desired
granularity of results and size of the corpus) for each corpus section, we would
obtain average precisions/recalls/F-measures per metric, per corpus section,
and use these to rank the metrics for each corpus section (high F-measures
would signify better metrics, since they are more successful at reproducing
the original pairings).

Why did we not use this method? There are three good reasons. The first rea-
son is that it is computationally more expensive (unless some clever heuristic
is used). Where n is the number of times a document was randomly picked
for a corpus section, and k is the number of documents in that section,
then the number of similarity measurements is obviously n · k per metric.
Whereas when using the gold-standard-based evaluation method, we only
need k comparisons per section, per metric. Bearing in mind that evaluating
some metrics (namely the Wordnet-based DSMs) took over half a day in our
experiment, multiplying that by some significant value makes the experiment
impractical.

The second reason is that in some sections of the corpus—namely the syntac-
tic sections—some of the documents paired up are very similar. Therefore
running syntactic DSMs, which one would expect to perform well in such
sections, through this information retrieval-like evaluation system would pro-
duce bad results, since many very similar documents might rank highly while
not being the documents originally paired with the query. This is less of a
problem for semantic/lexical sections and metrics, but since we want to eval-
uate all metrics we have against all the types of similarity present in the
corpus in order to compare DSMs against the testbed corpus’ sections, it
makes no sense to adopt a method which will produce accurate evaluation
results only for some metrics, and some sections of the corpus.

The third and final reason we used the gold-standard method is that it al-
lowed for a more fine-tuned metric analysis, as will be described in §3.3.2,
while the information retrieval-based method does not allow this, as should
soon become clear.
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3.3.2 Finer-grain Analysis: Breaking Down Results

Earlier we asked how we could get more precise results than simply ranking
metrics by section using average CGS scores. The solution we propose is as
follows, and involves two methods.
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Figure 3.1: Example of Visually Represented CGS Score Distribution

The first method we propose involves visually representing the distribution
of CGS scores for each metric, for each section, as shown in Figure 3.1. When
the scores are consolidated into sharp spikes, as seen in the figure, then we
can easily see that the metric gives consistent scores. When the spikes are
towards the right end of the plot, the DSM is generally successful, and when
it is towards the left, the DSM is poorly adapted for measuring the kind of
similarity defining the corpus section being used for evaluation. Likewise,
when we observe disjoint spikes with some distance between them, then we
can state that the set of features the metric is using for evaluation is present
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throughout the corpus section, but is most likely not used in identifying the
kind of similarity defining that section of the corpus, since the features are
identified in similar pairs as well as dissimilar pairs. If there is a complete
absence of spike or concentration of results, then the metric is evaluating
similarity quasi-randomly5.

Of course, there will be cases where a DSM will have a mix of the above
features. For example, for some section of the corpus, metric A might rank
higher than metric B in terms of its average CGS score; however it might
be, upon looking at the distribution of CGS scores for metrics A and B,
that we see that metric B has all its bars on the right half of the plot, while
metric A has a very sharp spike on the far right, but a small spike in the left
half (still achieving a higher overall average score, but making more severe
mistakes). This added detail, which one could not observe through the mere
metric rankings, but which is easily noticed by a human observer, might be of
interest for several reasons. For instance, a metric developer might judge from
these results that although metric A performs well overall, it can be deeply
unreliable on occasion, and that the cases where the error is grave might
indicate some (albeit minor) conceptual problem with the metric design;
while the developer of metric B might take such a distribution to mean that
metric B functions well as a broad classifier (gets everything ‘vaguely right’,
makes no large mistakes), and that some mere fine tuning of the metric’s
mechanisms might be enough to improve its ranking. Additionally, such
visual representations aim to help select metrics to use in the creation of
hybrid metrics, an approach to improving metrics based on analysis results
which we will present in the conclusion.

The second method we propose is another way of comparing any two metrics
in more detail. We have the CGS scores for both metrics. For each such pair
of DSMs, and for each corpus section, we record the absolute difference in
CGS scores of both metrics for each document in that section—we call this
the metric divergence score (MD score) which must be a value between 0.0
and 1.0. We then plot the distribution of MD scores and/or compute the
average for each section. When two metrics get high average MD scores for a
section of the corpus, it means that they are evaluating the type of similarity
defining that section in radically different ways (the opposite is evidently
true too). This sort of analysis can, again, be useful in several ways. For

5Such a distribution can be observed in Figure 6.6c, in Chapter 6.



3.3. ANALYSIS: THE DEVIL IN THE DETAILS 49

example, if we know well how metric A works after years of experience, and
observe that some new unknown metric performs well on a small testbed
corpus, but also has a low MD score relative to metric A, then we can posit
that it is broadly similar in terms of the properties it exploits to determine
similarity, even if the mechanisms by which it does this are different. We can,
in turn, use this information to better understand what properties identify
that sort of similarity. And again, we will suggest using MD scores to help
select metrics for the creation of hybrid DSMs as will be explained in the
conclusion.
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Chapter 4

Designing a Corpus
Construction Module

In this chapter, we will discuss the implementation of the corpus generating
framework—corpusbuilder.py. As specified in §3.1, the minimum require-
ment was to create a set of classes with a common interface from which
we could extract a section of the testbed corpus. In §4.1 we will present
the general basis for such classes. The sections that follow it will describe
the specialised corpus builders we used to construct the testbed for our ex-
periment. The actual construction was performed using a simple script—
buildcorpus.py—shown in §B.2, which we will not go over here. Where
they were not too long, we provided samples of corpus entries. A full text
version of the corpus is provided with this work on a CD-ROM (cf. Appendix
A for details).

4.1 Setting Up a General Framework

4.1.1 Structure and Shared Features

We used object-oriented features of Python 2.6 throughout the project, and
attempted to write modular code that was easy to extend. The writing of
the corpus construction classes, the code for which can be seen in §B.1 of the

51
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appendix, had to begin with a parent class, corpusbuilder, that would set
the uniform interface features of the specific corpus construction classes, as
well as functions and variables that would be shared by the children classes.

A section of the testbed corpus would always be a set of entries with a unique
identifier referring to a corpus entry constituted of a triplet, the first member
of which is the first document of the document pair, the second member being
the second document, and the third member being the gold-standard score
for that document pair. The unique identifiers contain specific information.
Here is the general structure of such an identifier (segments between rounded
parentheses are mandatory, between square brackets are optional):

(CORPUS SECTION) [-SUBSECTION TAG] (ID NUMBER) [m]

For example, an entry for our paraphrase corpus (CORPUS SECTION =
“Paraphrase”), from the MTC subsection (SUBSECTION TAG = “MTC”)
could have the unique ID “Paraphrase-MTC2135” (where 2135 is a unique
number assigned by the program, as will be explained shortly). Some entry
from our abstract-article pair corpus section (CORPUS SECTION = “Ab-
stract”), which has no subsections, could have the unique ID “Abstract23”,
as the subsection tag is entirely optional. The last point of interest is the
optional trailing ‘m’. As was discussed in §3.1.4, it was often possible—
and indeed necessary for balanced evaluation—to use pairs from an already
constructed corpus to expand it by voluntarily mismatching documents and
assigning a gold-standard score of 0.0 to such mismatches. We will discuss
the function that does this later, but suffice it to say for now than when
corpus entries are produced in this way, we add an ‘m’ at the end of the ID.
Finally, one might ask why all other components of the ID are needed since
the ID number is unique (thanks to a global counter). The reason why is that
all the extra information contained in the ID will be used to sort documents
into sections and subsections and obtain refined results during the analysis
phase; we will describe how we do this in Chapter 6. Each corpus builder
is therefore given tagging information which contains the corpus type (e.g.
Paraphrase, Abstract, etc.) as well as a subsection tag stored in the class
attribute tag (described below) if one was specified. We will not mention the
tag details in the descriptions of specific corpus builders in this chapter, but
the reader should be aware that they are hard-coded into each class discussed
here.

The corpusbuilder class has a small initialisation function which declares
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some key variables we are about to discuss, and which in turn would need to
be called in the initialisation function of specific corpus builder classes.

The key variables declared here were as follows:

• documents1 and documents2: dictionaries that map unique identifiers
to strings containing the documents of the document pair in each entry.
For example, if the corpus section were to contain an entry with ID ‘id1’,
and with as two documents forming the matched pair a string ‘string1’
and a string ‘string2’, then the dictionary documents1 would have an
entry with the key ‘id1’ mapped to the content ‘string1’, and the dictio-
nary documents2 would have an entry with the key ‘id2’ mapped to the
content ‘string2’. These dictionaries will be used for the construction
of the formatted and annotated corpus section.

• IDs: a list (array) containing all the IDs of entries generated by corpus
constructing class instances. This is mostly for the sake of convenience
(and use within the class), since such information could easily be ex-
tracted by reading the keys of documents1 or documents2.

• corpus: a dictionary mapping element IDs to corpus entry triplets, as
described above.

• mixedcorpus: the mixed extension of the corpus, kept in a separate
dictionary to cater for the cases where extending the corpus in such a
manner is not needed, in which case the program needing the matched
corpus section need only read from the corpus variable of the corpus
building object, and ignore the mixedcorpus variable.

• mixedIDs: the IDs of entries in the mixed extension of the corpus
which, as presented above, end with the tag ‘m’.

• noMix: a boolean set to ‘False’ by default. When this is true, any re-
quest to extend the corpus by mismatching documents will be ignored.
This should be set to ‘True’ in any corpus constructor that does not
require mixing.

• tag: a private string variable which will contain the subsection tag (for
use in the ID of corpus entries) passed to class instances during their
creation in other scripts. Set to an empty string (no tag) by default.

The base corpusbuilder class then defines three helper functions for use in
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child classes:

• calcsimscore: takes a corpus ID as input, retrieves the documents
with that ID from documents1 and documents2, and calculates their
similarity score. In this parent class, the function simply returns 1.0
as a heuristically-defined gold-standard for matched documents. This
function should be overloaded for the implementation of more complex
heuristics.

• scoreCorpus: pulls all the IDs from IDs, and for each one (ID), builds a
tuple using the documents with that ID from documents1 and documents2

and the gold-standard score for those documents as calculated by calcsimscore(ID).
It stores such tuples in the class variable corpus as the value for a the
key ID. This function stays unchanged in all children classes, since
calcsimscore is all that needs to be overloaded to change the scoring
heuristic, and leaving this function unchanged ensures homogeneity of
corpus structure.

• generatemixed: takes the subsection tag (if defined) and an optional
integer quantity standing for the number of mixed corpus entries to
generate (if not specified, it will simply double the size of the corpus
under the assumption that all existing document pairs are matched by
high degree of similarity). If the class variable noMix is True, then this
function will do nothing. If not, it randomly mismatches pairs, gives
them a gold-standard score of 0, and adds them to mixedcorpus with
a unique ID, which it also adds to mixedIDs. Because of noMixed, this
function can be safely called in any subclass initialisation function after
scoreCorpus, whether the subclass needs to generate a mixed corpus
or not.

To summarise what child classes must do in their initialisation function in
order to generate their corpora:

1. Extract document pairs from source corpora and write them to documents1
and documents2 with a unique ID which must be added to IDs.

2. Optionally provide a scoring heuristic using the structure of the source
corpora by overloading calcsimscore, or simply use the existing näıve
heuristic.

3. Call scoreCorpus and generatemixed.
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After an instance of such a subclass is created, the script needing the matched
corpus can simply copy the corpus attribute of that instance to some local
variable. If it needs a full corpus section, it can merge the mixedcorpus

attribute of that instance into the dictionary to which it copied the corpus

attribute.

4.1.2 Suggested Improvements

We suggest no particular functional improvements to this general class, as
it worked perfectly for the purposes of our experiment. But since the sub-
sidiary aim of this project is to create an easily extendable framework, we
recognise that the code of this module could use some refactoring in order
to further facilitate the writing of new child classes. However, since the way
each subclass of corpusbuilder extracted their documents was widely dif-
ferent, this would require some heavy modification of the subclasses we had
already written. Deadlines and results were more important in the case of
our experiment than the aesthetics of the corpus generating classes, so we
leave it to those interested in extending this module to decide if it is worth
rewriting the base class.

4.2 Syntactic Toy-Corpora

4.2.1 General Overview

The two corpus constructing subclasses of corpusbuilder presented in this
section—namely editcorp and POSswitchcorp—are designed to generate
testbed corpus sections where document pairs are related by principally syn-
tactic features. The two interesting characteristics these corpus builders
present, relative to the others, is that the notion of similarity with which
they are constructing the corpus is well defined, and that this similarity is
exactly quantifiable during the construction process; this is to say, we can
set a gold-standard for document pairs which is an objective measure of
similarity, rather than a score obtained through some heuristic.

The reason why such precision is possible is that the notions of similarity
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at play in both cases are very simplistic, and that some of the documents
generated by these classes are fairly unusual instances of language (or in fact
completely garbled). This is because the reason we included these corpus
sections is to have some basis for demonstrating what sort of similarities
with which principally syntactic metrics were designed to work bes. Because
of this we will refer to these corpora as ‘toy-corpora’.

4.2.2 Construction Process: Random Edits Corpus

The first of these toy-corpora is editcorp, a corpus which pairs each sentence
with a version of itself which has undergone a randomly determined number
of edits. An edit, within this context, refers to the change of a single character
according to a set of operations: morph, delete, move. These correspond to
class functions which we will describe shortly.

The number of edits used to generate the second sentence of the pair from the
first is what determines the gold-standard according to the following formula:

Gold-Standard = 1.0− # of edits

Sentence Length

The sentence length referred to is the length of the original sentence (since
the edited sentence may be shorter), the number of edits is randomly set for
each corpus entry as will be discussed below. When the number of edits tends
towards the sentence length, we consider that significant syntactic change has
occurred; correspondingly, # of edits

Sentence Length
tends towards 1.0, hence the gold-

standard score tends towards 0.0, and conversely when there are few edits
relative to the length of the original sentence, # of edits

Sentence Length
tends towards

0.0, hence the gold-standard score tends towards 1.0.

According to good object-oriented design rules, we should have implemented
this measure in calcsimscore, overloading the eponymic function from the
parent class corpusbuilder and then calling scoreCorpus, however because
of the simplicity of this class we found it simpler to process the same opera-
tions as part of the initialisation function. The initialisation function works as
follows. We begin by importing a set of 500 raw (untagged) sentences1 from

1This number can be changed for other experiments by specifying the size of the corpus
as a keyword argument when creating an instance of editcorp, e.g. by writing myeditcorp

= editcorp(size = 1000), we would build a 1000 entry corpus.
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the Brown Corpus2. We obtained the pre-chunked sentences from the Brown
corpus module integrated into the Natural Language Toolkit (NLTK)3. We
did not use any of the part-of-speech annotations or the categorisation fea-
ture, and a similar corpus generator could be written using any corpus with
raw text as a basis (one would only need to chunk out the sentences). We
could well have written a more general class to make doing this easier, but
since this class is written to generate a toy-corpus, we did not judge this to
be worthwhile.

Each sentence in the thus-obtained set of sentences is an ordered list of
tokens (words). For each such list, we first join it into a string, then use
a class function randomedits (described below) to obtain a string with a
random number of edits, as well as the number of edits performed to obtain
it. Using this number and the formula discussed above (Gold-Standard =
1.0− # of edits

Sentence Length
), we obtain the gold-standard score; we finish by writing

the original sentence, edited sentence and gold-standard to the class’s corpus
dictionary with a new ID as key. We perform this task for all other sentences
in the set obtained from the Brown Corpus in order to produce our full corpus
section.

The randomedits function discussed above is the cornerstone of this subclass.
It takes the original string as an argument which it copies to a variable
restricted to the function’s scope (i.e. deleted when the function returns a
value), randomly decides on a number of changes between 0 and the length
of the original string, and then it performs the following set of steps as many
times as the randomly decided number of changes. First, a random number
generator selects a location on the string to be edited, then it randomly
selects one of the three edit operations4. If the move edit (described below)

2For more details on the Brown Corpus, a POS-tagged and cate-
gorised collection text, see (Francis and Kucera 1979), available online at
http://khnt.aksis.uib.no/icame/manuals/brown/.

3We made fairly frequent use of NLTK throughout this project. It was initially de-
veloped by (Bird and Loper 2002), and is presented in detail in (Bird et al. 2009). It is
open source and available online at http://www.nltk.org. We will describe the other
functions and features of the toolkit that we used as they appear in our implementation
account. Although this toolkit provides implementations of entire DSMs, it will only be
used in a small number of lines in the source code presented in Appendix B, since most
of the framework code is used to set up DSM evaluation.

4There is a non-zero possibility that the random number generator will select the same
character for the same edit function twice in a row, and that the random edit will effectively
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is selected, another random edit location (the move’s destination) is selected
in the string. Next the edit operation is performed, modifying the string.
Finally a counter containing the number of edits is incremented by one. This
is repeated as many times as the decided number of changes, and finally, the
modified string and number of changes are packed into a 2-tuple which is
returned.

The edit functions used were as follows:

• morph: takes a string and edit location as arguments, randomly selects
a character from a restricted set ASCII characters5, and checks if the
selected character is the same as the character at the string’s edit loca-
tion. If the character is the same, it selects another one and performs
the same check, if it is not, it replaces the old character with the new
and returns the string.

• delete: takes a string and edit location as arguments, returns the
string with the character at the edit location removed (shortening the
string’s length by 1) by concatenating the string segment before the
edit location with the segment after the edit location.

• move: takes a string, edit location, and destination as arguments, copies
the character at the edit location into a buffer, non-destructively inserts
the buffer contents at the destination by splicing and re-joining the
string at that location on either side of the added material, and finally
removes the character at the edit location by calling delete and returns
the edited string.

To finish describing this sub-class, one may ask why there is no mixed cor-
pus. Because the random number generator has a uniform distribution, over
a large number of corpus entries the gold-standard scores should cover the
range between 0.0 and 1.0 and average to 0.5. Therefore mixing is not needed,
as it would skew the distribution of gold-standard scores. We set the attribute
noMix to ‘True’, which is solely for external use since the initialisation func-
tion doesn’t call generatemixed (but even if it did, nothing would happen
since noMix is true).

revert the string to a state it was in a few steps before without decreasing the edit counter.
This will indeed skew the gold-standard score for this entry, but the low probability of
this occuring and the large size of the corpus renders such an issue negligible.

5Character set: 1234567890abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ,.;:?!
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A sample of this section is the following two entries:

<doc1 ID=Edits100> -- Committee approval of Gov. Price

Daniel’s ‘‘ abandoned property ’’ act seemed certain Thursday

despite the adamant protests of Texas bankers . </doc1>
<doc2 ID=Edits100> -c o tteLapgo XfGv.PTe DSlr’g6e dgcanovprekreyyrS1KNtThmJd

caRSn3ysCFSetpet ehiamvnom pestsVdoeah n 7 </doc2>
<score ID=Edits100> 0.179310344828 </score>

<doc1 ID=Edits10> The City Purchasing Department , the

jury said , ‘‘ is lacking in experienced clerical personnel

as a result of city personnel policies ’’ . </doc1>
<doc2 ID=Edits10> The City Purchasing Department p, the

jury said , ‘‘is lacking in exerienced clerical personnel

as a result of city personnel policies ’’ . </doc2>
<score ID=Edits10> 0.985714285714 </score>

4.2.3 Construction Process: POS-Tag Equivalence Cor-
pus

The second toy-corpus builder is POSswitchcorp, which creates document
pairs where the first document is a sentence obtained from the Brown Corpus,
and the second is an edited version of the first where a random number of
words have been substituted for other words with an identical part-of-speech
(POS) tag. The notion of similarity at play is that of superficial similarity
between grammatical structures. Two sentences are said to be the same if
they have the same grammatical structure, and different if they do not. A
more sophisticated corpus builder could be designed to offer a more complex
notion of similarity involving parts of speech, but we believed this toy-corpus
was enough to produce some interesting initial results.

The class contains only an initialisation function, and calls helper functions
from the parent class corpusbuilder. The initialisation function works as
follows: first, a set number6 of tagged sentences are extracted from the Brown
Corpus using the NLTK interface, and stored in tagged sents. We then

6As was the case for editcorp, the default value can be changed to use different parts
of the corpus by giving the initialisation argument startindex=[start position]; and the
section size can be modified by providing the keyword argument size=[section size].
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create a dictionary POScatwords which will map POS-tags to word lists. We
populate this dictionary using the sentences which we extracted (for each
word/POS pair in the sentence we add that word to the list that the POS-
tag maps to in POScatwords).

Next, for each sentence in tagged sents, a random number of switches are
selected. For each switch in the range selected, a word is chosen at random in
the sentence being edited, and the list of words for that POS is retrieved from
POScatwords. A word is chosen at random and substituted for the original.
This operation is repeated as many times as decided, and the final edited
sentence is paired with the original sentence, packed into a triplet with a gold-
standard score of one, and added to the class dictionary corpus under a newly
generated ID by calling the class function scoreCorpus. We do not need to
modify the näıve heuristic in the parent class function calcsimscore, since
the sentences generated this way must have the same grammatical structure
as the originals (even if the generated sentences may seem a bit unnatural or
nonsensical at times).

Finally, we call generatemixed to generate the mixed corpus, as described
in §4.1.1.

A sample of this section is the following two entries:

<doc1 ID=POSswitch1000> In 1961 , it is estimated that

multiple unit dwellings will account for nearly 30 per

cent of the starts in residential construction . </doc1>
<doc2 ID=POSswitch1000> In 1961 , she is estimated little

multiple staff dwellings will account for nearly 30 per

cent across the starts in residential color ; </doc2>
<score ID=POSswitch1000> 1.0 </score>

<doc1 ID=POSswitch1004m> Mr. and Mrs. B. Lewis Kaufnabb

, for senior aides , and Mrs. Samuel P. Weinberg , for

the bundles . </doc1>
<doc2 ID=POSswitch1004m> ‘‘ And They bum tickets to everything

We can ’’ , she said . </doc2>
<score ID=POSswitch1004m> 0.0 </score>
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4.3 Theme-grouped Texts

4.3.1 General Overview

The corpus builder themecorp pairs documents—short texts a few para-
graphs long—by theme (adventure, editorial, romance, religion, science fic-
tion). The pairs within each theme are meant to have loose lexical relations,
in that the key words in document pairs may not have a direct, tight lexical
relation to each other (as the words ‘spoon’ and ‘fork’, or synonyms would)
but are generally of the same broad lexical family: there is a particular kind
of language common to most romance texts that is far different from that
found in science fiction.

4.3.2 Construction Process

The class themecorp is a subclass of corpusbuilder. However, not unlike
editcorp and POSswitchcorp described in §4.2, it does the work its par-
ent’s scoreCorpus and calcsimscore functions would normally take care of
directly in its short initialisation function, due to its relative simplicity.

This class has two special attributes, cats and dualcats. First, cats is a list
of five Brown corpus categories/genres which we arbitrarily picked. Through
a bit of indirection, this could be made into the sort of thing users would
pass to the class during initialisation of instances, but we opted for a quick
implementation to get results. Second, dualcats is dictionary mapping each
category from cats to its dual category. For each category, the dual category
is a category from cats which we decided was most unlike the first (e.g.).
This will be required for creating the mixed corpus, as should become evident
later.

All the work for this function is done in the initialisation function. For each
category in cats, news ‘chunks’ of text are extracted from the Brown corpus
using the NLTK interface by joining together three successive new para-
graphs. The text chunk is then added to a dictionary entitled text chunks

mapping categories to lists of such chunks. This operation is performed fifty
times (this number, and the size of chunks are default values, which can be
changed by the user when instantiating the object).
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Next, for each category in cats, document pairs are formed by taking con-
secutive chunks from the category to form document pairs. Such pairs are
packed into a tuple with a gold-standard score of 1.0—as the documents share
the same theme—and added to the class dictionary corpus under a fresh ID.
This is repeated for each category to form the matched part of the testbed
corpus section. Next we create the mixed part through a similar process. For
each category, each document is paired up with a document from the dual
category, found using the dictionary dualcats. Such mixed pairs are then
assigned a gold-standard score of 0.0 (since they are documents from differ-
ent thematic categories) when packed into a tuple, which is then written to
the class dictionary mixedcorpus with a fresh mixed ID. This is repeated for
each document in each category to form the mixed corpus.

Here is a sample entry from this section:

<doc1 ID=Themes1501> Dan Morgan told himself he would

forget Ann Turner . He was well rid of her . He certainly

didn’t want a wife who was fickle as Ann . If he had married

her , he’d have been asking for trouble .But all of this

was rationalization . Sometimes he woke up in the middle

of the night thinking of Ann , and then could not get back

to sleep . His plans and dreams had revolved around her

so much and for so long that now he felt as if he had nothing

. The easiest thing would be to sell out to Al Budd and

leave the country , but there was a stubborn streak in

him that wouldn’t allow it .The best antidote for the bitterness

and disappointment that poisoned him was hard work . He

found that if he was tired enough at night , he went to

sleep simply because he was too exhausted to stay awake

. Each day he found himself thinking less often of Ann

; ; each day the hurt was a little duller , a little less

poignant . </doc1>
<doc2 ID=Themes1501> He had plenty of work to do . Because

the summer was unusually dry and hot , the spring produced

a smaller stream than in ordinary years . The grass in

the meadows came fast , now that the warm weather was here

. He could not afford to lose a drop of the precious water

, so he spent most of his waking hours along the ditches

in his meadows .He had no idea how much time Budd would
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give him . In any case , he had no intention of being

caught asleep , so he carried his revolver in its holster

on his hip and he took his Winchester with him and leaned

it against the fence . He stopped every few minutes and

leaned on his shovel as he studied the horizon , but nothing

happened , each day dragging out with monotonous calm .When

, in late afternoon on the last day in June , he saw two

people top the ridge to the south and walk toward the house

, he quit work immediately and strode to his rifle . It

could be some kind of trick Budd had thought up . No one

walked in this country , least of all Ed Dow or Dutch Renfro

or any of the rest of the Bar B crew . Morgan watched

the two figures for a time , puzzled . When they were

closer and he saw that one was a woman , he was more puzzled

than ever . </doc2>
<score ID=Themes1501> 1.0 </score>

4.4 Wikipedia Article Pairs

4.4.1 General Overview

The corpus builder wikicorp pairs up Wikipedia articles (one from English
Wikipedia, the other from Simple English Wikipedia7) on the same specific
subject, considering this to be a broad form of lexical similarity which is
different from that obtained from themecorp (cf. §4.3) since the document
pairs obtained in wikicorp will contain key words with closer lexical relations
(same subject) than in themecorp (same theme).

4.4.2 Background and Sources

For our experiment, we collected 122 English article URLs which we put into
a file. We wanted articles which had a Wikipedia Simple English version, and
obtained them through the following methodology. We went to Wikipedia

7See §3.1.1 for an explanation of Simple English Wikipedia.
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Simple English, and repeatedly used the random article link (http://simple.wikipedia.org/wiki/Special:Random)
to cycle through pages. When pages met the criteria discussed below, the
URLs were saved. When enough URLs were obtained, a quick search and
replace would substitute en.wikipedia.org for simple.wikipedia.org to
obtain a list of English Wikipedia article URLs.

The selection criteria were fairly simple. First, we ignored all articles that
were very short (one or two sentences), since there was very little basis for
lexical comparison. Second, we avoided articles that had large amounts of
tabulated data or links and otherwise little article text, as the tabulated data
was generally copy-pasted from the English article, and thus the similarity
would be too trivial.

We recognise that the selection methodology could be perfected, but the URL
lists are not hard coded. Since the class can retrieve article pairs intelligently
enough to check if there exists a Simple English version for an English article,
one could feasibly put the URLs of all the English Wikipedia articles into
a list and obtain a corpus from that, so the class allows for further work
without the need for any code modifications.

4.4.3 Construction Process

The class wikicorp is a subclass of corpusbuilder. Its initialisation func-
tion takes the address of a file where URLs of English Wikipedia articles are
listed (one URL per line), to be passed during creation of class instances. For
each URL in this list, the URL is changed to point to the ‘printable’ version
of the article (with more uniform formatting) if needed, by using the class
function getprintURL which use a simple regex to add &printable=yes to
a slightly reformatted URL.

The properly formatted URL is then passed to the class function getHTML,
which uses Python’s url-opening library—urllib2—to present the script as
a Mozilla browser (otherwise Wikipedia restricts access) and obtain the raw
HTML from the given URL, which it then returns to the initialisation func-
tion.

A regular expression is then used to locate the Simple English version of the
English article the raw HTML of which has been retrieved (principally by
searching for simple.wikipedia.org), which is then used to retrieve the raw
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HTML for the Simple English version of the article. The raw text from both
articles is then obtained by passing the raw HTML to a NLTK helper function
clean html which will strip the HTML tags and formatting commands from
any string passed to it, and the text is stored in local variables text eng and
text simp (for the English and Simple English articles, respectively).

Finally, the text of the articles is put through the class function getarticlebody

which uses features such as the text ‘Retrieved from ”http:/’ to determine
the beginning of boilerplate text present in every article and delete it. It
also cleans up the superfluous whitespace present in the article, although
this is more useful for humans wanting to consult the corpus than for DSM
evaluation, since most metrics will just ignore whitespace. To complete the
journey, the cleaned text of the English article and Simple English article is
added to the class dictionaries documents1 and documents2 under a fresh
ID.

The above steps are repeated for every URL in the list. After this, the parent
class function scoreCorpus is called to assemble the corpus from the pairs
obtained from documents1 and documents1 and using the default heuristic
in calcsimscore (from the parent class) of assigning a gold-standard score of
1.0 to each pair (since they are matched). The corpus is thus written to the
class dictionary corpus. To complete corpus construction, generatemixed
is called to write the mixed segment of the corpus to mixedcorpus.

4.4.4 Future Improvements

We believe this class works the best it could work. The regexes used for
cleaning up the raw text could be fine tuned, but this is principally an aes-
thetic change. The principal improvement those considering doing further
work with this class should consider is to do with collecting URLs, as briefly
discussed in §4.4.2: one might wish to use the subcategory feature all the
classes in this module have to divide the source documents by category of
article (people, places, concepts, etc.) and see if the performance of similarity
metrics within these subcategories varies.
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4.5 Paraphrase Corpora

4.5.1 General Overview

The class lapatacorp—perhaps the most complex class in the module—
serves to build paraphrase sections of the test-bed corpora, where in each
document pair is associated by semantic similarity: one document is a sen-
tence and the other one is its paraphrase, obtained through different methods
for each subsection. This corpus constructor can be used for any further work
where the sources are formatted and annotated as was done in the work by
(Cohn et al. 2008). We will describe the background an implementation of
this class in this section.

4.5.2 Background and Sources

While looking for corpus sources for various sorts of paraphrase, we came
across work by (Cohn et al. 2008) on M. Lapata’s site (hence the class name),
which provided paraphrase pairs of three different types: one set was obtained
from the Microsoft Paraphrase Corpus designed by (Dolan et al. 2004), and
two sets were different translations of sentences, one from Chinese news arti-
cles, the other from Jules Verne’s Twenty Thousand Leagues Under the Sea
(originally in French). We decided that last two deserved different classes,
since the structure of French sentences is relatively close to that of English
sentences, while Chinese is fairly different, and that as a result there might
be a different degree of syntactic variation between the pairs of both sources.

In addition to providing us with pre-paired source documents, (Cohn et al.
2008) had produced alignment tables for each paraphrase pair, and then had
human annotators (named ‘A’ and ‘C’) view the tables and judge whether
particular alignments were good, average or bad (the specific annotations
used were ‘Sure’ (S), ‘Possible’ (P) and ‘-’ when no alignment was found).

For each of the three source categories, there are four significant files (here
zzz is the name of the category, namely ‘mtc’, ‘news’ or ‘novels’):

• zzz.common.one and zzz.common.two: these are the document source
files which contain the paraphrase sentences alongside a unique ID.
We can construct paraphrase pairs by taking a sentence with some ID
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from zzz.common.one and pairing it with the sentence with the same
ID from zzz.common.two.

• zzzAx.align and zzzCx.align: these are the annotation source files
which contain the paraphrase alignment quality annotations for anno-
tators A and C, respectively. They (bizarrely) are not given the same
IDs as in zzz.common.one and zzz.common.two, but the order is the
same such that the first sentence being annotated is the first sentence
to appear in zzz.common.one and zzz.common.two, so the proper IDs
can be recovered.

Below, we will explain how we used these annotations to derive a more so-
phisticated scoring heuristic for this corpus section while discussing the im-
plementation of this class.

4.5.3 Construction Process

The class lapatacorp is a subclass of corpusbuilder. It has a set of dic-
tionaries which we will populate using the source corpora:

• tokens1 and tokens2: dictionaries mapping unique IDs to list of tokens
such that the tokens under some ID in tokens1 form a sentence which
is the paraphrase of the sentence formed by the tokens in tokens2.

• annotations A and annotations C: dictionaries mapping unique IDs
to lists of annotations (‘S’,‘P’ or ‘-’) such that for any ID, the elements
of the list of annotations in annotations A and annotations C map
onto the lists of tokens under the same ID in tokens1 and tokens2,
respectively.

The initialisation function takes four filenames for zzz.common.one, zzz.common.two,
zzzAx

.align and zzzCx.align (for one of the three classes we have, namely ‘mtc’,
‘news’ and ‘novels’, or any corpora with the same structure) while instantiat-
ing the class and stores them in class variables rawfile1, rawfile2, fileA
and fileC, respectively.

It first passes rawfile1 and rawfile2 to the class function getdocs, which
collects all the document pairs (in the form of lists of tokens) from these
files using class function rawparser and assigns each pair a new ID using
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the appropriate tags (cf. §4.1.1). The function getdocs also reconstructs
the sentence strings by joining the tokens together. It returns the sentence
strings, which are put into class dictionaries documents1 and documents2, as
well as the tokens which are put into class dictionaries tokens1 and tokens2,
and also the list of generated IDs, put into class list IDs. The function
rawparser that was used here uses regexes to match sentences from rawfile1

and rawfile2 based on the XML-like tags (Cohn et al. 2008) have used to
encode IDs.

Next the initialisation function passes fileA and fileC to class function
annotparser to populate annotations A and annotations C. This function
checks the order of class list IDs to match annotation sequences to the IDs
of sentences we extracted using getdocs. Each line in the annotation file
contains:

1. an ID (used in conjunction with class list IDs to assign an ID entry for
each set of annotations),

2. the position of a word from tokens1[ID],

3. the position of a word from tokens2[ID],

4. an alignment annotation: ‘S’ for sure (good alignment), ‘P’ for possible
alignment, and ‘-’ for non-applicable/bad alignment.

For each ID, the annotations from fileA and fileC are copied into dictionar-
ies mapping IDs to lists of annotations, which are then returned and stored
in annotations A and annotations C.

Following this, the parent class function scoreCorpus is called to compile tu-
ples of documents pairs and gold-standard scores, and store them—using the
document IDs as keys—in the class dictionary corpus. The function operates
as it does in corpusbuilder, however the function it calls—calcsimscore—
is overloaded. The local version of calcsimscore simply takes the F-measure
of inter-annotator agreement to be the gold-standard score for a document
pair. This is because annotators are likely to say that word alignments are
good if words are aligned with other words that have similar meaning/use.
We calculate the F-measure by taking the annotations of one annotator to be
the reference annotations and the annotations of the other to be test annota-
tions. We call As the set of cases where alignments are given the annotation
‘S’ by annotator A, Ap when they are given annotation ‘P’, Cs when they
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are given annotation ‘S’ by annotator C, and Cp when they are given anno-
tation ‘P’. We thus obtain precision and recall for the alignments of a pair of
documents as follows (for a set s, |s| is the size of s):

Precision =
|As ∩ Cp|
|As|

Recall =
|Ap ∩ Cs|
|Cs|

The F-measure or F-score is obtained through the formula:

F-score =
2 · Precision · Recall

Precision + Recall

The F-score is returned to scoreCorpus by calcsimscore for every docu-
ment pair and sets the gold-standard score for that pair.

To finish, the parent class function generatemixed is called to form the
mixed corpus. We can ‘safely’ call this because almost all the pairs have
good alignments, and thus without mixing, the average gold-standard score
is just below 0.9. Ideally, we could determine how many documents we need
to add to the mixed corpus to bring the overall average down to 0.5, but
for the sake of simplicity (since the difference was not much for our source
corpora), we simply left the default setting of doubling the corpus size here.
The generated mixed corpus is written to class variable mixedcorpus, which
concludes the running of the initialisation function.

Here are three sample entries from this section:

<doc1 ID=Paraphrase-MTC2001> it was expected that these

two men became in-laws while they were in jail . </doc1>
<doc2 ID=Paraphrase-MTC2001> it is quite out of expectation

that the two men became relatives by marriage when they

are imprisoned in the north . </doc2>
<score ID=Paraphrase-MTC2001> 0.833333333333 </score>

<doc1 ID=Paraphrase-News2201> she has also signed a contract

with random house to write two books . </doc1>
<doc2 ID=Paraphrase-News2201> pauley also announced thursday

that she has struck a deal with random house to pen two

books . </doc2>
<score ID=Paraphrase-News2201> 1.0 </score>

<doc1 ID=Paraphrase-Novel2461> ‘‘ the only difficulty

, ’’ continued captain nemo , ‘‘ is that of remaining several
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days without renewing our provision of air . ’’ </doc1>
<doc2 ID=Paraphrase-Novel2461> ‘‘ our sole difficulty

, ’’ captain nemo went on , ‘‘ lies in our staying submerged

for several days without renewing our air supply . ’’

</doc2>
<score ID=Paraphrase-Novel2461> 0.777777777778 </score>

4.5.4 Future Improvements

Aside from the suggested further improvement regarding the balance-motivated
way of generating the mixed corpus, there are few things to improve upon
here, we believe. This class is general enough to cater to the creation of
corpora from any source documents the user wishes to supply, as long as
they are formatted in the same way (Cohn et al. 2008) formatted theirs. Re-
searchers wishing to pursue further work with this class may therefore want
to consider increasing the size of the corpus through the same alignment and
annotation process as discussed by (Cohn et al. 2008), perhaps opting to also
use purposefully misaligned pairs, so that we could add more granularity to
lower scoring document pairs and avoid using generatemixed (which uses a
fairly näıve heuristic).

4.6 Abstract-Paper Pairs

4.6.1 General Overview

The final corpus builder class implemented is papercorp, which matches aca-
demic articles with their abstracts on the grounds of semantic-lexical similar-
ity (summarisation). Since abstracts are provided with the articles in papers,
this class is mostly about using regexes to separate the abstracts from the
article.
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4.6.2 Background and Sources

We obtained a set of 187 articles from the website of the Association for Com-
putational Linguistics (specifically from http://aclweb.org/anthology-new/P/P08/).
As discussed in §3.1.1, we chose all the papers to be on the same class of top-
ics (in this case, computational linguistics) in order to weaken lexical criteria
for matching, focussing more on the semantic aspect of summarisation. We
leave the mixing of sources to future work, since this class (like all others in
the module) has full support for custom sources and sub-categories (passed
to the object through the tag=subcategory-name during class instantiation).

4.6.3 Construction Process

The class papercorp is a subclass of corpusbuilder. Its initialisation func-
tion takes as argument a folder where the PDF files of the articles from which
it is to construct the testbed section are stored (NB. it will use all PDFs in
this folder).

It first gets the absolute path of the folder address passed to it (and com-
plains if it does not exist). We then use Python’s pathname pattern ex-
pansion library—glob—to get a list of all the PDF filenames in the user-
specified folder, which are saved to the list pdflist. For each PDF filename
in pdflist, the function will attempt to get the raw text by passing the PDF
filename to class function getrawtxt. If anything fails during the running of
getrawtxt, the program will notify the user via stderr and continue onto
the next PDF in pdflist. The function getrawtxt takes a PDF filename,
and attempts to extract the raw text as follows: it will first generate a new
text filename based on the PDF’s filename—pdf—which it save to the lo-
cal string textFN. It will use the standard Python call function to run the
bash command line command “/usr/local/bin/pdftotext -nopgbrk -raw [pdf]
[textFN]”. This calls the program pdftotext from the open-source Poppler
PDF rendering library8 which is instructed to read the file pdf and write
the raw text within to the text file textFN. The contents of the raw text
version of the PDF with filename textFN are then read into a string stored
in variable raw, which is returned to the initialisation function, which adds
the thus-obtained string to the list rawpdfs.

8See http://poppler.freedesktop.org/ for more details.
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Once the above has been repeated for all PDFs in pdflist, we must sepa-
rate the abstract from the body, which we do as follows. For each raw article
string in rawpdfs, we obtain the abstract and body from that article by pass-
ing the string to class function chopabstract. If it is unable to do so, it will
report this to stderr and continue onto the next article string. The function
chopabstract works as follows: first it will look for the word ‘introduction’
in the first 2500 words of the article. If it does not find it, it will look for
the word ‘keywords’ in the same range. If it does not find that, it will raise
an error, and the article string will be skipped. If it finds either of these
(in the order they were checked), it considers it to be the beginning of the
article. If the word ‘abstract’ is used at the beginning of the abstract, it will
treat that as the beginning of the abstract. If not, it will treat everything
above the introduction (including headers and author information) as part
of the abstract. Using regexes and the aforementioned cut-off points, it will
separate the abstract and article body and pass both separately to the class
function cleantext which removes superfluous whitespace using regexes, be-
fore finally storing them into local variables abstract and body, respectively.
Finally, it returns the abstract and article body to the initialisation function,
which in turn adds the abstract to class dictionary documents1 under a fresh
ID, and the body to documents2 under the same ID.

Once this is done for all raw texts, the parent class function scoreCorpus

is called to build the corpus using the parent’s calcsimscore function with
its näıve heuristic of assigning 1.0 as gold-standard to all matched pairs,
storing the thus-produced corpus in class attribute corpus. It finally calls
generatemixed to generate the mixed extension of the corpus.

4.6.4 Future Improvements

The key improvement that could be made here is the heuristic used to deter-
mine the beginning of the article in the function chopabstract. We relied
heavily in the use of the word introduction and/or keywords because these
are common in many computer science papers. However some papers begin
with a roman numeral heading the introduction, or don’t even have an ab-
stract. The method we used to extract raw text makes it difficult to use
formatting aspects of the PDF and spacing, since they are lost in the conver-
sion to raw text, and completing the task using the PDF’s formatting was
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beyond our technical capabilities, but if a more sophisticated ‘chopper’ was
to be designed, this would be the way to go.



74 CHAPTER 4. DESIGNING A CORPUS CONSTRUCTION MODULE



Chapter 5

Evaluating Document
Similarity Measures

In this chapter, we will discuss the implementation of the metric evaluation
framework—corpusevaluation.py. As specified in §3.2, the minimum re-
quirement was to create a set of classes which, when instantiated and given
a corpus produced by the classes described in Chapter 4 as argument, will
produce evaluation data—for each corpus section and for each DSM—which
is suitable for analysis by the script described in Chapter 6. We will also
present the theoretical background for these metrics, the tools involved in
the construction of the classes, and the metric score normalisation steps
taken, as discussed in §3.2.2. The code for all these modules can be found in
§§B.4–B.5.1 The actual evaluation is not run within the framework, but by
a separate simple script—evaluatecorpus.py—which is shown in §B.6 but
not described here.

1One metric implemented but not described here is a random evaluator which gives
each corpus pair a random score between 0 and 1. This is used to determine what ‘better
than random’ scoring is for each corpus section if the average gold-standard score is not
0.5, and also to show what ineffective DSMs look like graphically when we break down the
scores as described in §3.3.2.

75
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5.1 Generalised Evaluation Framework

As we did for our corpus construction framework, we used object-oriented
design methods to create an easily extensible framework for evaluating met-
rics. We used inheritance more rigourously and wrote a large base class, so
that all that was needed to implement most metrics was to create subclasses
that overload a single function. In this section, we shall present the base
class evaluator.

The class evaluator serves as common ancestor to all classes in this module,
although some may have more direct parents as we shall see in §5.4. The
class is given as initialisation parameters either a keyword corpus pointing to
a corpus object produced by the construction metrics detailed in Chapter 4
(namely a dictionary mapping IDs containing section data to triplets consti-
tuted of two paired documents and their gold-standard similarity score), or
it will receive pre-processed data provided by the keyword eval data point-
ing to a formatted corpus object, as can be created by the pre-processing
script—prepcorpus.py2. If both keywords are specified, it will consider the
contents of corpus to be more important and ignore eval data.

If corpus has been passed to the initialisation function, it is formatted and
saved to eval data by passing it to the class function format. The function
format standardises the corpus strings by tokenising them using NLTK’s
sophisticated tokeniser (capable of, for example, recognising that acronyms
and words such as ‘Mr.’ are tokens), which are then rejoined to form the
normalised document strings3. The tokens are preserved during this opera-
tion. Finally, each corpus entry—which previously was of the format ‘(doc 1,
doc 2, gold-standard score)’—is repacked into the 5-tuple ‘(normalised doc
1, normalised doc 2, tokens of doc 1, tokens of doc 2, gold-standard score)’
which is stored in a dictionary under the same ID as the original corpus en-
try. These formatting steps are repeated for all original corpus entries. The
thus-produced dictionary is then returned to the initialisation function and
stored in the class dictionary eval data. If, instead, eval data was passed

2The script prepcorpus.py is shown in §B.3 but not described here, since it uses the
same formatting function format as described in this section and the same tagging function
tagcorpus as described when discussing the intermediary class TAGevaluator in §5.4.

3For instance, “Mr. Johnson, Bob, and I went to the fair. It was lovely.” would be
normalised as “Mr. Johnson , Bob , and I went to the fair . It was lovely .”
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to the initialisation function, then no formatting is needed, format is not
called and the dictionary is simply copied to an eponymous class dictionary
eval data.

The next and final step for the initialisation function is to call the function
getscore, which will return a dictionary mapping document IDs to metric
CGS scores, as discussed in §3.2.1. The function getscore works as follows:
for every ID key in the class dictionary eval data, the gold-standard is
extracted from the corresponding formatted corpus entry. The corpus entry
is then passed to class function scoreline which returns the metric score
for the document pair, which is stored in the variable linescore. The CGS
score is then calculated by taking 1.0 minus the absolute difference between
the gold-standard score and the metric score for that entry, and it is saved
to the dictionary scores which maps corpus IDs to CGS scores. This is
repeated for every corpus entry, and finally the dictionary scores is passed
back to the initialisation function, where it is stored in the class dictionary
scores.

The final piece of the puzzle is the function scoreline. If this function
is actually called for the evaluator class, it raises an exception, since the
base class is not meant to stand for any metric and cannot, therefore, score
corpus entries. This is the function which is overloaded—sometimes with
very simple functions—while implementing the metric evaluation classes, as
we will now show.

5.2 Implementing Purely Syntactic Metrics

We collected a selection of syntactic metrics commonly-referred to in the
literature, and produced a set of classes to implement them. In this section,
we present them, their theoretical background, tools we used to implement
them, and how we adapted the class function scoreline to complete the
evaluation class.
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5.2.1 Character-Count and Word-Count

The first two such classes are charcounteval and wordcounteval, subclasses
of evaluator which implement a metrics judging the similarity of documents
according to character-count and word-count, respectively, such that two
documents will have high similarity scores if the character/word-count of one
is close to that of other relative to the size of the larger string. This metric
score is normalised since the absolute difference between the character/word-
counts will always be inferior to the character/word-count of the largest of
two document strings, since there are no negative lengths. We subtract this
ratio from 1.0 to obtain a still-normalised metric score that tends towards
1.0 when the character/word-count of one document tends towards that of
the other, and tends towards 0.0 when the character/word-counts diverge.

The class function scoreline in charcounteval overloads that of evaluator.
It takes a corpus entry, extracts the document strings and divides the dif-
ference between their lengths (hence the difference between their character-
counts) by the largest of the two lengths and subtracts this from 1.0, thus
obtaining the metric score for the corpus entry, which it returns to calling
function.

The class function scoreline in wordcounteval overloads that of evaluator.
It takes a corpus entry, extracts the document tokens and divides the dif-
ference between the length of each token list (hence the difference between
their document word lengths since each token is a document word) by the
largest of the two lengths, thus obtaining the metric score for the corpus
entry, which it returns to calling function.

5.2.2 Levenshtein Edit Distance

The class leveneval is a subclass of evaluator and implements the Lev-
enshtein edit distance metric first introduced by (Levenshtein 1966). The
Levenshtein edit distance from one document to another is the minimum
number of character edits needed to transform one document to another,
where the allowed edits are inserting a character, changing a character to
some other character, and deleting a character (each count as one edit).
This may seem fairly similar to our editcorp class discussed in §4.2.2, being
based on the same edit principles.
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To implement the metric, we overload scoreline by writing a class ver-
sion which takes a corpus entry, extracts the document strings, finds the
maximum character length of the two strings and records it to maxlength.
It then calculates the Levenshtein edit distance between the two strings by
passing both of them to the function distance, which returns the edit dis-
tance. The function distance, like a few other syntactic metrics used in this
project, was provided by the third-party Levenshtein Python library4. We
divide by the maximum string length for the same normalisation reasons as
in charcounteval: the minimum number of edits cannot exceed the length
of the largest string. The result of the division is then subtracted from 1.0 to
obtain the metric score for that corpus entry, which is returned to the calling
function.

5.2.3 Jaro-Winkler Distance

The class jaroeval is a subclass of evaluator and implements the Jaro-
Winkler distance metric developed (Winkler 1999) as an extension of previous
work by (Jaro 1989; 1995) while working on ways to determine the probability
that two family names were the same (with typos) in health records. The
original Jaro distance metric computes string similarity Φ(s1, s2) based on
the number m of characters appearing in the same order in both strings (of
lengths |s1| and |s2| respectively), as well as the number of characters t shared
by both strings, but requiring re-alignment. We therefore obtain the Jaro
metric formula as represented in (Winkler 2006, §3.3):

Φ(s1, s2) =
1

3

(
m

|s1|
+

m

|s2|
+

m− t

m

)
This is normalised since 0 ≤ m ≤ |s1| and 0 ≤ m ≤ |s2| (because the
maximum number of shared characters is the size of the shortest string), and

0 ≤ m− t ≤ m trivially since t is positive or 0, hence
(

m
|s1| + m

|s2| + m−t
m

)
< 3,

thus 0 ≤ Φ(s1, s2) ≤ 1, and so the metric is normalised.

The Jaro-Winkler metric adds simply two factors: the length b of the shared
prefix at the beginning of the string up to a maximum of 4 (essentially the

4Available at http://code.michael-noll.com/?p=third-party;a=tree;f=python-Levenshtein-0.10.1.
Provided free under the GPL. Author unknown.
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number amongst the first n < 4 characters shared by both strings) and an
empirically determined scaling factor p usually set at 0.1. The Jaro-Winkler
distance Φ′(s1, s2) thus becomes:

Φ′(s1, s2) = Φ(s1, s2) + b · p · (1− Φ(s1, s2))

which must be normalised whenever the scaling factor b is inferior to 0.25,
since consequently bp ≤ 1, hence b · p · (1 − Φ(s1, s2)) < 1. Thus trivially
0 ≤ Φ′(s1, s2) ≤ 1 for b ≤ 0.25.

The metric is implemented simply by overloading scoreline, extracting the
document strings, passing them to the function jaro which returns the Jaro-
Winkler distance, which is returned to the calling function. The function
jaro is provided by the Levenshtein library described above.

5.2.4 Ratio Similarity

The class jaroeval is a subclass of evaluator and implements a superficial
syntactic similarity called ratio similarity. If l(s1, s2) is the Levenshtein edit
distance of strings s1 and s2, the ratio similarity rs is given by5:

rs =
(|s1|+ |s2|)− l(s1, s2)

(|s1|+ |s2|)

which is normalised since 0 ≤ l(s1, s2) ≤ 1 and presumably the strings are
non-empty.

This metric is implemented simply by overloading scoreline, extracting the
document strings from the corpus entry, and passing them to ratio (provided
by the Levenshtein Python library), which returns the ratio similarity, which
is in turn returned to the calling function.

5.2.5 Jaccard Similarity

The class jaccardeval is a subclass of evaluator and implements the Jac-
card index of set similarity, developed by (Jaccard 1901) while working on

5Due to lack of documentation for the Levenshtein Python library, if one wishes to
verify this, one should check lines 721–734 of the Levenshtein.c file in the library.
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the statistical distribution of types of flowers in the Alps. It measures the
similarity of two sets by dividing the size of the intersection between two sets
by the size of their union. This metric is normalised since the size of the
intersection of two sets is at most the size of their union (namely when they
are identical).

The implementation simply overloads scoreline, extracts the tokens from
the corpus entry, removes all repeating elements within the token lists to
form sets (using Python’s set() built-in function) and passes the sets to
jaccard distance, a function provided by NLTK’s metrics library, which
computes the Jaccard Distance (the Jaccard similarity subtracted from 1) of
the two sets. We subtract the result from 1 to recover the Jaccard index,
and passes it back to the calling function.

5.2.6 MASI Distance

The final syntactic metric implemented is the MASI distance developed by
(Passonneau 2006), and implemented in masieval, as subclass of evaluator.
The MASI distance masi(A,B) between two sets of labels A and B is simply
1.0 minus the length of the intersection of the sets, divided by the size of the
largest set:

masi(A,B) = 1.0− |A ∩B|
max (|A|, |B|)

As we can see, it is a dissimilarity measure between sets (masi(A,B) = 0 if
A = B, and tends towards 1 for dissimilar sets), which is normalised since size
of the intersection of two sets is always lesser or equal to the size of the largest
set, and set sizes are always non-negative, hence 0.0 ≤ masi(A,B) ≤ 1.0.

The implementation overloads the scoreline function, extracts the docu-
ment token lists from the corpus entry, forms sets out of them by removing
repeated entries, and passes the document sets to the masi distance func-
tion provided by NLTK, which computes the MASI distance between the two
sets. We subtract this measure from 1.0 to obtain a similarity measure which
is high for identical sets and low for different sets. The thus-obtained score
is returned to the calling function.
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5.3 BLEU: A Machine Translation Evalua-

tion Metric

In this section, we discuss the background and implementation of the BLEU
metric, from the world of machine translation. It exploits syntactic and
lexical aspects of sentence pairs to judge whether one is a correct translation
of the other. We will show, below, how this kind of evaluation was adapted
as a similarity metric.

5.3.1 Origin and use

The BLEU (BiLingual Evaluation Understudy) metric was developed by (Pa-
pineni et al. 2001) as a method for evaluating the correctness of translation
systems automatically, i.e. without the need for time-consuming human eval-
uation. For it to work, two components are required. The first is a set of
reference translations of the sentences which the evaluated systems will be
translating. For example, if we were evaluating how well a series of machine-
translation systems would do when translating a corpus of French sentences,
we would first have human translators produce a reference translation for
each corpus entry. The second component is a numerical formula from which
we can compute the correctness of a machine-translation of some sentence
A based uniquely on the reference translation of sentence A. Because the
metric only looks at the reference translation and the machine-translation,
it is qualified as language independent, which suits our experiment well since
we have parallel translations from French and from Chinese (cf. ‘novels’ and
‘mtc’ subsections of the paraphrase corpus section described in §4.5.2).

The ‘näıve’ baseline version of BLEU we are using here works as follows:
we search for how many n-grams from a candidate translation appear in
the reference translation and divide this by the number of n-grams in the
candidate translation to obtain the precision pn for the document pair, for
the value of n. The BLEU-n score of a document pair (candidate translation
vs. reference translation) is then computed by calculating:

BLEU-n = BP · exp

(
n∑

i=0

wi log pi

)
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where BP is a brevity penalty, which (Papineni et al. 2001, p315) suggest
should be:

BP =

{
1 if c > r
e1−r/c if c ≤ r

where c and r are the lengths of the candidate and reference translations. The
variable wi in the BLEU equation is a weighting for each n-gram precision.
(Papineni et al. 2001, p315) suggest a uniform wi = 1/n.

5.3.2 Implementation and score normalisation

We have chosen to implement a simple version of BLEU-n—namely BLEU-
1—in BLEUeval, a subclass of evaluator. The class overloads scoreline,
extracts the document strings of the corpus entry passed to it, and writes
them to two temporary files, which it formats by adding a newline character
at the end of each file, and then a ‘*’ character on the new line. This is done
because the evaluation of the document pair is done by an external program
bleu compiled from source code provided by Simon Zwarts of Macquarie Uni-
versity6. The program is called using the process-opening command Popen

from Python’s subprocess library, and given the names of the temporary
files the documents were written to as arguments. The BLEU−1 score is
then read from the command output using a regex, and cast to a float value,
which is returned to the calling function as the similarity score (after the
temporary files are removed).

5.4 Wordnet-based Metrics

We move onto the description of a class of DSMs exploiting lexical relations
to determine document similarity, making use of the hierarchically-structured
corpus Wordnet. Wordnet was first developed at Princeton by George Miller,
and is described in more detail by (Fellbaum et al. 1998). The corpus struc-
ture is that of a tree, where each node is a concept (e.g. a cat), its children
are hyponyms of the concept (i.e. X is a hyponym of Y if ‘X is a Y’ is
true), and its parent is its hypernym (i.e. X is a hypernym of Y if ‘Y is a

6This code is available at http://web.science.mq.edu.au/~szwarts/Downloads.php
and is not provided under any specific license.
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X’ is true). Concepts may be nouns, verbs or adjectives, although we will
not concern ourselves with adjectives here (because the metrics we use only
support noun/verb matchings, as we will soon discuss). Words are said to
have synsets, which are sets of concepts for which the word can stand (i.e.
concepts the word can be synonymous to, hence ‘synset’). Finally, it might
be useful to note that concepts become more abstract and general as one
progresses up the tree towards ancestor concepts, and more specific as one
progresses down towards the leaves.

In this section, we will present the background and implementation of three
metrics exploiting the structure of this corpus and its internal relations in
order to compute lexical similarity.

5.4.1 Overview of Wordnet Metrics

The idea of using Wordnet as a basis for computing word similarity has been
developed and discussed in several sources, many of which are mentioned by
(Pedersen et al. 2004) within the context of presenting a Perl module for
using such metrics. The three we will look at here are path similarity, Wu-
Palmer similarity and Lin similarity. All three of these metrics are functions
which, given two concepts (not documents) compute their similarity. We will
show how to scale this to documents when discussing implementation.

Path similarity is the simplest of the three. A path between two nodes A
and B in a tree graph is a list of nodes beginning with A and ending with B
or vice versa, such that for each node in the list, it is connected to the next
node in the list by one vertex (except for the last node, which as no ‘next
node’). The path similarity between some node A and B on a tree (such as
the Wordnet tree) is the inverse of the length of the shortest path between A
and B. It is normalised since dividing 1 by a positive integer always yields a
result between 0 and 1. The idea is obviously that concepts ‘close together’
on the Wordnet tree are more likely to be lexically similar (path similarity
score tends towards 1) than not. It should be noted that this metric, like the
other two described below, can only compute the similarity between nouns,
and between verbs, since noun and verb nodes do not share any common
ancestry (and hence have no path from one to the other).

One problem with path similarity is that it does not into account the hierar-
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chical relations between compared nodes, or where they are on the tree (as
while this might be true for more specific concepts, a short path amongst
abstract concept nodes high up on the tree might link two very different con-
cepts). The two metrics that follow attempt to use the hierarchical nature
of Wordnet for more precise similarity measurement.

The depth d(c) of a concept c is taken to be the distance of the concept’s
node from the root node of the Wordnet tree. The Wu-Palmer similarity—
conceived of by (Wu and Palmer 1994)—of two concepts A and B is de-
termined as follows. First, their most immediate common ancestor node
lcs(A,B) (also called the least common subsumer) is found. Next the depth
of that node is read, and finally this depth is scaled relative to the depths
of A and B. The version of Wu-Palmer we will be using (from NLTK) will
calculate it according to the following expression:

Wu-Palmer Similarity(A,B) =
2 · d(lcs(A,B))

d(A) + d(B)

which is normalised since the depth of the common ancestor to two nodes
is necessarily less or equal to than the lowest of the children node depths,
hence the fraction is lesser or equal to one (and trivially greater than 0).

Lin similarity—presented by (Lin 1998)—takes this approach one step further
by examining the information content of the immediate common ancestor
node lcs(A,B) of two nodes A and B, and scaling it by that of A and B.
The information content of a concept c is determined as follows. Using a
training corpus, we look for all instances of a concept in the corpus. From
this we determine the probability p(c) of encountering the concept (simply
its instance frequency over the size of the corpus). The information content
ic(c) of the concept is its negative log likelihood:

ic(c) = − log p(c)

The version of Lin Similarity we will use scales the information content of
lcs(A,B) by the sum of ic(A) and ic(B) as follows:

Lin Similarity(A,B) =
2 · ic(lcs(A,B))

ic(A) + ic(B)

We will now describe how we used these metrics to form DSMs whilst pre-
senting the implementation details.
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5.4.2 Implementing Wordnet-based Metrics

We need not concern ourselves with the mathematics of the metrics de-
scribed above, since NLTK’s wordnet module will provide us with the same
functions as described by (Pedersen et al. 2004) (and also provided in his
Wordnet::Similarity Perl module). Our chief task is to get parts of speech
of document tokens so as to be able to apply these metrics to them (since
they only compare nouns to other nouns, and verbs to other verbs, and ignore
the rest), and also conceive of a way of computing the similarity between two
documents using metrics which will compute the similarity between words,
as discussed in §3.2.3.

We began by writing a TAGevaluator subclass of evaluator which would
extend evaluator’s initialisation by POS-tagging each document from each
corpus entry and adding the token/tag pairs for each document in each cor-
pus entry to eval data, using a standard POS-tagger provided by NLTK
(nltk.pos tag()). It would also define a class list called stopwords pop-
ulated with English stopwords read from NLTK’s nltk.corpus.stopwords

corpus. The rest of TAGevaluator’s initialisation function is as in evaluator,
and calls getscore which calls scoreline in order to evaluate the corpus
for a given metric.

We then wrote a general Wordnet evaluation class—WNevaluator, a subclass
of TAGevaluator—which does all the work. It has two attributes, metric
and ic, which are both initialised to ‘None’ (‘void type object’ for Python).
The idea is that this class would contain all the code necessary to run the
evaluation when metric was defined as one of the three Wordnet metrics
(and ic pointed to a text to use as information context for Lin Similarity),
and that the individual metric classes would need to do nothing more but
overload the value of metric (and of ic, if needed), and implicitly class
WNevaluator’s scorecorpus function would be called by getscore during
the initialisation function, since they would provided none of their own. If
no metric was provided, WNevaluator will not initialise and will raise and
exception.

Thus all that is done in the classes pathsimeval, WUPeval and LINeval—
subclasses of WNevaluator standing for Path similarity, Wu-Palmer sim-
ilarity, and Lin Similarity respectively—would be to overload metric as
path similarity, wup similarity and lin similarity, respectively (all
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provided by NLTK’s wordnet module). Additionally, LINeval also over-
loads ic by setting it to NLTK’s wordnet ic module object set to retrieve
the British National Corpus already processed to serve as an information
context (i.e. it is a dictionary mapping concepts to probabilities calculated
from the British National Corpus).

The scoreline function common to all these metrics and defined in WNevaluator

works as follows: first it collects all the nouns from both documents from
the corpus entry passed to it into two lists (one per document), using the
getgroups function which also filters out stopwords listed in class list stopwords.
Then it gathers a list of all the concepts from each list and puts them into two
dictionaries (one for each document) each mapping nouns to lists of concepts.
We create a list of all possible pairs of nouns built picking one noun from
each document. For each such pair we iterate through concept pairs using
the noun-to-concept dictionaries and compute the concept similarity using
the metric specified in metric. The best score for that noun pair is recorded
in a dictionary mapping noun-pairs to best concept similarity scores.

The above steps are repeated for all the verbs in each document to obtain a
dictionary mapping verb-pairs to the similarity measure of the best-matching
concepts underlying the verbs of that pair. We write the scores from both
dictionaries to a single list, take the top 10% highest scores and average
them, and thus obtain the document similarity measure for the document
pair. This score is returned to the calling function.

5.4.3 Fine-tuning: How Far is Too Far?

The method described above is fairly fine tuned. Our first scaling attempt
was to collect all the concepts of all the nouns from both documents into
two lists, take all the concept pairs constructed from taking one concept
from each list, compute the similarity of each pair, and average over all the
scores. But since there may be a dozen or so other senses for each noun other
than that in which it was used, this brute-force method performs very poorly
because most concept-pairs evaluated have nothing to do with the concepts
expressed in the documents.

Another approach was to take a first sense heuristic, since when retrieving
the concepts underlying a word using Wordnet, the most common senses
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are usually the first ones in the list. We therefore could take the sense of a
word to be the first one on the list, and proceed as above (now word pairs
and concept pairs are effectively the same, since we have one concept per
document word). This produced slightly better results, but ultimately they
were still much worse than those provided by the ‘top 10%’ heuristic we
described in §5.4.2.

The point being made is that more sophisticated scaling heuristics produce
better results. We could doubtlessly do even better. For example, J. Carthy7

suggests using lexical chaining with Wordnet to disambiguate a sentence
(mapping words to precise concepts). If effective, this would most likely
produce better results than our ‘top 10%’ heuristic since it essentially maps
words to their concepts (with some error), and thus we compare concepts
directly, as we would for words, and can safely average over the whole bunch.

Why, then, did we not do this? First of all, because it would have taken
considerably more time to research how to do so correctly, and would involve
straying from the priorities of this experiment by focussing on a small set of
metrics. But more importantly, as we argued in §3.2.3, we wish to evaluate
the original metrics, rather than our ability to derive new metrics from them.
In order to compare the Wordnet-based metrics to other metrics, it was nec-
essary to scale them so that they could process the same corpus. However,
if the onus for results lay more in the heuristic used to disambiguate docu-
ment words rather than evaluating their similarity, we would be performing
a different task from that which was originally intended.

5.5 Semantic Vectors

In this section, we present the concept of distributional measures of semantic
similarity, and show how we used a vector-base approach to distributional
similarity measurement using a package designed by (Widdows and Ferraro
2008) to implement this metric.

7cf. Short bibliographical overview at http://www.csi.ucd.ie/staff/jcarthy/home/Lex.html.
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5.5.1 Background Theory

Although the origin of distributional semantic similarity measures is usually
attributed to (Firth 1957) (cf. §2.2.3 and §2.2.4) we argued in §2.3 that its
origin was more likely the ‘meaning-is-use’ presented by (Wittgenstein 1953).
The idea is to determine the semantics of a word by looking at other words
used alongside it in English sentences.

One way of doing this is to use vectors to represent word senses, and to use
cosine similarity of two vectors to compute the semantic similarity of the
words they stand for. First, one must build a set of vectors for each word in
our n-entries lexicon8. The vectors are set in an n-dimensional orthogonal
vector space where each basis is assigned a unique lexicon word (hence each
lexicon entry has a basis in the vector space). For each word in the lexicon,
a vector is determined in this space, where the vector component for each
basis is the number of instances the word the basis stands for appears in the
context of the word a vector is being constructed for. ‘Context’ here can be
as general as the word appearing in the same document, or as specific as some
more fine-grained definition, such as that used by (Grefenstette 1992), who
suggests using words with some grammatical relation to the target words to
construct vectors (e.g. adjectives modifying the word, verbs it is the subject
of, etc.). During this operation, we naturally ignore the cases of a word
co-occuring with itself.

The similarity between two words is then determined by taking the cosine
component of their vectors’ product. If words A and B have vectors vA and
vB, then the semantic similarity sim(A,B) is simply:

sim(A,B) =
vA · vB
|vA| · |vB|

which is normalised, since it is just a cosine reading of the unit vector com-
ponent of vA and vB, which is a real number between 0 and 1.

To give a short example, let us suppose the only words in our keyword lexicon
are ‘cat’, ‘kitten’ and ‘dog’. We read that ‘kitten’ co-occurs with ‘cat’ in 12
documents, and with dog in only 3. We consider a vector space with only
‘dog’ and ‘cat’ as basis vectors, in which the vector kitten would be 3 times

8Usually stopwords and common verbs (if not already in the stopword list) are removed
from the lexicon, since they do not aid sense disambiguation much, being frequently present
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the ‘dog’ basis vector, and 12 times the ‘cat’ basis vector, thus its similarity
with the ‘cat’ basis vector would be:

sim(kitten, cat) =
3 · 0 + 12 · 1√

32 + 122 · 1
=

12√
153
≈ 0.97

while its similarity with the ‘dog’ basis vector would be:

sim(kitten, dog) =
3 · 1 + 12 · 0√

32 + 122 · 1
=

3√
153
≈ 0.24

hence showing us that document co-occurrence has sufficed to show us that
‘kitten’ is closer to ‘cat’ than to ‘dog’ since it appears in the same context as
the former more often than that of the latter.

5.5.2 Implementation: A Different Approach to Word-
Sentence Scaling

The implementation of this metric was a bit more complicated than the pre-
vious ones. We used the SemanticVectors packaged developed by (Widdows
and Ferraro 2008), which a Java library (the rest of our project is in Python).
The SemanticVectors package provides a set of function used for building
the vectors from a corpus, and helper functions for computing the scalar
product of two vectors. Using these, and a script we provided to extract a
plain-text version of the American National Corpus, Pascal Combescot, who
was working on a similar project, provided us with a Java script which we
adapted9 into a command-line script taking two document files as arguments
and returning their semantic similarity, as well as a vector set to use for eval-
uation based on the ANC. The source for this program has been reproduced
in §B.5.

The reader may wonder how we integrated this into our evaluation classes,
and more importantly: how did we compare documents in this manner when
this vector-based distributional metric was designed to compare the meaning
of words? To answer the second question, we simply took the vector of a
document to be the sum of all the vectors standing for words contained in

9We re-wrote under half of the main function shown in §B.5 to adapt the class to our
purposes. The rest of this Java package was written by Pascal Combescot.
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the document (if words have no vectors, they are ignored). This gave good
empirical results in Pascal’s project, so we adapted this method here too.
The obvious downside is that while fairly effective, it is fundamentally flawed:
vector addition is commutative, hence for any words A and B, vA + vB =
vB + vA. Therefore the vector for ‘The dog bit the man’ would be the same
as that of ‘The man bit the dog’, effectively assigning them an identical sense
even though the meaning obviously differs. However, this heuristic worked
well enough, so we were curious to see how it would compare to other metrics
and used it as such.

Finally, to integrate the measure into our evaluation system, we wrote SemVecteval,
a subclass of evaluator. It overloads getscore (instead of the usual scoreline
function). For each corpus entry, it writes the documents of the entry’s doc-
ument pair to two separate temporary files, the names of which it records in
an index file along the ID of the entry. Once it has done this for each entry in
the corpus, it passes the index file to the SemanticVectorsEvaluator Java
command-line program based on Pascal’s script described above, which com-
putes the document similarity of each document pair in the corpus, writes
it to a file mapping IDs to scores, which getscore reads once the process is
completed in order to recover the metric scores, which it then stores in the
usual scores dictionary mapping IDs to metric scores, which it returns to
the initialisation function.
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Chapter 6

Results and Analysis

In this chapter we will first briefly describe, in §6.1, how the analysis script
was implemented according to the specifications discussed in §3.3. Follow-
ing that, in §6.2 we will present the metric rankings and examine the CGS
score breakdown—first discussed in §3.3.2—of a few metrics for the corpus
categories where the scores were interesting or surprising.

6.1 Structure of Analysis Script

The analysis script—analyser.py—is a command-line utility which essen-
tially takes a data file containing the results of evaluating all the metrics
using the classes discussing in Chapter 5, and produces a file containing the
metric rankings, as well as a series of other files. Its source code is presented
in §B.7. The class takes as input a dictionary results mapping metrics to
dictionaries which in turn map IDs to the metric CGS score for the corpus
entries with those IDs. In short, to retrieve a DSM metric CGS score for
corpus entry ID, one would call results[metric][ID].

As discussed in §4.1.1, the ID for each corpus entry tells us which corpus
section it is from, as well as what subsection (if any) and if it was gen-
erated by mismatching documents (mixed corpus entries) based a ‘(COR-
PUS SECTION) [-SUBSECTION TAG] (ID NUMBER) [m]’ structure. We
use the information in the ID tags for all the corpus entries in results to pop-

93
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ulate three dictionaries, cats, matchcats and mixedcats which will map
category names to lists of IDs of corpus entries in those categories, with the
help of regexes exploiting the structure of the tags. The difference between
these dictionaries is:

• cats maps categories to lists of all the IDs of corpus entries in those
categories.

• matchcats maps categories to lists of all the IDs of corpus entries in
those categories which were generated by the corpus constructors (i.e.
non-mixed).

• mixedcats does as above, but the IDs are those of corpus entries gen-
erate through mixing.

These three dictionaries are passed, with results, one by one, to the func-
tion getcatscores which assembles a dictionary mapping metrics to dictio-
naries mapping categories to dictionaries mapping tags to CGS scores. The
dictionaries are stored in catscores, matchcatscores and mixedcatscores.
They are essentially results with some extra classification: e.g. matchcatscores[metric][category]
gives you a dictionary mapping all the IDs in the category category to CGS
scores for DSM metric.

These three new dictionaries are then passed, one by one, to getmetricAVGs

which returns three separate dictionaries—metricAVGs, matchmetricAVGs

and mixedmetricAVGs—mapping categories to dictionaries mapping metrics
to their average CGS score for that category. To clarify, if one wanted the
average CGS score of DSM metric for documents of category cat, but only
those produced by mixing, one would call mixedmetricsAVGs[cat][metric].
If one wanted the average CGS score for all documents in the category, one
would call metricsAVGs[cat][metric].

These dictionaries are first passed to the function publishAVGs which pub-
lishes the CGS averages per category per metric to a specified file (results.txt
in our experiment). Next they are passed to the function publishDists

which for each category, for each metric, publishes plots of the distribution
of CGS scores for that metric, for documents of that category. We used
Matplotlib’s pylab1 wrapper to achieve this.

The final step is to calculate metric differences—the MD score, as discussed

1Obtained from http://matplotlib.sourceforge.net/.



6.2. DISCUSSION OF METRIC CGS SCORES 95

in §3.3.2. A list of all possible metric pairs is written to metricpairs. For
each metric pair, the absolute difference between the metric CGS scores for
each corpus document pair is written to the dictionary metricdiffs map-
ping metric pairs to dictionaries mapping corpus IDs to MD scores for that
metric pair, for those corpus items. This dictionary is then used to publish
the ranked MD scores to a text file (metricdiffs.txt in our experiment)
using publishDiffs, a variant of publishDists. It also plots the distri-
bution of MD scores for each metric pair, for each corpus section, using
publishDiffDists, a variant of publishDists.

6.2 Discussion of Metric CGS Scores

The full rankings for average CGS scores per corpus section and per DSM
are tabulated in the Tables 6.2–6.4. The totality of plots generated by the
analysis script as well as the MD score rankings per corpus section and per
metric pair are not provided here2, as there are 2457 plots (338 for CGS
score distributions, 2094 for metric comparisons) and a large number of MD
rankings (namely the number of DSMs squared times the number of testbed
corpus sections). In this section, we will discuss the CGS score rankings, and
display charts where interesting results were found. We will leave discussion
of how to exploit metric comparison scores for the conclusion.

6.2.1 Overall Rankings

As stated above, our experiment generates 338 plots3, which is too many
to examine each one individually. We will be relying on a the rankings to
identify metrics which require closer investigation for certain corpus sections.

We have reproduced the CGS scores as percentages (i.e. we multiply the
CGS score by 100 and round to the second decimal place) of closeness to a

2All files used for and generated by this experiment will be provided on an accompa-
nying CD-ROM. See Appendix A for details.

313 metrics times 9 document sections times 3 class of comparison (all corpus entries,
only those generated by constructors, only those generated by mixing), minus the 13 entries
for the mixed comparison class for the random edits corpus, which does not generate a
mixed class (cf. §4.2.2).
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Key Corpus Category
1 Abstracts
2 Edits
3 POSswitch
4 Paraphrase
5 Paraphrase [MTC]
6 Paraphrase [News]
7 Paraphrase [Novel]
8 Themes
9 Wikipedia

Table 6.1: Corpus Category Legend

perfect evaluator in Tables 6.2, 6.3 and 6.44. Hence a metric with a score
of 89.02% for some corpus section is 82.02% as effective as a perfect DSM
in identifying the kind of similarity that section exemplifies. For formatting
reasons, the corpus section names in these tables were replaced by numbers.
Refer to Table 6.1 to match numbers to corpus section names.

We will go through the rankings corpus section by corpus section. Notable
scores will be highlighted in the score tables when referred to.

6.2.2 Random Edits Analysis

First up is the random edits section (cf. §4.2.2). We note that the Leven-
shtein edit distance scores well for all documents at over 90% CGS in Table
6.2. Looking at Figure 6.1 gives us a good example of what good metric
results look like, with a majority of metric CGS scores for the individual
section entries being very close to 1.0. This is unsurprising, since the edits
used to generate the corpus are the exact same the Levenshtein edit distance
tracks. Ratio similarity, as discussed in §5.2.4, makes use of the Levenshtein
edit distance in addition to the size of the strings, so it is normal to find it in
second place with a score of 82.64%. Jaro-Winkler distance also works well

4We note the absence of corpus section 2 (random edits) in this table. This is because
all the corpus entries for this section were generated by the corpus builder, and no mixing
took place. As such, the scores in the matched document scores table (cf. Table 6.3) are
the same as in the overall scores table (cf. Table 6.2).
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1 2 3 4 5 6 7 8 9
BLEU 49.89 68.62 80.44 78.42 78.53 77.98 78.87 53.70 50.12

Character Count 49.88 65.32 70.73 59.30 60.22 52.98 66.59 57.60 49.18
Jaccard Distance 51.07 64.65 74.57 75.25 75.15 75.34 75.25 52.76 54.65

Jaro-Winkler 50.21 74.61 62.44 58.83 60.37 54.72 62.62 52.96 50.47
Levenshtein 49.94 91.05 75.18 70.35 69.94 68.87 72.67 51.74 51.32

MASI Distance 51.04 69.30 79.53 77.26 77.74 76.21 78.15 54.26 54.61
Random 50.53 67.81 48.61 50.95 51.56 50.15 51.36 50.84 52.39

Ratio 49.91 82.64 72.41 68.24 68.72 65.72 71.04 52.51 51.89
Semantic Vectors 56.08 66.29 73.83 74.03 72.92 72.97 76.50 53.03 60.79

WN Lin 50.71 70.60 71.80 66.86 65.23 64.42 71.66 51.37 52.03
WN Path 51.09 67.89 80.40 77.73 77.68 76.98 78.74 51.72 51.94

WN Wu-Palmer 50.41 71.29 62.44 52.20 47.27 47.94 62.65 50.77 51.07
Wordcount 49.98 53.36 54.54 45.94 46.69 43.33 48.58 51.24 49.92

Table 6.2: Overall Rankings (% CGS Scores)

1 2 3 4 5 6 7 8 9
BLEU 0.40 68.62 66.99 64.85 65.77 64.10 64.92 17.71 0.84

Character Count 3.16 65.32 93.86 82.41 85.77 77.79 85.06 65.62 17.43
Jaccard Distance 5.47 64.65 54.53 59.22 58.18 58.92 60.66 14.51 15.04

Jaro-Winkler 49.89 74.61 79.09 79.07 83.34 73.34 82.24 68.11 54.78
Levenshtein 3.01 91.05 70.96 65.34 65.03 62.88 68.86 25.90 13.50

MASI Distance 5.58 69.30 67.25 67.86 67.76 65.79 70.64 21.72 16.39
Random 50.59 67.81 47.96 53.80 56.44 52.59 52.73 51.45 51.37

Ratio 5.76 82.64 77.27 75.00 76.61 71.12 78.43 39.92 21.55
Semantic Vectors 83.53 66.29 67.07 75.47 81.04 74.29 71.41 65.93 88.42

WN Lin 66.89 70.60 85.07 81.89 85.78 81.62 78.35 68.71 65.69
WN Path 34.42 67.89 81.59 78.54 80.52 79.40 75.44 36.71 34.54

WN Wu-Palmer 81.69 71.29 86.49 78.29 80.17 77.58 77.34 84.20 83.84
Wordcount 82.46 53.36 99.95 85.12 87.09 81.88 87.35 93.20 84.89

Table 6.3: Matched Document Pair Rankings (% CGS Scores)
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Figure 6.1: Levenshtein Edit Distance CGS Score Distribution (Edits Sec-
tion)
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enough because it makes use of shared characters between strings to deter-
mine similarity (and since one string is the edited version of the other, they
generally share at least some characters), scoring 74.61%. The distribution
of results (cf. Figure 6.2) starts to be a bit more spread out, indicating a
less effective metric. One interesting point of note is that all the Wordnet-
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Figure 6.2: Jaro-Winkler Distance CGS Score Distribution (Edits Section)

based methods score better than random. We hypothesise that this may be
because in many document pairs in the section, no edits are made to key-
words the Wordnet metrics uses to determine similarity, and thus it matches
a significant number of keywords from sentences that are not heavily edited
(thus similar), thereby scoring these sentence pairs highly and obtaining a
high CGS score for these; and that it ignores most of the words in heavily
edited (thus dissimilar) pairs, thereby giving them a low similarity score (and
obtaining a high CGS score again).
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6.2.3 POS-Switch Analysis

The other syntactic toy-corpus section, POS-Switch (cf. §4.2.3), yields two
particularly interesting results which exemplify proper analysis methodology.
The top-two ranking metrics are BLEU and Wordnet Path similarity, both
scoring highly in Table 6.2. We hypothesise that this is for roughly the
same reasons as in the random edit corpus: dissimilar sentence pairs with
many substitutions will score poorly on the BLEU metric (since one pair is
the reference translation for the other, and randomly substituted words are
bound to lower the BLEU score, as well as the Path Similarity since they are
unlikely to be lexically related to the word they replace). At face value, they
may look the same, but further analysis tells us otherwise: if we look at the
entries for these metrics in the POS-switch section of Tables 6.3 and 6.4, we
notice that while the score for Path Similarity in both these tables is roughly
the same as the original, the score for BLEU is considerably lower for match
documents, and higher for mixed (mismatched) documents, suggesting that
BLEU picks up more strongly on some characteristic which affects document
similarity but doesn’t fully determine it. The score disparity is especially
evident when one looks at the breakdown of score distributions for both
metrics.

For the overall score distribution, seen in Figure 6.3, we note that although
BLEU has a high CGS score density in the high-score bracket (above 0.8),
it also has a has a more significant distribution of scores across the score
range. Path Similarity, on the other hand, has a very sharp spike for the
top score (meaning the CGS score for almost all section documents is 1.0).
It, however, makes more drastic errors for a set of documents (notice the
spike at the 0 CGS score point). When we examine how the metrics perform
for the matched section entries in Figure 6.4, there is not much change to
the CGS score distribution for Path Similarity, however we observe that the
CGS scores for BLEU are spread widely across the centre of the score range,
with several sharp spikes at CGS values inferior to 0.5. Finally when we
examine how the metrics perform for the mixed section entries in Figure
6.5, we see a heavy concentration of high scores for BLEU, while the score
distribution for Path Similarity retains the same shape. We judge from this
that document features causing lowering of CGS scores for Path Similarity are
dissociated from those used to assess similarity by Path Similarity, whereas
BLEU correctly identifies features that make documents dissimilar, but is
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not as good at identifying similar documents, and thus is exploiting features
that don’t solely determine similarity. The result of this in-depth analysis is
that although both DSMs achieve similar performance in this testbed section
at first blush, graphical analysis of the CGS score distributions allow us to
assess that Path Similarity is a better metric for this corpus section than
BLEU.

6.2.4 Theme Analysis

We now move on to our lexical similarity section—the Theme section (cf.
§4.3). This corpus section produces no truly interesting results, given the
metrics we evaluated. However, the top two metrics do have interesting
score distributions which we will use to illustrate the danger of thinking that
a metric with a higher average CGS score is necessarily a more sophisticated
one. As can be seen in Table 6.2, character count scores 57.60% CGS, a few
percentage points ahead of MASI distance, which scores 54.26%. However,
consider the section CGS score distributions for these metrics, shown in Fig-
ure 6.6. We see that character count’s CGS score distribution is close, in
shape, to that of the Random Evaluator, also shown in Figure 6.6. This can
serve as an indication that character count’s high performance in this test
is possibly a fluke and that it assigns metric scores fairly randomly. This
intuition is confirmed by our knowledge of character count’s modus operandi
and the fact that although the chunks of paragraphs in the Theme section of
the corpus are roughly the same length, there is much room for divergence
in character count between the two documents of a corpus entry. The point
here is that we could have deduced that the metric does not exploit any
pragmatically significant features of documents relative to the type of simi-
larity (namely lexical) we are concerned with, even if we had no knowledge
of how the metric works or the structure of the corpus section. On the other
hand, MASI forms two neat clusters in high-scoring and low-scoring regions
of the plot, indicating it at least exploits some property common to all items
of the corpus, but doesn’t necessarily play a significant role in determining
similarity. This thus gives us information about how metrics of this sort
might function even without knowing its internal mechanisms, and also tells
us that it might serve as a possible component for hybrid metrics, something
Character Count obviously would not be suitably for, with regards to the
type of similarity expressed in this corpus section.
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6.2.5 Wikipedia Analysis

Next we examine the results of DSMs tested against the Wikipedia article
corpus (cf. §4.4). This was a difficult corpus section, since articles were paired
by subject and thus by loose lexical/semantic similarity, but the structural
and lexical correspondence between the articles varies widely. As can be
see in Table 6.2, no metric does particularly well. However, analysis of the
CGS score distribution for the leading DMS—Semantic Vector Similarity
(60.79%) can give us some indication as to how we could construct metrics
capable of dealing with this corpus section (something the rankings alone
don’t tell us). Figure 6.7a shows two groupings of CGS scores: a high density
grouping of entries with high (over 0.8) scores, and a spread of moderately
low scores (in the 0.15 to 0.6 range). Contrary to the symmetric twin spikes
observed for MASI, for the Theme section (cf. Figure 6.6b), the groupings
here are largely asymmetric relative to one another. Also unlike the MASI
case, a look at the score distributions for matched and mixed documents
only (cf. Figures 6.7b and 6.7c, respectively) tells us that the Semantic
Vectors metric is very good at detecting similarity for matched cases, making
few mistakes (Figure 6.7b), but is also latching onto some similar features
for the dissimilar cases, although not as strongly, since the distribution of
errors in Figure 6.7b is broad and spreads into the better-than-random class
of scores (over 0.5). This indicates that at least some of the properties
semantic vector similarity is exploiting to judge similarity are present in the
other documents. This, combined with our knowledge of how semantic vector
similarity works could help us design a new metric for this sort of similarity.
We know that the semantic vector metric adds up the word-vectors of all
non-stopwords to build document vectors, which are then compared using
cosine similarity. The problem, we can infer from the CGS breakdowns, is
that there are some words being used to build document vectors which are
in too many of the Wikipedia articles and are playing an unwanted role in
the comparison of mismatched articles. We could fix this in several ways.
One way we suggest would be to determine what non-stopwords are frequent
throughout the Wikipedia corpus (what ‘frequent’ means here would have
to be empirically determined, we suppose) and add these to the stopword
list, since this ‘lexical baseline’ offers no significant contribution to similarity
judgements. Naturally this sort of conclusion could be arrived at through
thinking about how the metric works and how the corpus is structured in the
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first place, but this example seeks to illustrate how graphical CGS analysis
simplifies the task for us.

6.2.6 Paraphrase Analysis

We then look into the results for the Paraphrase section of the corpus (cf.
§4.5) and its subsections. We read from Table 6.2 that the top scoring met-
rics are BLEU, Path Similarity, MASI and Jaccard Distances, and Semantic
Vector Similarity, all scoring well above 70%. Levenshtein also does signifi-
cantly better than random, scoring 70.35% overall. The is a lot to say here:
let us begin by setting BLEU aside. Its high performance for paraphrase on
the whole is no surprise, since it is designed to evaluate paraphrase generated
through translation (which is what constitutes two subsections of the Para-
phrase corpus section), and therefore it is not unexpected that it work well
as an evaluator for general paraphrase as provided in the MTC subsection.

Let us instead focus on the other two syntactic metrics. Analysis of both
of these metrics is straightforward. We look at the overall score distribution
of both metrics in Figure 6.8 and notice that there is a high spike towards
1.0 CGS for both metrics, and that almost all the rest of the scores are
in the high end of the 0.5–1.0 range, indicating that the metric probably
scoring fairly consistently, i.e. that it predominantly exploits properties that
determine similarity to produce its own judgement of similarity. All one
needs is a quick glance at Figures 6.9 and 6.10 to confirm this, as we observe
that the distribution of the CGS scores is the of the same shape as the overall
distribution for both metrics, indicating that neither metric strongly relies
on document properties that do not affect classification, since it makes no
significant consistent error in either case (as is the case for metrics showing
symmetrically opposed groupings in the overall distribution). In both cases,
visual analysis quickly tells us that both DSMs are well designed for such a
similarity type, and that better results are most likely to be obtained through
improved heuristics in the metric design.

The ‘surprises’ in this corpus section are the performances of some of the syn-
tactic measures. Let’s examine the two top: MASI and Jaccard Distances.
A quick glance through the CGS score distributions for overall, mixed and
matched document pairs in Figures 6.11, 6.12 and 6.13 shows distributions
that are fairly similar in shape and high-score density to the distributions
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for semantic vector similarity and path similarity. Furthermore, we observe
that the shapes of the distributions when considering only the matched and
mixed documents are, in both instances, roughly the same as for the overall
distribution (much like semantic vector similarity and path similarity’s distri-
butions were). We therefore can draw the same conclusions as for semantic
vector similarity and path similarity: these metrics, which we previously
thought to be purely syntactic, actually exploit document properties that
are similarity features. Now, if we think back about how both these metrics
work, they merely compute the intersection of sets of tokens (one for each
document) and normalise it by the size of the union of the sets or by the size
of the largest set for Jaccard Distance and MASI distance, respectively. We
can hypothesise that when paraphrasing sentences, the structure does not
change much, hence certain stop words are likely to occur no matter how we
rephrase key words. Other words such as names are unlikely to change during
paraphrase, and certain verbs and nouns may be present in both documents,
hence MASI and Jaccard scores for paraphrase document pairs often come
close the gold-standard score despite not being designed to track semantic or
lexical properties.

That MASI and Jaccard distances could be used in such a way is fairly
counter-intuitive, but the fact that they produce results on par with semantic
metrics goes to show there is some evidence in support of the Wittgensteinian
idea of abolishing distinctions between document similarity categories, as
discussed in §2.3. Also, it illustrates how this analysis framework is powerful
in both discovering new uses for metrics, and assessing their performance in
more detail, guiding our explanations as to how they produce unexpectedly
good results.

6.2.7 Abstract-Article Analysis

Finally we consider the abstract-article section of the corpus (cf. §4.6). For
this testbed section, we will be brief, as none of the metrics have performed
much better than the random evaluator. The only metric which stands out
is Semantic Similarity.

As shown in Figure 6.14, the CGS score distribution for semantic vector
similarity shows the characteristic symmetrically-opposed groupings that in-
dicate that whatever properties the metric is exploiting aren’t fully connected
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to similarity features, and are a cause of consistent misclassification. A quick
glance at the score disparity between mixed document score (83.53%) and
matched document score (28.64%) in Tables 6.3 and 6.4, respectively, pro-
vides us with information to determine the cause. The problem is similar to
that which Semantic Vector similarity faced in the Wikipedia corpus: there
is a ‘baseline’ vocabulary shared by most papers from the same subject or
domain, which will be contribute to the document vectors of most documents
and abstracts. As a result, Semantic Vector Similarity is very good at de-
tecting similar documents, but concludes that even dissimilar documents are
similar because they possess baseline vocabulary features. With the knowl-
edge, DSM designers can consider the same approach we suggested for the
Wikipedia corpus, and design metrics which identify shared vocabulary and
ignore it (or give it less impact during assessment) before assessing similarity.
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1 3 4 5 6 7 8 9
BLEU 99.39 93.88 91.99 91.30 91.86 92.83 89.68 99.40

Character Count 96.59 47.60 36.19 34.66 28.17 48.13 49.58 80.93
Jaccard Distance 96.67 94.61 91.28 92.12 91.75 89.83 91.02 94.27

Jaro-Winkler 50.52 45.80 38.59 37.40 36.11 43.00 37.82 46.16
Levenshtein 96.88 79.40 75.35 74.86 74.86 76.47 77.58 89.15

MASI Distance 96.51 91.81 86.66 87.72 86.63 85.65 86.80 92.82
Random 50.48 49.27 48.09 46.68 47.72 49.99 50.24 53.42

Ratio 94.06 67.56 61.48 60.82 60.31 63.65 65.10 82.24
Semantic Vectors 28.64 80.59 72.59 64.80 71.66 81.58 40.13 33.16

WN Lin 34.54 58.53 51.83 44.67 47.22 64.97 34.02 38.36
WN Path 67.75 79.21 76.91 74.84 74.56 82.04 66.74 69.33

WN Wu-Palmer 19.13 38.39 26.10 14.37 18.31 47.96 17.34 18.29
Wordcount 17.50 9.14 6.76 6.29 4.78 9.81 9.29 14.96

Table 6.4: Mixed Document Pair Rankings (% CGS Scores)
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Figure 6.3: Comparison of BLEU and Path Similarity for POS-switch Doc-
uments
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Figure 6.4: Comparison of BLEU and Path Similarity for Matched POS-
switch Documents
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Figure 6.5: Comparison of BLEU and Path Similarity for Mixed POS-switch
Documents
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Figure 6.7: Breakdown of Semantic Vectors CGS Score Distribution for
Wikipedia Corpus Section
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Figure 6.8: Comparison of Semantic Vectors and Path Similarity for Para-
phrase Documents
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Figure 6.9: Comparison of Semantic Vectors and Path Similarity for Matched
Paraphrase Documents
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Figure 6.10: Comparison of Semantic Vectors and Path Similarity for Mixed
Paraphrase Documents
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Figure 6.11: Comparison of Jaccard Distance and MASI Distance for Para-
phrase Documents
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Figure 6.12: Comparison of Jaccard Distance and MASI Distance for
Matched Paraphrase Documents



6.2. DISCUSSION OF METRIC CGS SCORES 117

0.0 0.2 0.4 0.6 0.8 1.0
Closeness to gold standard

[Higher is better]

0

2

4

6

8

10

12

14

16

N
u
m

b
er

 o
f 
o
cc

u
rr

en
ce

s

Paraphrase Corpus (Mixed)
Score difference distribution for metric: Jaccard Distance

(a) Jaccard Distance CGS Distribution

0.0 0.2 0.4 0.6 0.8 1.0
Closeness to gold standard

[Higher is better]

0

2

4

6

8

10

12

14

16

N
u
m

b
er

 o
f 
o
cc

u
rr

en
ce

s

Paraphrase Corpus (Mixed)
Score difference distribution for metric: Masi Distance

(b) MASI Distance CGS Distribution

Figure 6.13: Comparison of Jaccard Distance and MASI Distance for Mixed
Paraphrase Documents
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Chapter 7

Conclusions

In the introduction to this work, we set out to answer three questions, thus
setting three goals for this work. The first was to understand how common
DSMs were designed and implemented, the second was to find a method
for analysing and comparing DSMs, and the third was to determine how to
improve DSMs based on the results of this analysis.

In this work, we began by giving a discussion of the theory underlying doc-
ument similarity in Chapter 2, and in Chapter 3, we outlined the method-
ology for an experiment that would achieve these goals. In Chapter 4, we
described how to generate a testbed corpus which would be used as a basis
for further analysis as required by our second goal, as well as serve as an
extensible framework for future experiments of this sort. In Chapter 5, we
implemented a host of DSMs to be analysed in our experiment, additionally
we integrated them into an easily extensible framework which could serve
as the basis for further work by adding DSMs to be evaluated. Not only
did this implementation work teach us a lot about using object-oriented de-
sign to create re-usable and extensible code, but the conceptual difficulties
in implementing some of the metrics which needed scaling from word-based
evaluation to document-based evaluation also provided a keen insight into
the world of metric design, especially when considering how to improve the
scaling heuristics for the Wordnet-based metrics in §5.4. In Chapter 6, we de-
scribed the implementation of our analysis script, completing the description
of the three-step analysis framework we had described in Chapter 3.
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We then moved—in §6.2—onto the presentation and discussion of the results
of our experiment, run using the frameworks described and designed in the
previous chapters. The results for the different testbed sections, representing
different types of similarity, revealed a variety of aspects of both DSMs and
of the strength and benefits of the analysis framework that we had set out to
show. First, we obtain validation for the Wittgensteinian ideas—presented in
§2.3—of there being no fundamental difference between classes of similarity
present in documents and evaluated by DSMs, as was shown when some
lexico-semantic metrics were able to competently assess syntactic similarity
in §6.2.3; but the reverse result was even more striking when, in §6.2.6,
fairly simple syntactic metrics were able to perform not only competently,
but on par with the best-performing semantic metrics we had. Thanks to
the graphical aspect of our analysis, provided by plots of the CGS score
distributions, we even able to give experimentally-motivated suggestions as
to why these metrics performed well outside of their usual categories. These
results, alongside the observations that many metrics worked well in the
categories we expected them to, and that none of our—fairly elementary—
DSMs performed exceptionally well for sections exemplifying complex notions
of lexical and semantic similarity, as shown in §6.2.5 and §6.2.7, all go to
demonstrate how our analysis framework provides an informative way of
describing, comparing, and explaining the performance of DSMs. In short,
we have—in the analysis chapter—come a long way towards achieving the
second goal.

However, comparing metrics was not the only part of the second goal. We
wanted to produce an effective method for analysing metric performance in
a way that would help improve it. In §6.2.5 and §6.2.7, we used the graphical
representation of the best-performing metrics to attempt to deduce the source
of error that was impeding better DSM performance for the Wikipedia and
Abstract-Article corpus sections, and were able, on the basis of this analysis,
to make suggestions as to how to improve metrics in the face of such categories
with complex types of similarity. In §6.2.4, we illustrated how the analysis
framework allowed us to gain better understanding of how metrics worked
even if we did not know the implementation details or corpus structure.
Following that, in §6.2.6 we not only showed how visual analysis served us
well in identifying the quality of metric performance better than the rankings
alone (indeed our discussion in §6.2.3 shows how visual analysis of the CGS
score distributions serves to demonstrate that better ranking metrics are not
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necessarily the best, when considering the potential for improvement), but
also we capable of giving suggestions for improvement, which works towards
meeting our third and final goal: to determine how to improve DSMs based
on the results of analysis.

We wish now to discuss how further work in this vein might proceed. We
have, throughout this work, repeatedly mentioned the creation of hybrid
metrics as an avenue for improving metrics based on the results of analysis.
In §6.1, we discussed how in our implementation of the analysis script we
included functions that would generate metric comparison rankings, where
a metric pair would score higher on a 0 to 1 scale if the metrics in the pair
produced largely different results for corpus entries, and lower is most metric
results were in agreement. The complete rankings for metric comparisons
are provided alongside other experimental data and source code on an ac-
companying CD-ROM (cf. Appendix A for details). We propose no specific
methodology as to how to exploit these rankings, but the idea would to first
search through our individual metric rankings for metrics performing well for
some particular category, and if two or more such metrics exist, we refer to
the metric comparison rankings. If amongst these high-performance metrics,
there are two or more that have a high metric difference (MD) score (meaning
that one correctly evaluates some of the errors of the other, and vice-versa),
then we can use this information to attempt to produce better metrics.

The hybrid approach would be to combine two or more metrics judged to be
different enough into a common evaluator, and use that as a metric. One
way to do this would be to simply weigh metric scores by their individual
performance and average over the scores for both metrics to obtain a com-
bined metric result. Another would be to use machine learning methods such
as genetic algorithms to determine how and when to combine metric scores,
supplant one metric’s judgements with those of the other, and so on. We
leave it to researchers interested in further work to determine how to do this.

Another way of exploiting the results of analysis using metric differences
would be to look at the documents where metric differ and determine why
one metric gets better results than another. For example, if metric A get
80% CGS and metric B gets 70% CGS, but they differ on 20% of corpus
entries for which we observe metric A has good results but metric B does
not. We can then examine a sample of this 20% of the corpus for which
metric A works but metric B does not. By comparing the documents with
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those metric B works well with, and by considering the factors in the design
of metric A which cause it to correctly assess this 20%, we may be able to
deduce what design changes must be made to metric B in order to achieve the
same score as metric A or conceivably up to 90% CGS. This is not, per se, a
hybrid metric approach to DSM design, but it illustrates how there are many
ways in which the analysis framework can be extended to help understand
DSMs even better and assist in the creation of higher performance DSMs.
We are confident that other researchers will be able to think of other ways of
doing so using this framework as a basis to obtain even better results than
the those produced by the metrics we used in this experiment.

In conclusion, not only did this project allow us to become more intimately
acquainted with the issues, problems and aspects of designing document sim-
ilarity measures, with their diversity of application and the rich theoretical
background underlying their construction, but we believe we have achieved
our additional goals of producing a framework suitable for analysing, com-
paring and ultimately improving document similarity measures that will be
of use for future work, both ours and that of other researchers interested in
the construction of better systems of comparison to use in a variety of text
and language processing tasks.
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Appendix A

Technical Details

A.1 Supplied CD-ROM Contents

The running of the experiment described throughout this dissertation gen-
erated a lot of data: 237.3 megabytes—too much to include in an appendix.
Also, while the essential source code for the extensible DSM evaluation frame-
work we developed is available in Appendix B, it would naturally be helpful
to provide all the code we wrote for this project, as well as the entirety of the
Semantic Vectors package alongside the files used to evaluate similarity us-
ing distributional methods. What follows is a breakdown of the files we have
provided on an accompanying CD-ROM1. The ‘project directory’ is taken
to be the root folder containing all the files described below. For scripts to
function correctly, the environment variable $PROJECTLOC must be set to the
absolute path of this project directory on the user’s system.

• README.txt — text file containing essentially the same information as
found in the present appendix.

• AnalysisDSM.pdf — a PDF file of this dissertation.

• Folder analysis — contains all the experiment’s output.

1In the eventuality that this CD-ROM is no longer accessible, the authors should be
contacted (edward.grefenstette@comlab.ox.ac.uk or egrefen@gmail.com). We will
strive to publish these files online too, and urge the interested reader to look us up on
their favourite search engine.
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– Folder Diffdists — contains the plots for the CGS score dis-
tributions for each metric, organised into sub-folders by corpus
section.

– Folder GSdists — contains the plots for the MD score distribution
for each metric pair, organised into sub-folders by corpus section.

– metricdiffs.txt — rankings of average MD scores for all metric
pairs, by corpus section.

– rankings.txt — rankings of average CGS scores for all metrics,
by corpus section.

– results.pkl — pickled Python dictionary mapping metrics to
dictionaries mapping IDs to CGS scores. Extract with Python
pickle module.

• Folder code — contains all Python source code for the project.

– analyser.py — the analysis script. Gives full usage instructions
when called with option -h.

– buildCML.py — a command-line interface for operating the corpus
building framework. Gives full usage instructions when called with
option -h.

– buildcorpus.py — a script to run the corpus building phase
of the experiment. All information is hard-coded relative to the
project directory path. No arguments needed.

– corpusbuilder.py — the corpus evaluation framework compo-
nent.

– corpusevaluation.py — the metric evaluation framework com-
ponent.

– evalCML.py — a command-line interface for operating the metric
evaluation framework component. Gives full usage instructions
when called with option -h.

– evaluatecorpus.py — a script to run the metric evaluation phase
of the experiment, using the metric evaluation framework. All
information is hard-coded relative to the project directory path.
No arguments needed.
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– prepcorpus.py — a script to pre-prepare a corpus for evaluation.
Gives full usage instructions when called with option -h.

• Folder corpus — contains various versions of the corpus used for eval-
uation.

– docsimcorp.pkl — a pickled object containing the entire corpus
in Python dictionary format. Extract with Python pickle mod-
ule.

– preppedcorp.pkl — a pickled object containing the entire prepped
corpus in Python dictionary format. Extract with Python pickle

module.

– textcorpus.txt — a plain text file containing the entire corpus.
Each entry is spread over three lines, delimited by XML-like tags
indicating which line is the first document (doc1), the second doc-
ument (doc2) or the CGS score (score), as well as the entry ID.

• Folder data — contains source data used for the construction of various
corpus sections.

– Folder LapataCorp — contains the files used for the generation of
the paraphrase corpus section (and subsections).

– Folder papers — contains the PDFs used for the generation of
the abstract-article corpus section.

– wiki articles.txt — list of English Wikipedia URLs used for
the construction of the Wikipedia corpus section.

• Folder scripts — scripts used to run the experiment, to avoid the
need for any interaction with the source code. The script files must be
made executable by the user before being used (chmod +x filename

on a UNIX system).

– buildcorpus — builds the experimental corpus.

– evaluatemetrics — evaluates metrics against experimental cor-
pus.

– prepcorpus — pre-processes the experimental corpus to prepare
for evaluation.
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– runall — runs all other scripts, and hence the whole experiment.

– statanalysis — runs complete analysis script.

• Folder Semantic Vectors — set of Java classes to run Dominic Wid-
dows’ Semantic Vectors package as a metric. Important files include:

– Folder lib — library elements required to run classes. These files
should be added to the user’s Java class path.

– SemanticVectorsEvaluator.java — main semantic vector eval-
uation class, originally written by Pascal Combescot and modified
to fit the purpose of this project.

– termvectors.bin — compiled semantic vectors for English words,
constructed by Pascal Combescot using the American National
Corpus.

• Folder tools — other tools used for this project, namely only Bleu.cpp,
Simon Zwarts’ implementation of BLEU. Needs to be compiled for the
user’s system.

A.2 System Requirements

For the framework to run, the user will require Python 2.5 or higher, as well as
the pylab2 package and dependent libraries, nltk, the Levenshtein package,
the Bleu package, Widdows’ Semantic Vectors package, which may need
an up-to-date version of Java and may have other dependencies, and finally
the Poppler PDF library. The sources for all these packages are provided
when they are first mentioned in the dissertation. With these installed, all
project components should work fine on UNIX-like systems, or in Windows
by using cygwin. The authors will do their best to help with troubleshooting
if needed3.

2Available at http://matplotlib.sourceforge.net/.
3Please use the contact email addresses provided in §A.1 only.



Appendix B

Source Code

B.1 corpusbuilder.py

"""A collection of corpus generating classes.

Written by Edward Grefenstette, University of Oxford, 2009.

email: <edward.grefenstette@balliol.ox.ac.uk>

Submitted towards completion of MSc Computer Science.

"""

from __future__ import division

import re

from nltk import clean_html

import urllib2

import glob

import sys, os

from subprocess import call

import random

from nltk.corpus import brown

try:

import psyco

psyco.full()

except ImportError:

pass

globalindex = 1

class corpusbuilder(object):

noMix = False

__tag=""

def __init__(self):

self.documents1 = {}
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self.documents2 = {}

self.IDs = []

self.corpus = {}

self.mixedcorpus = {}

self.mixedIDs = []

def calcsimscore(self,index):

"""Get simscore for document pair at index.

Some heuristic could be inserted here.

Default is to assume complete similarity.

Overload this function to add granularity.

"""

return 1.0

def scoreCorpus(self):

"""Get pairs of annotated sentences with their similarity score.

"""

annotTuples = {}

for ID in self.IDs:

annotTuples[ID] = (self.documents1[ID], \

self.documents2[ID], self.calcsimscore(ID))

return annotTuples

def generatemixed(self,tag,quantity=None):

if self.noMix:

return

if quantity is None:

quantity = len(self.corpus)

global globalindex

counter = 0

keys1 = self.corpus.keys() # get corpus keys

keys2 = keys1[:] # create copy

while counter < quantity:

random1 = random.randint(0,len(keys1)-1)

random2 = random.randint(0,len(keys1)-1)

key1 = keys1[random1]

key2 = keys2[random2]

if key1 == key2: continue

ID = tag+str(globalindex)+’m’

self.mixedIDs.append(ID)

self.mixedcorpus[ID] = (self.corpus[key1][0],

self.corpus[key2][1], 0.0)

del keys1[random1], keys2[random2]

globalindex += 1

counter += 1

class lapatacorp(corpusbuilder):

"""Class for generating sections derived from Lapata corpus.

"""

__annotations_A = {}

__annotations_C = {}

tokens1 = {}

tokens2 = {}

def __init__(self,rawfile1,rawfile2,fileA,fileC,tag=""):

corpusbuilder.__init__(self)
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if (rawfile1 == None) or (rawfile2 == None) or \

(fileA == None) or (fileC == None):

raise Exception, "Missing filenames in constructor args."

if len(tag)>0: self.__tag = "Paraphrase-"+tag

else: self.__tag = "Paraphrase"

# store tokens for each sentence one of the paraphrase

self.documents1, self.documents2, self.IDs, self.tokens1, self.tokens2 \

= self.getdocs(rawfile1,rawfile2)

# store alignment annotations for annotators

self.__annotations_A, self.__annotations_C = \

self.annotparser(fileA, fileC, self.IDs)

self.corpus = self.scoreCorpus()

self.generatemixed(self.__tag)

def getdocs(self, rawfile1, rawfile2):

global globalindex

rawdocs1, rawIDs = self.rawparser(rawfile1)

rawdocs2 = self.rawparser(rawfile2)[0]

docs1 = {}

docs2 = {}

tokens1 = {}

tokens2 = {}

IDs = []

for ID in rawIDs:

newID = self.__tag+str(globalindex)

tokens1[newID] = rawdocs1[ID]

tokens2[newID] = rawdocs2[ID]

docs1[newID] = " ".join(rawdocs1[ID])

docs2[newID] = " ".join(rawdocs2[ID])

IDs.append(self.__tag+str(globalindex))

globalindex += 1

return docs1, docs2, IDs, tokens1, tokens2

def rawparser(self,rawfile):

sentences = {}

orderedIDs = []

rawfile.seek(0)

for line in rawfile:

#group up tags and raw sentence

parts = re.search(r"(<s snum=[0-9]+>) ([^<]*) (</s>)",line)

#strip away tags

sentence = parts.group(2)

# extract id number from leading <s...> tag

id = int(re.search(r"[0-9]+",parts.group(1)).group(0))

orderedIDs.append(id)

sentences[id] = sentence.split()

return (sentences,orderedIDs)

def annotparser(self,fileA,fileC,IDs):

annotA = {}

annotC = {}

fileA.seek(0)

fileC.seek(0)

for line in fileA:

parts = re.search(r"([0-9]+) ([0-9]+) ([0-9]+) ([SP])",line)
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key = IDs[int(parts.group(1))]

align1 = int(parts.group(2))

align2 = int(parts.group(3))

note = parts.group(4)

try:

annotA[key][(align1,align2)] = note

# this should happen less than 10% of the time, so we’ll use try

except KeyError:

annotA[key] = {(align1,align2):note}

for line in fileC:

parts = re.search(r"([0-9]+) ([0-9]+) ([0-9]+) ([SP])",line)

key = IDs[int(parts.group(1))]

align1 = int(parts.group(2))

align2 = int(parts.group(3))

note = parts.group(4)

try:

annotC[key][(align1,align2)] = note

# this should happen less than 10% of the time, so we’ll use try

except KeyError:

annotC[key] = {(align1,align2):note}

for id in IDs:

for alignpair in annotA[id]:

if alignpair not in annotC[id]: annotC[id][alignpair] = ’-’

for alignpair in annotC[id]:

if alignpair not in annotA[id]: annotA[id][alignpair] = ’-’

return (annotA,annotC)

def calcsimscore(self,index):

""" Returns the F-measure of inter-annotator agreement.

"""

As = 0

Cs = 0

AsIntCp = 0

ApIntCs = 0

for pair in self.__annotations_A[index]:

word1index, word2index = pair

noteA = self.__annotations_A[index][pair]

noteC = self.__annotations_C[index][pair]

word1 = self.tokens1[index][word1index-1].lower()

word2 = self.tokens2[index][word2index-1].lower()

if not word1 == word2:

if noteA == ’S’:

As += 1

if (noteC == ’P’) or (noteC == ’S’):

AsIntCp += 1

if noteC == ’S’:

Cs += 1

if (noteA == ’P’) or (noteA == ’S’):

ApIntCs += 1

if As > 0: prec = AsIntCp / As

else: prec = 1

if Cs > 0: rec = ApIntCs / Cs

else: rec = 1

if prec+rec > 0: return (2*prec*rec)/(prec+rec)
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else: return 0

class wikicorp(corpusbuilder):

def __init__(self, urllist,tag=""):

corpusbuilder.__init__(self)

global globalindex

if len(tag)>0: self.__tag = "Wikipedia-"+tag

else: self.__tag = "Wikipedia"

urllist.seek(0)

for url in urllist:

try:

if url.find(r"&printable=yes"):

html_eng = self.getHTML(self.getprintURL(url))

else:

html_eng = self.getHTML(url)

except:

sys.stderr.write("Couldn’t retrieve "+url+"\nSkipping...\n")

continue

try:

simplepatt = r’(http://simple\.wikipedia\.org/’+ \

r’wiki/[^/<>\s"]+[/]{0,1})’

urlsimple = re.search(simplepatt,html_eng).group(0).strip(’\n’)

except AttributeError:

sys.stderr.write("No Simple English version of "+ \

url+"\nSkipping...\n")

continue

try:

html_simp = self.getHTML(self.getprintURL(urlsimple))

except:

sys.stderr.write("Couldn’t retrieve "+ \

urlsimple+"\nSkipping...\n")

continue

try:

text_eng = clean_html(html_eng)

text_simp = clean_html(html_simp)

self.documents1[self.__tag+str(globalindex)] = \

self.getarticlebody(text_eng)

self.documents2[self.__tag+str(globalindex)] = \

self.getarticlebody(text_simp)

except:

sys.stderr.write("Problem came up while cleaning up "+ \

url+"\nSkipping...\n")

continue

self.IDs.append(self.__tag+str(globalindex))

globalindex +=1

self.corpus = self.scoreCorpus()

self.generatemixed(self.__tag)

def getHTML(self, url):

opener = urllib2.build_opener()

opener.addheaders = [(’User-agent’, ’Mozilla/5.0’)]

infile = opener.open(url)

page = infile.read()

return page
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def getprintURL(self, url):

parts = re.search(r"(http://)([a-zA-Z]+)(.wikipedia.org/wiki/)(.*)",url)

formattedurl = "http://"+parts.group(2)+ \

".wikipedia.org/w/index.php?title="+ \

parts.group(4)+"&printable=yes"

return formattedurl

def getarticlebody(self,raw):

# find start of boilerplate text

boilerplate = raw.find(r’Retrieved from "http://’)

# remove boilerplate text

cleantext = raw[:boilerplate]

# remove large chunks of whitespace

cleantext = re.sub(r"[ \t]{2}[ \t]*"," ",cleantext)

# bunch up newlines

cleantext = re.sub(r"[ \t]+\n","\n",cleantext)

# reduce large chunks of newlines

cleantext = re.sub(r"\n\n\n+","\n\n",cleantext)

return cleantext

class papercorp(corpusbuilder):

def __init__(self,folder,tag=""):

corpusbuilder.__init__(self)

global globalindex

rawpdfs = []

if len(tag)>0: self.__tag = "Abstracts-"+tag

else: self.__tag = "Abstracts"

# These get absolute path (computationally cheap, so let’s skip checks)

folder = os.path.expanduser(folder)

folder = os.path.expandvars(folder)

folder = os.path.abspath(folder)

if not os.path.exists(folder):

raise Exception, folder+" does not exist!"

pdflist = glob.glob(folder+"/*.pdf")

for pdf in pdflist:

try:

raw = self.getrawtxt(pdf)

except:

sys.stderr.write("\nSomething went wrong while trying to " + \

"open "+pdf+". Perhaps it is write "+ \

"protected? Skipping...\n")

continue

rawpdfs.append(raw)

for rawtext in rawpdfs:

try:

abstract, body = self.chopabstract(rawtext)

except:

sys.stderr.write("\nSomething went wrong trying to chop up "+ \

"document.\nHere is a "+ \

"sample of the first few lines:\n"+ \

"=============\n" + rawtext[:250]+ \
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"\n=============\nSkipping...\n")

continue

self.documents1[self.__tag+str(globalindex)] = abstract

self.documents2[self.__tag+str(globalindex)] = body

self.IDs.append(self.__tag+str(globalindex))

globalindex += 1

self.corpus = self.scoreCorpus()

self.generatemixed(self.__tag)

def getrawtxt(self,pdf):

textFN = pdf[:pdf.find(’.pdf’)]+".txt"

retcode = call(["/usr/local/bin/pdftotext", "-nopgbrk", \

"-raw",pdf,textFN])

if retcode is not 0: # pdftotxt failed to process pdf

raise Exception # This will be handled in __init__

try:

textfile = open(textFN)

except:

sys.stderr.write("Something went really wrong. Check pdftotext.\n")

sys.stderr.write("Problem happened with "+pdf+"\nSkipping...\n")

sys.exit()

try:

raw = "".join(textfile.readlines())

except:

raise Exception # This will be handled in __init__

finally: # to avoid potential memory leaks if this messes up

textfile.close()

os.remove(textFN) # clean up generated text file

return raw

def chopabstract(self,raw):

if "introduction" in raw[:2500].lower():

regex = r"(abstract.*?)(introduction.*)"

elif "keyword" in raw[:2500].lower():

regex = r"(keyword.*?)(introduction.*)"

else: raise Exception # introduction/keywords not found

slicer = re.compile(regex, re.I|re.DOTALL)

parts = slicer.search(raw)

if parts is None:

regex = regex = r"(.*?)(introduction.*)"

slicer = re.compile(regex, re.I|re.DOTALL)

parts = slicer.search(raw)

abstract = self.cleantext(parts.group(1))

body = self.cleantext(parts.group(2))

return abstract, body

def cleantext(self,text):

cleantext = text.replace(’-\n ’,’’) # fix split words

cleantext = cleantext.replace(’-\n’,’’) # ditto

# remove newlines in the middle of sentences

cleantext = re.sub(r"(?<=[\w:.,-?!;()])\n(?=[\w])", ’ ’, cleantext)

return cleantext

class editcorp(corpusbuilder):
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noMix = True

def __init__(self,startindex=0,size=500):

corpusbuilder.__init__(self)

global globalindex

self.sentences = brown.sents()[startindex:startindex+size]

for sentence in self.sentences:

sent1 = " ".join(sentence)

sent2, edits = self.randomedits(sent1)

score = 1 - (edits/len(sent1))

ID = "Edits" + str(globalindex)

self.IDs.append(ID)

self.corpus[ID] = (sent1, sent2, score)

globalindex += 1

def randomedits(self,sentence):

edits = 0

randindex = lambda x: random.randint(0,len(x)-1)

maxchanges = randindex(sentence)

for i in range(0,maxchanges):

edit_type = random.randint(1,3)

try: edit_loc = randindex(sentence)

except:

print sentence

sys.exit()

if edit_type is 1:

sentence = self.morph(sentence,edit_loc)

elif edit_type is 2:

sentence = self.delete(sentence,edit_loc)

elif edit_type is 3:

destination = randindex(sentence)

while destination is edit_loc:

destination = randindex(sentence)

sentence = self.move(sentence,edit_loc,destination)

edits += 1

return (sentence,edits)

def morph(self,sent,loc):

target = "1234567890abcdefghijklmnopqrstuvw"\

"xyzABCDEFGHIJKLMNOPQRSTUVWXYZ,.;:?!"

original = sent[loc]

change = target[random.randint(0,len(target)-1)]

while change is original:

change = target[random.randint(0,len(target)-1)]

return sent[:loc]+change+sent[loc+1:]

def delete(self,sent,loc):

return sent[:loc]+sent[loc+1:]

def move(self,sent,loc,dest):

character = sent[loc]

sent = self.delete(sent, loc)

if dest > loc: dest -= 1

return sent[:dest]+character+sent[dest:]

class themecorp(corpusbuilder):

noMix = True
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text_chunks = {}

cats = [’adventure’,’editorial’,’romance’,’religion’,’science_fiction’]

dualcats = {’adventure’:’editorial’,

’editorial’:’romance’,

’romance’:’science_fiction’,

’religion’:’adventure’,

’science_fiction’:’religion’}

def __init__(self,startindex=0,set_size=3,set_no=50):

corpusbuilder.__init__(self)

self.__tag = "Themes"

global globalindex

for category in self.cats:

index = startindex

self.text_chunks[category] = []

while index-startindex < (set_no*set_size*2):

chunk = ""

for i in range (0,set_size):

para = " ".join(reduce(lambda x,y:x+y,

brown.paras(categories=category)[index+i]))

chunk += para

self.text_chunks[category].append(chunk)

index += set_size

for category in self.cats:

for i in range(0,len(self.text_chunks[category]),2):

sent1 = self.text_chunks[category][i]

sent2 = self.text_chunks[category][i+1]

ID = self.__tag+str(globalindex)

self.IDs.append(ID)

self.corpus[ID] = (sent1,sent2,1.0)

globalindex += 1

for category in self.cats:

for i in range(0,set_no):

sent1 = self.text_chunks[category][i]

sent2 = self.text_chunks[self.dualcats[category]][i]

ID = self.__tag+str(globalindex)+"m"

self.mixedIDs.append(ID)

self.mixedcorpus[ID] = (sent1,sent2,0.0)

globalindex += 1

class POSswitchcorp(corpusbuilder):

def __init__(self,startindex=1500,size=500):

corpusbuilder.__init__(self)

global globalindex

self.__tag = "POSswitch"

self.tagged_sents = brown.tagged_sents()[startindex:startindex+size]

POScatwords = {}

for pair in reduce(lambda x,y:x+y, self.tagged_sents):

word, tag = pair

try: POScatwords[tag].append(word)

except: POScatwords[tag] = [word]

for tag in POScatwords:

POScatwords[tag] = list(set(POScatwords[tag]))

for tagged_sent in self.tagged_sents:

dual_sent = tagged_sent[:] # create working copy
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for i in range(0,random.randint(1,len(tagged_sent))):

loc = random.randint(0,len(tagged_sent)-1)

type = dual_sent[loc][1]

wordlist = POScatwords[type]

subs_word = wordlist[random.randint(0,len(wordlist)-1)]

if dual_sent[loc][0].islower():

subs_word = subs_word[0].lower() + subs_word[1:]

else: subs_word = subs_word[0].upper() + subs_word[1:]

dual_sent[loc] = (subs_word,type)

tagged_sent = " ".join(map(lambda x:x[0],tagged_sent))

dual_sent = " ".join(map(lambda x:x[0],dual_sent))

ID = self.__tag+str(globalindex)

self.IDs.append(ID)

self.documents1[ID] = tagged_sent

self.documents2[ID] = dual_sent

globalindex += 1

self.corpus = self.scoreCorpus()

self.generatemixed(self.__tag)

B.2 buildcorpus.py

#!/usr/local/bin/python

"""A script for using building experimental corpus.

Written by Edward Grefenstette, University of Oxford, 2009.

email: <edward.grefenstette@balliol.ox.ac.uk>

Submitted towards completion of MSc Computer Science.

"""

import corpusbuilder

import cPickle as pickle

datadir = r"/Users/Edward/Dropbox/MSc CS/MSc Project/data"

MTCdocs = map(lambda x:datadir+x,

[r"/LapataCorp/mtc.common.one", r"/LapataCorp/mtc.common.two",

r"/LapataCorp/mtcAx.align", r"/LapataCorp/mtcCx.align"])

newsdocs = map(lambda x:datadir+x,

[r"/LapataCorp/news.common.one", r"/LapataCorp/news.common.two",

r"/LapataCorp/newsAx.align", r"/LapataCorp/newsCx.align"])

noveldocs = map(lambda x:datadir+x,

[r"/LapataCorp/novels.common.one",

r"/LapataCorp/novels.common.two",

r"/LapataCorp/novelsAx.align", r"/LapataCorp/novelsCx.align"])

wikiloc = datadir+"/wiki_articles.txt"

paperdir = datadir+"/papers"

## Begin Corpus Construction

print "Beginning corpus construction."

IDs = []

corpus = {}
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## Build Syntactic toy corpora

print "Building Syntactic Toy corpora."

builder = corpusbuilder.editcorp()

IDs += builder.IDs

corpus.update(builder.corpus)

IDs += builder.mixedIDs

corpus.update(builder.mixedcorpus)

builder = corpusbuilder.POSswitchcorp()

IDs += builder.IDs

corpus.update(builder.corpus)

IDs += builder.mixedIDs

corpus.update(builder.mixedcorpus)

## Build Theme corpus

print "Building Theme corpus."

builder = corpusbuilder.themecorp()

IDs += builder.IDs

corpus.update(builder.corpus)

IDs += builder.mixedIDs

corpus.update(builder.mixedcorpus)

## Build MTC corpus

print "Building MTC corpus."

sents1 = open(MTCdocs[0])

sents2 = open(MTCdocs[1])

annot1 = open(MTCdocs[2])

annot2 = open(MTCdocs[3])

builder = corpusbuilder.lapatacorp(sents1,sents2,annot1,annot2,"MTC")

IDs += builder.IDs

corpus.update(builder.corpus)

IDs += builder.mixedIDs

corpus.update(builder.mixedcorpus)

sents1.close()

sents2.close()

annot1.close()

annot2.close()

## Build News corpus

print "Building News corpus."

sents1 = open(newsdocs[0])

sents2 = open(newsdocs[1])

annot1 = open(newsdocs[2])

annot2 = open(newsdocs[3])

builder = corpusbuilder.lapatacorp(sents1,sents2,annot1,annot2,"News")

IDs += builder.IDs

corpus.update(builder.corpus)

IDs += builder.mixedIDs

corpus.update(builder.mixedcorpus)

sents1.close()

sents2.close()
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annot1.close()

annot2.close()

IDs += builder.IDs

corpus.update(builder.corpus)

IDs += builder.mixedIDs

corpus.update(builder.mixedcorpus)

## Build Novel corpus

print "Building Novel corpus."

sents1 = open(noveldocs[0])

sents2 = open(noveldocs[1])

annot1 = open(noveldocs[2])

annot2 = open(noveldocs[3])

builder = corpusbuilder.lapatacorp(sents1,sents2,annot1,annot2,"Novel")

IDs += builder.IDs

corpus.update(builder.corpus)

IDs += builder.mixedIDs

corpus.update(builder.mixedcorpus)

sents1.close()

sents2.close()

annot1.close()

annot2.close()

## Build Wiki Corpus

print "Building Wikipedia corpus."

urllist = open(wikiloc)

builder = corpusbuilder.wikicorp(urllist)

IDs += builder.IDs

corpus.update(builder.corpus)

urllist.close()

IDs += builder.mixedIDs

corpus.update(builder.mixedcorpus)

## Build Paper Corpus

print "Building Abstract-Article corpus."

builder = corpusbuilder.papercorp(paperdir)

IDs += builder.IDs

corpus.update(builder.corpus)

IDs += builder.mixedIDs

corpus.update(builder.mixedcorpus)

## Outputting to pickle file

print "Writing corpus to pickle file."

outputloc = r"/Users/Edward/Dropbox/MSc CS/MSc Project/corpus/docsimcorp.pkl"

outputF = open(outputloc,"w")

pickle.dump((corpus,IDs), outputF)

outputF.close()
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B.3 prepcorpus.py

#!/usr/local/bin/python

"""A script for pre-processing a corpus.

Written by Edward Grefenstette, University of Oxford, 2009.

email: <edward.grefenstette@balliol.ox.ac.uk>

Submitted towards completion of MSc Computer Science.

"""

def main():

try:

corpusfile = open(args[0],"r")

except:

sys.stderr.write("Could not open file "+args[0]+".\n")

sys.exit()

corpus, IDs = pickle.load(corpusfile)

eval_data = preprocessCorpus(corpus)

corpusfile.close()

if not options.quiet: print "Saving pre-processed corpus to" +\

args[1]+" and quitting."

prepfile = open(args[1],"w")

pickle.dump(eval_data, prepfile)

prepfile.close()

return

def preprocessCorpus(corpus):

if not options.quiet: print "==Pre-processing corpus=="

if not options.quiet: print "=Formatting corpus="

rawdata = format(corpus,options.quiet)

if not options.quiet:

print "=Tagging corpus="

print "(This may take over an hour.)"

eval_data = tagcorpus(rawdata,options.quiet)

return eval_data

def format(corpus, quiet=False):

eval_data = {}

next = 10

counter = 0

if not quiet:

sys.stdout.write("Progress: 0%")

sys.stdout.flush()

for ID in corpus:

tokens1 = word_tokenize(corpus[ID][0])

tokens2 = word_tokenize(corpus[ID][1])

# Normalisation step

string1 = " ".join(tokens1)

string2 = " ".join(tokens2)

gold_standard = corpus[ID][2]

eval_data[ID] = (string1,string2,tokens1,

tokens2,gold_standard)
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# UI friendliness

counter += 1

if not quiet:

while (counter*100/len(corpus)) >= next:

if (counter*100/len(corpus)) < 100:

sys.stdout.write("-"+str(next)+"%")

sys.stdout.flush()

else:

print "-100%"

next += 10

return eval_data

def tagcorpus(rawdata, quiet=False):

tagged_data = {}

next = 1

counter = 0

if not quiet:

sys.stdout.write("Progress: 0% ")

sys.stdout.flush()

for ID in rawdata:

tokens1, tokens2 = rawdata[ID][2:4]

tagged1 = pos_tag(tokens1)

tagged2 = pos_tag(tokens2)

tagged_data[ID] = rawdata[ID]+(tagged1,tagged2)

counter += 1

if not quiet:

while (counter*100/len(rawdata)) >= next:

if (counter*100/len(rawdata)) < 100:

sys.stdout.write(str(next)+"% ")

sys.stdout.flush()

else:

print "100%"

next += 1

return tagged_data

if __name__ == "__main__":

import sys

from optparse import OptionParser

usage = "%prog -q CORPUS PREPFILE"

description = ""

parser = OptionParser(usage = usage, description = description)

parser.add_option("-q", "--quiet", dest="quiet", action="store_true",

default = False, help="no output to stdin.")

(options, args) = parser.parse_args()

if len(args) < 1:

parser.print_help()

sys.exit()

# Import Psyco if available

try:

if not options.quiet: print "Importing psyco..."
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import psyco

psyco.full()

except ImportError:

pass

import cPickle as pickle

from corpusevaluation import *

from nltk import word_tokenize, pos_tag

main()

B.4 corpusevaluation.py

"""A collection of metric evaluation classes.

Written by Edward Grefenstette, University of Oxford, 2009.

email: <edward.grefenstette@balliol.ox.ac.uk>

Submitted towards completion of MSc Computer Science.

"""

from __future__ import division

from Levenshtein import distance, hamming, jaro, ratio

import nltk

from nltk import word_tokenize

from nltk.metrics import edit_distance, jaccard_distance, masi_distance

from nltk.corpus import wordnet as wn

from nltk.corpus import wordnet_ic as wnic

import os, sys

from subprocess import Popen, PIPE

import random

import shutil

import re

from math import ceil

# General evaluator classes

class evaluator(object):

EVALERROR = 0

eval_data = {}

scores = {}

def __init__(self, corpus = None, eval_data = None, quiet = False):

try:

import psyco

psyco.full()

except ImportError:

pass

if corpus is not None:

if not quiet: print "=Formatting corpus="

self.format(corpus, quiet)

elif eval_data is not None:

self.eval_data = eval_data

else:



146 APPENDIX B. SOURCE CODE

raise Exception, "Class given nothing to evaluate!"

if not quiet: print "=Scoring corpus="

self.scores = self.getscore(quiet)

def format(self, corpus, quiet=False):

next = 10

counter = 0

if not quiet:

sys.stdout.write("Progress: 0%")

sys.stdout.flush()

for ID in corpus:

tokens1 = word_tokenize(corpus[ID][0])

tokens2 = word_tokenize(corpus[ID][1])

# Normalisation step

string1 = " ".join(tokens1)

string2 = " ".join(tokens2)

gold_standard = corpus[ID][2]

self.eval_data[ID] = (string1,string2,tokens1,

tokens2,gold_standard)

counter += 1

if not quiet:

while (counter*100/len(corpus)) >= next:

if (counter*100/len(corpus)) < 100:

sys.stdout.write("-"+str(next)+"%")

sys.stdout.flush()

else:

print "-100%"

next += 10

def getscore(self, quiet = False):

next = 1

counter = 0

scores = {}

if not quiet:

sys.stdout.write("Progress: 0%")

sys.stdout.flush()

for ID in self.eval_data:

gold_standard = self.eval_data[ID][4]

linescore = self.scoreline(self.eval_data[ID])

difference = abs(gold_standard - linescore)

scores[ID] = 1 - difference

counter += 1

if not quiet:

while (counter*100/len(self.eval_data)) >= next:

if (counter*100/len(self.eval_data)) < 100:

sys.stdout.write(" "+str(next)+"%")

sys.stdout.flush()

else:

print " 100%"

next += 1

return scores

def scoreline(self,line):

raise Exception, "(Parent Class Warning) No implemented functions."
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class TAGevaluator(evaluator):

tagged_data = {}

stopwords = nltk.corpus.stopwords.words(’english’)

def __init__(self,corpus = None, eval_data=None, quiet=False):

if corpus is not None:

if not quiet: print "=Formatting corpus="

self.format(corpus,quiet)

if not quiet:

print "=Tagging corpus="

print "(This may take over an hour for large corpora.)"

self.tagged_data = self.tagcorpus(self.eval_data,quiet)

self.eval_data = self.tagged_data

elif eval_data is not None:

self.eval_data = eval_data

else:

raise Exception, "Class given nothing to evaluate!"

if not quiet: print "=Scoring corpus="

self.scores = self.getscore()

def tagcorpus(self,rawdata, quiet=False):

next = 1

counter = 0

if not quiet:

sys.stdout.write("Progress: 0%")

sys.stdout.flush()

for ID in rawdata:

tokens1, tokens2 = rawdata[ID][2:4]

tagged1 = nltk.pos_tag(tokens1)

tagged2 = nltk.pos_tag(tokens2)

self.tagged_data[ID] = rawdata[ID]+(tagged1,tagged2)

counter += 1

if not quiet:

while (counter*100/len(rawdata)) >= next:

if (counter*100/len(rawdata)) < 100:

sys.stdout.write(" "+str(next)+"%")

sys.stdout.flush()

else:

print " 100%"

next += 1

class WNevaluator(TAGevaluator):

metric = None

ic = None

def scoreline(self,line):

scores = []

best = {}

if self.metric is None:

raise Exception, "Use one of WNevaluator’ children!"

nouns1,nouns2,verbs1,verbs2 = self.getgroups(line)

synd1 = dict([[x,wn.synsets(x,’n’)]

for x in set(map(lambda x:x.lower(),nouns1))])

synd2 = dict([[x,wn.synsets(x,’n’)]

for x in set(map(lambda x:x.lower(),nouns2))])
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pairs = [(x,y) for x in synd1.keys() for y in synd2.keys()]

for pair in pairs:

key1, key2 = pair

if (key2,key1,’n’) in best:

best[pair+(’n’,)] = best[(key2,key1,’n’)]

continue

best[pair+(’n’,)] = 0.0

if len(synd1[key1]) == 0 or len(synd2[key2]) == 0: continue

for syn1 in synd1[key1]:

for syn2 in synd2[key2]:

try: mark = self.metric(syn1,syn2,self.ic)

except: mark = 0.0

if mark < 0: mark = 0

if mark > best[pair+(’n’,)]: best[pair+(’n’,)] = mark

synd1 = dict([[x,wn.synsets(x,’v’)]

for x in set(map(lambda x:x.lower(),verbs1))])

synd2 = dict([[x,wn.synsets(x,’v’)]

for x in set(map(lambda x:x.lower(),verbs2))])

pairs = [(x,y) for x in synd1.keys() for y in synd2.keys()]

for pair in pairs:

key1, key2 = pair

if (key2,key1,’v’) in best:

best[pair+(’v’,)] = best[(key2,key1,’v’)]

continue

best[pair+(’v’,)] = 0.0

if len(synd1[key1]) == 0 or len(synd2[key2]) == 0: continue

for syn1 in synd1[key1]:

for syn2 in synd2[key2]:

try: mark = self.metric(syn1,syn2,self.ic)

except: mark = 0.0

if mark < 0: mark = 0

if mark > best[pair+(’v’,)]: best[pair+(’v’,)] = mark

runningscore = 0.0

runningcount = 0

scores = []

for pair in best: scores.append(best[pair])

scores.sort()

scores.reverse()

best10p = scores[:int(ceil(len(best)/10))]

if len(best10p) == 0:

return 0.0

else:

return sum(best10p) / len(best10p)

def getgroups(self,line):

# From Penn Treebank tagset

nountags = [’FW’,’NN’,’NNS’,’NP’,’NPS’]

verbtags = [’FW’,’VB’,’VBD’,’VBG’,’VBN’,’VBP’,’VBZ’]

nouns1 = []

nouns2 = []

verbs1 = []
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verbs2 = []

tagged1, tagged2 = line[5:7]

for pair in tagged1:

word = pair[0].lower()

if pair[1] in nountags: nouns1.append(word)

if pair[1] in verbtags: verbs1.append(word)

for pair in tagged2:

word = pair[0].lower()

if pair[1] in nountags: nouns2.append(word)

if pair[1] in verbtags: verbs2.append(word)

nouns1 = [noun for noun in nouns1 if noun not in self.stopwords]

nouns2 = [noun for noun in nouns2 if noun not in self.stopwords]

verbs1 = [verb for verb in verbs1 if verb not in self.stopwords]

verbs2 = [verb for verb in verbs2 if verb not in self.stopwords]

return (nouns1,nouns2,verbs1,verbs2)

# Actual evaluation classes

class wordcounteval(evaluator):

def scoreline(self,line):

string1, string2, tokens1, tokens2 = line[:4]

maxlength = max(len(tokens1),len(tokens2))

diff = abs(len(tokens1) - len(tokens2))

score = 1 - diff/maxlength

return score

class charcounteval(evaluator):

def scoreline(self,line):

string1, string2 = line[:2]

maxlength = max(len(string1),len(string2))

diff = abs(len(string1) - len(string2))

score = 1 - diff/maxlength

return score

class leveneval(evaluator):

def scoreline(self,line):

string1, string2 = line[:2]

maxlength = max(len(string1),len(string2))

score = 1.0 - distance(string1,string2)/maxlength

if score < 0: score = 0.0 # Sanity check. Should never happen.

return score

class jaroeval(evaluator):

def scoreline(self,line):

string1, string2 = line[:2]

return jaro(string1,string2)

class ratioeval(evaluator):

def scoreline(self,line):

string1, string2 = line[:2]

return ratio(string1,string2)

class jaccardeval(evaluator):

def scoreline(self,line):

tokens1, tokens2 = line[2:4]

set1 = set(tokens1)

set2 = set(tokens2)
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score = 1.0 - jaccard_distance(set1, set2)

return score

class masieval(evaluator):

def scoreline(self,line):

tokens1, tokens2 = line[2:4]

set1 = set(tokens1)

set2 = set(tokens2)

score = 1.0 - masi_distance(set1, set2)

return score

class pathsimeval(WNevaluator):

metric = wn.path_similarity

class WUPeval(WNevaluator):

metric = wn.wup_similarity

class LINeval(WNevaluator):

metric = wn.lin_similarity

ic = wnic.ic(’ic-bnc.dat’) # Using British National Corpus as IC

class SemVecteval(evaluator):

def getscore(self, quiet = False):

pkgpath = os.path.expandvars("$SEMVECT")

os.chdir(pkgpath)

folderpath = "./folder" + str(random.randint(1,1000))

while(os.path.exists(folderpath)):

folderpath = "./folder" + str(random.randint(1,1000))

os.mkdir(folderpath)

indexpath = folderpath+"/fileindex"

fileindex = open(indexpath,"w")

for ID in self.eval_data:

fileindex.write(ID+"\n")

fileOne = open(folderpath+"/"+ID+".one","w")

fileindex.write(folderpath+"/"+ID+".one\n")

fileTwo = open(folderpath+"/"+ID+".two","w")

fileindex.write(folderpath+"/"+ID+".two\n")

fileOne.write(self.eval_data[ID][0])

fileTwo.write(self.eval_data[ID][1])

fileOne.close()

fileTwo.close()

fileindex.close()

scorefile = open(folderpath+"/scores","w")

scorefile.close()

if not os.path.exists(pkgpath):

sys.stderr.write("Couldn’t find semantic vectors package! " +

"Use ./scripts/evaluatemetrics or set the "+

"$SEMVECT environment variable to the folder "+

"containing the Semantic Vectors Evaluator "+

"package. Quitting.\n")

sys.exit()

arglist = "java -Xmx1024m -cp " + \
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os.path.expandvars("$CLASSPATH") + \

" SemanticVectorsEvaluator " + folderpath + \

" " + str(len(self.eval_data))

SemVectPackage = Popen(arglist, shell=True)

SemVectPackage.wait()

semscores = {}

scorefile = open(folderpath+"/scores")

for line in scorefile:

line = line.strip(’\n’)

parts = re.search(r"(\S*) (\S*)", line)

semscores[parts.group(1)] = float(parts.group(2))

scorefile.close()

shutil.rmtree(folderpath)

os.chdir("..")

scores = {}

for ID in self.eval_data:

gold_standard = self.eval_data[ID][4]

linescore = semscores[ID]

difference = abs(gold_standard - linescore)

scores[ID] = 1.0 - difference

return scores

class BLEUeval(evaluator):

def scoreline(self,line):

doc1, doc2 = line[:2]

doc1 = doc1.replace(’\n’, ’ ’)

doc2 = doc2.replace(’\n’, ’ ’)

doc1f = open(’./doc1f’,’w’)

doc2f = open(’./doc2f’,’w’)

doc1f.write(doc1+"\n*")

doc2f.write(doc2+"\n*")

doc1f.close()

doc2f.close()

arglist = ’./tools/bleu ./doc1f ./doc2f’

BLEU = Popen(arglist, shell=True, stdout = PIPE)

BLEU.wait()

output = BLEU.stdout.read()

outsearch = re.search(r"(?<=Bleu = )([01]\.[0-9]*)", output)

try:

score = float(outsearch.group(0))

except:

score = 0.0

os.remove(’./doc1f’)

os.remove(’./doc2f’)

return score

class randomeval(evaluator):

def scoreline(self,line):

return random.uniform(0.0,1.0)
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B.5 semanticvectors.java

/* A collection of corpus generating classes.

*

* Based on class written by Pascal Combescot.

* Modified by Edward Grefenstette, University of Oxford, 2009.

* email: <edward.grefenstette@balliol.ox.ac.uk>

* Submitted towards completion of MSc Computer Science.

*/

import java.io.*;

//import java.util.*;

import pitt.search.semanticvectors.*;

import englishStopWords.EnglishStopWordsFilter;

public class SemanticVectorsEvaluator {

/**

* @param args

* @throws Exception

*/

public static void main(String[] args) throws Exception {

//### Build the vector database ###

VectorStoreRAM vecReaderRAM = new VectorStoreRAM();

vecReaderRAM.InitFromFile(Flags.queryvectorfile);

EnglishStopWordsFilter filter = new EnglishStopWordsFilter();

float score;

String folderAddress = args[0];

String indexAddress = folderAddress + "/fileindex";

BufferedReader indexF;

indexF = new BufferedReader(new FileReader(indexAddress));

String ID = indexF.readLine();

String fileAddress1 = indexF.readLine();

String fileAddress2 = indexF.readLine();

String string1="", string2="";

BufferedReader file;

String line;

File outputF = new File(folderAddress+"/scores");

PrintWriter out = new PrintWriter(new FileWriter(outputF));

String output = "";

int datalen = Integer.parseInt(args[1]);
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int counter = 0;

int next = 1;

System.out.print("Progress: 0%");

System.out.flush();

while(ID!=null){

ID = ID.replaceAll("\n", "");

fileAddress1 = fileAddress1.replaceAll("\n", "");

fileAddress2 = fileAddress2.replaceAll("\n", "");

string1 = "";

string2 = "";

file = new BufferedReader(new FileReader(fileAddress1));

line = file.readLine();

while(line!=null){

string1 = string1 + line;

line = file.readLine();

}

file.close();

file = new BufferedReader(new FileReader(fileAddress2));

line = file.readLine();

while(line!=null){

string2 = string2 + " " + line;

line = file.readLine();

}

file.close();

try {

score = getScore(filter.stringToStringArray(string1),

filter.stringToStringArray(string2),

vecReaderRAM, false);

}

catch (Exception e) {

score = 0;

}

output = ID + " " + Float.toString(score) + "\n";

out.print(output);

counter++;

while ((counter*100/datalen) >= next){

if ((counter*100/datalen) < 100) {

System.out.print(" "+Integer.toString(next)+"%");

System.out.flush();

}

else {

System.out.println(" 100%");

}

next++;

}
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ID = indexF.readLine();

fileAddress1 = indexF.readLine();

fileAddress2 = indexF.readLine();

output = "";

}

out.close();

}

//from pitt.search.semanticvectors.VectorSearcher

public static float getScore(String[] stringArray1, String[] stringArray2,

VectorStore vecReader, boolean info) throws Exception{

float score;

float[] vector1 = getVector(stringArray1, vecReader, info);

float[] vector2 = getVector(stringArray2, vecReader, info);

if (!VectorUtils.isZeroVector(vector1)) {

if (!VectorUtils.isZeroVector(vector2)) {

score = VectorUtils.scalarProduct(vector1, vector2);

//more mathematical operation in pitt.saerch.semanticvectors.VectorSearcher

} else throw new Exception("The vector for stringArray2 is a ZeroVector.");

} else throw new Exception("The vector for stringArray1 is a ZeroVector");

return score;

}

//from pitt.search.semanticvectors.CompoundVectorBuilder

public static float[] getVector (String[] queryTerms, VectorStore vecReader, boolean info){

int dimension = 200;

float[] queryVec = new float[dimension];

float[] tmpVec = new float[dimension];

StringBuffer queryTermsUsed = new StringBuffer();

for (int i = 0; i < dimension; ++i) {

queryVec[i] = 0;

}

for (int j = 0; j < queryTerms.length; ++j) {

tmpVec = vecReader.getVector(queryTerms[j]);

if (tmpVec != null) {

for (int i = 0; i < dimension; ++i) {

queryVec[i] += tmpVec[i];

}

if(info) queryTermsUsed.append (queryTerms[j] + " ");

} else {

//if(info)System.err.println("No vector for " + queryTerms[j]);

}

}

if(info) System.out.println("Words used to build the vector : " + queryTermsUsed);

return VectorUtils.getNormalizedVector(queryVec);

}

}
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B.6 evaluatecorpus.py

#!/usr/local/bin/python

"""A script for running the project experiment.

Written by Edward Grefenstette, University of Oxford, 2009.

email: <edward.grefenstette@balliol.ox.ac.uk>

Submitted towards completion of MSc Computer Science.

"""

from __future__ import division

import sys, os

import cPickle as pickle

from corpusevaluation import *

import hashlib

def main():

corpusfile = open(r"/Users/Edward/Dropbox/MSc CS/MSc Project/" \

"corpus/preppedcorp.pkl","r")

print "Loading pre-processed evaluation data."

eval_data = pickle.load(corpusfile)

print "Done reloading evaluation data."

# To check compatibility during running backup

print "Calculating corpus signature for running backup."

corpusfile.seek(0)

signature = hashlib.md5(corpusfile.read()).digest()

corpusfile.close()

print "Done calculating signature."

results = getmetricresults(eval_data,signature)

publishresults(results)

def getmetricresults(eval_data,signature):

BKUPpath = r"/Users/Edward/Dropbox/MSc CS/MSc Project/" \

"analysis/runningbackup.pkl"

metrics = {"Wordcount": wordcounteval, "Character Count": charcounteval,

"Levenshtein Edit Distance": leveneval,

"Jaro-Winkler Distance": jaroeval,

"Ratio Similarity": ratioeval, "Jaccard Distance": jaccardeval,

"Masi Distance": masieval, "Random Evaluation": randomeval,

"WN Path Similarity": pathsimeval,

"WN Wu-Palmer Similarity": WUPeval,

"WN Lin Similarity": LINeval,

"Semantic Vector Similarity": SemVecteval,

"BLEU Similarity": BLEUeval

}

metricnames = {}

for key in metrics:

metricnames[metrics[key]]=key

evalTODO = metrics.keys()
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metricresults = {}

print "Checking for existing backups."

if os.path.exists(BKUPpath):

print "Backup file found! Validating..."

loadbackup = True

BKUPf = open(BKUPpath)

BKsignature,BKevalTODO,BKevalDONE,BKmetricresults = pickle.load(BKUPf)

if not (BKsignature == signature):

print "Corpus signature does not match."

loadbackup = False

BKevalDONEtgt = set(metrics.keys()).difference(set(BKevalTODO))

if not (BKevalDONEtgt == BKevalDONE):

print "Metric set does not match."

loadbackup = False

if loadbackup:

print "Reloading results for metrics:"

for metricname in BKevalDONE:

print "\t",metricname

evalTODO = BKevalTODO

metricresults = BKmetricresults

BKUPf.close()

os.remove(BKUPpath)

runningBKUP = open(BKUPpath,"w")

print "Beginning evaluation."

try:

while len(evalTODO) > 0:

key = evalTODO[0]

metric = metrics[key]

name = metricnames[metric]

print "==Evaluating "+name+"=="

scorer = metric(eval_data=eval_data)

metricresults[name] = scorer.scores

del(evalTODO[0])

except:

print "Something went wrong while executing metric:", evalTODO[0]

evalDONE = set(metrics.keys()).difference(set(evalTODO))

if len(evalDONE) is 0:

print "No results to record..."

sys.exit()

pickle.dump((signature,evalTODO,evalDONE,metricresults), runningBKUP)

runningBKUP.close()

print "Progress saved. Completed metrics:"

for metricname in evalDONE:

print "\t",metricname

print "Left to be evaluated:"

for metricname in evalTODO:

print "\t",metricname

sys.exit()

runningBKUP.close()

os.rename(BKUPpath, BKUPpath+".final")

print "Done evaluating metrics."
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return metricresults

def publishresults(results):

outputfileloc = r"/Users/Edward/Dropbox/MSc CS/MSc Project/" \

"analysis/results.pkl"

outputfile = open(outputfileloc,"w")

pickle.dump(results, outputfile)

outputfile.close()

if __name__ == "__main__":

try:

print "Importing psyco..."

import psyco

psyco.full()

except ImportError:

pass

main()

B.7 analyser.py

#!/usr/local/bin/python

"""A script for analysing the experiment results.

Written by Edward Grefenstette, University of Oxford, 2009.

email: <edward.grefenstette@balliol.ox.ac.uk>

Submitted towards completion of MSc Computer Science.

"""

from __future__ import division

import sys, os

from optparse import OptionParser

import cPickle as pickle

import re

import numpy as np

import pylab

def main():

if not options.quiet: print "Loading results for analysis."

try:

resultsFile = open(args[0])

results = pickle.load(resultsFile)

resultsFile.close()

except:

sys.stderr.write("Could not load results from file "+args[0] \

+". Quitting.\n")

sys.exit()

if not options.quiet: print "Done loading results."

# get categories:

cats = {}

matchcats = {}

mixedcats = {}
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for tag in results[results.keys()[0]]:

parts = re.search(r"([a-zA-Z]+)-*([a-zA-Z]+)*", tag)

cat = parts.group(1)

subcat = parts.group(2)

try: cats[cat].append(tag)

except: cats[cat] = [tag]

if subcat is not None:

try: cats[cat+" ["+subcat+"]"].append(tag)

except:

try: cats[cat+" ["+subcat+"]"] = [tag]

except: cats[cat+" ["+subcat+"]"] = [tag]

if tag[-1] == ’m’:

try: mixedcats[cat].append(tag)

except: mixedcats[cat] = [tag]

if subcat is not None:

try: mixedcats[cat+" ["+subcat+"]"].append(tag)

except:

try: mixedcats[cat+" ["+subcat+"]"] = [tag]

except: mixedcats[cat+" ["+subcat+"]"] = [tag]

else:

try: matchcats[cat].append(tag)

except: matchcats[cat] = [tag]

if subcat is not None:

try: matchcats[cat+" ["+subcat+"]"].append(tag)

except:

try: matchcats[cat+" ["+subcat+"]"] = [tag]

except: matchcats[cat+" ["+subcat+"]"] = [tag]

# splice up scores per metric

catscores = getcatscores(cats, results)

matchcatscores = getcatscores(matchcats, results)

mixedcatscores = getcatscores(mixedcats, results)

# calculate metric averages per category (overall)

metricAVGs = getmetricAVGs(cats, catscores, results)

mixedmetricAVGs = getmetricAVGs(mixedcats, mixedcatscores, results)

matchmetricAVGs = getmetricAVGs(matchcats,matchcatscores,results)

# publish metric averages

publishAVGs(metricAVGs,"Overall Averages",True)

publishAVGs(matchmetricAVGs,"Averages for Matched Doc Pairs")

publishAVGs(mixedmetricAVGs,"Averages for Mixed Doc Pairs")

# publish results distributions

if not options.textonly:

publishDists(catscores,cats,"Overall")

publishDists(matchcatscores,matchcats,"Matched")

publishDists(mixedcatscores,mixedcats,"Mixed")

metriclist = [metric for metric in results]

metricpairs = []

for i in range(0,len(metriclist)-1):
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for j in range(i+1,len(metriclist)):

metricpairs.append((metriclist[i],metriclist[j]))

metdiffs = getmetricdiffs(metricpairs, results)

publishDiffs(metdiffs,cats,"Overall Metric Differences",True)

publishDiffs(metdiffs,matchcats,"Metric Differences for Matched Doc Pairs")

publishDiffs(metdiffs,mixedcats,"Metric Differences for Mixed Doc Pairs")

if not options.textonly:

publishDiffDists(metdiffs,cats,"Overall")

publishDiffDists(metdiffs,matchcats,"Matched")

publishDiffDists(metdiffs,mixedcats,"Mixed")

def getcatscores(cats,results):

catscores = {}

for metric in results:

catscores[metric] = {}

for cat in cats:

catscores[metric][cat] = {}

for tag in cats[cat]:

catscores[metric][cat][tag] = results[metric][tag]

return catscores

def getmetricAVGs(cats,catscores,results):

metricAVGs = {}

for cat in cats:

metricAVGs[cat] = {}

for metric in results:

scores = []

for tag in catscores[metric][cat]:

scores.append(catscores[metric][cat][tag])

metricAVGs[cat][metric] = sum(scores)/len(scores)

return metricAVGs

def publishAVGs(AVGs,title,removeOrig=False):

rankdict = {}

for cat in AVGs:

rankdict[cat] = {}

for metric in AVGs[cat]:

rankdict[cat][AVGs[cat][metric]] = metric

ranks = {}

for cat in rankdict:

ranks[cat] = []

sorted = rankdict[cat].keys()

sorted.sort() # ascending sort

sorted.reverse() # reverse to have high scores first

for key in sorted:

ranks[cat].append((rankdict[cat][key],key))

sortedcats = ranks.keys()

sortedcats.sort()

if options.textonly:

print "=====",title,"====="

for cat in sortedcats:
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print "=== Category", cat, "==="

for i in range(0,len(ranks[cat])):

print "\t"+str(i+1)+": %-20s" % str(ranks[cat][i][0])+"\t" + \

"%6.2f%%" % (ranks[cat][i][1] * 100)

print "" # blank line between categories

else:

content = "===== "+title+" =====\n"

for cat in sortedcats:

content += "=== Category "+cat+" ===\n"

for i in range(0,len(ranks[cat])):

content += "\t"+str(i+1)+": %-30s" % str(ranks[cat][i][0])+ \

"\t"+"%6.2f%%" % (ranks[cat][i][1]*100)+"\n"

content += "\n"

try:

if not options.quiet: print "Printing "+title+" to rankings.txt."

savepath = os.path.abspath(args[1]) + "/rankings.txt"

if removeOrig:

if os.path.exists(savepath): os.remove(savepath)

outputfile = open(savepath,"a")

outputfile.write(content)

outputfile.close()

except:

sys.stderr.write("Couldn’t write to folder"+args[1]+". Quitting.\n")

sys.exit()

def publishDists(catscores, cats, subfolder):

fpath = os.path.abspath(args[1])

for cat in cats:

catpath = fpath+"/GSdists/"+cat

if not os.path.exists(catpath):

os.makedirs(catpath)

outputpath = catpath+"/"+subfolder

if not os.path.exists(outputpath):

os.mkdir(outputpath)

for metric in catscores:

savepath = outputpath+"/"+metric+" "+cat+".pdf"

if os.path.exists(savepath): os.remove(savepath)

data = [catscores[metric][cat][tag]

for tag in catscores[metric][cat]]

pylab.clf()

pylab.hist(data,bins=99)

pylab.title(cat+" Corpus ("+subfolder+")\n" + \

"Score difference distribution for metric: "+metric)

pylab.xlabel("Closeness to gold standard\n[Higher is better]")

pylab.ylabel("Number of occurrences")

pylab.xlim((0.0,1.0))

pylab.savefig(savepath,format="pdf")

pylab.close()

def getmetricdiffs(metricpairs,results):

metricdiffs = {}

for pair in metricpairs:

metricdiffs[pair] = {}

met1, met2 = pair

for ID in results[met1]:

metricdiffs[pair][ID] = abs(results[met1][ID]-results[met2][ID])
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return metricdiffs

def publishDiffs(metdiffs,cats,title,removeOrig=False):

rankdict = {}

diffAVGs = {}

for cat in cats:

diffAVGs[cat] = {}

for pair in metdiffs:

AVG = sum([metdiffs[pair][ID] for ID in cats[cat]])/len(cats[cat])

diffAVGs[cat][pair] = AVG

for cat in cats:

rankdict[cat] = {}

for pair in metdiffs:

pairname = pair[0] + " vs. " + pair[1]

rankdict[cat][diffAVGs[cat][pair]] = pairname

ranks = {}

for cat in rankdict:

ranks[cat] = []

sorted = rankdict[cat].keys()

sorted.sort() # ascending sort

sorted.reverse() # reverse to have high scores first

for key in sorted:

ranks[cat].append((rankdict[cat][key],key))

sortedcats = ranks.keys()

sortedcats.sort()

if options.textonly:

print "=====",title,"====="

for cat in sortedcats:

print "=== Category", cat, "==="

for i in range(0,len(ranks[cat])):

print "\t"+str(i+1)+": %-70s" % str(ranks[cat][i][0])+"\t" + \

"%6.2f%%" % (ranks[cat][i][1] * 100)

print "" # blank line between categories

else:

content = "===== "+title+" =====\n"

for cat in sortedcats:

content += "=== Category "+cat+" ===\n"

for i in range(0,len(ranks[cat])):

content += "\t"+str(i+1)+": %-70s" % str(ranks[cat][i][0])+ \

"\t"+"%6.2f%%" % (ranks[cat][i][1]*100)+"\n"

content += "\n"

try:

if not options.quiet: print "Printing "+title+" to metricdiffs.txt."

savepath = os.path.abspath(args[1]) + "/metricdiffs.txt"

if removeOrig:

if os.path.exists(savepath): os.remove(savepath)

outputfile = open(savepath,"a")

outputfile.write(content)

outputfile.close()

except:

sys.stderr.write("Couldn’t write to folder"+args[1]+". Quitting.\n")
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sys.exit()

def publishDiffDists(metdiffs, cats, subfolder):

fpath = os.path.abspath(args[1])

for cat in cats:

catpath = fpath+"/Diffdists/"+cat

if not os.path.exists(catpath):

os.makedirs(catpath)

outputpath = catpath+"/"+subfolder

if not os.path.exists(outputpath):

os.mkdir(outputpath)

for pair in metdiffs:

fname = pair[0] + " vs " + pair[1]

savepath = outputpath+"/"+fname+" "+cat+".pdf"

if os.path.exists(savepath): os.remove(savepath)

data = [metdiffs[pair][ID] for ID in cats[cat]]

pylab.clf()

pylab.hist(data,bins=99)

pylab.title(cat+" Corpus ("+subfolder+")\n" + \

"Metric difference for: "+fname)

pylab.xlabel("Score diversion\n")

pylab.ylabel("Number of occurrences")

pylab.xlim((0.0,1.0))

pylab.savefig(savepath,format="pdf")

pylab.close()

if __name__ == "__main__":

usage = "%prog [-t] DATA OUTPUTFOLDER"

description = ""

parser = OptionParser(usage = usage, description = description)

parser.add_option("-t", "--text-only", dest="textonly",

default = False, help="Write text-only results to STDIN",

action = "store_true")

parser.add_option("-q", "--quiet", dest="quiet",

default = False, help="Suppress progress outputs",

action = "store_true")

(options, args) = parser.parse_args()

if (len(args) < 1) or ((not options.textonly) and len(args)<2):

parser.print_help()

sys.exit()

if not options.textonly:

if not os.path.exists(os.path.abspath(args[1])):

sys.stderr.write("Could not find folder for saving analysis.\n")

sys.exit(s)

main()


