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Abstract

We present a linearizable, lock-free concurrent binomial heap. In our

experience, a binomial heap is considerably more complex than previously

considered concurrent datatypes. The implementation presents a number

of challenges. We need to deal with interference when a thread is travers-

ing the heap, searching for the smallest key: our solution is to detect such

interference, and restart the traversal. We must avoid interference be-

tween updating operations: we add labels to nodes to prevent interfering

updates to those nodes; and we add labels to heaps to prevent union oper-

ations interfering with other operations on the same heap. This labelling

blocks other operations: to achieve lock-freedom, those threads help with

the blocking operation; this requires care to ensure correctness, and to

avoid cycles of helping that would lead to deadlock. We use a number of

techniques to ensure decent e�ciency. The complexity of the implementa-

tion adds to the di�culty of the proofs of linearizability and lock-freedom:

we present each proof in a modular way, proving results about each op-

eration individually, and then combining them to give the desired results.

We hope some of these techniques can be applied elsewhere.

Keywords: Concurrent datatypes, binomial heaps, linearizability, lock free-
dom.

1 Introduction

A binomial heap is a datatype that
stores a multiset of integer keys. It has
operations as declared to the right (we
use Scala notation). The e�ect of the
operations is as follows.

class BinomialHeapf
def insert(x: Int): Unit
def minimum: Option[Int]
def deleteMin: Option[Int]
def union(giver: BinomialHeap): Unit

g

� The operation insert inserts the given value into the heap.

� The operation minimum returns the minimum key in the binomial heap; in
order to deal with an empty heap, it returns an Option[Int] value: either a
value Some(x) where x is the minimum key, or None if the heap is empty.

�This is an extended version of a paper under review for the Journal of Logical and Alge-

braic Methods in Programming.
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� The operation deleteMin deletes and returns the minimum key (again, using
an Option[Int] value).

� The operation union removes all keys from the argument heap (\giver")
and adds them to the current heap. We call the former heap the giving
heap, and the latter the receiving heap.

In this paper we describe an implementation of a concurrent binomial heap.
Our implementation is linearizable and lock-free (see below).

We start by reviewing sequential binomial heaps. Binomial heaps were intro-
duced by Vuillemin in [Vui78]; Cormen et al. [CLR99] give a good description.

A binomial tree is composed of nodes. Each node n holds an integer key,
denoted n:key. A binomial tree of degree 0 comprises a single node. A binomial
tree of degree d > 0 has a root node, and d subtrees with degrees d � 1 , d � 2 ,
. . . , 1 , respectively; the root's key is no larger than any other key in the tree.
Given two trees t1 and t2 , each of degree d , with t1 :key � t2 :key, we can merge
them into a tree of degree d + 1 by grafting t2 onto t1 as its �rst child. A
binomial tree of degree d has 2 d nodes.

A binomial heap is a list of zero or more bino-
mial trees, with their roots linked together; we call
this list the root list. Each node has a reference
next to its next sibling or the next node in the root
list, and a list children of references to its children;
for convenience, in our concurrent implementation
each node also has a reference parent to its par-
ent. The �gure to the right illustrates a binomial
heap containing four trees, with degrees 1, 3, 1
and 0. (Each next reference is drawn rightwards;
references to children are drawn downwards; parent
references are omitted.)
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The sequential implementation of a binomial heap ensures the trees in a heap
have di�erent degrees, by merging two trees of the same degree, if necessary.
This means that a heap with k keys has at most blog kc + 1 trees, thereby
providing O(log k) running times for each of the operations. Our concurrent
implementation does not rigidly enforce this property, but we aim towards it,
in the interests of e�ciency. (The sequential implementation also keeps the list
in increasing order of degrees; we make no attempt to achieve this property.)

We now sketch how the operations are implemented in a concurrent setting.
The minimum operation scans the root list for the node with the minimum key
that was not deleted when encountered. Then, if that node has not been deleted
in the meantime, it returns the key; otherwise, it restarts. The deleteMin op-
eration again scans the root list for the node with the minimum key. It then
attempts to mark that node, thereby indicating that it has claimed the node for
deletion. If successful, it then removes that node from the root list, inserting
its children (if any) in its place. If the deletion is unsuccessful, it restarts. The
insert operation for a key k traverses the root list until it �nds either a root of
degree 0 with a key that is no larger than k , or the last root node. In the former
case, it tries to insert a new node below the singleton root; in the latter case, it
tries to insert a new node after the last root. In each case, if it is unsuccessful
it retries. The union operation similarly tries to append the �rst root of the
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giving heap after the last root of the receiving heap. We provide two implemen-
tations of union: the former makes the simplifying assumption that there are no
concurrent operations on the giving heap (although concurrent operations are
allowed on the receiving heap); the latter removes this assumption, at the cost
of a much more complex implementation.

In addition, threads may attempt to merge two trees into a single tree, via
a non-public operation merge; this shortens the root list, thereby making other
operations more e�cient. The merge operation takes two trees a and b that are
expected1 to have the same degree with a.key � b.key, and a node pred that is
expected to be the predecessor of b. It attempts to merge a and b into a single
tree, making b a child of a (so a is above and b is below). For the moment, we
assume that threads can call this operation at any time, nondeterministically.
In Section 10 we explain our tactic for using it.

There are several issues that make the implementation di�cult. First, sup-
pose one thread is traversing the root list, searching for the minimum key.
Meanwhile, other threads could rearrange the heap concurrently; this can cause
the traversing thread to miss nodes in the heap. For example, suppose a travers-
ing thread has reached the 3 in the left-most heap below, and then is suspended.
Then suppose other threads merge the 3 below the 1; merge the 2 below the 1;
and then delete the 1, reaching the right-most heap below.
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Now, if the traversing thread resumes, it detects that it has reached the end of
the root list, and incorrectly returns 3. (This problem arises even if the other
operations are performed atomically.) Our solution is to detect when the root
list has been su�ciently perturbed, and restart the traversal.

Another major di�culty, of course, is that most updates to the heap in-
volve updating more than one node in the heap. For example, merging trees
a and b, making the latter a child of the former, involves updating both these
nodes and the predecessor pred of b, so involves up to three nodes (it is possi-
ble that a = pred). Deleting a node involves updating the node itself (to mark
it as deleted), its predecessor, and each of its children (to clear their parent

references). Hence such updates cannot be made atomically and e�ciently on
standard architectures. This leads to intermediate states that are di�erent from
ones that can arise when the operations are atomic.

Our approach to merging is based on the technique of Barnes [Bar93]. We
start by labelling relevant nodes. Those labels are removed when the operation
is completed, or if the operation is unable to complete and has to be back-
tracked. The labels indicate the intended update to other threads. Informally,
this locks those nodes, preventing other threads from interfering with the opera-
tion; however, other threads are allowed to update the node to help to complete
or backtrack the operation; we use the word \locks" in this sense below. We
previously used a similar technique for deletion, labelling both the node to be

1We use the word \expected" to indicate conditions that the thread in question should
check before the operation is called, but that subsequently might have been invalidated.
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deleted and its predecessor. However, we found that it was more e�cient to
label just the node to be deleted: this might mean that the predecessor sub-
sequently changes, and we have to �nd the new predecessor, but the bene�ts
outweigh this cost.

Extra di�culties arise if we allow operations concurrent to a giving union
(i.e. where the heap is the giving heap in a union). The union may interfere
with other operations, for example causing an insertion to actually insert the
new node in the receiving heap, or for a minimum or deleteMin to return a key
from the receiving heap. Our approach to avoiding such problems extends the
above labelling technique. We add a label to the head node of each heap during a
union; likewise, we add a label to the head node for the critical step of insertions
and deletions: this ensures that these operations cannot happen concurrently to
a giving union. We also need e�cient techniques to detect if a giving union has
happened during some period, and to �nd the current heap containing a node.

Finally, we aim to make the data structure lock-free: if threads (collectively)
are scheduled su�ciently often, then eventually some operation completes. This
means that if a thread is blocked by the labelling of nodes described in the pre-
vious paragraph, that thread should help to complete the operation. Ensuring
that no thread can get stuck in a loop requires great care.

Our approach to proving lock-freedom is as follows. For most operations,
each update to a node represents positive progress: we can bound the number
of updates that an operation makes, excluding helping. Thus, in any execution
that represents a failure of lock-freedom, such updates must eventually end.
The exception to this is with merging; we use a di�erent mechanism to bound
the number of such updates done by merges. Thus, it is enough to prove that
each operation terminates in a �nite number of steps assuming no other thread
updates a node. We do this by showing three things (under this assumption):

� That each operation terminates in a �nite number of steps, other than,
perhaps, helping another operation;

� Likewise that each attempt to help terminates in a �nite number of steps,
other than, perhaps, recursively helping another operation;

� That each chain of recursive helping is �nite (in particular, acyclic).

In our experience, a binomial heap is considerably more complex than pre-
vious concurrent datatypes. Part of our goal in undertaking this work was to
understand the degree to which concurrent versions of more complex datatypes
are possible, and how best to reason about them. (Our proofs are rigorous but
not machine-checked; we leave a machine-checked proof as a challenge.)

We consider our main contributions to be the combination of techniques
that we used to overcome the above challenges and to improve the e�ciency of
the implementation, together with the veri�cation. In addition, we consider the
binomial heap potentially useful in its own right: in several use cases, our im-
plementation out-performs other implementations of concurrent priority queues
(i.e. omitting the union operation from the interface); further, we are not aware
of other lock-free implementations giving the same interface (including union).

During the development, we intensively tested the implementation for lin-
earizability [HW90] using the techniques from [Low17]. This revealed several
subtle errors with earlier versions of the implementation. It is our experience
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that this technique is very e�ective at discovering errors, if they exist; con-
versely, not �nding errors improves our con�dence, and justi�es the e�ort of a
formal proof.

Our implementation, in Scala, is available from http://www.cs.ox.ac.uk/

people/gavin.lowe/BinomialHeap/index.html. We present the design below
in pseudo-Scala (taking a few small liberties with syntax).

The implementation of each operation is, to a certain extent, dependent on
the others; we describe the operations in a slightly unnatural order, in order to
produce a coherent explanation. In particular, the implementation of functions
that traverse the root list depend on the implementation of other operations. In
the next section we de�ne the types of nodes, and give some basic de�nitions.
In Section 3 we describe how to merge two trees. In Section 4 we describe how
to delete a node, assuming the minimum node and its expected predecessor
have been found; we also assume a function to �nd the new predecessor of the
node being deleted, if it has changed in the meantime; we present that latter
function in Section 5, where we also present our technique for safely traversing
the root list. In Section 6 we describe the insert operation. In Sections 7 we
describe the union operation under the assumption that there are no concurrent
operations on the giving heap. In Sections 8 and 9 we describe the minimum

and deleteMin functions. We describe our tactic for when we attempt to merge
trees in Section 10. In Section 11 we present a revised version of union, where
we relax the assumption about no concurrent operations on the giving heap;
this also requires making some small changes to the previous operations, which
we describe in Section 12. We prove that the implementation is linearizable in
Section 13, and we prove lock-freedom in Section 14. We sum up in Section 15.
In places, in the interests of clarity, we present slightly simpli�ed versions of the
implementation, and then sketch enhancements without giving full details.

Linearizability Our correctness condition is the well-established and ac-
cepted condition of linearizability [HW90]. Informally, a concurrent datatype C
is linearizable with respect to a sequential (speci�cation) datatype S if every
history c of C is linearizable to a history s of S : each operation op of c appears
to take place atomically at some point in time, known as the linearization point,
between the invocation and return of op; and the operations, ordered according
to their linearization points, form a legal history of the sequential datatype S
(i.e. respects the intended sequential semantics). See [HW90, HS12] for a formal
de�nition; but this de�nition su�ces for our purposes.

Related work To our knowledge, the only prior implementation of a con-
current binomial heap is by Crupi et al. [CDP96]. However, their setting is
very di�erent from ours: a single operation takes place at a time, and all
threads cooperate on each operation. They show each of the main operations
can be performed on a heap containing n keys in time O(log log n + log n

p
) with

p = O( log n
log log n

) processors.

Huang and Weihl [HW91] describe a lock-based priority queue based on
Fibonacci heaps, where deleteMin operations are non-strict, i.e. they may return
values that are not necessarily minimal.

In addition, various authors have given implementations of priority queues
(without the union operation) based on skiplists. Lotan and Shavit [LS00] de-
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scribe a design that is not linearizable, since a deleteMin operation may ignore
a smaller value that is inserted concurrently. Further, the design uses locks, so
is clearly not lock-free. Sundell and Tsigas [ST05] describe a lock-free priority
queue based on a skiplist. The design also turns out not to be linearizable2; but
this is easily �xed. Lind�en and Jonsson [LJ13] describe a linearizable skiplist-
based implementation of a priority queue, that uses various clever techniques to
minimise the number of update operations necessary for a deleteMin operation,
and so provide good performance.

Liu and Spear [LS12] describe an implementation of a priority queue using
a mound: a binary heap where each node holds a linked list sorted by priorities;
insertion runs in O(log(log(N ))) and deleteMin in O(log(N )).

Braginsky et al. [BCP16] present an implementation of a priority queue based
upon a linked list of chunks, where a chunk uses an array to store some items
of data. Each chunk holds data that are smaller than those in the following
chunk; but only the data in the �rst chunk (on which deleteMin operates) are
kept sorted. When a chunk becomes full, it is split into two. A skip list allows
fast access to the appropriate chunk. A form of elimination between concurrent
insert and deleteMin calls is implemented.

Some papers, e.g. [AKLS15], have considered relaxed priority queues, where
the deleteMin operation is not constrained to return the absolute minimum key;
this avoids the minimum key becoming a bottleneck, so gives better perfor-
mance.

2 Basic types and de�nitions

In this section we describe the implementation of nodes. Each node has the
following �elds:

� key: Int, which is immutable;

� parent, next: Node (each possibly null), pointing to the node's parent, and
next sibling or next root, respectively;

� children: List[Node], a list of the node's children (possibly empty);

� degree: Int, giving the degree of the node;

� label: Label (possibly null), describing any update currently operating on
the node; we introduce the di�erent types of labels when we describe the
relevant operations;

� seq: Int, a sequence counter that is updated each time a node is moved
from being a root to become a child of another node, or when the node is
labelled for deletion; we use this when traversing the root list, to detect
changes in the root list that require the traversal to restart (see Section 5);

� deleted: Boolean, a 
ag that is set when a node has been fully deleted; we
explain this more when we discuss deletion in Section 4.

2Acknowledged by the authors (personal communication).
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abstract class Label
class NodeState(val parent: Node, val degree: Int, val children: List[Node],

val next: Node, val seq: Int, val label: Label)f
def unlabelled = label == null
def parentless = parent == null

g
class Node(val key: Int)f
/�� The state of this node, atomically updateable. �/
private val state = new AtomicReference[NodeState](new NodeState(
parent = null, degree = 0, children = List(), next = null, seq = 0, label = null))

/�� Get the current state. �/
def getState : NodeState = state.get
/�� CAS the current state. �/
def compareAndSet(oldState: NodeState, newState: NodeState) : Boolean =
state.get == oldState && state.compareAndSet(oldState, newState)

/�� Has this Node been fully deleted? �/
@volatile var deleted = false
/�� Get the current sequence number. �/
def getSeq = getState.seq
/�� Get the current label. �/
def getLabel = getState.label

g

Figure 1: NodeState and Node

To update several parts of a node's state atomically, we encapsulate most of
the mutable state into a NodeState object (with immutable �elds); see Figure 1.
We use suggestive notation for de�ning new NodeState objects: we write, for
example, state[next 7! n] for a NodeState that is the same as state except with its
next �eld set to point to n. We include in NodeState functions that test if the
label or parent is null.

A Node itself comprises the (immutable) key, a reference state to the state,
and the deleted �eld3 (we do not include deleted within the NodeState, because
we never need to update it at the same time as another �eld, nor in a way
that depends on any other �eld). Each Node includes operations to (atomically)
read the state, perform a compare-and-set (CAS)4 on the state, and to get the
sequence number or label. In our informal commentary, we sometimes write,
e.g., n:next as shorthand for n:getState.next.

The binary heap is implemented as a linked list of root nodes, linked via
their next �elds; we call this list the root list. For convenience, we use a dummy
header node head (with an arbitrary key).

private val head = new Node(�1)

For simplicity, we assume a garbage collector. Whenever we update the state
of a node, we do so with a new object; this avoids the ABA problem [HS12].

We state some invariants of the binomial heap. The following invariants

3The class java.util.concurrent.atomic.AtomicReference provides references to objects which
can be updated atomically, using compare-and-set operations, and that provide sequentially
consistent memory accesses. The @volatile annotation provides sequentially consistent mem-
ory accesses to that �eld.

4compareAndSet(oldState, newState) behaves as follows: if state equals oldState, then it is
updated to newState, and true is returned; otherwise, state is unchanged, and false is returned.
We check that the state equals oldState before attempting the CAS operation: this is standard
practice, to avoid creating lots of memory bus tra�c via a CAS that is bound to fail.
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capture the standard property of keys in a binomial tree, and some other obvious
properties.

Invariant 1 If n2 :parent = n1 and n1 6= null then n1 :key � n2 :key.

Recall that we use a Delete label to indicate that a node is being deleted.

Invariant 2 For each node n that does not have a Delete label: n.children con-
tains n.degree nodes, which are joined by next pointers in a linked list; and
c:parent = n for each c 2 n:children.

Invariant 3 The parent references are acyclic.

Labels are added only to root nodes, except a Delete label may be added to a
node whose parent is being deleted.

Invariant 4 If a node has a non-null parent, then either it has a null label, or
both it and its parent have Delete labels.

(We state further invariants later.)
We give rules under which operations may change nodes.

Rule 1 If a node n has a non-null parent, the only changes that may be per-
formed on n are to help with the deletion of the parent, or to label n for deletion
if its parent is being deleted; in each case the parent will have a Delete label.

We make this more precise in Section 4 when we describe deletion. Our other
rules concern nodes with labels, restricting the updates that may be performed
on the node, often to just updates that help to complete the corresponding
operation, or to remove the label if the operation is backtracked. We give these
rules when we present the corresponding labels. When we analyse an operation,
we do so under the assumption that all other operations follow these rules. We
verify that this is indeed the case when we analyse those other operations.

3 Merging trees

The merge function merges two trees a and b, so that a ends up above, and b

below. More precisely, it takes three trees, a, b and pred (where possibly a = pred,
but otherwise the trees are distinct), and their expected states aState, bState and
predState. It assumes that a.key � b.key, predState.next = b, aState and bState have
the same degrees, and all are unlabelled roots with null parents. It attempts
to merge a and b, making a the parent of b. Recall that for the moment we
assume that threads can call merge at any time, nondeterministically, subject to
the above precondition; in Section 10, we explain our tactic for using it.

The merge function is a private function: it is done only to optimise perfor-
mance by reducing the length of the root list. We therefore don't care much if a
call to merge is unsuccessful: if another operation interferes with it, it will detect
that the state of a node has changed (which might invalidate the conditions for
the merge), backtrack by undoing its previous steps, and give up; however, we
do ensure that it terminates in a �nite number of steps.

We start by sketching how the operation proceeds, and then 
esh out the
details, below. Suppose, for the moment, a 6= pred. The merge function proceeds
as follows; the steps are illustrated in Figure 2.
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Figure 2: Illustration of the merge function. next references are drawn to the
right, parent references upwards, and references to the �rst child downwards;
dashed boxes illustrate possibly null nodes; updates are indicated in red.

1. It tries to add a MergeParent label to a. We call this the a-labelling step. If
the state of a has changed, this fails, and merge gives up.

2. It tries to add a MergeNext label to pred. We call this the pred-labelling
step. If this fails (and no other helping thread has added the MergeNext

label), it backtracks, removes the label from a, and gives up.

3. It tries to update b, atomically setting its parent �eld to a, and its next �eld
to a's �rst child, or to null if a has no children. We call this the b-update
step. If this fails (and no other thread has done the update), it backtracks,
removing the labels from pred and a, and gives up. If this update succeeds,
the merge is guaranteed to complete successfully.

4. It tries to update pred, atomically setting its next �eld to bState.next, and
removing the label. We call this the pred-update step.

5. It tries to update a, atomically incrementing its degree, adding b to its
children, and removing the label. We call this the a-update step.

All steps except for the a-labelling may be performed by other helping threads.
Note that if one of the labelling steps fails, because the state of the relevant node
has changed, then the merge gives up: in most such cases, it is not possible to
complete the merge, because the relevant parts of the precondition no longer
hold. Note that it is �ne to just give up, since merging is just an optimisation.

If a = pred, things are slightly simpler. The pred-labelling can be omitted,
and subsumed into the a-labelling. Similarly, the pred-update and a-update can
be combined.

The two labels contain enough information to allow helping threads to com-
plete the operation; they are de�ned as follows.

case class MergeParent(pred: Node, predState: NodeState, pLabel: MergeNext,
b: Node, bState: NodeState) extends Label

case class MergeNext(a: Node, b: Node, bState: NodeState) extends Label

Within MergeParent, if a = pred the pLabel parameter is bound to the corre-
sponding MergeNext label for pred; if a = pred, it is bound to null; each other
parameter is bound to the corresponding parameter of merge. The following
invariant captures properties of the relevant nodes.
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1 private def merge(a: Node, aState: NodeState, pred: Node, pState: NodeState,
2 b: Node, bState: NodeState) = f
3 assert(a != b && a.key <= b.key && aState.degree == bState.degree &&
4 pState.next == b && aState.unlabelled && aState.parentless &&
5 bState.unlabelled && bState.parentless && pState.unlabelled && pState.parentless)
6 val pLabel = if(a != pred) MergeNext(a, b, bState) else null
7 val aStateL = aState[label 7! MergeParent(pred, pState, pLabel, b, bState)]
8 if (pred.getState == pState && b.getState == bState &&
9 a.compareAndSet(aState, aStateL))

10 if (a != pred) mergeLabelPred(a, aStateL, pred, pState, pLabel, b, bState)
11 else mergeUpdateB(a, aStateL, pred, pState, b, bState)
12 g
13 private def mergeLabelPred(a: Node, aStateL: NodeState, pred: Node,
14 pState: NodeState, pLabel: MergeNext, b: Node, bState: NodeState) = f
15 assert(a != pred && aStateL.label.isInstanceOf[MergeParent])
16 val pStateL = pState[label 7! pLabel]
17 if (b.getState == bState && pred.compareAndSet(pState, pStateL))
18 mergeUpdateB(a, aStateL, pred, pStateL, b, bState)
19 else if ((pred.getState.label ne pLabel) && b.getState.parent != a)
20 a.compareAndSet(aStateL, aStateL[label 7! null]) // backtrack
21 g
22 private def mergeUpdateB(a: Node, aStateL: NodeState, pred: Node, pStateL: NodeState,
23 b: Node, bState: NodeState) = f
24 assert(aStateL.label.isInstanceOf[MergeParent] &&
25 (a != pred jj pStateL.label.isInstanceOf[MergeNext]))
26 val newNext = if(aStateL.children.isEmpty) null else aStateL.children.head
27 val bStateU = bState[parent 7! a, next 7! newNext, seq 7! bState.seq+1]
28 if (b.compareAndSet(bState, bStateU))
29 if (a != pred) mergeUpdatePred(a, aStateL, pred, pStateL, b, bState.next)
30 else mergeUpdateAPred(a, aStateL, b, bState.next)
31 else if (b.getState.parent != a)f // backtrack
32 if (a != pred) pred.compareAndSet(pStateL, pStateL[label 7! null])
33 a.compareAndSet(aStateL, aStateL[label 7! null])
34 g g

Figure 3: The merge, mergeLabelPred and mergeUpdateB functions.

Invariant 5 If node a has a label MergeParent(pred ; pState; pLabel ; b; bState);
then

a 6= b ^ a:key � b:key ^ a:degree = bState:degree ^ a:parentless ^
pState:unlabelled ^ pState:parentless ^ pState:next = b ^
(a = pred ) a:next = b):

If node p has a label pLabel = MergeNext(a; b; bState); then a has a la-
bel MergeParent(p; p:getState[label 7! null]; pLabel ; b; bState): Note that, combined
with the above, this implies

a 6= b ^ a:key � b:key ^ a:degree = bState:degree ^
a:parentless ^ p:parentless ^ p:next = b:

In more detail, the function merge (Figure 3) attempts the a-labelling. It
prepares the two labels and, if the states have not changed, attempts to label a.
This locks a and its children. The fact that this thread prepares both labels
means that the MergeNext label is uniquely identi�ed with this invocation of
merge, and cannot be confused with another label with identical arguments.5

5We use \eq" and \ne" for equality and inequality tests between non-null labels; these
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1 private def mergeUpdatePred(a: Node, aStateL: NodeState, pred: Node, pStateL: NodeState,
2 b: Node, nextNode: Node) = f
3 assert(a != pred && aStateL.label.isInstanceOf[MergeParent] &&
4 pStateL.label.isInstanceOf[MergeNext] &&
5 (b.getState.parent == a jj a.getState != aStateL && pred.getState != pStateL))
6 val pStateU = pStateL[next 7! nextNode, label 7! null]
7 if (pred.compareAndSet(pStateL, pStateU)) mergeUpdateA(a, aStateL, pred, b)
8 g
9 private def mergeUpdateA(a: Node, aStateL: NodeState, pred: Node, b: Node) = f

10 val aStateU =
11 aStateL[degree 7! aStateL.degree+1, children 7! b::aStateL.children, label 7! null]
12 a.compareAndSet(aStateL, aStateU)
13 g
14 private def mergeUpdateAPred(a: Node, aStateL: NodeState, b: Node, nextNode: Node) = f
15 val aStateU = aStateL[degree 7! aStateL.degree+1, children 7! b::aStateL.children,
16 next 7! nextNode, label 7! null]
17 a.compareAndSet(aStateL, aStateU)
18 g

Figure 4: The mergeUpdatePred, mergeUpdateA and mergeUpdateAPred func-
tions.

The function mergeLabelPred attempts the pred-labelling. If successful, this
locks pred and its children. If the labelling is unsuccessful, and no other thread
has performed this labelling, it backtracks and removes the label from a.

The b-update step is attempted by the function mergeUpdateB. It attempts
to update b, setting its parent and next �elds appropriately. If this is successful,
the merge is guaranteed to complete. If the update is unsuccessful, and no other
thread has performed this step, then it attempts to backtrack.

When pred 6= a, the pred update and a updates are performed by the functions
mergeUpdatePred and mergeUpdateA (Figure 4), respectively6. The case pred = a

is handled by mergeUpdateAPred.
The following rule concerns MergeParent and MergeNext labels.

Rule 2 If a node has a MergeParent label, the only updates allowed on it are to
perform the a update, to remove the label if the merge cannot be completed, or
to perform the pred update if a = pred. If a node has a MergeNext label, the only
updates allowed on it are to perform the pred update, or to remove the label if
the merge cannot be completed.

If a thread performing another operation is unable to proceed because it is
blocked by the merge, then it helps the merge; this might be because the other
operation needs to update a node that has been labelled by the merge, but is
unable to do so because of the above rule. Thus once the initial labelling step
has happened, some of the steps may be performed by such helping threads.
Any thread helping does so via the help function in Figure 5, which calls into
the appropriate sub-function of merge7 (line 26 concerns helping with deletions;
we explain this case in Section 4). We design the code within the merging

correspond to reference equality: using \==" and \!=" would correspond to value equality
(this is the default for case classes), which would be incorrect in some places.

6\::" represent cons, adding an element to the front of a list.
7The code makes use of Scala pattern matching. The pattern in line 17, using \@", binds

the variable pLabel to the label. The pattern in line 20, using back ticks, matches just a
MergeParent label whose �elds match the given values.
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functions to allow such helping: updates on nodes take place only from the
expected states.

At various places, a thread may detect that another thread has already
performed the next step. For example, in mergeLabelPred, the thread may detect
that another thread has already labelled pred (line 19 of Figure 3). In such
cases, it allows the thread that performed that step to complete the operation.
This is for pragmatic reasons, since it is ine�cient for two live threads to be
working on the same operation: one of the threads could be doing something
else; and if both threads were working on the same operation, then when one
thread performs a particular CAS operation, it would invalidate the relevant
cache lines of the other thread, forcing extra memory accesses.

3.1 Correctness

We now argue the correctness of the merge operation: it either merges the two
trees, or leaves the heap essentially unchanged (maybe just replacing a's and
pred's states with equivalent ones).

Lemma 1 The implementation works correctly when it operates without inter-
ference from other threads (assuming the stated precondition).

Proof: (Sketch.) Each step of the operation succeeds. The �nal states of the
three nodes correspond to the merge having completed. �

We now consider helping by other threads. The following lemma identi�es
conditions under which threads may help with di�erent stages of a merge.

Lemma 2 Suppose a thread calls:

� mergeLabelPred after the a-labelling CAS with a 6= pred;

� mergeUpdateB after the pred-labelling CAS, or after the a-labelling CAS
with a = pred;

� mergeUpdatePred after the b update CAS with a 6= pred;

� mergeUpdateA after the pred update CAS with a 6= pred; or

� mergeUpdateAPred after the b update CAS with a = pred;

in each case, with the same values of the parameters as the primary thread. Then
the behaviour is correct, either contributing to the merge, or not interfering with
it.

Proof: Careful examination of the code shows that such helping threads con-
tribute correctly to the deletion: each update on a node is executed only from
an appropriate state, so if several threads attempt such an update, only the �rst
will succeed.

Note in particular that the backtracking within mergeLabelPred (Figure 3) is
done correctly: it won't be done if another thread has labelled pred, since in
that case either: (a) pred will still have the label pLabel (before the pred update),
or (b) b's parent will equal a (after the b update until after the a update), or
(c) a's state will have changed (after the a update); in each case, the backtrack
CAS won't be attempted.
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1 private def help(helpNode: Node, helpState: NodeState) = helpState.label matchf
2 case MergeParent(pred, pState, pLabel, b, bState) =>
3 if (b.getState.parent == helpNode)f // b update has happened
4 val newPState = pred.getState
5 if (helpNode == pred)
6 mergeUpdateAPred(helpNode, helpState, b, bState.next)
7 else if (newPState.label eq pLabel) // pred update has not happened
8 mergeUpdatePred(helpNode, helpState, pred, newPState, b, bState.next)
9 else mergeUpdateA(helpNode, helpState, pred, b)

10 g
11 elsef
12 val newPState = pred.getState
13 if (helpNode != pred && (newPState.label ne pLabel))
14 mergeLabelPred(helpNode, helpState, pred, pState, pLabel, b, bState)
15 else mergeUpdateB(helpNode, helpState, pred, newPState, b, bState)
16 g
17 case pLabel @ MergeNext(a, b, bState) =>
18 assert(a != helpNode); val newAState = a.getState
19 newAState.label matchf
20 case MergeParent(`helpNode`, , `pLabel`, `b`, `bState`) =>
21 if (b.getState.parent == a) // b update has happened
22 mergeUpdatePred(a, newAState, helpNode, helpState, b, bState.next)
23 else mergeUpdateB(a, newAState, helpNode, helpState, b, bState)
24 case => f g // a update has happened
25 g
26 case Delete(pred) => helpDelete(pred, helpNode, helpState)
27 g

Figure 5: Helping operations.

Also note that the backtracking in mergeUpdateB (Figure 3) is done correctly:
it won't be done if another thread has updated b as part of the merge, since in
that case either (a) b's parent will equal a (until after the a update), or (b) the
state of pred or a will have changed (at the pred update or a update); in each
case, the backtrack CAS won't be attempted. �

Any thread helping will do so via the help function in Figure 5.8 (Line 26
concerns helping with deletions; we explain this case in Section 4.)

Lemma 3 If a thread helps with the merge via the help function, it does so
correctly.

Proof: Careful examination of the code shows that helping threads call into the
correct sub-function, as captured by Lemma 2. (Note that the order in which
b's and pred's states are read in lines 3 and 4 is critical: in order to be sure that
the pred update has happened at line 9, we need to be sure that pred's state was
not read before the pred-labelling step.) �

Now consider interference from other operations.

Lemma 4 Other operations do not interfere with the correctness of merging.

Proof: If any thread updates a before the a-labelling step, then the merge fails,
and leaves the heap unchanged.

8The code makes use of Scala pattern matching. The pattern in line 17, using \@", binds
the variable pLabel to the label. The pattern in line 20, using back ticks, matches just a
MergeParent label whose �elds match the given values.
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Once a has been labelled, by Rule 2, no other operation may update it other
than to help with the merging, until it is unlabelled in the a update.

If any thread updates pred before the pred-labelling step, then the merge fails,
the labelling of a is backtracked, and the heap is left essentially unchanged.

Once pred has been labelled, by Rule 2, no other operation may update it
other than to help with the merging, until it is unlabelled in the pred update;
subsequent updates do not interfere with the merge.

If any thread updates b before the b update, then the merge fails, the la-
belling of pred and b are backtracked, and the heap is left essentially unchanged.

After the b update, but before the a update, no thread may update b: by
Rule 1, no thread may update it other than as part of the deletion of its parent;
but its parent a still has a MergeParent label, so any attempt to delete a is blocked
until the merge is complete. �

Lemma 5 The merge operation maintains Invariants 1, 2, 3 and 4, and follows
Rules 1, 2 and later rules concerning nodes with labels (assuming the stated
precondition).

Proof: The precondition includes that a.key � b.key, so Invariant 1 is main-
tained.

The b update adds b to the front of the linked list of a's children, and
sets b.parent = a; the a update then updates a's children and degree, maintaining
Invariant 2.

Invariant 3 is maintained: the only point at which a parent reference is set
to a non-null value is the b update, setting b.parent = a; but a has a null parent,
so this does not create a cycle.

Labels are added to nodes only from their initial states; the precondition
includes that these states have null parent �elds, so Invariant 4 is maintained
by the labelling steps. Similarly, b's parent is updated only from b's initial
state, and the precondition includes that this state is unlabelled, so Invariant 4
is maintained by the b-update step. The other steps trivially maintain this
invariant.

The precondition includes that the three nodes are initially unlabelled roots.
Hence any updates from these initial states trivially satisfy the rules. The only
other updates are the update and backtrack steps, from the labelled states of a
and pred, which satisfy the conditions of Rule 2.

All the updates trivially satisfy Rule 1, since each node has a null parent. It
trivially satis�es later rules concerning labels, since it updates no labelled node.

�

Lemma 6 Invariant 5 is satis�ed (assuming the stated precondition).

Proof: The stated precondition shows that most of the clauses of the �rst part
of the invariant are satis�ed when the MergeParent label is added. For the �nal
clause \a = pred ) a:next = b", note that if a = pred, the a-labelling CAS will
happen only if aState = pState, so the result follows since pState.next = b. By
Rule 2, no thread will change the state of this node until the label is removed.

The MergeNext label is added after the MergeParent label, and removed before
it (both in normal operation and when backtracking). By Rule 2, no other
thread may interfere with this. �
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We now prove a lemma that will be useful for proving liveness properties.

Lemma 7 Any call to merge will terminate in a �nite number of steps.

Proof: merge and its subfunctions contain no loop or recursion. �

Lemma 8 Each thread can call help on a node with a particular MergeNext or
MergeParent label at most four times. Each call terminates in a �nite number of
steps.

Proof: Essentially, for each call to help, some progress is made, either by this
thread, or by some other thread after helpState was read. We consider the sub-
function called by help.

� If help calls mergeUpdateA or mergeUpdateAPred, the merge will be completed
and a's label removed (either by this thread or another).

� If help calls mergeUpdatePred, the pred update will be performed (either
by this thread, or by another thread after the read of newPState in the
MergeParent case, or by another thread after the read of helpState in the
MergeNext case).

� If help calls mergeUpdateB, the b update will be performed (either by this
thread, or by another thread after the relevant read of b's state).

� If help calls mergeLabelPred, the pred labelling will be performed (either by
this thread, or by another thread after the read of newPState).

� If no sub-function is called, in the MergeNext case, the merge has been
completed since the read of helpState.

If the above does not complete the merge, it might lead to a subsequent call to
help by the same thread; but that will call a later sub-function of merge. Hence
at most four such calls will complete the merge.

Each call terminates in a �nite number of steps, by Lemma 7. �

4 Deleting nodes

In this section we describe how a node is deleted. In Section 9, we will describe
how this is invoked by the deleteMin function. We assume here that the node
delNode to be deleted and its expected predecessor pred have been identi�ed.
Recall that we allow only root nodes to be deleted; however, we allow a thread
to claim a non-root node n for deletion if its parent p is being deleted; however,
the deletion of p must be completed before continuing with the deletion of n.

The deletion itself is encapsulated in functions delete and deleteWithParent,
the latter dealing with the case of a non-root. The attempt to delete delNode

may fail, for example if another thread has already claimed it for deletion;
each function returns a boolean to indicate if it was successful. If it fails, the
deleteMin function either calls the function again, if this could feasibly succeed,
or identi�es a new node to try to delete.

It is possible that the predecessor of delNode changes before the relevant step
of the deletion. In this case, it is necessary to identify the new predecessor. We
describe the search for the new predecessor in Section 5. Informal experiments
suggest the predecessor is often unchanged, so recording it is worthwhile.

15



pred delNode

Delete(...)
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34
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Figure 6: Illustration of deletion. Drawing conventions are as in Figure 2.

Deletion proceeds in several stages. We give a brief overview here, and give
more detail below; the steps are illustrated in Figure 6.

1. It attempts to label delNode with a Delete label. We call this the delNode-
labelling step. If this is successful, the deletion is guaranteed to succeed.

2. If the parent of delNode is being deleted, it helps with this deletion.

3. If delNode has children, the last child is updated to point to the successor
of delNode.

4. If pred is still the predecessor of delNode, its next �eld is updated to point
to delNode's �rst child, if it has one, or otherwise to delNode.next, thereby
removing delNode from the root list; note that in the case that delNode

has children, delNode.next is now reachable via the last child. If pred is
not still the predecessor of delNode, a search is carried out to �nd the
new predecessor, and the above update done to it. We call this the pred-
updating step.

5. delNode's deleted �eld is set, to indicate that it has been fully deleted.

6. The parent �elds of delNode's children (if any) are cleared.

All steps except step 1 might be carried out by other threads helping.
Part of the rationale for our design is to allow a thread to claim the node it

will delete, via the delNode-labelling step, as quickly as possible, so that threads
waste as little time as possible in deletion attempts that subsequently fail. In
a previous design, threads �rst labelled the precedessor pred, before labelling
delNode (backtracking if the latter failed): this approach meant that the pre-
decessor could not subsequently change, but proved slightly slower in practice.
Similarly, we previously did not allow a non-root n to be labelled for deletion; in
such cases, all threads performing a deleteMin could identify n as the minimum
node, and all would help with the deletion of its parent before attempting to
label n, which is ine�cient; using our current approach, only the thread that
succeeds in labelling n helps with its parent.

We say that a node is marked for deletion (or just marked) if it has a Delete

label. We say that it is decoupled if the pred update has occurred. We say that
it is fully deleted if its deleted �eld is set.

We now make precise the circumstances under which a thread may change
the state of a node with a non-null parent.
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Rule 1 (re�ned) If a node n has a non-null parent p, the only changes that
may be performed on n are as follows:

� if p is marked for deletion, and n is p's last child, then n may have its
next �eld set to p's successor;

� if p is deleted, then n may have its parent �eld cleared;

� to mark n for deletion.

The Delete label includes a reference to the expected predecessor node. It
also includes a timestamp, giving the time that it was created: we use this in
the minimum function to determine if the node was unmarked when the function
was invoked.

case class Delete(pred: Node) extends Labelf
val ts = java.lang.System.nanoTime // time label was created

g

Rule 3 If a node has a Delete label, the only subsequent changes allowed to it
are to clear its parent �eld if its parent is deleted, or to set its deleted �eld once
the node is decoupled. In particular, delNode.next does not change.

Deletion of a node with a null parent is encapsulated into the delete function
(Figure 7). This takes as arguments the node delNode to be deleted, its expected
state delState, and its expected predecessor pred. It calls labelForDelete, which tries
to update delNode using a CAS, to add a Delete label and increase the sequence
number; if successful, it returns the resulting state; in this case, the deletion is
bound to succeed.

The function deleteWithParent deals with the case that the parent is non-null.
Recall that in this case, all delNode's ancestors, up to the root list, are being
deleted. It again calls labelForDelete to mark delNode for deletion; in the case
that delNode.next is null, and hence delNode is parent's last child, it also updates
delNode.next to parent.next, thereby performing the last child update on parent. If
the marking is successful, it helps with the deletion of parent before completing
the deletion of delNode.

The deletion is completed via the completeDelete function. If delNode has no
children, it uncouples delNode from the previous node by updating the previous
node's next �eld to point to delNode's successor, next, via the function predUpdate

(see below). Otherwise, it �rst tries to update the last child's next pointer to
point to the root node after delNode; this update fails only if it has already
been performed by another thread. It then uncouples delNode via predUpdate,
updating the previous node's next �eld to point to delNode's �rst child. Finally,
it clears the parent �eld of each child.

The function predUpdate controls the update of the predecessor of delNode
to point to newNext; the actual update and the setting of delNode's deleted �eld
are done by the function completePredUpdate (Figure 8). delNode's deleted �eld
is checked at various places, in case another thread has already completed the
deletion. If pred is still the root node before delNode, completePredUpdate is called
(line 4) to attempt to decouple delNode. Otherwise, or if the decoupling is
unsuccessful, it is necessary to search for the new predecessor. The search is
encapsulated in the function �ndPred. We present �ndPred in Section 5, and
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1 private def delete(pred: Node, delNode: Node, delState: NodeState) : Boolean = f
2 assert(delState.unlabelled && delState.parentless)
3 val delStateL = labelForDelete(pred, delNode, delState, delState.next)
4 if (delStateL != null)f completeDelete(pred, delNode, delStateL); true g
5 else false
6 g
7 private def labelForDelete(
8 pred: Node, delNode: Node, delState: NodeState, newNext: Node): NodeState = f
9 val delStateL = delState[next 7! newNext, seq 7! delState.seq+1, label 7! Delete(pred)]
10 if (delNode.compareAndSet(delState, delStateL)) delStateL else null
11 g
12 private def deleteWithParent(pred: Node, delNode: Node, delState: NodeState,
13 pPred: Node, parent: Node, pState: NodeState) : Boolean = f
14 assert(delState.parent == parent && pState.label.isInstanceOf[Delete])
15 val newNext = if(delState.next == null) pState.next else delState.next
16 val delStateL = labelForDelete(pred, delNode, delState, newNext)
17 if (delStateL != null)f
18 helpDelete(pPred, parent, pState); completeDelete(pred, delNode, delNode); true
19 g
20 else false
21 g
22 private def completeDelete(pred: Node, delNode: Node, delStateL: NodeState) = f
23 val children = delStateL.children; val next = delStateL.next
24 if (children.isEmpty) predUpdate(pred, delNode, next)
25 elsef
26 // update last child
27 val lastC = children.last; val lastCState = lastC.getState
28 if (lastCState.parent == delNode && lastCState.next != next)
29 lastC.compareAndSet(lastCState, lastCState[next 7! next])
30 // Update predecessor
31 predUpdate(pred, delNode, children.head)
32 // Update children, changing parent from delNode to null
33 for(c <� children)f
34 val cState = c.getState
35 if (cState.parent == delNode) c.compareAndSet(cState, cState[parent 7! null])
36 g g g

Figure 7: The delete, labelForDelete, deleteWithParent and completeDelete func-
tions.

show that it satis�es the following property (proved as Lemma 25). The claim
includes a premiss concerning the heap in which delNode might be; recall that
we currently assume that the heap of the deletion is not concurrently the giving
heap in a union, so delNode can be in no heap other than the heap of the deletion;
we relax this assumption in Section 11, where this stronger form is useful.

Claim 9 Suppose delNode is marked for deletion and delNode.parentless. Con-
sider a call to �ndPred(delNode) such that there is no giving union on the heap
between the marking and �ndPred returning. Then �ndPred returns either:

1. a pair (p, pState), where pState was a state of p at some point during the
call to �ndPred, such that pState.next = delNode and pState.parentless; in this
case, p was not decoupled at the start of the call to �ndPred; or

2. the pair (delNode, null); in this case, the deletion of delNode has been com-
pleted.

In case 1, a call to completePredUpdate (line 11 of Figure 8) attempts to decouple
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1 private def predUpdate(pred: Node, delNode: Node, newNext: Node) = f
2 val predState = pred.maybeClearParent()
3 if (predState.next == delNode && predState.parentless &&
4 completePredUpdate(pred, predState, delNode, newNext))f g // done
5 elsef
6 while(!delNode.deleted)f
7 val (p, pState) = �ndPred(delNode)
8 if (p == delNode)f assert(delNode.deleted); done = true g
9 elsef

10 assert(p != null && pState.next == delNode && pState.parentless)
11 if (!delNode.deleted) completePredUpdate(p, pState, delNode, newNext)
12 g g g g
13 private def completePredUpdate(
14 pred: Node, predState: NodeState, delNode: Node, newNext: Node) : Boolean = f
15 assert(predState.next == delNode && predState.parentless)
16 predState.label matchf
17 case null =>
18 val newPredState = predState[next 7! newNext]
19 if (pred.compareAndSet(predState, newPredState))f delNode.deleted = true; true g
20 else if (delNode.deleted) true
21 elsef // pred's state changed
22 val newPredState = pred.maybeClearParent()
23 if (newPredState.next == delNode && newPredState.parentless)
24 completePredUpdate(pred, newPredState, delNode, newNext) // retry
25 else false
26 g
27 case => help(pred, predState); false
28 g g

Figure 8: The predUpdate and completePredUpdate functions.

delNode from its expected predecessor p. In case 2 (line 8), the deletion has been
completed by another thread.

The function completePredUpdate attempts to update pred's state from
predState so that its next reference points to newNext. If this fails, and the dele-
tion hasn't been completed by another thread, but pred's new state is such that
the update is still possible, it recursively retries. It returns a boolean indicating
whether the deletion has been completed.

Both predUpdate and completePredUpdate obtain pred's state via the function
maybeClearParent (Figure 9), which has the side e�ect of clearing the parent �eld
if the parent node has been deleted.

We now sketch an enhancement to predUpdate. The search encapsulated by
�ndPred is quite expensive, because it has to be resilient against other threads
changing the root list. We can replace it by a less expensive but unreliable search
(using a traversal similar in style to the one in Section 6), that may sometimes
fail to �nd delNode even though it has not been decoupled from the root list.
In this case, we need to repeat the search for pred. However, the unreliable
version could fail to �nd pred repeatedly, which could represent a failure of lock-
freedom. To avoid this, if the unreliable search fails and a subsequent search
is required, we then use the �ndPred search. Our informal experiments suggest
that the unreliable search is about three times faster than �ndPred, and that the
subsequent search is very rarely necessary, making this enhancement worthwhile.
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4.1 Correctness

We now argue the correctness of the deletion: assuming the stated precondition,
the delete function either deletes the node and returns true, or leaves the heap
unchanged and returns false; deleteWithParent is similar, except it maybe helps
comeplte the deletion of the parent. We assume here that Claim 9 holds; we
discharge this assumption in Section 5.

Lemma 10 The implementation of each of delete and deleteWithParent works
correctly when it operates without interference from other threads.

Proof: (Sketch.) The updates performed by a single thread, without interfer-
ence, correctly update the states of the relevant nodes. �

Note also that the order in which the parent �elds of the children are cleared is
unimportant.

We now consider the e�ect of other threads helping with the deletion.

Lemma 11 If a thread calls completeDelete after the delNode-labelling step has
happened, then the behaviour is correct, either contributing to the deletion, or
not interfering with it.

Proof: Careful examination of the code shows that such helping threads con-
tribute correctly to the deletion: each update on a node is executed only from
an appropriate state, so if several threads attempt such an update, only the �rst
will succeed. In particular, the successor and children of delNode do not change
after delNode is marked, and so all calls to predUpdate receive the same value for
the parameter newNext. �

Any helping thread will help via the helpDelete function in Figure 9 (perhaps
via the help function from Figure 5). Note that it is �ne for a thread to call
helpDelete after the operation has proceeded further, or even completed: in this
case, some of the thread's actions turn into no-ops.

We now consider interference from other operations (ignoring liveness con-
siderations, for the moment).

Note that the maybeClearParent function (Figure 9) follows this rule, speci�-
cally the second case.

Lemma 12 Other operations do not interfere with the correctness of deletion.

Proof: If any thread updates delNode before it is marked, then the deletion fails,
and the heap is left unchanged.

After delNode is marked, by Rule 3, no other operation may update it other
than to help with the deletion.

Let c be a child of delNode. By Rule 1, the only updates allowed next on c
either (a) help with the deletion (as noted above, the order in which the children
have their parent �elds cleared does not matter); or (b) mark c for deletion, which
does not interfere with the deletion of delNode.

An update of delNode's predecessor |either the original predecessor, or one
found subsequently| might cause the pred update CAS to fail, in which case
completePredUpdate has no e�ect. The new predecessor might need to be found
in this case. �
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1 private def maybeClearParent() : NodeState = f
2 val oldState = state.get; val p = oldState.parent
3 if (p != null && p.deleted)f
4 val newState = oldState[parent 7! null]
5 if (compareAndSet(oldState, newState)) newState
6 else maybeClearParent() // retry
7 g
8 else oldState
9 g

10 private def helpDelete(pred: Node, helpNode: Node, helpState: NodeState) = f
11 if (!helpNode.deleted)f
12 val parent = helpState.parent
13 if (parent != null)f
14 val pState = parent.getState; val Delete(pPred) = pState.label
15 helpDelete(pPred, parent, pState)
16 completeDelete(pred, delNode, delNode.maybeClearParent, false)
17 g
18 else completeDelete(pred, helpNode, helpState, false)
19 g g

Figure 9: The maybeClearParent function (within the Node class), and the
helpDelete function.

Lemma 13 The delete operation respects Invariants 1{5, and Rules 1{3 and
later rules concerning nodes with labels.

Proof: Invariant 1 is trivially maintained, since parent references are only
changed to null.

Invariant 2 is easily seen to be maintained: no node has its children or degree
�eld changed; and the linked list of delNode's children, and the parent �elds of
the children are changed only after delNode is marked.

Invariant 3 is maintained since no parent reference is set to a non-null value.
The marking of delNode satis�es Invariant 4, by design, since delNode is either

an unlabelled root or has a parent that is marked for deletion. Hence the
marking of this node from its initial state satis�es Invariant 4. All other steps
trivially satisfy this invariant.

Invariant 5 is trivially satis�ed by all steps.
The marking of delNode, speci�cally when it is a non-root, satis�es Rule 1.

The completePredUpdate function is called only if pred has a null parent, so the
update on pred satis�es Rule 1. The updates on the children clearly satisfy
Rule 1. Note that the maybeClearParent function (Figure 9) follows this rule,
speci�cally the second case.

Rule 2 and later rules concerning nodes with labels are trivially satis�ed by
all steps, since no node with such a label is updated.

The marking of delNode trivially satis�es Rule 3, since delNode is unlabelled.
The completePredUpdate function checks that pred is unlabelled, and so satis�es
this rule. The setting of delNode's deleted �eld satis�es the second case of the
rule. The updates on the children satisfy the �rst case of the rule (or vacuously).

�

The following invariant concerns next references, including circumstances
under which next references from multiple di�erent nodes can point to the same
node. Once a node has been decoupled, its next reference will not change, but
become fairly irrelevant. We concentrate below on next references from nodes
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that have not been decoupled. We call these \non-decoupled next references".
In particular, the invariant shows that once a node is decoupled, there are no
\dangling" references to it.

Invariant 6 1. Suppose there are two non-decoupled next references from
nodes n1 and n2 to the same node n. Then n1 and n2 are the parent
and last child of each other, with the parent marked for deletion. Hence
there cannot be a third non-decoupled next reference to n: the last child
has degree 0 so itself has no children.

2. Suppose there is a non-decoupled next reference from node n to p's �rst
child, p:children.head. Then either:

(a) p is marked for deletion and has been decoupled; or

(b) p if the a node of a merge and n is the b node, and the b update but
not the a update has taken place (so p has an appropriate MergeParent

label).

3. There is no non-decoupled next reference to a decoupled node.

Lemma 14 Invariant 6 is satis�ed by merge and delete operations.

Proof: Consider, �rst, merge operations.

� The b update establishes the condition in item 2b. Previously there was
no non-decoupled next reference to p:children.head (by item 2 applied induc-
tively), so this maintains item 1.

The node previously referenced by b.next now has no non-decoupled next

reference to it (by item 1, applied inductively). It is easy to check that no
new reference is made to it before the pred update.

� The pred update removes the non-decoupled next reference to b. This refer-
ence was previously unique (by item 1 applied inductively), so subsequently
b has no non-decoupled next reference to it. It is easy to check that no new
non-decoupled next reference is made to it before the merge is complete.

pred.next is updated to point to the node previously referenced by b.next;
this non-decoupled next reference is unique, by the previous item.

� The a update changes p's �rst child to be the b node; there is no non-
decoupled next reference to this node, by the previous item. Hence this
maintains item 2, vacuously.

Now consider a delete operation on node d . Let n = d :next. Suppose, �rst,
that d has at least one child.

� The update of d 's last child creates a second non-decoupled next reference
to n, but this is consistent with item 1. Note that either d has a null parent,
or d is not its parent's last child (since the last child has no children);
so there is not a third non-decoupled next reference pointing to d .next (by
item 1 applied inductively). Likewise, if d 's last child is marked for deletion,
its next reference is again updated to n.

� The pred update is applied only to an unlabelled root node pred such that
pred :next = d . By item 1, there is no other non-decoupled next reference
to d . Hence this decoupling of d establishes item 3.
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The pred update creates a next reference to d 's �rst child c, consistent with
item 2a; this is unique, by item 2, applied inductively.

Further, by item 3 applied inductively, no subsequent next reference to d
is created. Hence a single pred update corresponding to d is performed, so
a single such next reference to c is created.

This decoupling of d maintains item 1 for n.

� The clearing of the parent references of the children maintains both parts.
In particular, this happens after d is decoupled, so item 1 is maintained.

If d has no children, then the pred update creates a second next reference to n;
but this action decouples d , so this is consistent with item 1. As above, the pred
update is applied to a unique node.

It is easy to see that once item 3 is established for a node d , no new non-
decoupled next reference to d is created, so this item remains true. �

The following proposition brins together the previous results.

Proposition 15 Assuming the stated preconditions, the delete function either
deletes the node and returns true, or leaves the heap unchanged and returns
false. The deleteWithParent satis�es a similar property, except may additionally
help with the deletion of the parent.

We now prove a partial liveness result for delete, deleteWithParent and
completeDelete. This lemma assumes limited interference from other threads.
In Section 14, we will build on this to prove lock-freedom. The lemma considers
only steps performed outside �ndPred and the helping of another operation. In
Section 5.4 we will show that, under similar assumptions, calls to �ndPred take
a �nite number of steps. We will then close the loop, and show that calls to
these functions take a �nite number of steps in total.

Lemma 16 Suppose a call to either delete, deleteWithParent or completeDelete oc-
curs such that, from some time on, no other thread makes an update to any node.
Then the execution performs a �nite number of steps outside the call to �ndPred

within predUpdate (line 7 of Figure 8), and the attempt to help either parent

within deleteWithParent (line 18 of Figure 7), or pred within completePredUpdate

(line 27 of Figure 8).

Proof: Consider part of an execution such that no other thread makes an update
to any node.

First, note that CAS operation in maybeClearParent will succeed (under the
given assumptions), so each call to this function will perform a �nite number of
steps.

Now consider completePredUpdate. A call can fail at line 23 only if pred's state
changes, which contradicts the assumptions of this lemma. For the same reason,
the call cannot recurse. Therefore each call performs a �nite number of steps
outside the call to help.

If pred is labelled, then the call to completePredUpdate helps with that oper-
ation, and fails. If the label corresponds to a merge, then, by Lemma 8, this
can happen only a �nite number of times for each pred before the operation is
completed or backtracked. If the label is a Delete, then the �rst call to help

(assuming it returns) completes the deletion, uncoupling the node.
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Now consider a call to predUpdate. The while loop repeats only if complete-
PredUpdate fails because the predecessor was labelled. By the above, this can
happen only a �nite number of times for each label corresponding to a merge.
Also by the above, in the case of a Delete label, that node becomes decoupled;
hence a subsequent call of �ndPred will not �nd the same node (by Claim 9), and
so completePredUpdate will not be called again on the same node. Further, note
that, by the assumptions, no new node will receive a label. This gives a �nite
number of iterations in total, and so this call satis�es the result of the lemma.

Finally note that delete and completeDelete contain no recursion, and the only
loop is the iteration over children in completeDelete, which is �nite (by Invari-
ant 2), so these perform a �nite number of steps. The same argument holds for
deleteWithParent outside the attempt to help parent. �

5 Finding the predecessor

We now describe how the root list can be traversed in order to �nd the prede-
cessor of a node that is being deleted. We use a very similar traversal method
in Sections 8 and 9 to �nd the node with the smallest key. Recall, from the
Introduction, that straightforward approaches risk missing relevant nodes if the
root list is rearranged concurrently.

As we traverse the root list, when we �rst encounter a new root curr, we
record its sequence number currSeq. If we subsequently �nd that curr's sequence
number has changed |indicating that in the mean time curr has been merged
below another node, or had a Delete label added| then we restart the traversal.
Conversely, if the sequence number has not changed, the node has been a root
throughout the intervening period.

In addition, while traversing, we skip over any node dn with a Delete label:
otherwise, once the deletion was complete, other threads could move dn:next
around the heap; but the traversing thread would not notice this, since the
state of dn itself would not change.

In Section 5.1 we present a subsidiary function advance that advances one
step along the root list; we prove relevant properties. Then in Section 5.2, we
present the �ndPred function, used by delete to �nd the predecessor of the node
being deleted. We prove a correctness property in Section 5.3, in particular
that if the traversal does not �nd the node being deleted, then another node
has decoupled it. We prove a liveness property in Section 5.4.

We need to clarify what we mean by a root node. This is clear when there
are no partially completed updates, but less clear otherwise. Informally, we
consider a merge to take e�ect at the b update: after this update, we de�ne b to
no longer be a root. Similarly, we consider a delete to take e�ect when the node
being deleted is decoupled: after this update, we de�ne the node being deleted
to no longer be a root. The following de�nition captures this formally.

De�nition 17 We de�ne a function R : Node ! List(Node) as follows9, such
that R(n) gives the list of root nodes starting from n.

� R(null) = List().

9We use Scala notation for lists: List(a; b; : : : ; z ) represents a list containing a; b; : : : ; z ;
\::" represents cons; \++" represents list concatenation.
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� If n has a MergeNext(a, b, bState) label or a MergeParent(n; ; ; b; bState)
label (so, in each case, n:next = b, by Invariant 5), and b.parent = a (so
the b update has occurred), then R(n) = n :: R(bState.next):

� Otherwise, R(n) = n :: R(n:next).

The root list of a heap is de�ned to be R(head). We say that r is a root if it is
a member of the root list.

Note that the root list might contain partially deleted nodes, which have been
given a Delete label but not yet decoupled.

Lemma 18 No root node is decoupled. Hence no root node is deleted.

Proof: This is a straightforward induction, using item 3 of Invariant 6. �

Invariant 7 The root list is �nite: in particular, it is acyclic.

Proof: The root list initially contains a single node. Deleting a node of degree d
|in particular the pred update| replaces the deleted node by its d children
(cf. Invariant 2). A merge |in particular the b update| removes a single node
from the root list. We will see in Section 6 that an insertion might add a single
new node at the end of the root list; and we will see in Section 7 that the union

operation concatenates the argument heap's root list onto the current heap's
root list. No other step of any operation changes the root list. �

The following lemma will be useful below. Recall that we currently do not
allow giving unions (i.e. unions where this is the giving heap) concurrent to
other operations on the same heap; we relax this in Section 11.

Lemma 19 Suppose node n, at some point in time, was a root node of heap h,
had sequence number seq, and did not have a Delete label. If subsequently it still
has sequence number seq, and there has been no intervening giving union on h,
then it is still a root node of h, and still does not have a Delete label.

Proof: When a node has a Delete label added, its sequence number is increased.
Hence, if its sequence number is unchanged, it cannot have had a Delete label
added.

The only point at which a node without a Delete label changes from being
a root to being a non-root is at the b update of a merge. At this point, the
sequence number is incremented.

By assumption, the node has not been transferred to another heap by a
giving union, so must still be in h. �

5.1 Advance

We use a subsidiary function advance (Figure 10) to help advance along the root
list. It takes the current node curr and its expected sequence number currSeq;
curr is assumed not to be marked for deletion unless its sequence number has
changed (line 10). It normally returns a triple (next, nextSeq, skipNodes), where
next is a subsequent root node (or null if the end of the root list has been
reached), nextSeq is next's sequence number (or, arbitrarily, -1 if next is null),
and skipNodes is a list of root nodes between curr and next that have either been
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1 private def advance(curr: Node, currSeq: Int): (Node, Int, List[Node]) = f
2 var result : (Node, Int, List[Node]) = null
3 while(true)f
4 val currState = curr.getState
5 if (currState.seq != currSeq) return null
6 elsef
7 currState.label matchf
8 case MergeParent(`curr`, , , b, bState) => result = skipMerge(curr, b, bState)
9 case MergeNext(a, b, bState) => result = skipMerge(a, b, bState)

10 case Delete( ) => assert(false)
11 case => result = skipDeleted(currState.next)
12 g // end of match
13 if (curr.getState == currState) return result
14 g g g
15 private def skipDeleted(n: Node): (Node, Int, List[Node]) = f
16 if (n == null) (n, �1, List())
17 elsef
18 val nState = n.getState
19 if (nState.label.isInstanceOf[Delete])f
20 val (next, nextSeq, dels) = skipDeleted(nState.next); (next, nextSeq, n::dels)
21 g
22 else (n, nState.seq, List())
23 g g
24 private def skipMerge(a: Node, b: Node, bState: NodeState): (Node, Int, List[Node]) = f
25 val (next, nextSeq, dels) = skipDeleted(bState.next); val myBState = b.getState
26 if (myBState == bState) (next, nextSeq, b::dels)
27 else if (myBState.parent == a) (next, nextSeq, dels)
28 else if (myBState.label.isInstanceOf[Delete])f
29 val (next1, nextSeq1, dels1) = skipDeleted(myBState.next); (next1, nextSeq1, b::dels1)
30 g
31 else (b, myBState.seq, List())
32 g

Figure 10: The advance, skipDeleted and skipMerge functions.

marked for deletion or that are in the process of being merged below another
node. We will show that, assuming curr was a root node, next was (at some point
during the call of advance) also a root node, not marked for deletion, and had
sequence number nextSeq, and that skipNodes held the intermediate root nodes.
By Lemma 19, next remains a root node for as long as its sequence number is
nextSeq. advance returns null (line 5) if the current node's sequence number has
changed, to indicate a failure; in this case, the traversal restarts.

The subsidiary function skipDeleted(n) advances along the root list, skip-
ping over nodes that have been marked for deletion. It returns a triple
(next, nextSeq, dels) where next is the �rst root not marked for deletion (or null if
there is no such), nextSeq is its sequence number (or -1 if next is null), and dels is
the list of nodes marked for deletion between n and next.

In most cases, advance returns the result of calling skipDeleted on curr.next.
However, if curr's state changes after it is initially read (at line 4), then the call
to advance restarts: this is necessary to be sure that the next node is still a root
node at the point that its sequence number is read. Note, though, that the
traversal does not need to restart in this case (unless the sequence number is
subsequently found to have also changed).

The cases where the current node has a MergeNext label, or a MergeParent

label corresponding to the case curr = a = pred, are handled by the function
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skipMerge. If the b update has happened (line 27) then we skip over the next
node (b), following the de�nition of the root list. Otherwise, if the state of b
is unchanged (line 26), then, for pragmatic reasons, we again skip over b: we
avoid alighting on b since it will probably be updated soon, which could disrupt
the traversal; however, we return b within the third component of the result.
Finally, if the state of b has changed (lines 28{31), we just advance in the normal
way (the result here is equivalent to skipDeleted(b), but avoids repeating work).

Lemma 20 Suppose skipDeleted is called on a node n 6= null which is a root
node of the current heap throughout the call, and suppose the call returns a
triple (next ;nextSeq ; dels). Then at some time t during the call:

1. If next 6= null then next was a root node, had sequence number nextSeq,
and was not marked for deletion.

2. The nodes returned were consecutive roots: R(n) = dels ++ R(next): Fur-
ther, this remains true for as long as n remains a root.

Proof: We perform an induction on the number of recursive calls made.

� Suppose n is not marked for deletion, so skipDeleted returns from line 22.
Let t be the time of the read of n.getState. The result follows immediately.

� Suppose n is marked for deletion and nState.next 6= null. Consider the
recursive call on nState.next. The value of nState.next doesn't change
(Rule 3), and so, if nState.next 6= null, that node remains a root node for
at least as long as n, so at least throughout the recursive call. Hence,
by induction, R(nState.next) = dels ++ R(next) at some time t . Hence
R(n) = n :: dels ++ R(next), as required.

� Suppose n is marked for deletion and nState.next = null. Then this call
returns (null;�1 ;List(n)), and the result holds.

�

The following lemma captures the main properties of advance.

Lemma 21 Suppose advance is called on a node curr that at some point in the
past was a root node of heap h, had sequence number currSeq, and did not have
a Delete label; and suppose there is no giving union on h concurrent with the
call. Suppose advance returns a triple (next ;nextSeq ; skipNodes). Then at some
time t during the call:

1. If next 6= null then next was a root node of h, had sequence number
nextSeq, and was not marked for deletion.

2. The nodes returned were consecutive roots:

R(curr) = List(curr) ++ skipNodes ++R(next):

Proof: Assume the conditions of the lemma. Since advance returns a non-null
result, the check \curr.getState == currState" must have returned true; let tc be
the time of this check. Then, since currState.seq = currSeq, curr was a root
at tc and all earlier times within this call to advance, by Lemma 19. Also by
Lemma 19, curr cannot have a Delete label, so line 10 does not raise an exception.
We perform a case analysis.

27



� In the default case, if currState.next = null, advance returns (null, �1, List())

(via skipDeleted), and the result follows easily. Otherwise, currState.next was
the root following curr throughout the call to skipDeleted. The result follows
from Lemma 20.

� Consider the case of a MergeNext label, or a MergeParent label corresponding
to the case a = pred; note that b = curr.next.

{ Suppose the state of b had not changed (line 26), so b is still a root.
Then bState.next was the next root after b throughout the call to
skipDeleted. The result then follows from Lemma 20.

{ Consider the case that the b update had happened at the point of the
b.getState (line 27). Then bState.next was a root throughout the call
to skipDeleted: the next root after curr after the b update, or the next
root after b before it. The result again follows from Lemma 20, in
particular at the point of the read of b.getState.

{ Otherwise (lines 28{31), the proof is as in the default case: the result
returned is equivalent to skipDeleted(b).

�

The following lemma will prove useful later.

Lemma 22 Suppose no changes are made to the root list during a call to
advance(curr, currSeq), and the call returns a triple (next ;nextSeq ; skipNodes).
Then either:

� the nodes of List(curr) ++ skipNodes ++ R(next) are linked together via
their next pointers; or

� the nodes of skipNodes ++R(next) are linked together via their next point-
ers, curr has a MergeNext label, or a MergeParent label, and the b update has
happened.

Proof: The proof is a straightforward check of the di�erent branches. It uses
the additional results (assuming no changes to the root nodes):

� if a call to skipDeleted(n) returns a triple (next ;nextSeq ; dels) then the nodes
of dels ++ R(next) are linked together via their next pointers;

� when skipDeleted is called, b = curr.next (by Invariant 5).

�

5.2 �ndPred

We now describe the function �ndPred (Figure 11), used by delete to �nd the
predecessor of the node delNode being deleted if the latter is still in the heap. The
traversal keeps track of the current node curr and its sequence number currSeq.
It uses advance to advance along the root list. If advance returns null, indicating
that curr's sequence number has changed, the traversal restarts. Otherwise, a
search is made through skipNodes for delNode and the node pred that was before
it during the call to advance (line 8). If it �nds delNode, and pred is still the
previous root, pred and its state are returned (line 19).

If pred is not the previous node, it is possible that pred had a MergeNext or
MergeParent node, and the b update had happened, so advance skipped over the b
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1 private def �ndPred(delNode: Node) : (Node, NodeState) = f
2 var curr = head; var currSeq = curr.getSeq
3 def restart() = f curr = head; currSeq = curr.getSeq g
4 while(curr != null) advance(curr, currSeq) matchf
5 case null => restart()
6 case (next, nextSeq, skipNodes) =>
7 var pred = curr; var sn = skipNodes
8 while(sn.nonEmpty && sn.head != delNode)f pred = sn.head; sn = sn.tail g
9 if (sn.nonEmpty)f // sn.head == delNode

10 var pState = pred.maybeClearParent()
11 if (pState.next != delNode)f
12 if (pred == curr && pState.label != null)f
13 help(pred, pState); pState = pred.maybeClearParent()
14 if (pState.next == delNode && pState.parentless) return(pred, pState)
15 else restart()
16 g
17 else restart()
18 g
19 else if (pState.parentless) return(pred, pState)
20 elsef // need to help pState.parent
21 val parent = pState.parent; val parentState = parent.getState
22 val pPred = parentState.label.asInstanceOf[Delete].pred
23 helpDelete(pPred, parent, parentState); pState = pred.maybeClearParent()
24 if (pState.next == delNode && pState.parentless) return(pred, pState)
25 elsef assert(pState.parent != parent); restart() g
26 g
27 g
28 elsef curr = next; currSeq = nextSeq g
29 g // end of while loop
30 delNode.deleted = true; (delNode, null)
31 g

Figure 11: The �ndPred function.

node. If the pred update has not yet happened (cf. Lemma 22), so pred still points
to b, it is necessary to help with the merge, to ensure lock-freedom (line 13).
If pred is now the predecessor of delNode, the function returns; otherwise the
traversal restarts.

Another complication arises if pred has a non-null parent parent. The most
likely cause was that parent was decoupled from the root list before the traversal
reached pred, but its deleted �eld has not yet been set. However, it's also possible
that after the traversal reached pred, it was merged as the last child of parent,
which was previously its predecessor, then parent was marked for deletion, and
pred.next updated to point to delNode again. Thus we cannot assume that parent
has been decoupled. We help complete the deletion of parent, in order to ensure
lock-freedom. If pred is now the predecessor of delNode, the function returns
(line 24); otherwise it restarts the traversal.

If skipNodes does not contain delNode, the traversal advances (line 28). If the
traversal reaches the end of the root list without �nding delNode, it must have
been detached by another thread: this thread sets the node's deleted �eld, and
returns (delNode, null) to indicate that it has been detatched (line 30).
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5.3 Correctness

If r is a root node, we write rootsUpTo(r) for the subsequence of the root list
up to and including r , but excluding the dummy header.

De�nition 23 If the root list is of the form List(head)++ xs ++ List(r)++ ys,
then rootsUpTo(r) = xs ++ List(r). We de�ne rootsUpTo(head) = List(). For
convenience, we de�ne rootsUpTo(null) to be all the root nodes excluding head.

The main invariant of the loop in �ndPred is that delNode does not appear in
rootsUpTo(curr). The following lemma gives su�cient conditions for this prop-
erty to be preserved by steps of other threads.

Lemma 24 Suppose node d is marked for deletion, d :parent = null, and d =2
rootsUpTo(r). Consider a step of an operation that does not change the sequence
number of r . Then subsequently still d =2 rootsUpTo(r).

Proof: We perform a case analysis over the actions of threads that a�ect the
root list but do not change the sequence number of r . Note that, by Lemma 19,
r remains a root, so rootsUpTo(r) is still well de�ned.

� The b update of a merge (necessarily not on r) can only remove an unla-
belled node from the root list, so maintains the property.

� The pred update of a deletion removes the node being deleted from the
root list, and adds its children. Since d :parent = null, d is not among the
children.

� An insert or receiving union adds new nodes at the end of the root list, so
not within rootsUpTo(r).

�

We can now verify �ndPred (presented earlier as Claim 9).

Lemma 25 Suppose delNode is marked for deletion and delNode.parentless. Con-
sider a call to �ndPred(delNode) such that there is no giving union on the heap
between the marking and �ndPred returning. Then �ndPred returns either:

1. a pair (pred, pState), where pState was a state of p at some point during the
call to �ndPred, such that pState.next = delNode and pState.parent = null; in
this case, pred was not decoupled at the start of the call to �ndPred; or

2. the pair (delNode, null); in this case, the deletion of delNode has been com-
pleted.

Proof: Note by the premiss about giving unions, delNode is in the heap unless
it has been decoupled.

We �rst show that the following is invariant: if curr 6= null and curr.getSeq =
currSeq, then curr is a root node and has not been marked for deletion. This
is true initially and is re-established whenever the traversal restarts. By
Lemma 19, no action by another thread falsi�es this property. Consider a call
to advance that returns a result (next, nextSeq, skipNode). By part 1 of Lemma 21,
at some point during that call of advance, next was a root node, had sequence
number nextSeq, and did not have a Delete label; and, again, by Lemma 19, no
action by another thread falsi�es this property unless it changes the sequence
number. Hence line 28 maintains this invariant.
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Now consider the returns at lines 19 and 24. These clearly satisfy that
pState.next = delNode and pState.parent = null. To satisfy the �rst disjunct, we
show that pred was not decoupled. The value of pred equals either curr or a
member of skipNodes. We have already shown that the former was a root when
it was encountered; and by Lemma 21, each of the latter was a root at some
point during the last call to advance. Hence in each case, pred was not decoupled
before the start of the call.

We now show that the return at line 30 satis�es the second disjunct, by
showing that in this case delNode has been decoupled from the heap. We show
that the following is invariant: if curr = null or curr.getSeq = currSeq, then
delNode =2 rootsUpTo(curr): Again, this is true initially and is re-established
whenever the traversal restarts. By Lemma 24, any action of another thread
that removes delNode from rootsUpTo(curr) also changes curr's sequence number.
Consider a call to advance that returns a result (next, nextSeq, skipNode). From
Lemma 21, at some point during the call to advance:

rootsUpTo(next) = rootsUpTo(curr) ++ skipNodes ++ List(next):

The code checks that delNode is not a member of skipNodes. Necessarily,
delNode 6= next, since delNode is marked for deletion, but next isn't. Hence the
update of curr at line 28 maintains this invariant.

Hence, we can deduce that when the while loop terminates with curr = null,
delNode is not a root node, and hence has been decoupled from the heap. The
update to delNode.deleted completes the deletion. �

5.4 Liveness

We now present a liveness result. We again assume limited interference from
other threads.

Lemma 26 Consider an invocation of �ndPred, during which other threads
make a �nite number of updates to nodes. Then the invocation performs a
�nite number of steps, except, perhaps, within the call to helpDelete (line 23).

Proof: Suppose, from some point onwards during the invocation, no other
thread makes any change to any node. Then each call to advance terminates
on its �rst iteration (since curr's state does not change between its two reads).
Further, since the sequence numbers do not change, and each call receives the
unchanged sequence number, each call returns a non-null result.

Now consider the traversal. Since advance always succeeds, and the root list
is �nite (Invariant 7), the main loop either reaches the end of the root list and
so returns, or �nds delNode and either returns or restarts.

We now show that if the whole of a traversal is after other threads stop
changing nodes, and it �nds a node delNode, then �ndPred returns.

� If pred is the root before delNode, then the function returns, as required.

� If pred.next 6= delNode then by Lemma 22, it must be the case that
pred = curr, curr has a MergeNext or MergeParent label, and the b update
has happened. In this case, the function helps with the merge (line 13),
and then either returns or restarts. By Lemma 8, this thread has to help
with the merge a �nite number of times, and each instance terminates in

31



a �nite number of steps. The number of nodes that have to be helped in
this way is bounded by the number of root nodes.

� If pred has a non-null parent, then that parent has been marked for dele-
tion. �ndPred helps with that deletion, as allowed in the statement of
this lemma. Assuming this returns, the deletion of the parent has been
completed, except, perhaps, the clearing of its children's parent �elds. By
the assumption about lack of interference, the call to pred.maybeClearParent

clears pred's parent �eld, and then the function returns at line 24.

�

The following result follows directly from Lemmas 16 and 26. We build on
it to prove lock-freedom in Section 14; in particular, we show that any chain of
helping is �nite.

Proposition 27 Consider an invocation of either delete, deleteWithParent or
completeDelete, during which other threads make a �nite number of updates to
nodes. Then the invocation returns after a �nite number of steps other, perhaps,
than steps helping other operations.

We now sketch a small enhancement to �ndPred. It is clear that the traversal
can reach a child of delNode, or delNode.next, only after delNode has been decou-
pled. Hence we can use either delNode's �rst child or delNode.next as a sentinel
in the guard of the while loop: if the sentinel is found, we can again complete
the deletion (at line 30).

6 Insertion

Inserting a new key k can be done by adding a new node containing k either
(a) after the �nal root node, or (b) as the child of a root of degree 0 whose key
is no larger than k . The former approach is the more obvious. We include the
latter approach for two reasons. Firstly, it avoids the last root node becoming
a bottleneck. Secondly, it shortens the root list, and in particular means that if
another thread is traversing the root list, it isn't racing against more and more
root nodes being added.

The insert function is in Figure 12. It traverses the root list, keeping track of
the current node in curr. It is possible that this traversal is disrupted by other
threads rearranging the heap, but this does not matter in this case.

It is possible that the traversal reaches a node with a non-null parent
(line 12): another thread might have merged curr below another node, or par-
tially deleted curr's parent; in this case, the parent reference is followed.

If the end of the root list is reached, and the last node is unlabelled, the
operation tries to append the new node after it (line 17). If the appending
CAS is unsuccessful, this thread spins, using a binary back-o�, to avoid creat-
ing memory con
icts. If the last node has a label, this thread helps with the
corresponding operation.

If the traversal reaches an unlabelled root node of degree 0 whose key is no
larger than k (line 19), the operation tries to insert the new node below it.

Otherwise, the next reference is normally followed to continue the traverse.
However, if the current node has a MergeNext label (or a MergeParent label where
the following node is the one being merged) then it is often advantageous to skip
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1 def insert(key: Int) = f
2 val myNode = new Node(key); var curr = head; var currState : NodeState = null
3 // Try to skip over the next node if it is being merged.
4 def skip(a: Node, b: Node, bState: NodeState) = f
5 val myBState = b.getState; val next = bState.next
6 if (next != null)
7 if (myBState == bState jj myBState.parent == a) curr = next else curr = b
8 else if (myBState.parent == a) help(curr, currState) else curr = b
9 g

10 while(true)f
11 currState = curr.maybeClearParent()
12 if (currState.parent != null) curr = currState.parent
13 else if (currState.unlabelled)f
14 if (currState.next == null)f // at last node
15 val newCurrState = currState[next 7! myNode]
16 if (curr.getState == currState)
17 if (curr.compareAndSet(currState, newCurrState)) return else Backo�()
18 g
19 else if (currState.degree == 0 && curr.key <= key)f // insert below curr
20 assert(curr != head); myNode.state = myNode.state[parent 7! curr]
21 val newCurrState = currState[degree 7! 1, children 7! List(myNode)]
22 if (curr.compareAndSet(currState, newCurrState)) return

23 else myNode.state = myNode.state[parent 7! null] // might retry on next iteration
24 g
25 else curr = currState.next
26 g // end of if(currState.unlabelled)
27 else currState.label matchf
28 case MergeNext(a, b, bState) => skip(a, b, bState)
29 case MergeParent(pred, , , b, bState) =>
30 if (curr == pred) skip(curr, b, bState)
31 else if (currState.next != null) curr = currState.next else help(curr, currState)
32 case delLabel @ Delete(pred) =>
33 if (currState.next != null) curr = currState.next
34 elsef helpDelete(pred, curr, currState, delLabel); curr = head g
35 g g g

Figure 12: The insert function.

1 def clear = state.set(
2 new NodeState(parent = null, degree = 0, children = List(),
3 next = null, seq = 0, label = null))
4 def setParentInitial(p: Node) = state.set(
5 new NodeState(parent = p, degree = 0, children = List(),
6 next = null, seq = 0, label = null))

Figure 13: The clear and setParentInitial functions of Node.

over the next node, which is about to be merged below another (similarly to as
in advance, Section 5): indeed, if the b update has occurred, this is necessary
in some circumstances to avoid getting stuck in a loop, and so to ensure the
implementation is lock-free. This is implemented using the function skip: the
b-node of the merge is skipped over, unless the merge has been interfered with
and so can't complete.

A small enhancement is that if the last root is involved in another operation,
it can be more e�cient not to help that operation, but instead to restart the
traversal, in the hope the operation completes anyway: our approach is to restart

33



the �rst two times, and subsequently to restart with some probability; informal
experiments suggest a probability of 7

8
works well.

6.1 Correctness

We seek to prove that the new node is correctly inserted, either after the last
root, or as the child of a root. We need some additional results.

De�nition 28 We say that a node n is a strict descendant if, starting at n,
following parent references one or more times reaches a root node; i.e., using
obvious notation, n(:parent)k is a root for some k � 1 .

We say that a node is new if it has been created by the insert function but
not yet added to the heap.

Note that by Invariant 4, each strict descendant has a null label.

Invariant 8 Nodes are partitioned into root nodes, strict descendant nodes,
decoupled nodes, and new nodes.

Proof: The dummy header node is initially a root node. Other nodes are
initially created as new nodes, and become root nodes when they are added
to the end of the root list, or strict descendant nodes if they are added as the
child of another node. The pred update of a deletion of delNode changes delNode
from a root to decoupled, and changes each of delNode's children from strict
descendants to roots. The b update of a merge changes b from a root to a strict
descendant. No other step of any operation changes the status of any node.

�

Invariant 9 Suppose node n does not have a Delete label and is not new. Then
n is a root node if and only if n:parent is null or points to a decoupled node.

Proof: When a new root node is inserted at the end of the root list, it has a
null parent. If it is inserted as the child of another node, it is a non-root and has
a non-null parent. If node n becomes a root as the result of the decoupling of its
parent, in particular at the pred update, then its parent �eld points to a decoupled
node. The clearing (in completeDelete) of the parent �elds of the children of a
fully deleted (and so decoupled) node clearly maintains the property, as does
the maybeClearParent function. At the b update of a merge, the b node becomes
a non-root and its parent �eld becomes non-null. No other step changes a node
from a root to a non-root or vice versa, or changes its parent �eld. �

Note that the above two invariants would not hold if, within completeDelete,
we performed a single update on the last child, to set its next �eld and clear its
parent �eld (before the pred update).

Lemma 29 If a node n has null next, parent and label �elds, and n is not new,
then it is the �nal root.

Proof: Suppose n has null next, parent and label �elds, and is not new. It
cannot be decoupled, since such nodes have a Delete label. If cannot be a strict
descendant, since such nodes have a non-null parent �eld. Hence it must be a
root. Since its next �eld is null, it must be the last root, from the de�nition.

�
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Proposition 30 If insert terminates, it correctly inserts key.

Proof: Suppose insert inserts the new node at line 17 of Figure 12, after curr.
Then by Lemma 29, curr was the last root node. Alternatively, suppose insert

inserts the new node at line 22, as the child of curr. Then by Invariant 9, curr
was a root, which has now become the root of a tree of degree 1. We linearize
the operation at the point of the successful CAS in each case. �

Lemma 31 insert maintains the invariants, and follows Rules 1{3.

Proof: Invariant 1 is maintained by design, since a new node is inserted below
only a node with a key that is no larger. Invariants 2{7 are clearly maintained.
We have already checked Invariants 8 and 9.

It obviously follows the rules. �

6.2 Liveness

In order to prove lock-freedom, we aim to prove that insert terminates assuming
a bounded amount of interference. Our approach is to identify a rank, from a
well ordered set, that is reduced by each iteration (assuming no interference).
The rank is composed of several parts, which we introduce below, together with
additional results to show that the rank is indeed decreased.

If the traversal just traverses the root list, then it is clearly bounded (cf. In-
variant 7). However, things are complicated by the fact that if a node d has been
decoupled but not deleted, the traversal can reach d 's �rst child, and then follow
that child's parent �eld to d . Nevertheless, the following quantity is reduced by
each such step.

De�nition 32 Consider a state of a binomial heap. We de�ne the next rank of
a node n, written nextRank(n), as follows:

� For convenience, we de�ne nextRank(null) = 0 .

� Suppose n is a root node, and n 0 is the following root, or n 0 = null if n is
the �nal root; then nextRank(n) = 2 + nextRank(n 0); so nextRank(n) is
twice the number of root nodes from n onwards.

� If n is decoupled but not deleted, then we de�ne nextRank(n) = 1 +
nextRank(n:next).

� Otherwise, we de�ne nextRank(n) =1.

Lemma 33 Suppose node d is decoupled but not fully deleted, and has at least
one child, and suppose d :next 6= null. Then d :next is a root node.

Proof: Let c be d 's last child. d :next was a root node when d was decoupled.
Immediately after, c:next = d :next, so d :next was the next root after c. Further,
c's parent �eld points to d , because it is cleared only after d is deleted; and c's
next �eld cannot be changed until after its parent �eld is cleared. Hence d :next
is still a root node. �
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Lemma 34 Suppose n is a root node, and p = n:parent is decoupled, but not
fully deleted. Then nextRank(p) < nextRank(n).

Proof: If p is decoupled but not yet fully deleted, then each of its children
still has its parent �eld pointing to p, since these �elds are cleared only after
p is deleted. Further, p's children are linked together by their next references
(Invariant 2): these next references are not changed until that child's parent is
cleared. Further, as in the proof of Lemma 33, the last child's next reference
points to p.next (which might be null). Thus, the root list, from n, follows the
remainder of p's children to p.next. Hence nextRank(n) � 2 +nextRank(p:next),
but nextRank(p) = 1 + nextRank(p:next). �

The traversal might reach a node that is subsequently deleted. From there, it
follows the next reference, to reach a node that might also have been subsequently
deleted. We need to show that this cannot continue inde�nitely, assuming that
eventually no more nodes are deleted. We need the following de�nition.

De�nition 35 Consider a particular execution and a particular point in that
execution. Suppose each of nodes n0 ;n1 ; : : : ;nk�1 either has no children and
has been decoupled, or has been fully deleted; and suppose their pred update steps
were performed in the above order. De�ne the deletion rank of a node n to be

k � i if n = ni , for i = 0 ; : : : ; k � 1 ;
0 if n 6= n0 ;n1 ; : : : ;nk�1 :

Note that nodes that have earlier pred updates have larger deletion indices.

Lemma 36 Suppose node d either has no children and has been decoupled, or
has been fully deleted. Then d .next has a smaller deletion rank.

Proof: Note that the value of d .next cannot change after d is marked for deletion
(Rule 3). Consider the pred update step in the deletion of d .next (if any). This
cannot use d as the predecessor, since the predecessor must be unlabelled (line 27
of Figure 8). Hence d must have been decoupled before d .next, and so d .next
has a smaller deletion rank than d . �

De�nition 37 We de�ne the depth of a node n to be the number of parent

references that can be followed to reach a root node; if n is decoupled or fully
deleted, we de�ne its depth to be 0. Note that this depth is �nite, by Invariant 3.

Lemma 38 Consider an invocation of insert, during which other threads make
a �nite number of updates to nodes. Then insert terminates in a �nite number
of steps, outside of helping.

Proof: De�ne the rank of the current node curr to be a triple:

(the deletion rank of curr, the depth of curr, the next rank of curr).

We order ranks lexicographically; note this is a well founded order.
Consider an iteration of the loop of insert starting from curr, operating with-

out interference, as captured in the statement of the proposition. Note that,
before the interference ends, the traversal might have reached a deleted node,
from where the next step could reach an arbitrary node in the heap, or indeed
another deleted node; the proof below needs to deal with all such cases. We
show that each iteration except a helping iteration or the �nal iteration reduces
the rank. We perform a case analysis over such iterations.
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� If curr has a non-null parent, and its parent is not fully deleted, then its
parent �eld is followed. Note that the use of maybeClearParent ensures that
a parent pointer cannot be followed to a node that was fully deleted when
currState was read; the assumption means that currState.parent cannot have
been fully deleted subsequently.

If curr is not a root node, so its parent is not decoupled, this reduces the
depth by 1. If curr is a root node, so its parent is decoupled, this leaves
its deletion rank unchanged at 0, leaves the depth unchanged at 0, but
reduces its next rank, by Lemma 34.

� If curr is a root node, but not the last root, then the iteration advances at
least one step along the root list, so reduces the next rank; in the function
skipOverMerge, if myBState = bState, then it advances two steps along the
root list. Note that the next node is not decoupled, so has deletion rank 0,
and is a root node so has depth 0.

� Suppose curr is decoupled but not fully deleted, and has at least one child. If
curr.next is not null, the iteration advances to curr.next. Then by Lemma 33,
curr.next is a root node, so has deletion rank 0 and depth 0. This step
reduces the next rank.

� Suppose curr either has no children and has been decoupled, or has been
fully deleted. Again, if curr.next 6= null, then the iteration advances to
curr.next. This has a smaller deletion rank, by Lemma 36.

If the iteration attempts to insert the new node, either as a child or at the
end of the root list, then the relevant CAS succeeds, by the assumption about
non-interference. �

7 union

In this section we present a simple implementation of the union operation. Recall
that we assume here that there are no concurrent operations on the giving
heap (denoted \giver", below), although we do allow concurrent operations on
the receiving heap (the heap of the operation); we relax this assumption in
Section 11. We also assume that the two heaps are distinct.

The union operation works by locating the last root node of the current heap,
and updating its next pointer to reference the �rst (non-header) node of giver.
Most of the work is done by the �ndLast function (Figure 14), which �nds the
last root and its state, also helping with the operation of any label on the last
root. The traversal is almost identical to that in insert (except without trying to
insert nodes). If it helps with the deletion of the last root, it tries to continue
from that node's last child, if there is one, since that node is likely to be near
the end of the root list; otherwise it restarts the traversal. If it helps with a
merge, it continues from the same node.

The union function is then straightforward. If the giving heap is empty, there
is nothing to do. Otherwise it �nds the last root of the heap, and tries to update
it so its next pointer points to the �rst proper root of the other heap; we call
this the joining CAS . It then clears the other heap. If the joining CAS is
unsuccessful, it retries.

Lemma 39 The union function operates correctly, assuming there are no con-
current updates on its argument giver.
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1 private def �ndLast : (Node, NodeState) = f
2 var curr = head; var currState : NodeState = null // current node, state
3 def skip(a: Node, b: Node, bState: NodeState) = f
4 val next = skipOverMerge(a, b, bState)
5 if (next == null) help(curr, currState) else curr = next
6 g
7 while(true)f
8 currState = curr.maybeClearParent()
9 if (currState.parent != null) curr = currState.parent

10 else currState.label matchf
11 case MergeNext(a, b, bState) => skip(a, b, bState)
12 case MergeParent(pred, , , b, bState) if curr == pred => skip(curr, b, bState)
13 case delLabel @ Delete(pred) =>
14 if (currState.next != null) curr = currState.next
15 elsef
16 helpDelete(pred, curr, currState, delLabel)
17 val ch = curr.getState.children
18 if (ch.nonEmpty) curr = ch.last else curr = head
19 g
20 case label =>
21 if (currState.next != null) curr = currState.next
22 else if (label != null) help(curr, currState) // MergeParent label
23 else return (curr, currState)
24 g g g
25 def union(giver: ConcHeap) = f
26 val giverFirst = giver.head.getState.next
27 if (giverFirst != null)f // other heap not empty
28 var done = false
29 while(!done)f
30 val (last , lastState) = �ndLast
31 assert(lastState.next == null && lastState.parentless && lastState.unlabelled)
32 done = last.compareAndSet(lastState, lastState[next 7! giverFirst])
33 g
34 giver.head.next = null
35 g g

Figure 14: The �ndLast and union functions.

Proof: It is clear that, if the state of last is still lastState, it is the last root node,
by Lemma 29. Hence the CAS successfully appends the nodes of giver after this
heap.

It is straightforward to check that all the invariants are inherited from the
two component heaps (given that the heaps are disjoint). It is also clear that
the operation follows the two rules. �

Lemma 40 Consider an execution, during which, from some time on, no other
thread performs any update to any node. Then union terminates in a �nite
number of steps, outside of helping.

Proof: The proof is very similar to that for insert (Lemma 38): it traverses the
root list in an identical way, so will eventually reach the �nal node; as for insert,
the number of helping iterations is bounded; the �nal CAS must succeed. �
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8 Minimum

We now discuss the minimum function, which �nds the smallest key in the heap.
It traverses the root list, in a similar style to �ndPred.

If the minimum key has been marked for deletion before the traversal com-
pletes, but has not been fully deleted, it can still be returned by minimum. We
justify correctness, i.e. linearizability, in Section 13. The fact that the dele-
tion has not been completed means that the relevant deleteMin function has not
yet returned: the linearizability proof makes use of this. However, our proof
of linearizability requires that the node should not have been marked before
the call to minimum: we use the timestamps in the Delete labels to test this10.
We assume that the timestamping mechanism is correct in the following sense:
suppose one thread generates a timestamp ts1 and writes it to shared memory;
and a second thread later generates a second timestamp ts2 ; then ts1 � ts2
(ignoring over
ow).

It would not (in general) be correct to return a
key found during the traversal if the corresponding
node is fully deleted before the traversal is �nished,
even if the node had not been marked for deletion
before the call to minimum began. Consider a heap
that initially contains the keys 2 and 3, in that or-
der, and consider the execution illustrated by the
timeline to the right, and explained below.

A:

B :

deleteMin:2 deleteMin:1

insert(1) minimum:2

1. Thread A starts a deleteMin, identi�es 2 as the minimum key, and stalls;

2. Thread B inserts key 1 (at the end of the root list);

3. Thread B calls minimum, starts a traversal, sees the key 2, advances to 3,
but then stalls;

4. Thread A resumes, fully deletes the key 2, and returns;

5. Thread A performs a deleteMin, and deletes 1;

6. Thread B resumes, completes the traversal, and returns 2.

The above is not linearizable: at no point during the execution of minimum is 2
the minimum key.

It can be advantageous, when traversing the root list, not to keep track of
just a single smallest node11, but instead to keep track of the m smallest nodes
for some m > 1 . If the smallest node is fully deleted before the traverse �nishes,
we can instead consider the next smallest node. This will be even more the case
in the deleteMin operation (Section 9): when the deleteMin �nishes the traversal,
there is a fairly high likelihood that the smallest node has already been marked
for deletion by another deleteMin operation; in this case, it can try the next
smallest node.

The minimum function traverses the list. It keeps track of the smallest nodes
that it has seen, up to a maximum of numMinsMinimum such, and discarding
others. If, at the end of the traversal, the smallest node minNode has been

10An alternative would be to use a shared counter as a form of logical timestamp.
11We use terms such as \smallest node" to mean the node with the smallest key.
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deleted, then minimum could return the next smallest node found during the
traversal, or one of minNode's children, whichever is smaller. This requires some
care. If more nodes were inserted after the initial traversal �nished, but before
minNode was found to be deleted, then we need to take those additional nodes
into account to ensure linearizability. We therefore resume the traversal from
the node that was previously the last node in the root list.

We use a subsidiary class Min-
List, outlined to the right, to store
these minimal nodes. In fact, this
class is polymorphic, to allow it
to be re-used in the traversal of
deleteMin. It stores up to numMins

elements of type N, namely those
that are minimal under the getKey
function. In minimum, we instan-
tiate N with Node, and getKey

with the function that returns a
node's key.

class MinList[N](numMins: Int, getKey: N => Int)f
/�� Insert node into this. �/
def insert(node: N) : Unit
/�� Get the minimum element. Returns null if
� the minimum element has been discarded. �/

def get : N
/�� Is this MinList empty? �/
def isEmpty : Boolean
/�� Remove the minimum element.
� Precondition: the minimum element has
� not been discarded. �/

def removeFirst() : Unit
/�� Clear this. �/
def clear : Unit

g

We omit the implementation since it is straightforward (and sequential).
Note that the insert operation starts to discard nodes once the limit of numMins

is reached. A critical point, however, is the following: if previously a node n
was discarded because the limit had been reached, and subsequently a node was
removed from the MinList (creating a space) but found to be deleted, and then
another node is inserted (either a child of the deleted node, or a node found dur-
ing the resumed traversal), then we should not store such nodes with a larger
key than a node that was previously discarded; otherwise, if all the nodes found
during the initial traversal are subsequently found to be deleted, we could incor-
rectly return a key that was larger than one in a discarded node. We therefore
record the minimal key that has been discarded, and do not subsequently store
a node with a larger key. If a node has been discarded and no other node is
stored, a call to get returns null; the traversal has to restart in this case.

The critical properties of MinList are captured by the following lemma.

Lemma 41 If get returns a non-null node, it is the smallest node that was
added to the MinList since the last call of clear and has not been removed. isEmpty

returns true if and only if every node that was added to the MinList since the last
call of clear has also been removed. If get returns null, then there have been at
least numMins previous calls to get since the last call of clear.

The minimum function (Figure 15) traverses the list, keeping track of the
minimal nodes encountered in minList. At each step, it uses advance to obtain
the next node and its sequence number, and maybe some nodes skipped over.
If advance returns null, minimum restarts. Otherwise, it inserts relevant nodes
into minList; if a node skipped over is marked for deletion, it is inserted only
if the marking was after the start of the traversal; otherwise the children are
recursively inserted.

When the traversal reaches the end of the root list, if minList is empty, then
the heap was empty, so minimum returns None (line 16). If the call to minList.get

returns null, then the minimum node has been discarded, so the traversal has
to restart (line 19). Otherwise, if the minimal node minNode has not been
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1 def minimum : Option[Int] = f
2 val minList = new MinList[Node](numMinsMin, .key)
3 var curr = head; var currSeq = curr.getSeq; val startTime = java.lang.System.nanoTime
4 def restart() = f curr = head; currSeq = curr.getSeq; minList.clear g
5 def insertNodes(ns: List[Node]) = for(n <� ns)f
6 val nState = n.getState
7 nState.label matchf
8 case delLabel: Delete if delLabel.ts � startTime <= 0 => insertNodes(nState.children)
9 case => minList.insert(n)
10 g g
11 while(true) advance(curr, currSeq) matchf
12 case null => restart()
13 case (next, nextSeq, skipNodes) =>
14 insertNodes(skipNodes)
15 if (next != null)f minList.insert(next); curr = next; currSeq = nextSeq g
16 else if (minList.isEmpty)f assert(curr == head); return None g
17 elsef // at end of list; �nd �rst non�deleted node in minList
18 val minNode = minList.get
19 if (minNode == null) restart()
20 else if (! minNode.deleted) return Some(minNode.key)
21 elsef minList.removeFirst; insertNodes(minNode.getState.children) g
22 g g g

Figure 15: The minimum function.

fully deleted, minimum returns minNode's key. If minNode has been fully deleted,
minNode is replaced by its children in minList.

We want to prove that all the nodes in the heap are represented by the nodes
added to minList. More precisely, each node in the heap is a descendant of one
of those nodes.

De�nition 42 We de�ne the children of node n to be n.children, unless n is
the a node of a merge, and the b update has taken place, in which case we also
include b within the children (recall that we consider the merge to take place at
the b update).

� If n has a MergeParent( , , ,b, ) label, and b.parent = n, then children(n) =
n:children [ fbg;

� Otherwise children(n) = n:children.

We de�ne the descendants of a node n to be n itself, its children, its children's
children, and so on. Inductively:

descendants(n) = fng [
[
fdescendants(c) j c 2 children(n)g:

We lift descendants to sets of nodes, pointwise:

descendants(S ) =
[
fdescendants(n) j n 2 Sg:

We write nodesUpTo(r) for the descendants of the roots up to r:

nodesUpTo(r) = descendants(rootsUpTo(r));

(recall De�nition 23) so nodesUpTo(null) represents all the nodes in the heap.
We write unmarkedNodesUpTo(r) for the nodes in nodesUpTo(r) that do not
have a Delete label.

41



Part of the invariant of the traversal is that the unmarked nodes up to the
current position are a subset of the descendants of nodes added to minList. The
following lemma identi�es circumstances under which this property is main-
tained by actions of other threads.

Lemma 43 Let S be a set of nodes. Suppose root node r does not have a Delete

label, and suppose

unmarkedNodesUpTo(r) � descendants(S ): (1)

Then equation (1) is maintained by each step of an operation that does not
change the sequence number of r , other than a giving union.

Proof: Note that, by Lemma 19, r remains a root after the update. Hence
unmarkedNodesUpTo(r) is still well de�ned.

Suppose the insert operation inserts a new node n below a root r1 no later
than r ; then n is added to both sides of (1): previously r1 was a member of
the right-hand side, so a descendant of a member of S ; subsequently, n is a
descendant of that same member of S .

If insert adds the new node below a later root, or at the end of the root list,
then this does not change unmarkedNodesUpTo(r), and does not reduce the
right hand side of (1).

Consider the marking for deletion of a node dn. Necessarily dn 6= r , since
this step changes dn's sequence number. The step removes dn from the left-
hand side of (1) if dn is before r . It does not change the descendants of dn, so
doesn't change the right-hand side.

Consider the pred update of a deletion of node dn, promoting its children to
roots; necessarily, dn 6= r (since dn has a Delete label). It maintains both sides
of (1): in particular, if dn is before r , the descendants of dn remain in both
sides.

Consider the merger of two trees, a and b, in particular the b update. Note
that r 6= b, since the sequence number of b is increased by this step.

� If b is before r in the root list, and a is after r , then this removes
descendants(b) from the left-hand side of (1), but does not change the
right-hand side.

� Suppose b is after r in the root list, and a is before or equal to r ; then
this adds descendants(b) to the left-hand side of (1); but previously a was
a member of the right-hand side, so was a descendant of a node n 2 S ;
but subsequently the descendants of b are also descendants of n, so this
update also adds them to the right-hand side of (1).

� In other cases, the left-hand side of (1) doesn't change, and no node is
removed from the right-hand side.

No other step changes either side of (1). �

The following proposition gives a correctness condition for minimum. In Sec-
tion 13, we use this result to prove linearizability. Below, by \the end of the
traversal" we mean, more precisely, when the �nal node's state was read in
advance (line 4 of Figure 10), i.e., the state whose next �eld was subsequently
found to be null.
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Proposition 44 If minimum returns a key k then, at the end of the traversal,
the corresponding node was not deleted, and there was no smaller unmarked
node in the heap. If minimum returns None, then at some point during the call,12

the heap had no unmarked node.

Proof: As in Lemma 25, if the sequence number of curr has not changed, i.e.
curr.getSeq = currSeq, then curr is a root node, and does not have a Delete label.

Let S be the set of nodes that have been added to minList, but not removed,
since the last time it was cleared. We show that the following is invariant: if
the sequence number of curr has not changed, then

unmarkedNodesUpTo(curr) � descendants(S ): (2)

This is true initially, and is re-established whenever the traversal restarts.
Consider a call to advance that returns a result (next, nextSeq, skipNodes), in

an iteration that neither returns a value nor restarts the traversal. By part 2 of
Lemma 21,

nodesUpTo(next) =
nodesUpTo(curr) [ descendants(skipNodes) [ descendants(next):

The additions to minList have the e�ect of adding (at least) the unmarked nodes
of descendants(skipNodes) [ descendants(next) to the right-hand side of equa-
tion (2), thereby maintaining this equation when curr is set to next.

If, at line 21, minNode is removed from minList, and its children added, then
this removes just minNode from the right-hand side of (2). But minNode was
marked for deletion, so this maintains the property.

Equation (2) is maintained by steps of other threads, by Lemma 43. Hence
this invariant is maintained.

Now suppose advance returns Some(minNode.key) at line 20. Then by
Lemma 41, this value was minimal in S . Hence, by equation (2) and Invari-
ant 1, there was no smaller unmarked node in the heap. Further minNode is not
deleted.

Finally suppose advance returns None at line 16. Then minList was empty, so
by Lemma 41, S = fg. Hence, by equation (2), there is no unmarked key in the
heap. �

The following lemma will prove useful in proving linearizability; it follows
from the use of timestamps, and the fact that we assume that a deleteMin oper-
ation can not be concurrent to a giving union.

Lemma 45 If a minimum operation returns the key from node n, then n was
not marked for deletion when the operation started its traversal; further, it was
not marked for deletion while in a di�erent heap.

The following lemma captures a liveness property for minimum.

Lemma 46 Suppose a call to minimum occurs such that, from some point on,
no other thread makes any update to any node. Then the call returns after a
�nite number of steps.

12In fact, this property holds at the end of the traversal; however, in Section 11 we will have
the slightly weaker property stated here; and this weaker property is enough for our proof of
linearizability.
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Proof: The proof that the main loop eventually terminates, reaching the end
of the root list, is essentially identical to that for �ndPred (Lemma 26). If a
traversal runs after all interference ends, minNode cannot have been deleted in
the meantime, so minimum returns. �

9 deleteMin

We now describe the traversal used within deleteMin; see Figure 16. We need
to identify the minimum node and its predecessor. The code is very similar
to the code for minimum. minList stores up to numMinsDelMin pairs of the form
(p;n), where n is a node encountered during the traversal, and p is its expected
predecessor; these pairs are ordered by the key of the n components. Our
experiments suggest a value of around 16 works well for numMinsDelMin; this
roughly doubles throughput over recording a single minimum. (We expect that
with more threads, a higher value would work better: we leave experiments
investigating this as future work.)

While traversing, deleteMin inserts each node and its predecessor into minList

(line 21). Similarly, it iterates through the nodes skipped over, and through the
children of such nodes marked for deletion (via the helper function insertChildren),
and inserts each and its predecessor into minList. (Recall that the correctness
of the predecessor is not essential for the subsequent deletion, but is a useful
optimisation.)

When it reaches the end of the list, if minList is empty, then the heap is empty,
so None is returned. If the call to minList.get returns null, then the minimum node
has been discarded, so the traversal restarts. Otherwise, it extracts the minimal
node minNode and its expected predecessor predMin from minList. It passes these
to the function tryDelete (see below), which carries out various checks to test
whether the deletion might succeed, maybe helping with other operations, and
then tries to delete the node itself. If this is successful, minNode's key is returned.
If the deletion failed because minNode has been marked for deletion by another
thread, minNode is replaced in minList by its children. If the deletion failed for
some other reason, it is necessary to restart the traversal.

The most likely cause of the deletion failing is if another thread has already
claimed the node for deletion. tryDelete therefore tests this �rst (line 39). If
delNode has a label other than a Delete, then tryDelete helps with that operation
(line 40), and then retries. If delNode was found as the child of a node without
a Delete label, then it must have been merged below another node since it was
encountered in the traversal; it cannot now be deleted so tryDelete fails. Other-
wise, it calls either delete or deleteWithParent, as appropriate, to try to delete the
node, recursing if unsuccessful.

The proof of the following result is nearly identical to that of Proposition 44,
so we just sketch it.

Proposition 47 If deleteMin returns Some(k) then k was a minimal unmarked
key when the traversal ended. If deleteMin returns None then the heap had no
unmarked nodes at some point during the call.

Proof: (sketch). The main loop has essentially the same invariant as minimum,
except referring to just the second components of the elements of minList. Hence
if minList is empty at line 22, the heap is again empty. Otherwise, at line 24,
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1 def deleteMin : Option[Int] = f
2 val minList = new MinList[(Node,Node)](numMinsDelMin, . 2.key)
3 def insertChildren(pred: Node, children: List[Node]) = f
4 var cs = children; var p = pred
5 while(cs.nonEmpty)f val c = cs.head; cs = cs.tail; minList.insert(p, c); p = c g
6 g
7 var curr = head; var currSeq = curr.getSeq // current node and seq. no.
8 def restart() = f Backo�(); curr = head; currSeq = curr.getSeq; minList.clear g
9 while(true) advance(curr, currSeq) matchf
10 case null => restart()
11 case (next, nextSeq, skipNodes) =>
12 var pred = curr
13 for(skipNode <� skipNodes)f
14 val skipState = skipNode.getState
15 if (skipState.label.isInstanceOf[Delete])f
16 val children = skipState.children; insertChildren(pred, children)
17 if (children.nonEmpty) pred = children.last
18 g
19 elsef minList.insert(pred, skipNode); pred = skipNode g
20 g // end of for loop
21 if (next != null)f minList.insert(pred, next); curr = next; currSeq = nextSeq g
22 else if (minList.isEmpty)f assert(curr == head); return None g
23 elsef
24 val minPair = minList.get
25 if (minPair == null) restart()
26 elsef
27 val (predMin, delNode) = minPair
28 if (tryDelete(predMin, delNode)) return Some(delNode.key)
29 elsef
30 val delState = delNode.getState
31 delState.label matchf
32 case delLabel @ Delete(pred) =>
33 minList.removeFirst; insertChildren(pred, delState.children)
34 case => restart()
35 g g g g g g
36 private def tryDelete(pred: Node, delNode: Node): Boolean = f
37 val delState = delNode.maybeClearParent(); val label = delState.label
38 if (label != null)
39 if (label.isInstanceOf[Delete]) false // fast return in this case
40 elsef help(delNode, delState); tryDelete(pred, delNode) g
41 elsef
42 val parent = delState.parent
43 if (parent != null)f
44 val pState = parent.getState
45 pState.label matchf
46 case Delete(pPred) =>
47 deleteWithParent(pred, delNode, delState, pPred, parent, pState) jj
48 tryDelete(pred, delNode)
49 case => false // minNode not a root, so retry
50 g
51 g
52 else delete(pred, delNode, delState)) jj tryDelete(pred, delNode)
53 g g

Figure 16: The deleteMin and tryDelete functions
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there is again no smaller unmarked node than minNode; and the deletion succeeds
only if minNode is not already marked for deletion, as required. �

We now prove a liveness result for deleteMin. We start by considering
tryDelete.

Lemma 48 Suppose a thread repeatedly calls tryDelete with the same value of
delNode, such that delNode is not already marked for deletion. Suppose further
that no other thread makes any change to a node. Then the deletion performs
a �nite number of steps outside of helping.

Proof: By assumption, delNode was not marked for deletion, and cannot have
been labelled subsequently, so tryDelete does not return at line 39.

If delNode has a label other than Delete, tryDelete helps with that operation
(line 40). By Lemma 8, only a bounded number of calls will be needed to
complete that operation, and each instance will terminate in a �nite number of
steps.

Otherwise, tryDelete calls delete or deleteWithParent. This call must complete
in a �nite number of steps, outside of helping, by Proposition 27. In particular,
since delNode is unlabelled, the deletion must succeed. �

Lemma 49 Suppose a call to deleteMin occurs such that, from some point on,
no other thread makes an update to any node. Then the call returns after a
�nite number of steps, outside of helping.

Proof: The proof that the traversal terminates is again essentially identical to
that for �ndPred (Lemma 26). This leads to deleteMin either terminating, if the
heap is empty, or calling tryDelete.

If the call to tryDelete fails, then the traversal will continue or restart. This
will lead to repeated calls of tryDelete, each on one of the root nodes. (In
practice, all the calls to tryDelete will use the same delNode; however, a di�erent,
nondeterministic implementation of MinList might lead to calls with di�erent
values of delNode, all with the same key.) There is a �xed �nite set of root
nodes, so one node will be passed to tryDelete repeatedly. Hence, by Lemma 48,
eventually one of these calls will succeed, and deleteMin will return. �

10 Tidying

In this section we explain when and how threads attempt to merge trees. We
implement a function tidy() that performs this merging. There is a trade-o�
concerning how often tidy is called. Calling it more often leads to a shorter root
list, which makes traversing faster. However, tidying takes time, and also risks
interfering with other operations. We therefore arrange for a thread to call tidy
only occasionally. More precisely, we use a shared integer counter opCount,13

and an integer parameter tidyRatio, indicating how frequently a thread should
perform tidying. Every time a thread completes an insertion or deletion, it calls
the function maybeTidy (Figure 17). This increments opCount; if it is then a
multiple of tidyRatio, it calls tidy. Our experiments suggests a value of between 2
and 8 for tidyRatio works best: slightly di�erent values are optimal in di�erent use

13An alternative would be to use thread-local counters.
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private val opCount = new AtomicInteger(0)
private def maybeTidy() = if(opCount.incrementAndGet%tidyRatio == 0) tidy()

Figure 17: The maybeTidy function.

cases, but the implementation is fairly robust to small variations. In addition,
when a thread completes a union operation, it calls tidy directly (since it is likely
that this operation has signi�cantly lengthened the root list).

The basic idea of the tidy function (Figure 18) is to traverse the root list,
to identify pairs of root nodes with the same degree that could be merged. It
maintains an array buckets of pairs of nodes. If buckets(d) holds a pair (pred ;n)
then, when these nodes were encountered earlier, n was a node of degree d and
had predecessor pred , or pred was likely to become the predecessor of n after
some pending operation completed. If buckets(d) = null, then no such pair is
known about. (For simplicity, we assume an upper bound MaxDegree on the
degrees that nodes can have.)

As an optimisation, we do not perform a merge of the last root node: insert
operations use this node, so merging such a node can disrupt insertions. In
addition, we avoid merging singleton nodes, but mainly depend upon insert to
add nodes below them: again this avoids disrupting insertions. However, in
unusual cases |such as keys being inserted in decreasing order| it is neces-
sary to merge singleton nodes; our approach is to try merging such nodes with
probability 1

4
.

Most of the work is done by the function tryMerge (Figure 18). This takes
a pair of nodes (pred, curr), with pred expected to be the predecessor of curr. If
there is no pair of nodes stored corresponding to the degree of curr, it stores
this pair (line 26). If there is a pair (predOther, other) in buckets such that other
has the same degree, and the relevant preconditions for merging hold, then it
attempts to merge them (lines 18 and 22). If a relevant precondition does not
hold, then various heuristics are used, possibly to replace (predOther, other) in
buckets with (pred, curr).

tidy itself uses a helper function nextStep (Figure 18) to �nd the next node next
after curr to consider. nextStep also returns a boolean to indicate if next is likely to
be the successor of curr (possibly after some pending operation has �nished), and
so this pair of nodes can usefully be passed to tryMerge. The nextStep function is
similar to, but simpler than, an iteration of insert: it skips over nodes that are
about to be merged below another node. It is simpler than insert, in that when
it reaches the end of the list, it simply returns null for next.

The following lemma is easy to check.

Lemma 50 Each call to merge from tidy satis�es the preconditions of merge.

Lemma 51 If tidy runs, and, from some point on, no changes are made to the
root list by other threads, then it performs a �nite number of steps.

Proof: Recall (Lemma 7) that each call to merge terminates in a �nite number
of steps.

We can show that the main loop of tidy performs a �nite number of iterations.
The proof is very similar to (but simpler than) the corresponding proof for insert
(Lemma 38), so we just sketch it. In most cases, tidy progresses along the root
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1 private def tidy() = f
2 val buckets = new Array[(Node,Node)](MaxDegree)
3 def tryMerge(pred: Node, curr: Node) : Unit = f
4 val currState = curr.maybeClearParent; val degree = currState.degree
5 if (currState.next != null && (degree != 0 jj random.nextInt(4) == 0))f
6 if (buckets(degree) != null)f
7 val predState = pred.maybeClearParent; val (predOther, other) = buckets(degree)
8 val otherState = other.maybeClearParent;
9 val predOtherState = predOther.maybeClearParent

10 if (other == curr jj !(otherState.unlabelled && otherState.parentless))f
11 if (predState.next == curr) buckets(degree) = (pred, curr)
12 g
13 else if (otherState.degree != degree)
14 buckets(degree) = if(predState.next == curr) (pred, curr) else null
15 else if (currState.unlabelled && currState.parentless)f // try merging
16 if (other.key <= curr.key)f
17 if (predState.next == curr && predState.unlabelled && predState.parentless)
18 merge(other, otherState, pred, predState, curr, currState)
19 g
20 else if (predOtherState.next == other && predOtherState.unlabelled &&
21 predOtherState.parentless)
22 merge(curr, currState, predOther, predOtherState, other, otherState)
23 else if (predState.next == curr) buckets(degree) = (pred, curr)
24 g
25 g // end of if(buckets(degree) != null)
26 else if (predState.next == curr) buckets(degree) = (pred, curr)
27 g g // end of tryMerge
28 var curr = head; var done = false
29 while(!done)f
30 val (next, ok) = nextStep(curr)
31 if (next == null) done = true
32 else if (ok)f val pred = curr; curr = next; tryMerge(pred, curr) g
33 else curr = next
34 g g
35 private def nextStep(curr: Node) : (Node, Boolean) = f
36 def skip(a: Node, b: Node, bState: NodeState) : (Node, Boolean) = f
37 val myBState = b.getState
38 if (myBState == bState jj myBState.parent == a) (bState.next, true) else (b, true)
39 g
40 val currState = curr.maybeClearParent()
41 if (currState.parent != null) (currState.parent, false)
42 else currState.label matchf
43 case MergeNext(a, b, bState) => skip(a, b, bState)
44 case MergeParent(pred, , ,b,bState) if curr == pred => skip(curr, b, bState)
45 case Delete( ) => (currState.next, false)
46 case => (currState.next, true)
47 g g

Figure 18: The tidy function.

list in the same way as for a step of insert; when tidy reaches the end of the list, it
terminates (whereas insert sometimes helps). Thus tidy takes no more iterations
than insert from the same node, i.e. a �nite number. �

We now sketch a small enhancement to tryMerge. If a call to merge appears
to be successful, then tryMerge can recurse with the new root and its expected
predecessor. Similarly, if the degree of other has changed, it can try recursing
on other.
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11 Allowing concurrent unions

In this section we explain how to re-implement the union operation so as to allow
it to run concurrently with other operations on the giving heap. We start by
highlighting some of the di�culties, so as to motivate parts of our design; in
particular, we show what could go wrong with a less careful implementation.

Suppose a call to minimum occurs on heap hg concurrently to a call to
hr .union(hg). Suppose, further, that immediately after the two heaps are joined,
a new key k is added to hr . Then the traversal of minimum may encounter k , and
incorrectly return it, even though it is not part of hg . We avoid this problem as
follows: when the traversal �nishes, the thread detects whether a giving union
on hg has been linearized during the traversal; if so, minimum returns None, and
the call can be linearized immediately after the linearization point of union, at
which point the heap was indeed empty. The main mechanism we use to detect
whether such a union has been linearized is to equip each heap with an integer
variable epoch which counts the number of such unions so far.

A similar problem arises with deleteMin. However, the above approach is not
su�cient. Consider the following behaviour. (1) Thread A calls deleteMin on
heap hg , identi�es k as the minimum key, checks that no concurrent union has
occurred, but then is suspended; (2) thread B performs hr :union(hg); (3) thread
C calls minimum on hr , and returns k ; (4) thread A resumes and deletes k .
This behaviour is not linearizable because of the delay between the check in
step 1 and the update in step 4: in e�ect, thread A has deleted k from hr rather
than hg . To avoid this, we ensure that no giving union occurs concurrently to
the delNode labelling of a deletion. We explain the mechanism below.

Further, suppose deleteMin labels a node delMin for deletion, but has to call
�ndPred to locate the predecessor of delMin. If delNode has been moved to a
di�erent heap in the meantime, then obviously �ndPred has to search in that
di�erent heap. We therefore need a mechanism for locating the current heap
that a node is in. Also, if �ndPred fails to �nd delNode, there are subtleties in
deciding whether it has really been decoupled so can be marked as fully deleted.

Similarly, without care, unions can interfere with insertions on the giving
heap, so that the insertion happens after the union, and so e�ectively inserts
into the receiving heap.

Finally, two concurrent unions on the same heap could interfere with one
another. Consider two threads performing h1 :union(h2 ) and h2 :union(h3 ). Sup-
pose the former joins its two heaps �rst. Then, without suitable care, the latter
thread could join h3 onto the combined heap, h1 , rather than h2 . Similarly, if
we have a cycle of unions, for example if h1 = h3 , above, then this could create
a circular root list. We prevent this by labelling both heaps, more precisely
their head nodes, at the start of the union, with UnionGiver and UnionReceiver

labels. This prevents concurrent unions a�ecting the same heap. However, we
clearly need a mechanism to detect a cycle of such labelling, which could create
a deadlock.

Similarly, to prevent a giving union concurrently to the critical step of an
insertion or deletion (as justi�ed above), we add a special label, which we call
a heap label to the head node during that critical step. However, we can allow
the critical steps of insertions or deletions to occur concurrently to one another,
or concurrently to the heap being the receiving heap of a union. We therefore
allow the head node to have a list of heap labels and at most one UnionReceiver
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Figure 19: Illustration of union. Drawing conventions extend those in Figure 2
as follows: the large boxes on the left are heap objects; the boxes labelled \HI"
are heap indirections; dashed lines from a node to a heap indirection represents
a path via zero of more intermediate heap indirections.

label, allowing these to occur concurrently, but not concurrently to a giving
union; these are encapsulated in a HeapLabelList.

Recall that we need a mechanism for enabling a thread to identify the cur-
rent heap that a node is in; we want to be able to update this mechanism
e�ciently when a union happens. We use a technique based upon the union-
�nd data structure [GF64]. Each heap has a heap indirection object. Each heap
indirection contains a reference to either its heap or another heap indirection
object. When a node (other than the dummy header) is added to a heap, it is
given a reference to the corresponding heap indirection. Thus following a path
of such references leads to the corresponding heap, except temporarily during a
union. Each union operation updates the heap indirections to re-establish this
property.

We now outline how union proceeds. Figure 19 illustrates the operation.

1. If the giving heap is empty, the union operation is equivalent to a no-op,
and so returns immediately. Otherwise, it labels the head node of the
giving heap with a UnionGiver label. This has a side e�ect of ensuring
that the �rst proper node remains as such. The UnionGiver label acts as a
convenient place to store information about the state of the union.

2. It tries to label the head node of the receiving heap with a UnionReceiver

label, either adding a HeapLabelList to hold it, or using an existing Heap-
LabelList. If this addition is blocked because that node already has a Union-
Giver label, it tests whether there is a cycle of such labelled nodes, and if so
removes one such label and replaces it with the corresponding UnionReceiver
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label; the union operation corresponding to the replaced label then restarts.

3. It �nds the last node in the receiving heap, and updates its next pointer to
point to the �rst proper node of the giving heap. We call this the joining
CAS . It is the linearization point of the union: we consider the nodes to be
transferred from the giving heap to the receiving heap at this point. If the
receiving heap is non-empty, it simultaneously labels that last node with
a UnionLast label; this allows other threads to detect that the linearization
point has passed. (If the receiving heap is empty, the last node is the
head, and retains its HeapLabelList label.)

4. It updates the UnionGiver label to indicate that the joining CAS has oc-
curred.

5. If the receiving heap was non-empty, it removes the UnionLast label from
the former last node of the receiving heap.

6. It sets the giving heap's heap indirection to reference that of the receiving
heap; hence following the path of heap indirections from a former node of
the giving heap leads to the receiving heap, as required. The giving heap
receives a new heap indirection.

7. It increments the giving heap's epoch.

8. It atomically sets the giving heap's head's next reference to null and removes
the UnionGiver label.

9. It marks the UnionReceiver label as complete, and removes it from the
HeapLabelList.

As with previous operations, other threads might help with steps after the
�rst; and it might be necessary to help other operations that block the union.

Each UnionGiver and HeapLabelList applies to the whole heap, rather than to
an individual node. In a previous version, we made them attributes of the heap,
rather than the head node. However, it also proved necessary to label the head
of the giving heap, to prevent the reference to the �rst node from changing
before the giving CAS: it simpli�ed things to combine these two labels.

We augment the state of each heap with an epoch and the heap indirection.

private val epoch = new AtomicLong(0)
private val heapIndirection = new AtomicReference(new HeapIndirection(this))

We describe the HeapIndirection class later.
In the remainder of this section, we describe the union operation in more

detail: we start by outlining HeapLabelLists; in the following four subsections, we
describe the di�erent phases of the union; we then describe how other threads
help with the union, and give correctness results. In the next section we describe
how other operations have to be adapted to allow concurrent giving unions.

11.1 HeapLabelLists

We now sketch the implementation of HeapLabelLists. Recall that each
HeapLabelList holds a list of HeapLabels, and at most one UnionReceiverLabel.
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1 class HeapLabelf
2 /�� The next label in the list. �/
3 val next = new AtomicReference[HeapLabel](null)
4 /�� Has this operation been completed (perhaps unsuccessfully)? �/
5 @volatile var done = false
6 g
7 /�� A thread is trying to insert node below parent. �/
8 case class InsertBelow(node: Node, parent: Node, parentState: NodeState, epoch: Long)
9 extends HeapLabel

10 /�� A thread is trying to insert node after pred. �/
11 case class InsertAtEnd(node: Node, pred: Node, predState: NodeState, epoch: Long)
12 extends HeapLabelf
13 /�� Has the insertion happened successfully? �/
14 @volatile var success = false
15 g
16 /�� A thread is trying to label delNode for deletion. �/
17 case class LabelForDelete(delNode: Node, delState: NodeState, newNext: Node,
18 startEpoch: Long, delLabel: Delete) extends HeapLabel
19 /�� This heap is acting as the receiver in a union. �/
20 class UnionReceiver(val giver: Union)f
21 @volatile var done = false // Has the union been completed?
22 g

Figure 20: HeapLabels.

1 case class HeapLabelList private (heap: BinomialHeap) extends Labelf
2 /�� Constructor to initialise with a UnionReceiver. �/
3 def this(heap: BinomialHeap, ur: UnionReceiver)
4 /�� Constructor to initialise with a HeapLabel. �/
5 def this(heap: BinomialHeap, hl: HeapLabel)
6 /�� Add hl to the list. �/
7 def add(hl: HeapLabel): Boolean
8 /�� Add ur to this, helping to complete the current UnionReceiver if necessary. �/
9 def add(ur: UnionReceiver): Boolean

10 /�� Get the current UnionReceiver, possibly null. �/
11 def getUR: UnionReceiver
12 /�� Remove the current UnionReceiver if it is ur. �/
13 def remove(ur: UnionReceiver): Unit
14 /�� Prevent more labels from being added to this. Help to complete all the
15 � existing labels. Then remove this from head. �/
16 def close: Unit
17 /�� Remove done HeapLabels from the front of the list. �/
18 def tidy: Unit
19 g
20 private def tidyHeapLabelList =
21 head.getLabel matchf case hll: HeapLabelList => hll.tidy; case => f g g

Figure 21: Interface of the HeapLabelList class, and the tidyHeapLabelList func-
tion.

HeapLabels are de�ned in Figure 20. Each contains a next reference to allow
them to be formed into a linked list, and a boolean done, which is set when
the relevant steps are completed. We explain the subclasses when we explain
how the critical steps are implemented. Figure 20 also de�nes the UnionReceiver

labels. These simply contain a reference to the giving heap, and a boolean
indicating whether the union has been completed.
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Figure 21 gives the interface of the HeapLabelList class. We only sketch the
implementation, in the interests of brevity, since it is fairly straightforward. The
HeapLabels are arranged in a linked list, closely following the lock-free queue of
Michael and Scott [MS96]. The head of this list and the current UnionReceiver

(possibly null) are encapsulated into a pair to make them atomically updateable.
The two add operations add a HeapLabel or a UnionReceiver, respectively; the lat-
ter might need to help to complete the current UnionReceiver, �rst, but takes no
action if ur is the current UnionReceiver, or if ur.done is true. The close operation
helps to complete all the current operations, and then removes the HeapLabelList
from the heap's head. If an add operation �nds that the HeapLabelList is being
closed, it helps with that and returns false to indicate a failure. The remove oper-
ation removes the current UnionReceiver; this happens after it is marked as done.
When an operation is completed, the label's done label is set; the function tidy (as
an optimization) removes such labels from the list; the function tidyHeapLabelList

(in the BinomialHeap class) invokes tidy on the current HeapLabelList, if any.

Rule 4 A node with a HeapLabelList label can be updated only as follows.

� To remove the label if all the operations in it are complete;

� To update its next reference from null, either to insert a new node, or as
the joining CAS of a union;

� To perform the pred update of the deletion of the following node n; how-
ever if the HeapLabelList contains a UnionReceiver, and the joining CAS has
happened with n as the �rst node of the giving heap, then the correspond-
ing UnionGiver must �rst be updated to record that the CAS has happened
(corresponding to step 4 of the union).

11.2 The labelling of the giving heap

Recall that the union operation operates on the receiving heap, and takes the
giving heap as an argument. However, some steps are performed on the giving
heap.

The union operation starts by labelling the giving heap's head node, via the
labelGiverForUnion function (Figure 22), which returns the label added and the
�rst proper node of the giving heap. It �rst prepares the UnionGiver label for
the giving heap, and the UnionReceiver label for the receiving heap. Figures 23
and 27 give the UnionGiver class; the class encapsulates a lot of functionality,
which we explain as we use it.

The labelGiverForUnion function tests whether the giving heap is empty; if
so, it returns null as the �rst node of the heap, and the union function returns.
Otherwise, if the head has a null label, it tries to add the UnionGiver label; if the
head's label is not null, it helps with the corresponding operation, and re-tries.
It then initialises the UnionGiver to store the �rst node, the heap indirection
and the epoch of the giving heap. It is important that this happens after the
UnionGiver label is added to the header, to ensure the information is current.
The information remains current until updated as part of this operation, or this
labelling is backtracked, as captured by the following rule.

Rule 5 The heap indirection and epoch of a heap change only when that heap
is labelled with a UnionGiver label (at steps 6 and 7, respectively).
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1 def union(giver: BinomialHeap) = f
2 val (ug, giverFirst) = giver.labelGiverForUnion(this)
3 if (giverFirst != null) unionLabelReceiver(giver, giverFirst, ug, false)
4 g
5 private def labelGiverForUnion(receiver: Union): (UnionGiver, Node) = f
6 val ug = UnionGiver(receiver, new UnionReceiver(this))
7 var �rst : Node = null; var done = false // �rst will be �rst node
8 while(!done)f
9 val headState = head.getState

10 if (headState.next == null) done = true // Empty heap
11 else if (headState.label == null)f
12 if (head.compareAndSet(headState, headState.addLabel(ug)))f
13 �rst = headState.next; initUG(ug, �rst); done = true
14 g g
15 else help(head, headState)
16 g
17 (ug, �rst )
18 g
19 private def initUG(ug: UnionGiver, �rst: Node) = ug.init(�rst, heapIndirection.get, epoch.get)
20 private def initUG(ug: UnionGiver) = initUG(ug, head.getState.next)

Figure 22: The union, labelGiverForUnion and initUG functions.

1 case class UnionGiver(receiver: Union, ur: UnionReceiver) extends Labelf
2 /�� A triple of the �rst node, the heap indirection and the epoch of the giving heap. �/
3 private val state = new AtomicReference[(Node, HeapIndirection, Long)](null)
4

5 /�� Initialise with the �rst node, heap indirection and epoch of the giving heap. �/
6 def init( �rst : Node, hi: HeapIndirection, epoch: Long) =
7 if (state.get != null jj ! state.compareAndSet(null, (�rst, hi, epoch)))
8 assert(state.get == (�rst, hi, epoch) jj joined jj aborted)
9 def isInit = state.get != null

10 /�� The �rst proper node of the giving heap. �/
11 def �rst = state.get. 1
12 /�� The HeapIndirection of the giving heap. �/
13 def heapIndirection = state.get. 2
14 /�� The epoch of the giving heap. �/
15 def epoch = state.get. 3
16 /�� If the labelling using this is aborted, the UnionReceiver label that replaces it. �/
17 @volatile var replacedBy: UnionReceiver = null
18 /�� Abort this labelling, setting ur to be the UnionReceiver label that replaces it. �/
19 def abort(ur: UnionReceiver) = f
20 assert(replacedBy == null jj (replacedBy eq ur)); replacedBy = ur
21 g
22 /�� Has the labelling with this been aborted? �/
23 def aborted = replacedBy != null
24 /�� A sequence counter. �/
25 val seq = UnionGiver.seq.getAndIncrement
26 ...
27 g
28 /�� Companion object for UnionGiver. �/
29 object UnionGiverf val seq = new AtomicInteger(0) g

Figure 23: Part of the UnionGiver class, and the UnionGiver companion object.
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1 private def unionLabelReceiver(
2 giver: Union, giverFirst: Node, ug: UnionGiver, helping: Boolean) = f
3 assert(((giver.head.getLabel eq ug) jj ug.aborted jj ug.joined) && ug.isInit)
4 var done = false; val ur: UnionReceiver = ug.ur
5 while(!done)f
6 val headState = head.getState
7 if (ug.aborted)f if(!helping) return union(giver) else return g
8 else if (ur.done) return

9 else headState.label matchf
10 case null =>
11 val hll = new HeapLabelList(this, ur)
12 done = head.compareAndSet(headState, headState[label 7! hll])
13 case hll: HeapLabelList => done = hll.add(ur)
14 case ug1: UnionGiver =>
15 breakLoop; if(!ug1.aborted && !ug.aborted) help(head, headState)
16 case => help(head, headState)
17 g // end of match
18 g // end of while(!done)
19 unionJoin(giver, giverFirst, ug)
20 g

Figure 24: The unionLabelReceiver function.

Another thread might help with the initialisation via one of the initUG functions;
in each case, it provides consistent values until the joining CAS or the labelling
is backtracked, as captured by the assertion within init.

Rule 6 A node with a UnionGiver label can be updated only as follows.

� To clear this label and its next reference as step 8 of the union; or

� To replace the label with a HeapLabelList containing a UnionReceiver label,
to break a blocking loop (step 2).

11.3 The labelling of the receiving heap

The unionLabelReceiver function (Figure 24) attempts to add the UnionReceiver

label ur to the receiver's head node. However, it's possible that this node is
already labelled with a UnionGiver label, blocking this union, and that there is
a loop of such blocking; in this case, one of the UnionGiver labels is removed,
aborting that previous labelling. The function assumes that the giving heap
has already been labelled with ug, although the label might have been removed
if it has been backtracked or the union completed, and ug has been initialised.
The parameter helping is true for helping threads.

The normal operation is to add the UnionReceiver label ur to a new or existing
HeapLabelList (lines 11 and 13). However, there are several corner cases.

If the UnionGiver label ug has been backtracked, as captured by its aborted

function, then the union operation restarts, unless this thread is simply helping.
If the union operation has been completed (by a helping thread), as captured
by the done �eld on ur, then the function simply returns (this is necessary to
avoid re-adding the label, which could lead to the union being done twice).

If the head node is labelled with another UnionGiver label ug1, then the func-
tion breakLoop (described below) searches for a loop of blocking unions, and
backtracks one such label, aborting that labelling. If neither ug nor ug1 were
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1 /�� Try to detect a loop of UnionGiver labels, rolling one back if so. �/
2 private def breakLoop = f
3 var heap = this; var seen = List[(BinomialHeap, UnionGiver)]()
4 var done = false; var loop = false
5 while(!done && !loop)f
6 heap.head.getLabel matchf
7 case ug @ UnionGiver(h, ) =>
8 val pair = (heap, ug)
9 if (seen.contains(pair))f loop = true; seen = pair :: seen.takeWhile( != pair) g

10 elsef heap = h; seen ::= pair g
11 case => done = true
12 g g
13 if (loop && seen.forallf case (h,ug) => h.head.getLabel eq ug g)f
14 val (latest ,latestUG) = seen.maxBy( . 2.seq)
15 val List((prev, prevUG)) = seen.�lter( . 2.receiver == latest)
16 if (!prevUG.isInit) prev.initUG(prevUG)
17 latestUG.abort(prevUG.ur); latest.replaceLabel(latestUG, prevUG.ur)
18 g g
19 /�� Replace label ug by ur. �/
20 private def replaceLabel(ug: UnionGiver, ur: UnionReceiver) = f
21 val hll = new HeapLabelList(this, ur); val headState = head.getState
22 if (headState.label eq ug) head.compareAndSet(headState, headState.addLabel(hll))
23 g

Figure 25: The breakLoop and replaceLabel functions.

aborted, this operation helps with ug1 and re-tries. If ug is aborted, this will
be detected on the next iteration. If ug1 is aborted, it will be replaced with a
UnionReceiver label: if this is ur, then this thread will detect that fact on the next
iteration (the call to add at line 13 will return true); if it corresponds to some
third union operation, this thread will help that operation on the next iteration
(if it hasn't already been completed).

Finally, if the head node is labelled with some other label, then this is helped.
The code to detect blocking loops of union operations is in Figure 25. We

say that heap h is blocked by heap h 0 if h has a UnionGiver(h 0; ur) label (so
the corresponding union operation seeks to label h 0 with ur), but h 0 also has a
UnionGiver label. The function follows the path of such blocking, recording the
path of heaps and corresponding labels (in reverse order) in the variable seen. If
it returns to a pair that it has seen previously it has detected a potential loop;
it extracts the sub-path corresponding to that loop14. It then checks that each
of the heaps is still labelled with the previously seen UnionGiver label15.

The choice of which UnionGiver label in the loop to backtrack is fairly ar-
bitrary. However, we ensure that all threads select the same label. To this
end, each UnionGiver label includes a sequence number seq, initialised from the
companion object (see Figure 23). All threads select the label latestUG with max-
imum sequence number to roll back16. The (unique) pair (prev, prevUG) that is
blocked by latestUG is found. If necessary, prevUG is initialised. Then latestUG

is marked as aborted, to be replaced by the UnionReceiver label in prevUG (see
Figure 23); this ensures that all other threads that encounter latestUG know it is
being aborted, and know which label to replace it by; note that all threads that

14Here takeWhile extracts the pre�x of seen before the �rst instance of pair.
15The use of forall tests whether, for each pair (h,ug) in seen, h is still labelled with ug.
16Using the function maxBy.
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detect the loop pass in the same value for the replacement label. The replace-
ment itself is done by replaceLabel, replacing the UnionGiver by a new HeapLabelList

containing ur.
We now prove that the code is correct in the following sense: if a UnionReceiver

label is added, then the corresponding UnionGiver label was previously added to
the giving heap, and initialised; the UnionGiver label has not been aborted and
will not be aborted subsequently; and no UnionReceiver label is added more than
once. We start by considering breakLoop.

Lemma 52 Suppose a call to breakLoop aborts a particular UnionGiver label
latestUG, replacing it by a UnionReceiver label prevUG.ur. Then

1. latestUG.ur has not been added to a node;

2. prevUG has been initialised, but not aborted, at the point of replacement.

Proof: Recall that after detecting a potential loop, breakLoop checks that each of
the nodes is still labelled as previously. Hence all these labels must have been on
those nodes throughout the period between the detection and the check (recall
that once a label is removed, it is never added again to a node). All threads
that detect that loop select the same label latestUG for aborting.

1. latestUG.ur cannot have been added to a node, since it would have been
added to one of the other heaps in the loop, and UnionReceiver labels are
removed after the corresponding UnionGiver label.

2. The code explicitly initialises prevUG (if necessary) before doing the re-
placement. prevUG cannot have been aborted prior to the point of latestUG
being replaced: if it had, it would necessarily have been as a result of a dif-
ferent blocking cycle, and prevUG would have been removed, so the current
blocking cycle wouldn't have been found.

�

Note, in particular, that the above lemma implies that once a node is labelled
with a UnionReceiver label, the corresponding UnionGiver cannot be aborted.

Lemma 53 Suppose a call to unionLabelReceiver is made following the stated
precondition, and that the call adds the corresponding UnionReceiver label. Then

1. The UnionGiver label has not been aborted;

2. The UnionReceiver label is not added twice.

Proof: Note that a UnionGiver label is marked as aborted before it is removed;
at that point, the head node of the receiving heap also has a UnionGiver label ug1.
Suppose, for a contradiction, that ug is aborted before ur is added. This must
be after the test at line 7 of Figure 24, and so after headState is read.

� If ur were added at line 12, then ug1 must have been added to head after
the read of headState, so the CAS would have failed.

� If ur were added at line 13, then again head's state must have been changed,
to close and remove hll and replace it with the UnionGiver label ug1; but then
the call to add would have failed (since hll has been closed).

� Lemma 52 dealt with the case of ur being added within breakLoop.
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1 private def unionJoin(giver: BinomialHeap, giverFirst: Node, ug: UnionGiver): Unit = f
2 var done = false
3 while(!done)f
4 ug.getLastInfo matchf
5 case (null, null , false) => // Find last node
6 val (last , lastState) = �ndLast; val label = lastState.label
7 assert(lastState.next == null && lastState.parentless &&
8 (label == null jj last == head && label.isInstanceOf[HeapLabelList]))
9 if (ug.setLastInfo(last, lastState)) done = updateLast(giverFirst, ug, last, lastState)

10 case (last, lastState, d) => // Another thread found last.
11 done = d jj updateLast(giverFirst, ug, last, lastState)
12 g // end of match
13 g // end of while
14 clearLast(giver, ug)
15 g
16 private def updateLast(
17 giverFirst : Node, ug: UnionGiver, last: Node, lastState: NodeState): Boolean = f
18 val lastLabel = if(head == last) lastState.label else UnionLast(ug)
19 val joinedLastState = lastState[next 7! giverFirst, label 7! lastLabel]
20 if (last .compareAndSet(lastState, joinedLastState))f ug.setDone(last, joinedLastState); true g
21 else if (ug.joined) true
22 elsef ug.clearLastInfo(last, lastState); false g
23 g // end of updateLast
24 case class UnionLast(ug: UnionGiver) extends Label

Figure 26: The unionJoin and updateLast functions, and the UnionLast class.

A similar argument shows that ur cannot be added twice. Recall that the
done 
ag is set before removing the label from the HeapLabelList. Suppose the
�rst addition is to a particular HeapLabelList hll1 . ur cannot be added a second
time to hll1 : the call to add tests if its argument equals its current HeapLabelList
or has had its done 
ag set. Hence hll1 must have been removed before headState
is read. But then the read of ur.done at line 8 would have given true. �

11.4 Joining the heaps

The joining CAS, and the subsequent update to the UnionGiver label, are coordi-
nated by the function unionJoin (Figure 26). This step is made more complicated
by the necessity to allow helping threads, and to ensure that two such threads do
not perform successful CASes from di�erent nodes. To this end, the UnionGiver

class (Figure 27) contains a variable lastInfo containing an atomic reference to a
triple of one of three forms:

1. (null, null, false), indicating that the joining CAS has not yet happened,
and the last node of the receiving heap is not currently stored;

2. (last, lastState, false), indicating that last was identi�ed as the last node of
the receiving heap, with state lastState, but that the joining CAS might not
yet have happened; threads may attempt the joining CAS from lastState;

3. (last, lastState, true), indicating that the joining CAS has been done upon
node last, producing state lastState.

Each thread starts by reading lastInfo. If it receives a result of form 1, it �nds
the last node and its state, using �ndLast; we adapt this function slightly from
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1 case class UnionGiver(receiver: Union, ur: UnionReceiver) extends Labelf
2 ...
3 private val lastInfo = new AtomicReference[(Node, NodeState, Boolean)](null, null, false)
4 /�� The last node in the receiving heap (or null, if unknown), its state, and whether
5 � the linearization point of the union has been reached. �/
6 def getLastInfo: (Node, NodeState, Boolean) = lastInfo.get
7 /�� Try to set information about last node of the receiving heap, if not already set. �/
8 def setLastInfo(last: Node, lastState: NodeState): Boolean = f
9 val oldLastInfo @ (oldLast, oldLastState, done) = lastInfo.get

10 oldLast == null && lastInfo.compareAndSet(oldLastInfo, (last, lastState, false)) jj
11 oldLast == last && oldLastState == lastState && !done
12 g
13 /�� Clear the information stored about the last node in the receiving heap, if
14 � it corresponds to last and lastState. �/
15 def clearLastInfo(last: Node, lastState: NodeState) = f
16 val oldLastInfo @ (oldLast, oldLastState, done) = lastInfo.get
17 if (last == oldLast && lastState == oldLastState)f
18 assert(!done); lastInfo.compareAndSet(oldLastInfo, (null, null, false))
19 g g
20 /�� Record that the joining CAS has been done, giving state newLastState for last. �/
21 def setDone(last: Node, newLastState: NodeState) = f
22 val oldLastInfo @ (oldLast, oldLastState, done) = lastInfo.get
23 assert(done jj last == oldLast)
24 if (!done) lastInfo.compareAndSet(oldLastInfo, (last, newLastState, true))
25 g
26 /�� Has the joining CAS been performed (so that the union is linearized)? �/
27 def joined = f
28 val (last , lastState, d) = lastInfo.get
29 if (d) true
30 else if (last != null)f
31 val newLastState = last.getState
32 if (newLastState.next == �rst)f setDone(last, newLastState); true g
33 else lastInfo .get. 3
34 g
35 else false
36 g
37 g

Figure 27: The UnionGiver class (continued).

the version in Section 7 to allow it to return a node labelled with a HeapLabelList,
which will be the case when the receiving heap is empty. It then tries to update
lastInfo to form 2; this fails (and returns false) if another thread has updated
lastInfo to a di�erent value. If the update is successful, it then tries to perform
the CAS itself using updateLast (see below). Alternatively, if the read of lastInfo
returns a node and state stored by another thread, if the CAS is not recorded
as having been done, it again attempts that CAS using updateLast.

The updateLast function attempts to update the last node, setting the next
reference to point to the �rst proper node of the giver heap, and adding
a UnionLast label if the receiving heap is non-empty (or else retaining the
HeapLabelList). If this succeeds, it updates lastInfo via setDone, into form 3. Recall
that if the CAS succeeds, it is the linearization point for the union operation.

If the joining CAS fails, the function tests whether another thread has per-
formed it, using the joined function on the UnionGiver label. Otherwise, it clears
lastInfo, resetting it to form 1 if no subsequent update has been performed on it.

The joined function tests whether lastInfo is in form 3, indicating that setDone
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1 private def clearLast(giver: Union, ug: UnionGiver) = f
2 val (last , lastState, true) = ug.getLastInfo
3 if (last != head) clearLastLabel(last, lastState)
4 completeUnion(giver, ug)
5 g
6 private def clearLastLabel(last: Node, lastState: NodeState) = f
7 assert(lastState.label.isInstanceOf[UnionLast])
8 last .compareAndSet(lastState, lastState.addLabel(null))
9 g

Figure 28: The clearLast and clearLastLabel functions.

has been called. Otherwise, if lastInfo is in form 2, it tests whether the stored
last now points to the �rst node of the giving heap; if so it calls setDone to record
this fact. If last does not point to �rst, it re-reads lastInfo in case, between lines 28
and 32, another thread called setDone, and subsequently the next reference of
last was updated. Informally this logic is correct because last continues to point
to �rst until after setDone is called; we justify this below.

The following rule applies to UnionLast labels.

Rule 7 The only change allowed on a node n with a UnionLast(ug) label is to
remove the label, which must be after a call to ug.setDone passing n and its state.

The UnionLast label is removed from the former last node of the receiving
heap, if applicable, using the function clearLast (Figure 28). The CAS is guar-
anteed to succeed unless another thread has already performed it, by Rule 7.

Lemma 54 The joining of the heaps works correctly: at most one joining CAS
succeeds, joining the last node of the receiving heap to the �rst node of the giving
heap; and calls to joined return true precisely after this CAS.

Proof: Figure 29 gives a state machine to illustrate the joining of the
heaps. Each state is labelled with a 4-tuple (lastInfoForm; lastStateCorrect ;
joined ; lastLabelled); where:

� lastInfoForm is either 1, 2 or 3, indicating the form of lastInfo.

� lastStateCorrect (in the cases lastInfoForm 6= 1 ) is a boolean indicating
whether the state lastState stored in lastInfomatches the current state of last.

� joined indicates whether a successful joining CAS has occurred.

� lastLabelled , in the case that joined is true, is either L indicating that last
is labelled with a UnionLast label, R indicating that such a label has been
removed, or E indicating that the receiving heap was empty (so last has a
HeapLabelList label).

We omit from the state diagram calls to setLastInfo and clearLastInfo that do
not change lastInfo, and unsuccessful joining CASes. Note that:

� The state diagram captures the logic of the functions on lastInfo.

� setLastInfo may make lastStateCorrect true or false, depending on whether
the state changed since the thread read it. Interference from other threads,
changing the state of last, can make it false, but cannot make it true (since
setLastInfo is always called with a previously read state, and NodeState ob-
jects are never re-used).
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Figure 29: A state machine illustrating the joining of the heaps.

� clearLastInfo is called only after an unsuccessful joining CAS, so if it changes
lastInfo, there must have been interference making lastStateCorrect false.

� The joining CAS can succeed only if the value of lastState used is still valid,
which implies there has been no interference.

� After the joining CAS has occurred, last.next cannot change before the
UnionLast label has been removed, by Rule 7, or before setDone is called, by
Rule 4 (in the case of a non-empty or empty receiving heap, respectively).

� In the states described in the previous item, a call to joined returns true, so
a thread whose CAS fails does not call clearLastInfo. Hence lastInfo cannot
change before a call to setDone; and no subsequent joining CAS can succeed.

� After the call to setDone, subsequent calls to joined again return true; and
calls to getLastInfo return a result of form 3; so again no subsequent joining
CAS can succeed.

� In the case of a non-empty receiving heap, the �rst attempt to remove the
UnionLast label succeeds, by Rule 7; and this is performed only after setDone
is called.

�

11.5 Completing the union

Most of the code relating to heap indirections is in Figure 30. Each Heap-
Indirection object has a variable next which references either a heap, or another
heap indirection17. Recall that each heap h has a variable heapIndirection which
references a HeapIndirection; this in turn references h, except temporarily during
a union. Each node has a variable heapIndirection, which is set to point to the
relevant heap indirection before the node is inserted; see Section 12.1.

The getHeap operation on a node calls the getHeap operation on its Heap-
Indirection. This follows a path of next references until it reaches the corre-
sponding heap. The heapOf operation on the heap normally returns that heap;
however, if it is currently the giving heap in a union that has been linearized,
then it returns the receiving heap. On receiving the result of heapOf, getHeap
checks whether its next reference has changed in the meantime, restarting if so.
Thus getHeap on a node always returns the correct heap; see Lemma 56. An

17Values of the type Either[BinomialHeap, HeapIndirection] are either of the form Left(h)
where h is a heap, or of the form Right(hi) where hi is a HeapIndirection.
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1 class HeapIndirection(heap: BinomialHeap)f
2 @volatile private var next: Either[BinomialHeap, HeapIndirection] = Left(heap)
3 def setNext(hi: HeapIndirection) = next matchf
4 case Left(h) => next = Right(hi); case Right(hi1) => assert(hi1 == hi)
5 g
6 def getHeap: BinomialHeap = next matchf
7 case Left(h) => val h1 = h.heapOf; if(next == Left(h)) h1 else getHeap
8 case Right(hi) => hi.getHeap
9 g

10 g
11 class BinomialHeapf
12 ...
13 def heapOf: ConcHeap = head.getLabel matchf
14 case ug @ UnionGiver(receiver, ) => if(ug.joined) receiver else this
15 case => this
16 g
17 g
18 class Nodef
19 ...
20 @volatile var heapIndirection: HeapIndirection = null
21 def getHeap: BinomialHeap = heapIndirection.getHeap
22 g

Figure 30: Code relating to HeapIndirections.

1 private def completeUnion(giver: Union, ug: UnionGiver) = f
2 giver.completeUnionOnGiver(ug); clearUR(head, ug.ur)
3 g
4 private def completeUnionOnGiver(ug: UnionGiver) = f
5 val hi = ug.heapIndirection; val newHi = ug.receiver.heapIndirection.get
6 val headState = head.getState
7 if (headState.label eq ug)f
8 if (heapIndirection.get == hi)f
9 hi.setNext(newHi); heapIndirection.compareAndSet(hi, new HeapIndirection(this))

10 g
11 val ep = ug.epoch; if(epoch.get == ep) epoch.compareAndSet(ep, ep+1)
12 head.compareAndSet(headState, headState[next 7! null, label 7! null])
13 g g
14 private def clearUR(node: Node, ur: UnionReceiver) = f
15 ur.done = true
16 node.getLabel matchf case hll: HeapLabelList => hll.remove(ur); case => fg g
17 g

Figure 31: The completeUnion, completeUnionOnGiver and clearUR functions.

enhancement is to perform path compression, replacing a path of next references
by a single link to the last HeapIndirection on that path; we omit the details.

The completeUnion operation (Figure 31) starts by calling completeUnionGiver,
which operates on the giving heap. This records the current heap indirection
of the receiver. If the heap's head is still labelled with the UnionGiver label (so
another thread has not completed these steps), and if the heap indirection is
the same as that recorded at the start of the union, it is updated to point to
the receiver's heap indirection, and replaced by a new heap indirection.

Next, completeUnionOnGiver increments the epoch from the value stored in
the UnionGiver label. It then updates the header node to remove the label and
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set the next reference to null.
Finally, completeUnion calls clearUR to mark the UnionReceiver label as done,

and remove it from the HeapLabelList.

Lemma 55 The code in Figure 31 correctly implements steps 6{9 of the union.

Proof: Recall (Rule 5) that a heap's heap indirection can change only when the
heap has a UnionGiver label; hence the receiver's heap indirection will not change
from the value read until after the union is completed; hence if the test at line 7
succeeds, the value in newHi is valid. Further, all threads that call setNext will
pass in the same value; only the �rst thread will succeed; and for others, the
assertion inside setNext will succeed. Similarly, only the �rst thread to replace
the giving heap's heap indirection will succeed.

The remaining steps are straightforward. Again, only the �rst thread to
attempt each step will succeed. �

The following lemma makes an assumption about nodes' heap indirections
being initialised correctly, which we discharge in Lemmas 59 and 60.

Lemma 56 Suppose that whenever a node is inserted into heap h, its heap
indirection is set to h.heapIndirection; then the getHeap function on a node always
returns the correct heap.

Proof: It is an invariant that following the sequence of HeapIndirections from a
node in h leads to h.heapIndirection, except while h is the giving heap in a union
between steps 3 and 6: the assumption of the lemma establishes this; the code
in completeUnionOnGiver re-establishes it for each union.

Hence, except between steps 3 and 6, the result of the lemma holds. At
step 3, each node becomes a member of the receiving heap; at this point, the
HeapIndirections still lead to the giving heap. Consider the call to heapOf on the
�nal HeapIndirection in this chain in this case.

� If the second read of next gives the same result as the �rst, then step 6 has
not happened, so the read of head in heapOf happened before step 8, and
so heapOf correctly returns the receiving heap.

� If the second read of next gives a di�erent result, then getHeap restarts: this
is necessary in case the read of head in heapOf happened after step 8, and
so returned that heap.

Thus heapOf correctly returns the receiving heap. �

11.6 Helping with a union

Figure 32 contains the code for helping with a union. (We explain the case of
Inserted labels in Section 12.1.)

Helping with a UnionLast label is straightforward: it calls setDone, then clears
the label, corresponding to the two transitions from state (2 ;F ;T ;L) in Fig-
ure 29.

The subsidiary function helpUG helps with a UnionGiver label ug; this simply
calls the appropriate sub-function: recall that all the earlier functions were
written to allow helping threads, as long as the expected earlier steps have been
performed. If the corresponding UnionReceiver label ur has been added, it calls
either clearLast or unionJoin, depending on whether the joining CAS has been
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1 private def help(helpNode: Node, helpState: NodeState) = helpState.label matchf
2 ...
3 case UnionLast(ug) =>
4 ug.setDone(helpNode, helpState); clearLastLabel(helpNode, helpState)
5 case ug: UnionGiver => helpUG(helpNode, helpState, ug)
6 case hll: HeapLabelList => hll.close
7 case Inserted(node, ia) =>
8 assert(helpState.next == node); clearInserted(node, helpNode, helpState, ia)
9 g

10 /�� Help with a UnionGiver label. �/
11 private def helpUG(helpNode: Node, helpState: NodeState, ug: UnionGiver) = f
12 val UnionGiver(receiver, ur) = ug; val giver = ur.giver
13 if (ug.joined) receiver.clearLast(giver, ug)
14 else if (receiver.labelledWith(ur)) receiver.unionJoin(giver, ug.�rst, ug)
15 else if (ug.aborted) giver.replaceLabel(ug, ug.replacedBy)
16 elsef
17 if (!ug. isInit ) giver.initUG(ug, helpState.next)
18 receiver.unionLabelReceiver(giver, ug.�rst, ug, true)
19 g
20 g
21 /�� Is the head node labelled with a HeapLabelList containing ur? �/
22 private def labelledWith(ur: UnionReceiver) = head.getLabel.matchf
23 case hll: HeapLabelList => hll.getUR eq ur; case => false
24 g
25 /�� Help with a UnionReceiver label. �/
26 private def helpUnionReceiver(ur: UnionReceiver) = f
27 val giver = ur.giver
28 giver.head.getLabel matchf
29 case ug @ UnionGiver(receiver, ur1) if ur1 eq ur =>
30 if (ug.joined) receiver.clearLast(giver, ug) else receiver.unionJoin(giver, ug.�rst , ug)
31 case => ur.done = true
32 g g

Figure 32: Helping with a union.

performed. If ug has been aborted, it helps to replace it with the appropriate
label. Otherwise, it makes sure that ug is initialised, and helps add ur.

Helping with a HeapLabelList amounts to calling the close operation on it:
recall that this helps with all the operations it contains, and then removes that
label.

The function helpUnionReceiver is called by a HeapLabelList, either when it is
being closed, or if another thread is trying to add a di�erent UnionReceiver. If the
corresponding UnionGiver is still on the head of the giving heap, it calls clearLast
or unionJoin, appropriately. Otherwise, all the steps of the union except step 9
have been performed, so it simply marks ur as done (the calling code will then
remove it from the HeapLabelList).

11.7 Correctness

Proposition 57 The union operation works correctly: the overall e�ect is to
transfer the keys of the giving heap to the receiving heap.

Proof: This follows from the previous lemmas, and considering the overall e�ect
of the updates (see Figure 19). In particular, Lemma 54 shows that the heaps
are joined appropriately, with the linearization point happening at the joining
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CAS. Lemmas 52 and 53 shows that there is a one-one relationship between
UnionGiver and UnionReceiver labels; further a union operation re-labels the giving
heap only if its earlier attempt was aborted. Lemma 55 shows that the union
is completed correctly, tidying up after itself (but maybe leaving a HeapLabelList

on the receiving heap. Finally, calls to the various helping functions call other
functions only after the relevant prerequisite steps have been performed. �

We now prove a liveness result. Recall from the Introduction that our ap-
proach is to prove that the operation completes under the assumption that no
other thread makes any update to any node; here, we consider the addition of
a label to a HeapLabelList to be an update on the corresponding node.

Lemma 58 Consider a call to union such that, from some point on, no other
thread makes an update to any node. Then union completes after a �nite number
of steps other, perhaps, than steps involved in helping other operations. Like-
wise, any attempt to help with a union completes after a �nite number of steps
other, perhaps, than recursively helping.

Proof: The giver-labelling step might need to help with other operations cor-
responding to labels on the head node, possibly several if the head has a
HeadLabelList, but only �nitely many. It will then successfully add the UnionGiver
label.

Likewise, the receiver-labelling step may need to help �nitely many other
operations. If, as the result of a blocking loop, its UnionGiver label is aborted, it
will also have to help with the operation that replaced it; but this will happen
at most once (since no more labels are added, by assumption).

For the joining CAS, it is possible that, after other threads stop updating
nodes, that some \helping" threads call setLastInfo with stale values; however,
there will be �nitely many such, and each will be cleared by the call to updateLast.
Eventually, setLastInfo will be called with the correct last node, and then the
joining CAS will succeed.

Steps 4{9 are straightforward: the code contains no loop or recursion, so is
necessarily �nite.

The result about helping follows in the same way. �

12 Adapting operations to deal with concurrent

unions

In this section we discuss how to adapt the code for other operations to deal
with concurrent unions.

Each operation on the receiving heap is una�ected (other than maybe having
to help with a union). The union just has the e�ect of adding several nodes to
the end of the root list, and the implementations already deal with this.

Also, merge is una�ected. If a thread executes tidy on the giving heap in
a union, it may end up merging two trees in the receiving heap: but this is
completely harmless. Note that tidy never returns to the head node of its heap
after it has started traversing: to do so would risk merging nodes that were
added to the giving heap after the union with nodes in the receiving heap.
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12.1 Insertion

Insertion is somewhat harder. If the heap is empty and the head is labelled
with a HeapLabelList, we allow the new node to be inserted after the head (as
is allowed by Rule 4). While traversing to �nd a place to insert, we ignore
the other types of labels we have introduced to support unions (including the
Inserted labels that we introduce below): none can appear on the last node of
the heap, so there is no need to help.

Further, if while traversing the thread discovers that the current node has
been transferred to another heap, because of a giving union, it restarts the
traversal. However, it might be necessary to help to complete the union, to
ensure lock-freedom, as follows:

if (allowConcurrentUnion && curr != head && curr.getHeap != this)f
val headState = head.getState
headState.label matchf
case ug : UnionGiver => helpUG(head, headState, ug); case => fg

g
restart

g

The variable allowConcurrentUnion is true if giving unions may be performed con-
currently to other operations.

Recall, from Section 11, that we need to prevent the critical step (the insert-
ing CAS) from happening concurrently to a giving union, or else the insertion
may incorrectly happen on the receiving heap. To this end, we guard the critical
steps by placing a suitable HeapLabel (Figure 20) on the header node within a
HeapLabelList, thereby preventing a concurrent giving union. We consider, in
turn, the two di�erent ways of inserting a node.

For the case of inserting the new node below a root node of degree 0, we
replace lines 21{23 of Figure 12 by

if (insertBelow(myNode, curr, currState)) return

else myNode.state = myNode.state[parent 7! null]

where the code for insertBelow is in Figure 33. When allowConcurrentUnion is false,
insertBelow acts equivalently to as in Section 6. When it is true, the code starts
by recording the heap's epoch. If then checks that parent is still in the current
heap. Assuming so, it sets the node's heap indirection to be that of the heap.

If then attempts to add a suitable InsertBelow label in a HeapLabelList to
the heap's head node, via the function labelHead. If (in the case of insertBelow)
parent's state changes, or this heap is the giving heap in a union, then the
attempt to insert would fail (similar considerations apply with other functions,
below). Therefore insertBelow passes parent and its state, and the current epoch to
labelHead, so that if it detects a change it can fail (and return false). Otherwise,
if the head has a null label, it attempts to add a new HeapLabelList containing
the HeapLabel. If the head has an existing HeapLabelList, it attempts to add the
HeapLabel to it. In other cases (including a UnionGiver), it helps with the label.

If the labelling succeeds, insertBelow calls completeInsertBelow; other threads
may help with this part. It �rst checks that the epoch is unchanged, which
implies that parent is still in the current heap. It then checks that label has
not been marked as done, as an optimisation. Finally, it tries to perform the
inserting CAS. Whether or not these steps succeed, it marks label as done, and
tidies the HeapLabelList. If the CAS did not succeed, it needs to test whether

66



1 private def insertBelow(myNode: Node, parent: Node, parentState: NodeState): Boolean =
2 if (allowConcurrentUnion)f
3 val ep = epoch.get
4 if (parent.getHeap == this)f
5 myNode.heapIndirection.set(heapIndirection.get)
6 val label = InsertBelow(myNode, parent, parentState, ep)
7 labelHead(label, parent, parentState, ep) &&
8 completeInsertBelow(myNode, parent, parentState, label)
9 g

10 else false
11 g
12 else insertBelow0(myNode, parent, parentState)
13 private def insertBelow0(myNode: Node, parent: Node, parentState: NodeState): Boolean =
14 parent.compareAndSet(parentState, parentState[degree 7! 1, children 7! List(myNode)])
15 private def labelHead(label: HeapLabel, n: Node, nState: NodeState, ep: Long): Boolean = f
16 while(true)f
17 if (n.getState != nState jj epoch.get != ep) return false
18 elsef
19 val headState = head.getState
20 headState.label matchf
21 case null => // add new HeapLabelList
22 val hll = new HeapLabelList(this, label)
23 if (head.compareAndSet(headState, headState[label 7! hll])) return true
24 case hll: HeapLabelList => if(hll.add(label)) return true
25 case l => help(head, headState)
26 g g g g
27 private def completeInsertBelow(
28 myNode: Node, parent: Node, parentState: NodeState, label: InsertBelow): Boolean = f
29 val ok =
30 epoch.get == label.epoch && !label.done && insertBelow0(myNode, parent, parentState)
31 label.done = true; tidyHeapLabelList
32 if (ok) true
33 elsef // test if another thread did the CAS
34 val newParentChildren = parent.getState.children
35 newParentChildren.nonEmpty && newParentChildren.last == myNode
36 g g

Figure 33: insertBelow and related functions.

some other thread has performed it; this is the case if and only if myNode is now
the last child of parent.

Lemma 59 Inserting as in Figure 33 works correctly. In particular: myNode is
inserted into the heap this on which insert was called; myNode's heap indirection
is set correctly; and the primary thread receives the correct result.

Proof: Note that the InsertBelow is placed on the head node before the inserting
CAS, and remains there until after that CAS. Hence during this period, there
cannot be a giving union on this heap. Further, parent was found to be in the
expected heap at line 4; if this heap were a giving heap in a union before the
addition of InsertBelow, then the epoch would have increased; hence the check of
the epoch at line 30 ensures that parent is still in the heap.

Similarly, if the epoch is unchanged, then the heap's heapIndirection is un-
changed from where it was read at line 5. Hence myNode's heap indirection is
initialised correctly.

If the �rst thread to attempt the CAS succeeds, then all other threads detect
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this at line 35; note that the property of being parent's last child is maintained
by all other operations. Hence all threads return true.

Conversely, if the �rst thread to test the epoch �nds it changed, then so do all
subsequent threads. And if the �rst thread to attempt the CAS fails, then so do
all subsequent threads. In these cases, the thread that called insertBelow returns
false (a helping thread may return true, at line 35, if a subsequent attempt by
the primary thread leads to myNode being inserted below parent; but this result
is ignored). �

We now consider the case of inserting at the end of the root list. We replace
lines 15{17 of Figure 12 by

if (insertAtEnd(myNode, curr, currState)) return else BackO�()

where the code for insertAtEnd is in Figure 34. We call insertAtEnd in the same
way if the heap is empty and the head is labelled with a HeapLabelList.

If allowConcurrentUnion is false, the operation is equivalent to as in Figure 12.
Otherwise, if last = head, there is no need to add a HeapLabel: if a concurrent
giving union happens, the state of head changes so the subsequent CAS fails;
however, it is necessary to set the node's heap indirection.

In the remaining case, things are slightly more complex than with insertion
below a root node, because there is no convenient way of detecting whether the
insertion has been done by another thread. Our approach is to add an Inserted

label (Figure 34) onto last at the same point as the inserting CAS. We then set
the success 
ag in the InsertAtEnd HeapLabel ia, before removing the Inserted label.
The relevant invariant is: the inserting CAS for myNode succeeded if and only
if last has an Inserted label containing myNode or ia.success is true.

insertAtEnd �rst records the current epoch. It then checks that last is still in
the current heap. If so, it sets myNode's heap indirection. It then calls labelHead
to try to add an InsertAtEnd HeapLabel to the head, as long as last's state and
the epoch do not change. If this is successful, it calls completeInsertAtEnd; other
threads can help with this part.

completeInsertAtEnd checks that the epoch has not changed, and (as an opti-
misation) that another thread has not marked the InsertAtEnd label as done. In
this case, it attempts to CAS the new node after last, adding an Inserted label at
the same time. If this succeeds, it calls clearInserted to complete the update, and
returns true. If either of the previous steps fails, it calls testIfInserted, to test if
another thread has completed the insertion.

clearInserted sets the success 
ag in the InsertAtEnd label, to indicate to other
threads that the inserting CAS succeeded. It then removes the Inserted label
from last. Finally, it marks the InsertAtEnd label as done. Note (Figure 32) that
another thread that encounters the Inserted label can help by calling clearInserted.

testIfInserted starts by testing if ia.done is set; if so, ia.success indicates
whether the CAS was successful. Otherwise, if last has an Inserted label con-
taining myNode, another thread did the CAS; this thread calls clearInserted to
complete the update and returns true. Otherwise, it sets the done �eld in ia and
returns the result of ia.success.

Lemma 60 Inserting as in Figure 34 works correctly. In particular: myNode is
inserted into the heap this on which insert was called; myNode's heap indirection
is set correctly; and the primary thread receives the correct result.
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1 private def insertAtEnd(myNode: Node, last: Node, lastState: NodeState): Boolean = f
2 assert(lastState.next == null && lastState.parent == null &&
3 (lastState.label == null jj last == head && lastState.label.isInstanceOf[HeapLabelList]))
4 if (allowConcurrentUnion && last != head)f
5 val ep = epoch.get
6 if (last .getHeap == this)f
7 myNode.heapIndirection.set(heapIndirection.get)
8 val label = InsertAtEnd(myNode, last, lastState, ep)
9 labelHead(label, last, lastState, ep) &&

10 completeInsertAtEnd(myNode, last, lastState, label)
11 g
12 else false
13 g
14 elsef
15 if (allowConcurrentUnion) myNode.heapIndirection.set(heapIndirection.get)
16 last .compareAndSet(lastState, lastState.setNext(myNode))
17 g g
18 private def completeInsertAtEnd(
19 myNode: Node, last: Node, lastState: NodeState, ia: InsertAtEnd): Boolean =
20 if (epoch.get == label.epoch && !ia.done)f
21 val lastStateL = lastState[next 7! myNode, label 7! Inserted(myNode, ia)]
22 if (last .compareAndSet(lastState, lastStateL))f
23 clearInserted(myNode, last, lastStateL, ia); true
24 g
25 else testIfInserted(myNode, last, ia)
26 g
27 else testIfInserted(myNode, last, ia)
28 private def clearInserted(myNode: Node, last: Node, lastStateL: NodeState, ia: InsertAtEnd) = f
29 ia .success = true; last.compareAndSet(lastStateL, lastStateL[label 7! null])
30 ia .done = true; tidyHeapLabelList
31 g
32 private def testIfInserted(myNode: Node, last: Node, ia: InsertAtEnd): Boolean = f
33 if (ia .done) ia.success
34 elsef
35 val lastState = last.getState
36 lastState.label matchf
37 case l @ Inserted(n, ) if n == myNode => clearInserted(myNode, last, lastState, ia); true
38 case => ia.done = true; ia.success
39 g g g
40 /�� node has just been inserted after the node of this label. �/
41 case class Inserted(node: Node, ia: InsertAtEnd) extends Label

Figure 34: insertAtEnd and related functions, and the Inserted class.

Proof:Most parts of the proof are very similar to that for Lemma 59, so we omit
them. To see that testIfInserted gives the correct result, note that the following
invariant holds: the inserting CAS for myNode succeeded if and only if last has
an Inserted label containing myNode or ia.success is true; and the Inserted label is
removed before ia.done is set to true. �

12.2 Minimum

Recall that the minimum operation needs to guard against a concurrent giving
union: less careful approaches risk returning a value from the receiving heap.
However, if minimum detects that the joining CAS of a giving union has hap-
pened, it can immediately return None, with the operation linearized at some
point between the joining CAS and the removal of the UnionGiver label, during
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private def getEpoch: Option[Long] = f
val ep = epoch.get
head.getLabel matchf
case ug: UnionGiver if ug.joined => None
case => if(epoch.get == ep) Some(ep) else None

g g
private def epochValid(ep: Long): Boolean = head.getLabel matchf
case ug: UnionGiver if ug.joined => false; case => epoch.get == ep

g

Figure 35: The getEpoch and epochValid funcitons.

which time the heap was empty. The revisions to the version of the minimum

function in Section 8 are small, so we just explain the changes.
The revised minimum function starts by obtaining the current epoch using

the function getEpoch (Figure 35). If there is a current giving union that has
been linearized, then getEpoch returns None, and minimum also returns None. If
getEpoch returns a value Some(startEpoch) then (as an optimisation) each time
the traversal restarts, it tests whether the epoch has changed, and if so again
returns None.

The advance function (Figure 10) is adapted so that from the head node of a
giving heap in a union where the joining CAS has occurred, it returns a result
indicating that the heap is empty:

case ug: UnionGiver =>
result = skipDeleted(currState.next); if(ug.joined) result = (null, �1, List())

If minimum reaches the end of the traversal, and �nds a candidate value to
return, it again checks whether the heap has been the giving heap in a union.
We replace line 20 of Figure 15 by

else if (! minNode.deleted)f
if (allowConcurrentUnion && !epochValid(startEpoch)) return None
else return Some(minNode.key)

g

The function epochValid checks that its argument is still the valid epoch, taking
into account a union that has been linearized but for which the epoch variable
hasn't been incremented.

There is another subtlety. The traversal might encounter a node n that was
marked for deletion while it was in some other heap h, but h has subsequently
been the giving heap in a union with the current heap; in this case, it would
be incorrect to return n's key. We deal with this by extending Delete labels to
include a heap �eld, recording the heap of the deletion. We then replace line 8
of Figure 15 by the following, to ignore nodes deleted in another heap.

case delLabel: Delete
if delLabel.ts � startTime <= 0 jj allowConcurrentUnion && delLabel.heap != this =>
insertNodes(nState.children)

Proposition 61 The revised version of minimum works correctly, as stated in
Proposition 44 and Lemma 45. Further, if minimum returns a proper result,
there was no joining CAS of a giving union during the traversal.
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Proof: Most of the proof is as earlier, so we just sketch the changes. If the
function detects that the heap has been the giving heap in a union, and returns
None, we linearize the operation at some point between the joining CAS and
when the UnionGiver label is removed: the heap contains no nodes at that point.

Suppose the function returns a proper result. Then necessarily no joining
CAS of a giving union was concurrent to the traversal. Lemma 43 still holds;
in particular when this heap is the receiving heap in a union, the new nodes are
added later in the root list than node r . The proof in Proposition 44 then goes
through as before: in particular, curr remains a root node of the current heap
throughout the traversal.

Finally, we explicitly avoid adding a node to minList that had been marked
for deletion in a di�erent heap. When we consider deletion (Section 12.3) we
will ensure that when the marking happens, the node really is in the appropriate
heap, i.e. before the joining CAS of a giving union. Further, the starting epoch
is recorded before startTime; hence, if, the node were marked in the current heap
and transferred to another heap before the epoch was read, then transferred
back to this heap, it would have been marked before startTime and so rejected.
Hence, if the value returned is marked for deletion, that marking must have
happened in the current heap during the current epoch. �

12.3 deleteMin

The traversal for deleteMin is revised in a similar way to that for minimum. At
the start, the epoch is obtained using getEpoch: if this indicates that a giving
union is happening, deleteMin can immediately return None. Otherwise, each
time the traversal restarts, or when it �nds a candidate node for deletion, if it
�nds that the epoch has increased, it again returns None.

Recall that we need to prevent a giving union concurrent to the labelling of
the node delNode to be deleted. Our approach is similar to that for insertion:
we add a HeapLabel (speci�cally a LabelForDelete) to the head node during the
labelling of delNode. To this end, we replace line 3 of Figure 7 by

val delStateL =
if (allowConcurrentUnion)
labelHeadForDelete(pred, delNode, delState, delState.next, startEpoch)

else labelForDelete(pred, delNode, delState, delState.next)

and similarly with line 16.
The function labelHeadForDelete (Figure 36) prepares a Delete label delLabel

for delNode; recall (Section 12.2) we have extended such labels with a heap �eld
to indicate the heap of the deletion. It then creates a LabelForDelete label lfd, and
tries to add it to the head node using labelHead. If successful, it calls complete-
LabelForDelete; other threads may help with this.

completeLabelForDelete �rst checks that the epoch is not changed. If so, it tries
to add the Delete label to delNode (similarly to as with labelForDelete). Whether
or not, this succeeds, it marks lfd as done. If its own CAS failed, it checks
whether another thread succeeded: this is the case if and only if delNode now
contains the Delete label.

Further, the function �ndPred (Figure 11) needs to cope with the possibility
of delNode having been moved to another heap by a giving union; and if it fails
to �nd delNode, it again needs to consider the possibility that it has been moved
to another heap. To that end, �ndPred is revised as in Figure 37. This starts by
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1 private def labelHeadForDelete(pred: Node, delNode: Node, delState: NodeState,
2 newNext: Node, startEpoch: Long): NodeState = f
3 val delLabel = Delete(pred); delLabel.heap = this
4 val lfd = LabelForDelete(delNode, delState, newNext, startEpoch, delLabel)
5 if (labelHead(lfd, delNode, delState, startEpoch)
6 completeLabelForDelete(delNode, delState, newNext, startEpoch, lfd)
7 else null
8 g
9 private def completeLabelForDelete(delNode: Node, delState: NodeState, newNext: Node,

10 startEpoch: Long, lfd: LabelForDelete): NodeState = f
11 var delStateL: NodeState = null; var done = false
12 if (epochValid(startEpoch))f
13 delStateL = delState[next 7! newNext, seq 7! delState.seq+1, label 7! lfd.delLabel]
14 done = delNode.compareAndSet(delState, delStateL)
15 g
16 lfd .done = true; tidyHeapLabelList
17 if (done) delStateL
18 elsef delStateL = delNode.getState; if(delStateL.label eq lfd.delLabel) delStateL else null g
19 g

Figure 36: The functions labelHeadForDelete and completeLabelForDelete.

1 private def �ndPred(delNode: Node): (Node, NodeState) = f
2 val ep = epoch.get; val h = delNode.getHeap
3 if (h != this) h.�ndPred(delNode, sentinel)
4 elsef
5 ... // search as before
6 if (allowConcurrentUnion && epoch.get != ep && !delNode.deleted)
7 delNode.getHeap.�ndPred(delNode, sentinel)
8 elsef delNode.deleted = true; (delNode, null) g
9 g g

10 private def completePredUpdate(
11 pred: Node, predState: NodeState, delNode: Node, next: Node) : Boolean = f
12 assert(predState.next == delNode && predState.parentless)
13 predState.label matchf
14 case null => completePredUpdate0(pred, predState, delNode, next, null)
15 case hll: HeapLabelList =>
16 val ur = hll.getUR
17 if (ur != null) ur.giver.head.getLabel matchf
18 case ug @ UnionGiver( , ur1) if ur eq ur1 => ug.joined
19 case => fg // The UnionGiver has been removed, so already marked as joined
20 g
21 completePredUpdate0(pred, predState, delNode, next, hll)
22 case => help(pred, predState); false
23 g g

Figure 37: Revised versions of �ndPred and completePredUpdate; the function
completePredUpdate0 encapsulates the code in the null case of Figure 8.

storing, in ep, the current epoch. It then calls getHeap on delNode; if it is now in a
di�erent heap h, it recurses on that heap. Otherwise, it searches as in Figure 11.
If this fails to �nd delNode, but the epoch has changed, and the deleted 
ag has
not been set, it needs to search again in the new heap. Otherwise, delNode really
has been decoupled, so its deleted 
ag can be set.

Finally, we allow completePredUpdate to be performed when the predecessor
node has a HeapLabelList. However, we need to do so following Rule 4. Figure 37
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private def helpHL(label: HeapLabel) = label matchf
case ib @ InsertBelow(node, parent, parentState, epoch) =>
completeInsertBelow(node, parent, parentState, ib)

case ia @ InsertAtEnd(node, pred, predState, epoch) =>
completeInsertAtEnd(node, pred, predState, ia)

case lfd @ LabelForDelete(delNode, delState, newNext, startEpoch, delLabel) =>
completeLabelForDelete(delNode, delState, newNext, startEpoch, lfd)

g

Figure 38: The helpHL function.

does this: if a receiving union is underway, it calls joined on the corresponding
UnionGiver to ensure that if the joining CAS has happened, this is recorded.

Lemma 62 The revised version of �ndPred returns a correct result, as in
Lemma 25, except without the premiss of no concurrent giving unions.

Proof: The proof is mostly as earlier. Consider the case (line 8 of Figure 37)
that �ndPred fails to �nd delNode, deduces that it has been decoupled by another
node and so marks it as deleted. delNode was in the current heap at line 2. Since
then, the epoch hasn't changed, so step 8 of a giving union on this heap has
not happened since (if the epoch was read between steps 7 and 8 of a union,
then the search will be in the receiving heap). Hence, if delNode had not been
decoupled, it would have been reachable from head throughout this period, and
so the search would have found it. �

Proposition 63 The correctness results for deleteMin (Propositions 15 and 47)
still hold. Further, if deleteMin returns a proper result, there was no joining CAS
of a giving union between the start of the traversal and the marking of the node
for deletion.

Proof: The proof is again mostly the same as the proofs of earlier results, so we
simply sketch the di�erences. The case of returning None because a concurrent
giving union is detected is the same as in Proposition 61.

The code in Figure 36 ensures that no concurrent giving union happens
between the start of the �rst traversal and when the node is labelled. Hence
delNode really is in the expected heap when labelled. The code at the end of
completeLabelForDelete correctly identi�es whether another thread has labelled
delNode (recall that Delete labels are never removed). �

12.4 Helping with HeapLabels

Figure 38 gives the function helpHL, which is called by a HeapLabelList to help to
complete the operation corresponding to a HeapLabel. Each branch simply helps
to complete the corresponding part of the operation.

12.5 Liveness

Lemma 64 Suppose, from some point on, other threads perform no updates on
nodes. Then each of the new versions of operations performs a �nite number of
steps, other, perhaps, than helping. Likewise, each attempt to help one of these
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operations performs a �nite number of steps other, perhaps, than recursively
helping.

13 Linearization

In this section we consider linearizability of the binomial heap. Note that for
minimum and deleteMin operations, it is enough to consider just the �nal (suc-
cessful) traversal. Below, we say just \traversal" to mean the �nal traversal.
Note also that we can concentrate on a single heap: a history is linearizable if
its restriction to each object is linearizable [HW90]; for both heaps, we linearize
each union at the joining CAS.

We need to capture what are legal histories for a sequential binomial heap.
We describe histories using events of the form opo(args): res to represent a call
to operation op on heap object o, with arguments args, returning res; we omit
args or res when null; we omit o when obvious from the context. A sequential
history is a sequence of such events. The state of a binomial heap after a
history h is the multiset of keys that have been added but not yet removed (we
use set notation to describe multisets):18

stateAfter
o
(h) = fk j inserto(k) 2 hg[S

fstateAftero0(h 0) j h 0 ++ huniono(o
0)i � hg�

fk j deleteMino : Some(k) 2 hg:

De�nition 65 A sequential history h is legal for a binomial heap if

� For each pre�x h 0 ++ hminimum:Nonei or h 0 ++ hdeleteMin:Nonei of h, the
heap is empty after h 0; i.e. stateAfter(h 0) = fg;

� For every pre�x h 0++hminimum: Some(k)i or h 0++hdeleteMin: Some(k)i of h,
k is the minimum element of the heap after h 0: k = min(stateAfter(h 0)).

The following lemmas will be useful later.

Lemma 66 Suppose:

1. h1 ++ hdeleteMin: Some(k)i ++ h2 ++ h3 is a legal sequential history;

2. k is the smallest key in the heap after h1 ++ h2 ;

3. h2 contains no deleteMin: Some(k 0) or minimum: Some(k 0) operation with
k 0 > k, no deleteMin:None or minimum:None operation, and no giving
union.

Then h1 ++ h2 ++ hdeleteMin: Some(k)i ++ h3 is a legal sequential history.

Proof: Consider just operations on ho. We need to show that, within h1++h2++
hdeleteMin: Some(k)i++h3 , each key returned by a deleteMin or minimum operation
is indeed the minimum key at that point, and that if such an operation returns
None, the heap is empty at that point. This is true of the deleteMin: Some(k)
operation, by assumption 2. It is true of any such operation within h1 or h3 ,
since the state of the heap is the same as at the corresponding point in the

18We use � to denote history pre�xing.
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original history. By assumption 3, no deleteMin or minimum operation within h2
returns None.

Consider a pre�x

h1 ++ h02 ++ hdeleteMin: Some(k0)i or h1 ++ h02 ++ hminimum: Some(k0)i

of h1 ++ h2 . By assumption 3, k 0 � k . Now, k 0 was the minimum key after
h1 ++ hdeleteMin: Some(k)i ++ h 02 , so it must also be the minimum key after
h1 ++ h 02 . �

Lemma 67 Consider two concurrent minimum or deleteMin operations op1
and op2 of keys k1 and k2 with k1 < k2 , on the same heap, such that op1
�nishes its traversal before op2 . Then k1 must have been marked (and maybe
removed from the heap) before op2 �nished its traversal.

Proof:

If k1 had not been marked, then op2 would have returned k1 , by Propositions 44
and 47. �

Below we talk about various events: the invocation and returns of operations;
the successful CAS for an insertion; the end of the �nal traversal for a minimum

or deleteMin; the marking of a node for deletion; the completion of the deletion;
or a linearization point. As is standard, we assume that no two events occur
at the same time, except we sometimes de�ne a linearization point to be at
the same time as another event of the same operation: if two other events,
necessarily by di�erent threads, really do happen at the same time, then they
could have happened in either order. Below we sometimes de�ne a time t to
be \immediately after" some event: by this, we mean that t happens after that
event but before any other.

Theorem 68 The binomial heap implementation is linearizable.

Proof: We describe, given an execution, how to build a corresponding legal
sequential history suitable for linearization. Consider an intermediate state
within an execution. We de�ne the corresponding abstract state for each heap,
as a multiset of keys, as follows: a key k is in the multiset if it is in the heap
(so the joining CAS of a giving union has not transferred it to another heap),
and the instance of deleteMin that deletes the corresponding node (if any) has
not yet �nished its traversal. Note that this is a subset of the unmarked keys
in the heap.

We start by linearizing the insert, union, deleteMin and unsuccessful minimum
operations in a way that is sound with respect to this abstraction; later we
explain how to add successful minimum operations, which may require moving
the linearization points of deleteMin operations, and re-de�ning the abstract
state.

� We linearize each insert or union at the point of its successful inserting or
joining CAS. This corresponds to the abstract state de�ned above.

� We linearize each successful deleteMin at the end of its (�nal) traversal.
Suppose it returns key k . Propositions 47 and 63 tell us that the node
in question was a minimal unmarked node at this point; hence, since the
abstract state is a subset of the unmarked keys, k was the smallest key in
the corresponding abstract state, as required.
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� We linearize each unsuccessful minimum or deleteMin at the point, implied by
Propositions 44 and 61, or 47 and 63, at which the heap has no unmarked
keys; so again the linearization point corresponds to the abstract state.

We now seek to linearize the successful minimum operations. In most cases,
we linearize the operation when the traversal �nishes. However, if a concurrent
deleteMin traversal has already identi�ed the node in question as the minimum
(but, necessarily, not yet completed the deletion), then we need to �nd a di�er-
ent, earlier, linearization point for the minimum; this may also require moving the
linearization point of the deleteMin. We re-interpret the corresponding abstract
state so that elements are removed at that new linearization point.

We pick linearization points for successful minimum operations in increasing
order of keys. Suppose we have dealt with all keys k 0 < k , and we are looking
to linearise minimum operations for key k . Our induction hypothesis is that we
have found linearization points for all insertions, unions, deleteMin operations,
and unsuccessful minimum operations, and all minimum operations for keys k 0 < k ,
and maybe some for key k (but none with larger keys), and we have de�ned a
corresponding abstract state, such that:

IH1. Each insert or union operation is linearized when its keys are added to the
abstract state;

IH2. Each unsuccessful deleteMin or minimum operation is linearized at a point
at which there was no unmarked key in the heap, and the corresponding
abstract state was empty;

IH3. Each deleteMin operation giving a key k 0 � k , and each minimum operation
that has been linearized so far (also giving a key k 0 � k) is linearized at a
point at which k 0 was the smallest key in the abstract state;

IH4. Each deleteMin operation giving a key k 0 > k is linearized at the end of
the traversal, at which point k 0 is the smallest key in the abstract state;

IH5. For each minimum operation not linearized so far (so giving a key k 0 � k),
at the end of its traversal there is no key k 00 < k in the abstract state.

The above construction establishes the inductive hypothesis for k = �1,
using Propositions 44 and 61 for IH5.

Consider a particular node n with key k . Consider a minimum operation
that returns the key from n. Let t be the time that the corresponding deleteMin

�nished its traverse (including, possibly, in a di�erent heap); or let t = 1 if
there is no such deleteMin.

Case 1. If such a minimum operation for node n completed its traverse at time
t 0 < t , we can linearize that minimum at t 0. The inductive hypothesis (IH5) tells
us that there was no smaller key in the abstract state at that point; and the
deleting operation (if any) had not yet �nished its traversal, so k is still in the
abstract state.

Now consider those calls to minimum (that return the key from n) that com-
plete their traverse at some time t 0 > t . Let tmark > t be the time that n
is marked for deletion. Note that each such minimum started before tmark , by
Lemma 45; but t 0 might be either before or after tmark . Let tins be the time
of the linearization point of the �rst insertion19 after t of a key k 0 < k , or 1

19For the rest of this proof, when we talk about insertion of keys, we intend it to include
receiving union operations.
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if there is no such insertion (if tins < t 0, then that key must have been deleted
before t 0).

Case 2. If the start point of a minimum operation for node n is before tins ,
then we linearize it at some time tLP after it started and before each of tmark , t

0

and tins . We will linearize the deleteMin at a time later than tLP , and remove k
from the abstract state at that time: see below. This is illustrated in the �gure
below (where \LP" indicates the linearization points, and tins , tmark and t 0 may
occur in any order).

t tinstLP tmark t 0

deleteMin: k
X

end trav.
X

mark
X
LP

minimum: k
X

end trav.
X
LP

insert(k 0)
X
LP

By the inductive hypothesis (IH3), k was the smallest key in the abstract
state at t (since the deleteMin giving k was previously linearised at t). No smaller
key is inserted before tLP ; and k is not removed before tLP . There is no giving
union between t and tmark by Proposition 63. Hence k is still the smallest key
in the (updated) abstract state at tLP (re-establishing IH3 for this minimum).

We now consider the linearization point for deleteMin.

a. If the start point of every such minimum is before tins , then we linearize the
deleteMin immediately after the last linearization point for such a minimum

(as illustrated above). As above, k is the smallest key in the abstract
state at this point (re-establishing IH3 for this deleteMin). We need to
show that moving the linearization point of the deleteMin cannot invalidate
the linearization point of any other deleteMin or minimum operation. By
Lemma 66, it is enough to show that the deleteMin has not been moved
past any deleteMin or minimum that is unsuccessful or returns a key k 00 > k .

� The key k is in the heap, unmarked, throughout this period, so
(by IH2) there can be no such unsuccessful operation.

� By the induction hypothesis, there is not yet any linearization point
for a minimum operation for a key k 00 > k in the sequential history.

� By IH4, any deleteMin for key k 00 > k is currently linearized when
it �nishes its traversal; and by Lemma 67, part 1, no such deleteMin

operation can have completed its traversal between t and tmark .

Hence moving the linearization point of the deleteMin in this way preserves
the legality of the sequential history.

We also need to prove that moving the linearization point does not falsify
IH5 for any minimum operation for a key k 00 > k . However, no such minimum

can complete its traversal between t and the new linearization point for
the deleteMin: if it had, it would have seen k unmarked, and so returned k
rather than k 00.

b. If some such minimum starts after tins , we linearize the deleteMin as in case 3,
below.
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Case 3. The �nal case arises if a key k 0 < k is inserted with linearization point
at some time tins after t , and a minimum (on node n) starts after tins ; necessarily
tins < tmark since the minimum starts before tmark (Lemma 45). See �gure below
(again t 0 might be either before or after tmark ).

t tins tmark t 00 t 0

deleteMin: k
X

end trav.
X

mark
X
LP

insert(k 0)
X
LP

deleteMin: k 0
X
LP

minimum: k
X

end trav.
X
LP

No giving union can occur between t and tmark by Proposition 63, nor be-
tween the start of the traverse in minimum and t 0 by Proposition 61; combining
these means no giving union can occur between t and max(t 0; tmark ).

Note that, by IH5, k 0 must have been removed from the abstract state be-
fore t 0, as must every other key less than k that was inserted since t . Let t 00 < t 0

be the time of the last linearization point for such a deletion (t 00 might be either
before or after tmark ). So, immediately after t

00, the abstract state holds no key
less than k (by IH4). We linearize each such minimum immediately after t 00 (so
before t 0) in some order; and linearize the deleteMin immediately after the last
such; this re-establishes IH3 for both operations.

The linearization point for the deleteMin is within its operation: the deleteMin

is linearized before the last t 0, which is before the node n is fully deleted, which
is before the end of the deleteMin operation, as required.

We need to show that moving the linearization point of the deleteMin does not
invalidate the linearization point of any other operation. As in the previous case,
it is enough to show that the deleteMin has not moved past any other deleteMin

operation that is unsuccessful or returns a key k 00 > k , or past an unsuccessful
minimum operation. By IH2 and IH4, each such operation is linearized at the
end of its traversal. But no such operation can �nish its traversal between t
and t 00: between t and tmark , that traversal would have seen k unmarked, and so
returned k instead of failing or returning k 00; and between tins and t 00, there was
a smaller unmarked key (e.g. k 0) in the heap. Hence shifting the linearization
point preserves the legality of the sequential history.

We also need to show that moving the linearization point does not falsify
IH5 for any minimum operation for a key k 00 > k . However, no such minimum can
complete its traverse between t and the new linearization point for the deleteMin

of k : as in the previous paragraph, it would have seen a smaller unmarked key,
and so returned that instead of k 00. �

14 Lock-freedom

In this section we prove lock-freedom. We need to consider chains of helping,
where a thread helping with one operation is forced to help another operation.
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Lemma 69 Suppose, from some point on, other threads make no update to
nodes. Then each chain of helping is �nite (so acyclic).

Proof: The only types of labels for which helping may lead to recursively
helping with another label are Delete, UnionGiver and UnionReceiver (within a
HeapLabelList).

We show that any chain of helping traverses a �nite sequence of heaps.
Helping a UnionGiver label can require helping the label on the head of the
receiving heap; if the latter is also a UnionGiver label, this can lead to recursive
helping of its receiving heap; however, the code in breakLoop is designed to detect
and break what might otherwise be a loop of unions helping one another. In
addition, helping a UnionGiver label can lead to helping the label on the last
node of the receiving heap; but the chain does not progress to a third heap from
there.

Now consider a chain of Deletes helping one another. Combining Lemmas 16
and 26, each such instance of helping is via one of the following possibilities:

� from predUpdate, a call to �ndPred, leading to a call to helpDelete on the
parent of delNode's predecessor;

� from deleteWithParent, a call to helpDelete on delNode's parent;

� from completePredUpdate, a call to help on delNode's predecessor.

In each case the node being helped is either closer to the root list or earlier in
the root list than delNode, or has already been decoupled (in which case it's the
�nal node in the chain of helping); thus this chain of Deletes must be �nite.

If the chain reaches a node with a UnionGiver label, necessarily via the third
case above, threads help with that. However, as above, helping never leads back
to a node in this heap, so this does not lead to a cycle of helping.

If the chain reaches a HeapLabelList then the �rst pred update is done: it is
important that the deletes do not help with a UnionReceiver in this case, for this
could lead to a loop of helping (speci�cally if the union is attempting the joining
CAS, and all the nodes of the receiving heap have a Delete label). �

Theorem 70 The concurrent binomial heap is lock-free.

Proof: Suppose, for a contradiction, that there is an in�nite execution of the
binomial heap, during which only a �nite number of public operations (i.e. insert,
minimum, deleteMin or union) complete. This assumption means that only a �nite
number of new calls are made to tidy (since tidy is called only when an insert,
deleteMin or union �nishes).

We show that, from some time onwards, no updates are made to any nodes.

1. Each public operation makes a bounded number of updates to nodes ex-
cluding (for the moment) the addition of HeapLabels within labelHead: for
example, a union makes at most �ve such updates. Hence, from some
time t0 onwards, no such update is made to any node.

2. Consider merge operations. From time t0 on, only a �nite number of b
updates of merges can take place (bounded by the number of roots, minus
one). Hence, from some point on, no changes are made to the root list.
Thus, by Lemma 51, from some time onwards, no thread performs any step
within tidy (or its subfunction merge).
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Operation probabilities Initial This paper Sundell & Lind�en &

insert deleteMin minimum size Tsigas Jonsson

0.5 0.5 0.0 10K 4012K�47K 2904K�40K 1386K�137K

0.5 0.5 0.0 100K 3270K�29K 2912K�37K 1797K�78K

0.5 0.5 0.0 1000K 1574K�42K 2499K�42K 1854K�195K

0.4 0.4 0.2 100K 3531K�46K 3581K�33K 2859K�234K

0.3 0.3 0.4 100K 3827K�43K 4475K�232K 4233K�624K

0.6 0.4 0.0 0 3525K�67K 2144K�277K 1953K�70K

0.7 0.3 0.0 0 2289K�97K 1569K�140K 1690K�67K

Operation probabilities Initial Number This paper

insert deleteMin minimum union size of heaps

0.38 0.38 0.19 0.05 100K 4 1352K�10K

0.38 0.38 0.19 0.05 100K 16 2773K�531K

0.4 0.4 0.19 0.01 100K 16 3868K�39K

Figure 39: Experimental results, giving throughput (in operations per second).

3. Finally, each operation considered in step 1 needs to add a HeapLabel more
than once only if some other update has interfered with the �rst attempt; so
from some time t onwards each operation adds at most a single HeapLabel.
Hence from some time, no more such additions are made, i.e. no updates
are made to any nodes by these operations.

Then, by Lemmas 38, 40, 46, 49, 58 and 64, each call to insert, union, minimum
and deleteMin returns after a �nite number of steps, outside of helping; and each
instance of helping takes a �nite number of steps, outside recursive helping.
Lemma 69 shows that each chain of helping is �nite. Finally, each attempt at
helping makes progress, so each operation helps with each node a �nite number
of times; and, by assumption, no new nodes are added, so each thread helps a
�nite number of nodes. Hence each operation performs a �nite number of steps
in total. �

15 Conclusions

In this paper we have presented a lock-free linearizable concurrent binomial
heap. Our main interest was in the development and correctness of the imple-
mentation, rather than out-and-out performance. Nevertheless, the heap gives
good performance in several situations. Figure 39 gives experimental results.
The experiments were run on a 32-core server (two 2.1GHz Intel(R) Xeon(R)
E5-2683 CPUs with hyperthreading enabled, with 256GB of RAM). In each
execution, 64 threads performed two million randomly chosen operations each.
Each row of each table corresponds to a particular choice of parameters, namely
the probabilities of di�erent operations, and the initial number of keys in the
priority queue. In each case, ten executions were made, and the throughput
calculated; the tables give the means and 95% con�dence intervals.

The �rst table compares against the skiplist-based priority queues of Sundell
and Tsigas [ST05], and Lind�en and Jonsson [LJ13]. Our implementation gives
the best throughput in most cases. It performs less well when it contains a
large number of keys: the longer root list has an adverse e�ect on performance;
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the corresponding e�ect on the skiplist-based implementations is smaller. The
other implementations are more e�cient on the minimum operation, since this
simply selects the �rst key in the skiplist.

The second table includes the union operation (which is not provided by the
other implementations). Throughput is still decent with reasonably infrequent
union operations, and with a reasonable number of heaps. However, unsurpris-
ingly, throughput is reduced with a small number of heaps or with frequent union
operations: the union operation blocks the critical steps of other operations; and
the HeapLabelList on the head node becomes a bottleneck.

We review some of the main challenges, and our solutions, in the hope that
the solutions can prove useful in other applications. One of the biggest chal-
lenges was the problem of reliably traversing the heap, for example to �nd the
smallest node, while other threads are rearranging it: our use of sequence num-
bers e�ectively allows one thread to signal to another that its traversal might
have been corrupted. In addition, avoiding race conditions proved challenging:
our use of labels to lock nodes helped avoid most of these.

Allowing giving unions concurrently to other operations presented a partic-
ular challenge. Our labelling of head nodes prevented such unions concurrently
to the critical steps of those operations (while maintaining lock-freedom); but
in addition, it was necessary to develop techniques to test whether a union
had happened during some period, and to �nd the current heap containing a
node; and allowing threads to help with the operation introduced additional
di�culties.

There were several subtleties concerning linearizability; in particular, the fact
that minimum can return a key that is marked for deletion before the traversal
ends complicated the proof of linearizability. As noted in the Introduction, the
techniques from [Low17] proved very useful in detecting subtle linearizability
bugs in early versions, and strengthens our con�dence in the �nal version.

Ensuring lock-freedom also proved challenging. In earlier versions of our
implementation, we ran into a number of situations where a thread could get
into a loop: for example, an attempted traversal could follow a loop of nodes
because of an incomplete merge; or a chain of helping of operations that forms
a loop. This di�culty is re
ected in the complexity of the rank used to prove
insert lock-free (Lemma 38).

We also encountered various challenges in trying to make the operations
e�cient. Allowing a thread to insert below an existing singleton node, rather
than just at the end of the root list, removed a bottleneck. Preventing merges
from using those nodes reduced interference. Our use of HeapLabelLists allowed
the critical steps of operations to be concurrent to one another and to a receiving
union, but not to giving unions. Nevertheless, when most insertions are of a
key smaller than nearly all the keys in the heap, it becomes harder to insert
below an existing node, thereby making the �nal root a bottleneck again; we
conjecture this could be improved by using a combining funnel [SZ98] to allow
several insertions to combine together into a single update on the heap.

For deleteMin, maintaining multiple minima while traversing made a huge
di�erence: di�erent deleteMin calls compete for the same nodes, so many fail;
conversely, compiling a list of fall-back options does not cost much. Also, al-
lowing a thread to mark a non-root node for deletion, when its parent is being
deleted, gives bene�ts: it means that only the thread that succeeded in the
marking has to help with the deletion of the parent.
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Within delete, we previously labelled both the node to be deleted and its
predecessor. However, this meant that two nodes were locked, rather than one;
and it also meant that there was the possibility of the deletion being disrupted
if the nodes were separated before the labelling, or the state of the second node
changed after the �rst node was labelled. Locking just a single node seems
to work better, even though it means that sometimes an additional traversal
is necessary to �nd the new predecessor. This change also made achieving,
and proving, lock-freedom easier: previously it was di�cult to avoid cycles of
operations helping one another. However, we can see no easy way to similarly
reduce the amount of labelling in the merge operation.

Laziness can help. When �nding the predecessor of the node being deleted,
we use an inexpensive but unreliable search, before falling back on a reliable
but expensive one. Likewise, within insert, we avoid helping an operation on the
�nal root on the �rst few traversals, in the hope it will complete anyway. We
suspect similar tactics can be used elsewhere.

Our implementation used various parameters, that can be tuned. It would
be useful to make these adaptive, where they vary automatically. For example,
the number of minimal nodes that a thread records while traversing in minimum

or deleteMin could vary based on how many such nodes were actually used in
previous operations; and the frequency of tidying could vary based on the length
of the root list that a thread encounters while traversing.
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