
Linearizability Testing Manual

Gavin Lowe

April 8, 2016

This manual describes how to use the linearizability testing framework,
described in [Low16]. The framework is available from http://www.cs.ox.

ac.uk/people/gavin.lowe/LinearizabiltyTesting/.
We assume here that the reader is familiar with the notion of lineariz-

ability [HW90]. We also assume familiarity with Scala [OSV08].
The framework can be used to test whether a concurrent datatype is

linearizable. The basic idea is to run a number of worker threads upon the
datatype, recording the history of invocation and return events, and then to
test whether that history is linearizable.

1 Defining linearizability testers

Several algorithms for testing whether a history is linearizable are described
in [Low16]. The following sections describe how to use these algorithms
within the framework. The normal algorithm to use on a concurrent queue is
the queue-oriented algorithm (Section 1.4). The normal algorithm for other
datatypes is either the JIT Graph Search Algorithm (Section 1.1) or the JIT-
JIT Competition Tester 1.3): the latter is faster, but requires a little more
programming to use.

Most of the algorithms make use of a corresponding deterministic se-
quential specification datatype S. The tester tests whether the concurrent
datatype is linearizable with respect to S.

1.1 Graph search linearizability testers

Some of the algorithms perform a graph search through an appropriate search
space, i.e. they store all nodes of that search space that have been previously
encountered, and so avoid repeating work. These algorithms make use of an
immutable sequential specification datatype S.

1

1 object JITGraphTester{
2 type C = LockFreeQueue[Int]; type S = scala.collection.immutable.Queue[Int]
3 def seqEnqueue(x: Int)(q: S): (Unit, S) = ((), q.enqueue(x))
4 def seqDequeue(q: S): (Option[Int], S) =
5 if(q.isEmpty) (None, q) else{ val (v,q1) = q.dequeue; (Some(v), q1) }
6 def worker(me: Int, theLog: GenericThreadLog[S, C]) = {
7 for(i <− 0 until 1000)
8 if(Random.nextFloat <= 0.3){
9 val x = Random.nextInt(20)

10 theLog.log(.enqueue(x), ”enqueue(”+x+”)”, seqEnqueue(x)) }
11 else theLog.log(.dequeue, ”dequeue”, seqDequeue)
12 }
13 def main(args: Array[String]) = {
14 for(i <− 0 until 1000){
15 val concQueue = new LockFreeQueue[Int] // The shared concurrent queue
16 val seqQueue = Queue[Int]() // The sequential specification queue
17 val tester =
18 LinearizabilityTester .JITGraph[S, C](seqQueue, concQueue, 6, worker, 1000)
19 assert(tester() > 0)
20 }
21 }
22 }

Figure 1: An example testing program using the JIT Graph tester.

To illustrate how the framework can be used, Figure 1 gives a stripped-
down testing program applied to a queue (a fuller version could be used with
multiple concurrent queue implementations, and would replace the numerical
constants by variables, specifiable via the command line).

The test program works on a concurrent datatype of some type C; here we
use a lock-free queue containing Ints, based on [HS12, Section 10.5]. A dequeue

operation returns a value of type Option[Int]: either None to indicate an empty
queue, or a value of the form Some(x) to indicate a successful dequeue of x.

The test program also requires a corresponding, immutable, determinis-
tic sequential specification datatype S. Further, the specification datatype
must support equality tests that correspond to semantic equality, and have a
compatible hashCode [OSV08, Chapter 28]. Here we use an immutable queue
from the Scala API1. (In practice, most such sequential datatypes are from
the Scala API.)

For each operation op : A on the concurrent datatype, we need a corre-

1www.scala-lang.org/api/current/#scala.collection.immutable.Queue

2

sponding function seqOp : S => (A, S) on the sequential datatype, which re-
turns the same value as the concurrent operation, paired with the new value
of the sequential datatype. These are normally simple wrappers around API
code (see lines 3–5).

The main part of the test program is the definition of a worker function
that performs and logs operations on the concurrent datatype. The worker

function takes as parameters the identity of the worker, and a log object
theLog of type GenericThreadLog[S, C]. Here, the worker performs 1000 opera-
tions; each is (with probability 0.3) an enqueue of a random value, or (with
probability 0.7) a dequeue. Each operation is performed and logged via a
call to theLog.log, taking three parameters:

• the operation to be performed on the concurrent datatype;

• a string describing the operation; this is used in debugging output in the
case that a non-linearizable history is found; it is also used internally;
semantically different operations should have different strings; and

• the corresponding operation on the sequential datatype.

The call to theLog.log logs the invocation of the concurrent operation, per-
forms the operation, and logs the result returned.

The linearizability tester is constructed at line 18 and run at line 19; here
we use the JIT Graph Search Algorithm. The function to construct the tester
takes as arguments: the sequential datatype; the concurrent datatype; the
number p of worker threads to run; the definition of a worker thread; and
the number of operations performed by each worker. The test for lineariz-
ability itself is performed at line 19, repeated to consider 1000 histories. The
linearizability tester runs p workers concurrently, logging the operation calls
on the concurrent datatype. It then tests whether the resulting history is
linearizable, returning a positive result if so, or giving debugging output if
not.

The Wing & Gong Graph Search Algorithm can be used very similarly.
The only change is in the construction of the linearizability tester:

val tester =
LinearizabilityTester .WGGraph[S, C](seqQueue, concQueue, 6, worker, 1000)

The parameters are as for JITGraph. In practice, the JIT Graph Search
Algorithm tends to be faster.

1.2 Tree search linearizability testers

Two of the linearizability algorithms perform a tree search, that is, they do
not store which states have been encountered previously, and so might repeat

3

1 object JITTreeTester{
2 type C = LockFreeQueue[Int]; type US = UndoableQueue[Int]
3 def worker(me: Int, theLog: GenericThreadLog[US, C]) = {
4 for(i <− 0 until 1000)
5 if(Random.nextFloat <= 0.3){
6 val x = Random.nextInt(20)
7 theLog.log(.enqueue(x), ”enqueue(”+x+”)”, .enqueue(x))
8 }
9 else theLog.log(.dequeue, ”dequeue ”, .dequeue)

10 }
11 def main(args: Array[String]) = {
12 for(i <− 0 until 1000){
13 val concQueue = new LockFreeQueue[Int]
14 val seqQueue = new UndoableQueue[Int]()
15 val tester =
16 LinearizabilityTester .JITTree[US, C](seqQueue, concQueue, 6, worker, 1000)
17 assert(tester() > 0)
18 }
19 }
20 }

Figure 2: An example testing program using the JIT Tree Search tester.

work.
These algorithms use an undoable sequential specification datatype. That

is, the specification datatype has to extend the trait scala.collection.mutable.

Undoable, and so provide an undo method that undoes the last operation that
has not already been undone.

These algorithms are faster than the algorithms of the previous section
on most histories; however, sometimes they hit bad cases, where they fail to
terminate within a reasonable amount of time. In practice, they are normally
used in competition parallel with a graph search algorithm; see next section.

A linearizability tester based on the JIT Tree Search algorithm is in Fig-
ure 2. Here we take the specification datatype to be an UndoableQueue (the
definition is included with the distribution). Most of the rest of the definition
is as in the previous section.

Likewise, a linearizability tester based on the Wing & Gong Tree Search
Algorithm can be used in the same way, with the tester constructed using
the function LinearizabilityTester.WGTree. In practice, the JIT Tree Search
Algorithm is normally faster than the Wing & Gong Algorithm.

4

1 object JITJITCompTester{
2 type C = LockFreeQueue[Int]; type S = scala.collection.immutable.Queue[Int]
3 type US = scala.collection.immutable.Queue[Int]
4 def seqEnqueue(x: Int)(q: S): (Unit, S) = ((), q.enqueue(x))
5 def seqDequeue(q: S): (Option[Int], S) =
6 if(q.isEmpty) (None, q) else{ val (v,q1) = q.dequeue; (Some(v), q1)
7 def compWorker(me: Int, theLog: CompetitionThreadLog[S,US,C]) = {
8 for(i <− 0 until 1000)
9 if(Random.nextFloat <= 0.3){

10 val x = Random.nextInt(20)
11 theLog.log(.enqueue(x), ”enqueue ”+x, seqEnqueue(x), .enqueue(x))
12 }
13 else theLog.log(.dequeue, ”dequeue ”, seqDequeue, .dequeue)
14 }
15 def main(args: Array[String]) = {
16 for(i <− 0 until 1000){
17 val concQueue = new LockFreeQueue[Int] // The shared concurrent queue
18 // The immutable and undoable sequential specification queues
19 val imSeqQueue = Queue[Int](); val uSeqQueue = new UndoableQueue[Int]()
20 val tester = CompetitionTester.JITJIT(
21 compWorker, 6, 1000, concQueue, imSeqQueue, uSeqQueue)
22 assert(tester() > 0)
23 }
24 }
25 }

Figure 3: An example testing program using competition parallel composi-
tion of the JIT Graph and Tree Search algorithms.

1.3 Competition testers

Often the fastest linearizability testers are based on the competition parallel
composition of a graph search and a tree search algorithm. Both algorithms
are run on the history; when one terminates, the other is interrupted. Often
the tree search algorithm is faster; but when the tree search algorithm hits
a bad case, the graph search algorithm still normally terminates within a
reasonable amount of time.

A linearizability tester using the competition parallel composition of the
JIT Graph and Tree Search algorithms is in Figure 3. It requires both an
immutable sequential specification datatype S, and an undoable one US. The
log function takes as arguments the corresponding operations on each of the
specification datatypes.

5

1 object QueueTester{
2 type C = LockFreeQueue[Int]
3 def worker(me: Int, theLog: QueueThreadLog[Int, C]) = {
4 for(i <− 0 until 1000)
5 if(Random.nextFloat <= 0.3){
6 val x = Random.nextInt(20); theLog.logEnqueue(x, .enqueue(x))
7 }
8 else theLog.logDequeue(.dequeue)
9 }

10 def main(args: Array[String]) = {
11 for(i <− 0 until 1000){
12 val concQueue = new LockFreeQueue[Int] // The shared concurrent queue
13 val tester = QueueLinTester[Int, C](concQueue, 6, worker, 1000)
14 assert(tester() > 0)
15 }
16 }
17 }

Figure 4: An example testing program using the queue-oriented tester.

Other competition parallel testers can be obtained using
CompetitionTester.JITWG, CompetitionTester.WGJIT or CompetitionTester.WGWG:
in each case, the first-named algorithm is the tree search algorithm.

1.4 The queue-oriented tester

The testers seen so far have been generic, in the sense that they can be used
with any concurrent datatype for which there is an appropriate sequential
specification datatype. By contrast, the queue linearizability tester can be
used only with concurrent queues, specifically where the dequeue operation
returns a value of type Option[A], as above (if the concurrent queue does not
provide this interface, it is normally possible to use wrapping code to adapt
it).

Figure 4 gives an example using this tester. Each worker takes a log of
type QueueThreadLog[A, C] where A is the type of data stored in the queue,
and C is the type of the concurrent queue. Enqueues are logged using the
logEnqueue function, which takes as parameters the value being enqueued
and the operation on the concurrent queue. Dequeues are logged using the
logDequeue function, which takes as parameters the operation on the concur-
rent queue.

6

2 Pragmatics

As with any testing framework, some thought in designing tests can make it
more likely that bugs (should they exist) are found. For example, consider a
hash table; we identify three classes of bugs.

• Bugs based upon concurrent operations on the same key: to find such
bugs, we want to maximise the frequency of such concurrent operations,
by choosing a small key space, just one or two keys.

• Bugs concerning resizing: by contrast with the previous case, we need
to choose a larger key space, large enough that runs will contain resizes.

• Bugs concerning hash collisions between different keys: in order to find
such bugs, we can define a type of keys with a bad hash function, for
example one that produces only one or two different results.

More generally, if the implementation performs comparisons upon some un-
derlying datatype, such as the type of keys or hashes, then choosing a small
value for that type makes it more likely to find that bug. (On the other hand,
if there are no comparisons on an underlying type, as is the case with the type
of data in most map implementations, choosing a larger value for the type
can make it easier to understand any debugging trace: it can be harder to
interpret the trace if the same value appears in two different circumstances.)

Now consider a queue.

• Some bugs may manifest themselves only when the queue is empty.
To find these, we should run tests where the queue will frequently be
empty, which will be the case when the probability of doing an enqueue
is less than about 0.5.

• For a bounded queue, some bugs may manifest themselves only when
the queue is full. To find such bugs, we should run tests where the
queue will frequently be full, which will be the case if we choose a
fairly small bound on the size of the queue, and choose the probability
of doing an enqueue to be more than about 0.5. (By contrast, when
testing an unbounded queue, it seems unlikely that bugs will manifest
themselves only when the queue becomes particularly large.)

Similar observation apply to a stack.
Our experiments (on an eight-core machine) suggest that the linearizabil-

ity testers find bugs most quickly when there are five or six workers. Further,
they seem to find bugs more quickly when run on a “noisy” machine, with

7

other applications running at the same time. This is because the other ap-
plications will mean that the workers have to compete for CPU time, and
so will be frequently descheduled; this erratic scheduling makes certain bugs
manifest themselves more frequently. Running two copies of the linearizabil-
ity tester simultaneously can be effective, since each provides noise for the
other.

Some of the linearizability testers can be slow on long histories. Our
experiments suggest that taking histories to contain about 8000 operations in
total often gives the greatest throughput (in terms of operations per second).
But it can be better to start with shorter histories, and then to experiment
with different lengths.

For a datatype like a stack, if two values are pushed concurrently, they
may be linearized in any order. However, that order will be revealed only
when one of them is popped. This causes the size of the search space to grow
exponentially in the number of values stored in the stack. It is therefore a
good idea to keep the size of the stack small, by arranging for most operations
to be pops. Similar comments apply for queues, except with the queue-
oriented algorithm, which is much more robust.

References

[HS12] Maurice Herlihy and Nir Shavit. The Art of Multiprocessor Pro-
gramming. Morgan Kaufmann, 2012.

[HW90] Maurice Herlihy and Jeannette M. Wing. Linearizability: a cor-
rectness condition for concurrent objects. ACM Transactions on
Programming Languages and Systems, 12(3):463–492, 1990.

[Low16] Gavin Lowe. Testing for linearizability. Submitted for publication,
2016.

[OSV08] Martin Odersky, Lex Spoon, and Bill Venners. Programming in
Scala. Artima, 2008.

8

