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Abstract. We consider how we can use the process algebra CSP and the
model checker FDR in order to obtain assurance about the correctness
of concurrent datatypes. In particular, we perform a formal analysis of
a concurrent queue based on a linked list of nodes. We model the queue
in CSP and analyse it using FDR. We capture two important properties
using CSP, namely linearizability and lock-freedom.

1 Introduction

Many concurrent programs are designed so that threads interact only via a small
number of concurrent datatypes. Code outside of these concurrent datatypes can
be written in pretty-much the same way as the corresponding sequential code;
only the code of the datatypes themselves needs to be written in a way that
takes concurrency into account.

Modern concurrent datatypes are often designed to be lock-free. No locks (or
lock-like mechanisms) are used. This means that threads should not be indef-
initely blocked by other threads, even if a thread is permanently de-scheduled.
Many clever lock-free datatypes have been designed, e.g. [16, 24, 25, 9]. However,
these datatypes tend to be complex, and less obviously correct than traditional
lock-based datatypes. Clearly we need techniques for gaining greater assurance
in their correctness.

In this paper we use CSP [20] and the model checker FDR [7] to analyse
the lock-free queue of [16]. The queue is based on a linked list of nodes. More
precisely, we analyse the version of the queue given in [9], which simplifies the
presentation by assuming the presence of a garbage collector (although our CSP
model will include that garbage collection); by contrast, the version in [16] per-
forms explicit de-allocation of nodes by threads.

CSP has been used to analyse concurrent programs on a number of previous
occasions, e.g. [23, 28, 13]. However, to the best of our knowledge, this is the first
model of a dynamic data structure. Further, we include a mechanism —akin to
garbage collection— that reclaims nodes when they become free, allowing them
to be re-used. This extends the range of behaviours that our model captures to
include behaviours with an unbounded number of enqueue and dequeue operations
(on a bounded-length queue).

A concurrent datatype is said to be linearizable [10] if:



a) t0:
enqueue(4)

t1:
enqueue(5) dequeue:4

b) t0:
enqueue(4)

t1:
enqueue(5) dequeue:4

Fig. 1. Two timelines of executions: a) a linearizable execution; b) an unlinearizable
execution. Time runs from left to right; each horizontal line indicates the duration of
a method call, labelled with the name of the method and (for a dequeue) the value
returned; the identities of threads are at the left.

– Each method call appears to take place atomically: different method calls
do not interfere with one another. The order in which method calls appear
to take place is consistent with a sequential execution.

– Each call appears to take place at some point between the call’s invocation
and response; this point is referred to as the linearization point. Put another
way, if one call ends before another begins, then the former should appear
to take place before the latter.

For example, consider Figure 1, which displays timelines of two possible
executions of a concurrent queue. In execution (a), threads t0 and t1 perform
concurrent enqueues of 4 and 5, and then t1 performs a dequeue, obtaining 4.
This execution is linearizable. The two enqueues appear to have taken place
atomically, with the 4 being enqueued before the 5. Alternatively, if the dequeue

had obtained 5, the execution would still have been linearizable. The second
clause, above, allows the two enqueues to appear to take place in either order.

By contrast, execution (b) is not linearizable. Here the enqueue of 5 finishes
before the enqueue of 4. Hence we would expect that the subsequent dequeue

would obtain 5; the second clause above enforces this.
In this paper we use FDR to show that our model of the lock-free queue

is indeed a linearizable queue. We believe that CSP allows such linearizable
specifications to be captured in a very elegant way. Our method of capturing
the specification is modular: it can easily be adapted to other linearizable spec-
ifications. Our method does not require the user to identify the linearization
points.

Linearizability is a safety property: it specifies that no method call re-
turns a “bad” result; however, it does not guarantee that the system makes
progress. The property of lock freedom guarantees progress. Formally, a con-
current datatype is lock-free if, in every state, it guarantees that some method
call finishes in a finite number of steps [9]. Unsurprisingly, a datatype that uses
locks in a meaningful way is not lock-free: if one thread acquires a lock, but is
permanently de-scheduled, other threads may perform an unbounded number of
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steps trying to obtain the lock. But further, a datatype may fail to be lock-free
even if it doesn’t use locks, for example if threads repeatedly interfere with one
another and so have to re-try.

We show that our model of the lock-free queue is indeed lock-free. We capture
the property in CSP using a combination of deadlock freedom and divergence
freedom.

Finally, we also verify that the model is free from null-pointer references, and
dangling references (where deallocated objects are accessed).

FDR has recently been extended with a form of symmetry reduction [8]. We
use this symmetry reduction in our analysis. The model will contain a large
amount of symmetry: it will be symmetric in the type of identities of nodes, the
type of identities of threads, and the type of data, in the sense that applying
any permutation over one of these types to any state of the model will produce
another state of the model. The symmetry reduction factors the model by this
symmetry. We show that this gives a significant speed up in checking time, and
hence an increase in the size of system that we can analyse.

One additional benefit of our approach is that it is easy to adapt the model
in order to consider variants in the design of the datatype. We briefly illustrate
how such changes in the model can explain a couple of non-obvious aspects of
the datatype.

To summarise, our main contributions are as follows:

– A technique for modelling and analysing concurrent datatypes;
– A generic modular technique for capturing linearizability;
– A straightforward technique for capturing lock freedom;
– A technique for modelling reference-linked data structures, including a mech-

anism for recycling of nodes;
– An investigation into the performance improvements provided by symmetry

reduction;
– An instructive case study in the application of CSP-based verification.

The rest of the paper is structured as follows. We present the lock-free queue
datatype in Section 2. We present the CSP model in Section 3, and describe our
analysis using FDR in Section 4. We sum up and discuss prospects for this line
of work in Section 5.

1.1 Related work

A number of other papers have considered the verification of linearizability,
using either model checking or other verification techniques. However, we are
not aware of other examples of the verification of lock freedom.

Vechev et al. [27] study linearizabilty using the SPIN model checker, using
two different approaches. One approach uses bounded-length runs, at the end of
which it is checked whether the run was linearizable, by considering all relevant
re-orderings of the operations. The other approach requires linearization points
to be identified by the user. Like us, they model a garbage collector. The
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approach suffers from state-space explosion issues: for a concurrent set based
on a linked list, applicability is limited to two threads and two keys, even when
linearization points are provided.

Liu et al. [12] also study linearizability in the context of refinement checking,
in their case, using the model checker PAT. They capture linearizability but not
liveness properties. They describe experiments using symmetry reduction and
partial order reduction to improve the efficiency of the search. By way of com-
parison, we (with Tom Gibson-Robinson) have built a CSP model corresponding
to one of their examples, in a similar style to the model of this paper; our ex-
periments suggest that FDR is several hundred times faster on these models (on
similar architectures).

Burckhardt et al. [2] analyse for linearizability as follows. They randomly
pick a small number of threads to perform a small number of operations, typically
three threads each performing three operations. They then use the CHESS model
checker to generate all behaviours caused by interleaving these operations, and
test whether each corresponds to a sequential execution of the same operations.
They uncover a large number of bugs within the .NET Framework 4.0.

C̆erný et al. [3] show that linearizability is decidable for a class of linked-list
programs that invoke a fixed number of operations in parallel. Their restrictions
exclude the example of this paper: they assume a fixed head node, no tail
reference, and that threads traverse the list monotonically; however, it is not
clear how essential these restrictions are. Their approach shows that a program
is a linearizable version of its own sequential form, rather than a linearizable
version of a more abstract specification, such as a queue. In practice, their
approach is limited to a pair of operations in parallel, because of the state space
explosion.

Vafeiadis [26] uses abstract interpretation to verify linearizability, by consid-
ering candidate linearization points. The technique works well on some exam-
ples, but does not always succeed, and works less well on examples with more
complex abstractions. Colvin et al. [5] and Derrick et al. [6] prove linearizability
by verifying a simulation against a suitable specification, supported by a theorem
prover. These approaches give stronger guarantees than our own, but require
much more effort on the part of the verifier.

1.2 CSP

In this section we give a brief overview of the syntax for the fragment of CSP
that we will be using in this paper. We then review the relevant aspects of
CSP semantics, and the use of the model checker FDR in verification. For more
details, see [20].

CSP is a process algebra for describing programs or processes that interact
with their environment by communication. Processes communicate via atomic
events. Events often involve passing values over channels; for example, the event
c.3 represents the value 3 being passed on channel c. Channels may be declared
using the keyword channel; for example, channel c : Int declares c to be a channel
that passes an Int. The notation {|c|} represents the set of events over channel c.
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The simplest process is STOP, which represents a deadlocked process that
cannot communicate with its environment. By contrast, div is a divergent process
that performs an unbounded number of internal τ events.

The process a → P offers its environment the event a; if the event is per-
formed, the process then acts like P. The process c?x → P is initially willing to
input a value x on channel c, i.e. it is willing to perform any event of the form c.x;
it then acts like P (which may use x). Similarly, the process c?x:X → P is willing
to input any value x from set X on channel c, and then act like P. Within input
constructs, we use “ ” as a wildcard: c? indicates an input of an arbitrary value.
The process c!v → P outputs value v on channel c. Inputs and outputs may be
mixed within the same communication, for example c?x!v → P.

The process P 2 Q can act like either P or Q, the choice being made by the
environment: the environment is offered the choice between the initial events
of P and Q. By contrast, P u Q may act like either P or Q, with the choice being
made internally, not under the control of the environment. 2 x:X • P(x) is an
indexed external choice, with the choice being made over the processes P(x) for x

in X. The process if b then P else Q represents a conditional. The process b & P

is a guarded process, that makes P available only if b is true; it is equivalent to
if b then P else STOP.

The process P [| A |] Q runs P and Q in parallel, synchronising on events
from A. The process ‖ x:X • [A(x)] P(x) represents an indexed parallel composi-
tion, where, for each x in X, P(x) is given alphabet A(x); processes synchronize
on events in the intersection of their alphabets. The process P ||| Q interleaves
P and Q, i.e. runs them in parallel with no synchronisation. ||| x:X • P(x) rep-
resents an indexed interleaving.

The process P \ A acts like P, except the events from A are hidden, i.e. turned
into internal τ events.

A trace of a process is a sequence of (visible) events that a process can
perform. We say that P is refined by Q in the traces model, written P vT Q, if
every trace of Q is also a trace of P. FDR can test such refinements automatically,
for finite-state processes. Typically, P is a specification process, describing what
traces are acceptable; this test checks whether Q has only such acceptable traces.

Traces refinement tests can only ensure that no “bad” traces can occur: they
cannot ensure that anything “good” actually happens; for this we need the stable
failures or failures-divergences models. A stable failure of a process P is a pair
(tr,X), which represents that P can perform the trace tr to reach a stable state
(i.e. where no internal events are possible) where X can be refused, i.e., where
none of the events of X is available. We say that P is refined by Q in the stable
failures model, written P vF Q, if every trace of Q is also a trace of P, and every
stable failure of Q is also a stable failure of P.

We say that a process diverges if it can perform an infinite number of internal
(hidden) events without any intervening visible events. If P vF Q and Q is
divergence-free, then if P can stably offer an event a, then so can Q; hence such
tests can be used to ensure Q makes useful progress.
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2 The lock-free queue

In this section we present the lock-free queue. Our presentation is based on that
from [9]. The code, in Scala, is in Figure 2.

The lock-free queue uses atomic references1. An atomic reference encapsu-
lates a standard reference, say to an object of class A, and provides get and set

operations. In addition, it provides an atomic compare-and-set (CAS) operation,
which can be thought of as an atomic implementation of the following:

def compareAndSet(expected: A, update: A) : Boolean = {
if (expected == current){ current = update; true} else false

}

A thread passes in two values: expected, which the thread believes the atomic
reference holds; and update, the value the thread wants to update it to. If
the current value is indeed as expected, it is updated. The thread receives an
indication as to whether the operation was successful. This operation can be
used to allow concurrent threads to interact safely in a lock-free way.

The lock-free queue is built as a linked list of Nodes: each node holds a value

field, of (polymorphic) type T; nodes are linked together using next fields which
are atomic references to the following node.

The lock-free queue employs two shared variables, both atomic references
(lines 9–10 of Figure 2): head is a reference to a dummy header node; and tail

is normally a reference to the last node in the linked list, but will temporarily
refer to the penultimate node when an item has been partially enqueued.

The main idea of the algorithm, which gives it its lock-free property, is as
follows: if one thread partially enqueues an item, but is de-scheduled and leaves
the queue in an inconsistent state with tail not referring to the final node, then
other threads try to tidy up by advancing tail; one will succeed, and so progress
is made, and eventually a thread will complete its operation.

The enqueue operation starts by creating a node to store the new value2. It
then reads tail and the following node into local variables myTail and myNext.
As an optimization, it re-reads tail, in case it has changed, retrying if it has.
Otherwise, in the normal case that myNext is null, it attempts a CAS operation
on myTail.next (line 19), to set it to the new node. If this succeeds, the value is
correctly enqueued. It then attempts to advance the tail reference to the new
node, and returns regardless of whether this is successful: if the CAS fails, some
other thread has already advanced tail. If myNext is not null (line 23), it means
that a value has been partially enqueued, with tail not advanced to the last node:
it attempts to so-advance tail, and retries.

The dequeue operation starts by reading head, tail and the node after head

into local variables myHead, myTail, and myNext. It then re-reads head, in case it
has changed, retrying if it has. Otherwise, if the head and tail are equal, and

1 http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/atomic/

AtomicReference.html.
2 The Scala code ignores the possibility of new nodes not being available, but we will

need to consider this possibility in our CSP models.
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1 class LockFreeQueue[T]{
2 // We build linked lists from Nodes of the following type
3 class Node(val value: T, val next: AtomicReference[Node])
4

5 // initial dummy header
6 private val firstNode =
7 new Node(null.asInstanceOf[T], new AtomicReference[Node](null))
8 // Atomic references to head and tail nodes
9 private val head = new AtomicReference(firstNode)

10 private val tail = new AtomicReference(firstNode)
11

12 /∗∗ Add value to the queue ∗/
13 def enqueue(value: T) : Unit = {
14 val node = new Node(value, new AtomicReference[Node](null))
15 while(true){
16 val myTail = tail .get ; val myNext = myTail.next.get
17 if (myTail == tail.get) // in case it has been changed (optimization)
18 if (myNext == null){
19 if (myTail.next.compareAndSet(null, node)){
20 tail .compareAndSet(myTail, node); return
21 } // else re−try
22 }
23 else // myNext != null, try to advance tail
24 tail .compareAndSet(myTail, myNext) // and retry
25 // else retry
26 } }
27

28 /∗∗ Dequeue and return a value if the queue is non−empty; else return null ∗/
29 def dequeue : T = {
30 while(true){
31 val myHead = head.get; val myTail = tail .get ; val myNext = myHead.next.get
32 if (myHead == head.get) // in case it has been changed (optimization)
33 if (myHead == myTail){
34 if (myNext == null) return null // empty queue, return null
35 else // new item partially enqueued
36 tail .compareAndSet(myTail, myNext) // try to advance tail; retry
37 }
38 else{ // non−empty queue; try to remove node from queue
39 if (head.compareAndSet(myHead, myNext)) return myNext.value
40 // else myNext.value already taken; retry
41 }
42 // else Head changed; retry
43 } } }

Fig. 2. The lock-free queue in Scala.
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datatype NodeIDType = Null | N0 | N1 | N2 −− node identities

NodeID = diff(NodeIDType, {Null}) −− real nodes

datatype T = A | B −− data values

datatype ThreadID = T0 | T1 −− thread identities

Fig. 3. The basic types of the model.

myNext is null (line 34), the queue is empty, and the operation returns the special
value null to indicate this. Alternatively, if head and tail are equal but myNext is
non-null (line 35), there is a partially enqueued item, so it tries to advance tail

and retries. Otherwise, the queue is non-empty (line 38). It tries to advance
the head to myNext using a CAS operation; if the CAS succeeds, it returns the
value in myNext; otherwise, another thread has taken the value in myNext, so the
operation retries.

Note that an individual enqueue or dequeue operation is not guaranteed to ter-
minate: it may repeatedly find partially enqueued items, and so repeatedly retry.
However, if this happens infinitely often then infinitely many other operations
will terminate, so the data structure is still lock-free.

3 The CSP model

In this section we present our CSP model of the lock-free queue.3 In Section 3.1
we model the nodes of the list, and the atomic references head and tail. In
Section 3.2 we model the program threads that perform the enqueueing and
dequeueing operations. In Section 3.3 we describe the technique for re-cycling
nodes, which identifies nodes that have been removed from the linked list and
that have no relevant references to them, and frees them up, making them avail-
able for reuse. We put the system together in Section 3.4.

Our model is parameterized by three types (see Figure 3): the type
NodeIDType of node identities; the type T of data held in the queue; and the
type ThreadID of thread identities. The type NodeIDType contains a distinguished
value Null, which models the null reference; we write NodeID for the set of “proper”
nodes. We will consider larger values for these types in Section 4.5. The models
will be symmetric in the types NodeID, T and ThreadID.

3.1 Nodes, Head, Tail, and the constructor

The CSP model of the nodes of the linked list is presented in Figure 4. We
declare channels corresponding to actions by threads upon nodes. The event
initNode.t.n.v represents thread t initialising node n to hold v; getValue.t.n.v repre-
sents t reading value v from n; getNext.t.n.n1 represents t obtaining the value n1

3 The CSP script is available from http://www.cs.ox.ac.uk/people/gavin.lowe/

LockFreeQueue/LockFreeQueueLin.csp.
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−− Channels used by nodes .

channel initNode : ThreadID . NodeIDType . T

channel getValue : ThreadID . NodeIDType . T

channel getNext : ThreadID . NodeIDType . NodeIDType

channel CASnext : ThreadID . NodeIDType . NodeIDType . NodeIDType . Bool

channel removeNode : ThreadID . NodeIDType

channel free : NodeID

channel noFreeNode : ThreadID

−− A node process, with identity me, currently free .

FreeNode :: (NodeIDType) → Proc

FreeNode(me) =

initNode ? ! me ? value → Node(me, value, Null, false)

2 2 e : diff (alphaNode(me), {|initNode,free,noFreeNode|}) • e → div

−− A node process, identity me, holding datum value and next pointer next;

−− removed indicates whether the node has been removed from the list .

Node :: (NodeIDType, T, NodeIDType, Bool) → Proc

Node(me, value, next, removed) =

getValue ? ! me . value → Node(me, value, next, removed)

2 getNext ? ! me .next → Node(me, value, next, removed)

2 CASnext ? ! me ? expected ? new ! (expected=next) →
Node(me, value, if expected=next then new else next, removed)

2 not(removed) & removeNode ? ! me → Node(me, value, next, true)

2 removed & free .me → FreeNode(me)

2 noFreeNode ? → Node(me, value, next, removed)

−− Alphabet of node me .

alphaNode(me) = {| free .me, initNode . t .me, removeNode . t .me, noFreeNode . t,

getValue . t .me, getNext . t .me, CASnext . t .me | t ← ThreadID |}
−− All nodes

AllNodes = ‖ id : NodeID • [alphaNode(id)] FreeNode(id)

Fig. 4. Model of the nodes.

of n’s next field; CASnext.t.n.expected.new.res represents t performing a CAS on n’s
next field, trying to change it from expected to new, with res giving the boolean
result; removeNode.t.n represents t marking n as removed from the linked list;
free.n represents n being recycled; and noFreeNode.t represents t failing to obtain
a new node.

A free node (process FreeNode) can be initialised with a particular value and
with its next field Null. Our model also allows the node to perform various events
corresponding to a thread incorrectly accessing this node, after which it diverges;
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datatype AtomicRefID = Head | Tail −− The IDs of atomic references

−− Channels used by Head and Tail

channel getNode : ThreadID . AtomicRefID . NodeIDType

channel CAS : ThreadID . AtomicRefID . NodeIDType . NodeIDType . Bool

channel initAR : NodeID

−− An atomic reference to node

AtomicRefNode :: (AtomicRefID, NodeIDType) → Proc

AtomicRefNode(me, node) =

getNode ? t ! me .node → AtomicRefNode(me, node)

2 CAS ? t ! me ? expected ? new ! (expected=node) →
AtomicRefNode(me, if expected=node then new else node)

−− The atomic reference variables

HeadAR = initAR ? h → AtomicRefNode(Head, h)

TailAR = initAR ? h → AtomicRefNode(Tail, h)

AllARs = HeadAR [| {|initAR|} |] TailAR

−− The constructor

Constructor = initAR ? h → initNode ? ! h ? → RUN({|beginEnqueue, beginDequeue|})

Fig. 5. Model of the head and tail atomic references, and the constructor.

later we verify that the system cannot diverge, and so verify that no such event
can occur.

An initialised node can: (1) have its value field read by a thread; (2) have its
next field read by a thread; (3) have a CAS operation performed on its next field
by a thread: if the expected field matches the current value of next, the value
is updated to the new field and the result is true; otherwise next is unchanged
and the result is false; (4) be marked as removed from the linked list (if not so
already); (5) be freed up, if already marked as removed from the linked list;
(6) signal that no free node is available (all nodes will synchronize on this event,
so it will be available only if all nodes are in this state).

We combine the nodes in parallel with the natural alphabets.
Figure 5 gives the CSP model of the atomic reference variables, head and tail,

together with a “constructor” process Constructor that initialises these variables
and the dummy header node. The type AtomicRefID gives identities of these
atomic references. Event getNode.t.ar.n represents thread t reading the value n

of atomic reference ar. Event CAS.t.ar.expected.new.res represents t performing a
CAS operation on ar, trying to change it from expected to new, with res giving
the boolean result. Event initAR.h represents the two atomic references being
initialised to refer to initial dummy header node h.
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−− events to signal the start or end of operations

channel beginEnqueue, endEnqueue, endEnqueueFull, endDequeue : ThreadID . T

channel beginDequeue, endDequeueEmpty : ThreadID

channel releaseRefs : ThreadID −− a thread releases its references

−− A thread, which enqueues or dequeues .

Thread(me) =

beginEnqueue .me ? value → Enqueue(me, value)

2 beginDequeue .me → Dequeue(me)

Fig. 6. Model of a thread.

The model of an atomic reference is similar in style to the model of a node,
but simpler. The constructor chooses an initial dummy header node h, initialises
the two atomic references to refer to it, initialises h to hold a nondeterministic
initial value, and then allow begin events to occur; the effect of the last step is
to block other threads until the construction is complete.

3.2 Enqueueing and dequeueing threads

Figures 6 and 7 give the models of the threads. In order to later capture the
requirements, we include additional events to signal the start or end of an en-
queue or dequeue operation, including the end of a dequeue operation that failed
because the queue was empty, or an enqueue operation that failed because the
queue was full (i.e. there was no free node). We also include events on channel
releaseRefs to represent a thread releasing its references (before re-trying).

Each Thread process represents a thread that repeatedly performs enqueue
or dequeue operations. The process Enqueue(me, value) represents a thread with
identity me trying to enqueue value. It starts by trying to initialise a node to
hold value; if this fails, as indicated by the noFreeNode event, it signals that the
queue is full. The process Enqueue’ corresponds to the while loop in the enqueue

function of Figure 2. Most of the definition is a direct translation of the Scala
code from that figure: the reader is encouraged to compare the two. If the
enqueue succeeds, this is signalled with an endEnqueue event. If the enqueue
fails, and the thread has to retry, it releases the references it held, so these can
potentially be recycled. The dequeue operation is modelled in a very similar
way.

3.3 Recycling nodes

We now describe our mechanism for recycling nodes in the model. While the
mechanism is very similar to memory management techniques in implementa-
tions, the intention is different: our aim is to increase the coverage of our model,
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−− An enqueueing thread

Enqueue :: (ThreadID, T) → Proc

Enqueue(me, value) =

initNode .me ? node ! value → Enqueue’(me, value, node)

2 noFreeNode .me → endEnqueueFull .me . value → Thread(me)

Enqueue’ :: (ThreadID, T, NodeIDType) → Proc

Enqueue’(me, value, node) =

getNode .me .Tail ? myTail → getNext .me .myTail ? myNext →
getNode .me .Tail ? myTail’ →
if myTail=myTail’ then −− in case it’s been changed (optimization)

if myNext=Null then

CASnext .me .myTail .Null .node ? result →
if result then −− enqueue succeeded, so advance tail

CAS .me .Tail .myTail .node ? → endEnqueue .me . value → Thread(me)

else −− CASnext failed; retry

releaseRefs .me → Enqueue’(me, value, node)

else −− myNext 6=Null, try to advance tail

CAS .me .Tail .myTail .myNext ? →
releaseRefs .me → Enqueue’(me, value, node)

else −− Tail changed; retry

releaseRefs .me → Enqueue’(me, value, node)

−− A dequeuing thread

Dequeue :: (ThreadID) → Proc

Dequeue(me) =

getNode .me .Head ? myHead → getNode .me .Tail ? myTail →
getNext .me .myHead ? myNext → getNode .me .Head ? myHead’ →
if myHead=myHead’ then −− in case it’s been changed (optimization)

if myHead=myTail then

if myNext=Null then endDequeueEmpty .me → Thread(me) −− empty queue

else −− new item partially enqueued

CAS .me .Tail .myTail .myNext ? → −− try to advance tail; retry

releaseRefs .me → Dequeue(me)

else −− non−empty queue; try to remove node from queue

CAS .me .Head .myHead .myNext ? result →
if result then

getValue .me .myNext ? value → removeNode .me .myHead →
endDequeue .me . value → Thread(me)

else −− myNext .value already taken; retry

releaseRefs .me → Dequeue(me)

else releaseRefs .me → Dequeue(me) −− Head changed; retry

Fig. 7. Model of a thread (continued).
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HPs :: (ThreadID, NodeIDType, NodeIDType, NodeIDType, Bool) → Proc

HPs(me, h, t, n, enq) =

beginEnqueue .me ? → HPs(me, h, t, n, true)

2 beginDequeue .me → HPs(me, h, t, n, false)

2 getNode .me .Tail ? t’ → HPs(me, h, if enq then t’ else Null, n, enq)

2 getNode .me .Head ? h’ → HPs(me, if enq then Null else h’, t, n, enq)

2 getNext .me ? :NodeID ? n’ → HPs(me, h, t, if enq then Null else n’, enq)

2 ( 2 e : releaseEvents (me) • e →
HPs(me, Null, Null , Null , if e= ( releaseRefs .me) then enq else false ))

2 free ? : diff (NodeID, {t, h, n}) → HPs(me, h, t, n, enq)

−− The events on which me releases all its hazard pointers .

releaseEvents (me) = {|endEnqueue .me, endEnqueueFull .me, endDequeue .me,

endDequeueEmpty .me, releaseRefs .me|}

−− All hazard pointer processes, synchronizing on free events .

alphaHP(me) = union( releaseEvents(me),

{| beginEnqueue .me, beginDequeue .me, getNode .me, getNext .me, free |})
HazardPointers = ‖ me ← ThreadID • [alphaHP(me)] HPs(me,Null,Null,Null,false)

Fig. 8. The hazard pointers.

capturing executions with an arbitrary number of enqueue and dequeue opera-
tions.

We use a technique inspired by hazard pointers [17]. The idea (as an im-
plementation technique) is that each thread has a few pointer variables, known
as hazard pointers: no node referenced by such a pointer should be recycled.
When a thread removes a node from a data structure, it can add the node to
a list of removed nodes. The thread intermittently reads the hazard pointers of
all threads, and recycles any removed node that is not referenced by a hazard
pointer.

In the lock-free list, the hazard pointers should be each thread’s myTail during
an enqueue operation, and its myHead and myNext during a dequeue operation. It
is obvious that it would be hazardous to recycle any of these nodes, since fields
of each are accessed by the thread. Our subsequent analysis shows that these
are sufficient hazard pointers.

Figure 8 gives the relevant part of the CSP model. The process
HPs(me, h, t, n, enq) records the hazard pointers of thread me; the parameters
h, t and n store the thread’s myHead, myTail and myNext variables, where rel-
evant; the parameter enq records whether the thread is enqueueing; these are
updated by synchronizing with the relevant events of the thread. The hazard
pointer parameters are reset to Null when the thread releases the references.
This process allows any node other than its hazard pointers to be freed. All HPs
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−− All threads

AllThreads0 = ||| id : ThreadID • Thread(id)

AllThreads = AllThreads0 [| {|beginEnqueue, beginDequeue|} |] Constructor

−− synchronisation set between Threads and HazardPointers .

HPSyncSet = union( {| beginEnqueue, beginDequeue, getNode, getNext |},
Union({ releaseEvents (t) | t ← ThreadID }) )

−− synchronisation set between Threads/HazardPointers and Nodes/AtomicRefs

syncSet = union( {| initNode . t .n, getValue . t .n, getNext . t .n, CASnext . t .n |
t ← ThreadID, n ← NodeID |},

{| getNode, CAS, free, removeNode, noFreeNode, initAR |} )

−− Put components together in parallel

System0 = (AllThreads [| HPSyncSet |] HazardPointers)

[| syncSet |] (AllNodes ||| AllARs)

−− Prioritise releaseRefs , free and removeNode over all other events .

PriEvents = {|releaseRefs, free , removeNode|}
System1 = prioritise (System0, <PriEvents , diff (Events, PriEvents)> )

System = System1 \ union(syncSet, {|releaseRefs|})

Fig. 9. The complete system.

processes synchronize on the free events, so a node can be freed when it is not
referenced by any hazard pointer.

3.4 The complete system

We combine the system together in parallel in Figure 9.
We prioritise releaseRefs, free and removeNode events over all other events,

for two reasons. Firstly, we want to ensure that nodes are recycled as soon
as possible, so a thread does not fail to obtain a new node when there is one
waiting to be recycled. Secondly, this acts as a form of partial-order reduction,
and markedly reduces the size of the state space. This prioritisation is sound
since forcing these events to occur does not disable any of the standard events
on nodes (on channels getValue, getNext and CASnext).

We then hide other events: in the resulting process System, the only visible
events are the begin and end events.

4 Analysis

We now describe our FDR analysis of the model. In Section 4.1 we show that the
datatype is a linearizable queue. In Section 4.2 we show that the queue is lock-
free, and also that no thread attempts to access a freed node (i.e. there are no
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dangling pointers). In Section 4.3 we show that no node attempts to de-reference
a null reference. In Section 4.4 we discuss the use of symmetry reduction in the
checks. In Section 4.5 we discuss our results. Finally, in Section 4.6 we discuss
how the model can be adapted to alternative designs, and so understand why
some details of the datatype are as they are.

4.1 A linearizable queue

Recall that a datatype is linearizable if each method call appears to take place
atomically at some point between the call’s invocation and response; these points
are called linearization points. We prove that our model is a linearizable queue
by building a suitable specification in two steps: first we build a specification of
a queue, where the events correspond to the linearization points; and then we
ensure that these events occur between the corresponding begin and end events.
(Alur et al. [1] have proposed a similar technique.)

Our specification (Figure 10) introduces events to correspond to the lin-
earization points. The process QueueSpec models a queue, based on these events,
where the parameter q records the sequence of values currently in the queue.
A dequeue attempt succeeds when the queue is non-empty; otherwise it sig-
nals that the queue is empty. An enqueue may succeed or fail, depending
upon the queue’s current length. An enqueue is guaranteed to succeed when
#q+2∗card(ThreadID)−1 < card(NodeID), since a free node will always be available
in this case. When #q+1 <card(NodeID) ≤ #q+2∗card(ThreadID)−1, an enqueue
may either succeed or fail, depending upon how many deleted nodes are still
referenced by hazard pointers of other threads.

We then ensure that the events of QueueSpec occur between the corresponding
begin and end events. The process Linearizer(me) does this for events of thread me.
We combine the components together in parallel, hiding the events of QueueSpec.
The resulting specification requires that each trace (of begin and end events) is
linearizable: each operation appears to happen atomically at the point of the
corresponding (hidden) linearization event; the results of these operations are
consistent with an execution of a sequential queue (as enforced by the QueueSpec

process); each linearization event occurs between the corresponding begin and
end events (as enforced by the corresponding Linearizer process).

Note that we carry out the check in the stable failures model. On the as-
sumption that System is divergence-free, this also ensures liveness properties:
that the relevant events eventually become available (if not preempted by other
events). We discharge the divergence-freedom assumption below.

Spec is nondeterministic. Each state that is reachable after a particular
trace tr corresponds to a state of Queue that represents a possible lineariza-
tion that is consistent with tr. FDR normalises the specification: each state of
the normalised specification corresponds to the set of states that the original
specification can reach after a particular trace, i.e. the set of linearizations that
are consistent with the visible trace so far.
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channel enqueue, dequeue : ThreadID . T

channel dequeueEmpty, enqueueFull : ThreadID

QueueSpec = Queue(<>)

Queue(q) =

( if q 6= <> then dequeue ? t ! head(q) → Queue(tail(q))

else dequeueEmpty ? t → Queue(q) )

2

if #q+2∗card(ThreadID)−1 < card(NodeID) then enqueue ? t ? x → Queue(q̂<x>)

else if #q+1 < card(NodeID) then

enqueue ? t ? x → Queue(q̂<x>) u enqueueFull ? t → Queue(q)

else enqueueFull ? t → Queue(q)

Linearizer (me) =

beginEnqueue .me ? value → (

enqueue .me . value → endEnqueue .me . value → Linearizer(me)

2 enqueueFull .me → endEnqueueFull .me . value → Linearizer(me) )

2

beginDequeue .me → (

dequeueEmpty .me → endDequeueEmpty .me → Linearizer(me)

2 dequeue .me ? value → endDequeue .me . value → Linearizer(me) )

AllLinearizers = ||| id : ThreadID • Linearizer ( id)

specSyncSet = {| enqueue, dequeue, dequeueEmpty, enqueueFull |}
Spec = ( AllLinearizers [| specSyncSet |] QueueSpec) \ specSyncSet

assert Spec vF System

Fig. 10. Testing for linearizability.

4.2 Lock-freedom and dangling pointer freedom

Recall that a concurrent datatype is said to be lock-free if it always guarantees
that some method call finishes in a finite number of steps, even if some (but not
all) threads are permanently desscheduled. A failure of lock freedom can occur
in two ways:

– One or more threads perform an infinite sequence of events without an op-
eration ever finishing;

– A thread reaches a state where it is unable to perform any event, so if all
other threads are permanently descheduled, the system as a whole makes no
progress.

The former type of failure of lock freedom is easy to capture: a violation
of this property would involve an unbounded number of events without an end

event, which would represent a divergence of SystemE, below.
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−− System with only end events visible

SystemE = System \ {| beginEnqueue, beginDequeue|}
assert SystemE :[divergence free ]

In order to capture the latter type of failure, we need to be able to model
the permanent descheduling of threads. We do this via a process Scheduler that
allows all but one thread to be descheduled: the descheduling of thread t is
captured by the event dies.t; the regulator allows events of a thread only if it
has not been descheduled. We then check that the resulting system is deadlock
free.

−− Alphabet of thread t

alpha(t) =

{| initNode . t, getValue . t, getNext . t, CASnext . t, getNode . t, removeNode . t,

CAS . t, beginEnqueue . t, endEnqueue . t, endEnqueueFull . t, endDequeue . t,

beginDequeue . t, endDequeueEmpty . t |}

channel dies : ThreadID −− A particular thread dies

−− A regulator for the lock freedom property .

Scheduler( alive ) =

(2 t: alive , e: alpha(t) • e → Scheduler(alive))

2 card( alive ) > 1 & dies ? t: alive → Scheduler(diff( alive ,{t}))

SchedulerSyncSet = Union({alpha(t) | t ← ThreadID})
SystemLF0 = System0 [| SchedulerSyncSet |] Scheduler(ThreadID)

SystemLF = prioritise (SystemLF0, <PriEvents , diff (Events,PriEvents)> )

\ union(syncSet, {|releaseRefs , beginEnqueue, beginDequeue|})
assert SystemLF :[deadlock free ]

Recall that dereferencing a dangling pointer (i.e. referencing a node that has
been freed) leads to a divergence. The above divergence-freedom check therefore
also ensures freedom from such dangling pointer errors. This check also guaran-
tees that System is divergence-free, giving the liveness properties mentioned at
the end of the last subsection.

4.3 Null reference exceptions

Finally, we check that no thread ever tries to de-reference the Null reference: we
hide all other events and check that no event can occur.

nullRefs =

{|initNode . t .Null,getValue . t .Null,getNext . t .Null,CASnext . t .Null | t ← ThreadID|}
assert STOP vT System0 \ diff(Events,nullRefs)
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Parameters Check No sym. red. Sym. red.
#states time #states time

2, 2, 3 lin. queue 207K 0.5s 9.3K 0.5s
2, 2, 3 divergences 150K 0.9s 6.7K 0.4s
2, 2, 3 lock freedom 406K 0.5s 18K 0.4s
2, 2, 3 null refs 150K 0.5s 6.7K 0.2s

3, 3, 4 lin. queue 5465M 7196s 6.7M 55s
3, 2, 4 divergences 234M 647s 1.1M 22s
3, 2, 4 lock freedom 1354M 1015s 5.2M 28s
3, 3, 4 null refs 1454M 1679s 2.1M 10s

3, 3, 5 lin. queue — — 109M 1520s
3, 3, 6 divergences — — 98M 1638s
3, 3, 6 lock freedom — — 584M 3265s
3, 3, 6 null refs — — 98M 460s

Fig. 11. Results of analyses. The “Parameters” column shows the sizes of ThreadID, T
and NodeID, respectively. In the “Check” column, “lin. queue” represents the check for
being a linearizable queue (Section 4.1), “divergences” represents the divergences-based
check (Section 4.2), “lock freedom” represents the deadlock-based check (Section 4.2),
and “null refs” represents the check for null reference exceptions (Section 4.3).

4.4 Using symmetry reduction

Each of the above refinement checks can be run either with or without symme-
try reduction. In order to use symmetry reduction, the refinement assertion is
labelled with

: [symmetry reduce]: diff (NodeIDType,{|Null|}), T, ThreadID

This tells FDR to perform symmetry reduction in the types of real node identities
(excluding Null), data and thread identities. The script uses no constant from
these types, other than within the definition of the types; it is shown in [8] that
the model is symmetric in the types under this condition, and so the symmetry
reduction is sound.

4.5 Results

As noted at the start of Section 3, the model is parameterized by three types:
the type NodeID of “proper” nodes; the type T of data; and the type ThreadID of
thread identities. We have used FDR to check the above assertions, for various
sizes of these types. All the checks we tried succeeded.

Figure 11 gives information about some of the checks we carried out, includ-
ing the number of states and the time taken (on a 32-core machine, with two
2GHz Intel(R) Xeon(R) E5-2650 0 CPUs, with 128GB of RAM, FDR version
3.4.0). Figures are given both without and with symmetry reduction.

The first block of entries is for our standard test case: here the checks are
effectively instantaneous, either with or without symmetry reduction. The sec-
ond block of entries is indicative of the maximum sizes of parameters that can
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be checked without symmetry reduction. Here, symmetry reduction gives signif-
icant reductions in both the number of states and the checking time. The third
block is indicative of the maximum sizes of parameters that can be checked with
symmetry reduction.

4.6 Alternative designs

It is straightforward to adapt the above model so as to consider alternative
designs for the lock-free queue: this can help us understand some of the details
of the original design from [16].

For example, if an enqueue finds that myNext 6= null, it attempts to advance
tail via a CAS operation (line 23 of Figure 2). To investigate why this is necessary,
we can remove the corresponding event from the definition of Enqueue. FDR then
finds that the datatype is no longer lock-free. It finds a divergence of SystemE

which corresponds to the following trace of System0

<beginEnqueue .T0 .A, beginEnqueue .T1 .A, initNode .T1 .N2 .A, initNode .T0 .N1 .A,

getNode .T1 .Tail .N0, getNext .T1 .N0 .Null, getNode .T0 .Tail .N0,

getNode .T1 .Tail .N0, CASnext .T1 .N0 .Null .N2 . true, getNext .T0 .N0 .N2,

getNode .T0 .Tail .N0, releaseRefs .T0, getNode .T0 .Tail .N0 >,

after which the last four events can be repeated indefinitely. Thread T1 par-
tially enqueues node N2, but fails to advance Tail to it. As a result, thread T0

repeatedly reads N0 from Tail, finds that its next reference is non-null, and retries.
A similar behaviour explains why the dequeue operation attempts to advance

tail if myNext 6= Null (line 36 of Figure 2).

5 Conclusions

In this paper we have used CSP and its model checker FDR to analyse a lock-
free queue. Novel aspects include the modelling of a dynamic datatype with
a mechanism for recycling nodes. We have shown how to capture linearizable
specifications and lock-freedom using CSP refinement checks.

We should be clear about the limitations of our analysis. We have verified
the datatype for the small values of the parameters listed in Figure 11 and a few
others. This does not necessarily imply that the datatype is correct for larger
parameters. However, the analyses should certainly give us great confidence in
its correctness — more confidence than standard testing. It seems likely that any
error in such a datatype would manifest itself for small values of the parameters.

– If there is a flaw caused by one thread’s execution being interfered with by
other threads, then it is likely that the actions of the interfering threads
could have been performed by a single thread, and so such a flaw would
manifest itself in a system of just two threads. One approach to formalise
this argument would be counter abstraction [18, 14, 15], which counts the
number of processes in each state, but in an abstracted domain.
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– The enqueue and dequeue operations affect just the first two and last two
nodes in the list. Hence any flaw is likely to manifest itself when there are
at most two nodes in the list, and so will be captured by a system with
2 + #ThreadID nodes (since each enqueueing thread can hold a node that it
has not yet enqueued).

– The implementation is data independent: it performs no operations on the
data itself. Any flaw concerning data values (of type T) must manifest itself
in an inappropriate value being dequeued, since this is the only part of the
specification that cares about data values. One can create a corresponding
flaw when T contains just two values A and B, by renaming the incorrectly
dequeued value to A, and every other value to B. (Lazić and Roscoe have
developed a general theory of data independence, formalising arguments like
this; however, there results are not applicable here, because our Spec process
does not satisfy their Norm property [19, Section 15.2].)

It might be interesting to try and formalise some of these ideas, although these
are very challenging problems.

I believe that concurrent data structures are a very good target for CSP-style
model checking. The algorithms are small enough that they can be accurately
modelled and analysed using a model checker such as FDR. The requirements
are normally clear. Yet the algorithms are complex enough that it is not obvious
that they are correct.

Translating from executable code to a CSP model is straightforward. In-
deed, I believe that there are good prospects for performing this translation
automatically.

It also seems straightforward to produce the corresponding specifications.
In particular, CSP seems well suited for capturing linearizability. The compo-
nents of the specification correspond to the different aspects of the requirements:
QueueSpec captures the queue behaviour, and each Linearizer captures that the
actions of a particular thread are linearized. Adapting this to a different lin-
earizable specification requires only replacing the QueueSpec, and adapting the
events of Linearizer appropriately. It is interesting that this specification uses
parallel composition and hiding: this creates a much clearer structure than the
corresponding sequential process.

Building on the work in this paper, Chen [4] and Janssen [11] have studied
a number of other concurrent datatypes, including several implementations of
a set based on a linked list, a stack, a combining tree, an array-based queue,
and a lock-based hash set. Some of these datatypes made use of a potentially
unbounded sequence counter. However, this counter can be captured in a finite
model using the observation that (in most cases) the counter is actually used
as a nonce: the exact value of the counter is unimportant; what matters is
whether the value changes between two reads. Hence we can use the technique
of Roscoe and Broadfoot [21] (developed for the analysis of security protocols)
for simulating an unbounded supply of nonces within a finite model.

Our approach does not require identifying the linearization points (the points
at which the operations seem to take effect). However, we suspect that when
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there are identifiable linearization points, our check can be made more efficient:
the implementation events corresponding to the linearization events can be re-
named to the corresponding specification events, and those events left visible in
the specification; this will often reduce the size of the search. However, it is not
always possible to identify linearization points at the time they are performed;
for example, for an unsuccessful dequeue the linearization point is the read of
null for myNext (line 31 of Figure 2), but only if the subsequent re-read of head

(line 32) gives an unchanged value: one can only be sure that the read of myNext

was a linearization point at a later point in the trace.
We proved that the queue is lock-free. A related condition is wait freedom.

A datatype is wait-free if each method call terminates within a finite number of
steps. The queue we have studied is not wait-free: for example, an enqueue op-
eration will not terminate if the CAS operation in line 19 of Figure 2 repeatedly
fails: however, this would imply that other threads are repeatedly successfully
enqueueing other items. Surprisingly, it turns out to be impossible to capture
wait freedom using a CSP refinement check. Roscoe and Gibson-Robinson have
shown [22] that every finite- or infinite-traces-based property that can be cap-
tured by a CSP refinement check can also be captured by the combination of a
finite-traces refinement check and satisfaction of a deterministic Büchi automa-
ton. It is reasonably straightforward to show that capturing the infinite-traces
wait freedom property requires a nondeterministic Büchi automaton.
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