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Abstract

A security protocol consists of an exchange of messages between two or
more agents, with goals such as establishing a cryptographic key, or au-
thenticating the identities of the agents. These protocols are designed to
operate in particularly hostile environments, where an intruder may be try-
ing to attack the protocol, by intercepting some messages or creating new
messages.

Typically, the design of a security protocols can be formally described in
half a page using an abstract notation. However, the implementation tends
to be much longer and may introduce new sources of attack if not done
properly. The main goal of this project is to build a compiler that compiles
the design of a given security protocol into an implementation in Java as
secure as possible.
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Chapter 1

Introduction

According to Gollman [Gol99], “Computer security deals with the prevention
and detection of unauthorized actions by users of a computer system”. A
computer system can be a set of computers connected in some way to each
other across a network. An important area of research in computer science
is concerned with the security of communications over a public network
such as the Internet. Its applications are extremely varied, for example
the confidentiality of e-mails sent between companies, the growing use of
e-commerce, the authentication of an entity before sending important data
to it, or the anonymity of the users of a website.

In spite of this, the usual computer networks by themselves do not pro-
vide any form of security. When an agent sends a message to another agent,
except if the two agents are linked directly, it will be transmitted from one
host to another until it reaches its intended destination. However, nothing
prevents one of the intermediary from destroying the message or modifying
it. So how can we communicate securely over a network that is not secure?
Security protocols are meant to remedy this issue.

1.1 Introducing security protocols

A security protocol is a sequence of messages exchanged between entities
making use of cryptography, in order to establish security properties; for ex-
ample, authentication (i.e. verification of identity) of agents, establishment
of secret keys and ensuring the integrity of data received. These services
have to be provided even in a highly hostile environment in which intrud-
ers have capabilities such as intercepting messages, inserting new messages,
modifying messages sent, spoofing the identity of another agent and run-
ning the protocol with different agents at the same time. In order to do
so, security protocols make use of cryptography. Cryptography is the sci-
ence of rendering plain information unintelligible (this is called encryption)
and restoring encrypted information to intelligible form (this is called de-
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CHAPTER 1. INTRODUCTION 2

cryption). The design of such protocols is a difficult task as the following
example will show.

The following security protocol is called the Needham-Schroeder Public
Key protocol [NS78]. It was thought to be secure for many years:

Message 1. a → b : {a, na}PK(b)

Message 2. b → a : {na, nb}PK(a)

Message 3. a → b : {nb}PK(b)

where a and b are agents, PK(x) is the public key of agent x, na is a fresh
nonce created by a and nb is a fresh nonce created by b. A nonce is a large
random number that must be fresh for each run of the protocol.

{data}k denotes the value data encrypted under the key k and m,n

denotes the text m followed by the text n.
In this security protocol, two agents a and b communicate with the aim of

mutually authenticating one another. This protocol was thought to satisfy
the following security properties:

1. a must be authenticated by b;

2. b must be authenticated by a;

3. the value of the nonces na and nb must be known by agents a and b

but nobody else.

The assumptions of knowledge at the start of a protocol run are as
follows:

• each participating agent x knows its own secret key SK(x), which
remains secret;

• all public keys are known by all participating agents.

This protocol is composed of 3 messages. Firstly a creates a fresh nonce
na and sends it along with its own identity to b, encrypting the message with
b’s public key so that only b will be able to decrypt it. b then sends to a

the nonce na along with a newly created nonce nb, encrypting this message
with a’s public key so that only a should be able to decrypt it. When a

reads na, he knows he was talking to b because nobody else could have been
able to decrypt message 1. a finally sends nb encrypted with b’s public key
to b. When b reads nb, he thinks he was talking to a because nobody else
should be able to decrypt message 2. After this, a and b apparently know
they have been talking with each other, agree on the values of na and nb,
and nobody else know those values.
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After 17 years the following attack was discovered by Lowe [Low96a]:

Message α1. A → Y : {A,na}PK(Y )

Message β1. YA → B : {A,na}PK(B)

Message β2. B → YA : {na, nb}PK(A)

Message α2. Y → A : {na, nb}PK(A)

Message α3. A → Y : {nb}PK(Y )

Message β3. YA → B : {nb}PK(B)

where A and B are playing roles of a and b respectively, and IX represents
the intruder impersonating agent X.

In this attack, A runs the protocol with some agent Y who will use this
opportunity to spoof A’s identity in a run of the protocol with B. Y starts
a second run of the protocol (run β) and sends to B the nonce na that
he received from message α1, pretending to be A. When B sends him the
values of na and nb encrypted with the public key of A, the intruder simply
forwards this message to A who decrypts it for him and sends him the value
of nb encrypted with Y ’s public key. Y now knows nb and is able to send
message β3 to B.

At the end of run β, B thinks he has completed a run of the protocol
with A, whereas he was actually talking to Y impersonating A. This is a
failure of authentication.

Lowe [Low96a] proposed the following correction to the NSPK protocol:

Message 1. a → b : {a, na}PK(b)

Message 2. b → a : {b, na, nb}PK(a)

Message 3. a → b : {nb}PK(b)

The former attack does not work anymore as an intruder Y will not be
able to replay message β2 to A: A expects to read the identity Y in the first
field of the message once decrypted and will read the identity of B instead.

Abadi and Needham [AN96] have defined a number of principles to follow
in order to avoid such attacks. Here the Needham-Schroeder Public Key
protocol does not respect the third principle that reads: “If the identity of a
principal is essential to the meaning of a message, it is prudent to mention
the principal’s name explicitly in the message”.

But how can we be sure that there is not any other subtle attacks? There
have been a number of formal approaches developed over the years to verify
the correctness of security protocols. One of the most successful is the use
of Casper [Low97] that will be presented in the next chapter.

The usual way to design a security protocol is therefore:

1. Establish how the protocol works, the requirements it has and the
properties it is supposed to provide;
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2. Fix any obvious issue that may be discovered just by thinking about
how the protocol works;

3. Use a verification technique to search for other attacks and fix them
until no problem remains;

4. Eventually implement the protocol in a given computing language.

1.2 The problem this thesis addresses

The aim of this project is to build a tool that compiles the design of a
security protocol into a corresponding Java implementation.

The protocol compiler that we develop is named COSP-J and is meant
to be used once a protocol was checked with Casper. This means that the
Casper and COSP-J input files must be as similar as possible.

The creation of such implementations can introduce new ways of attack-
ing the protocol. For example, a worm called “Slapper” infected 12,000
servers running the SSL module of Apache mod_ssl. The worm does not
exploit an attack against the SSL protocol itself, but is a buffer overflow
attack that works only against this specific implementation.

A buffer overflow occurs when there is more data stored in a buffer than it
is intended to hold. The extra information can overflow into adjacent buffers,
overwriting the valid data they hold. Extra data may contain instructions
that will be executed by the attacked computer so that the attacker will
really take control of its target.

In 2001, a buffer overflow attack was discovered against implementations
of the SSH protocol (version 1) from OpenSSH and SSH Communications
Security [Zal01]. Once again, it is not an attack against the protocol itself,
but against some of its implementations. In fact, buffer overflow is just an
example of programming error that can lead to an attack.

Therefore it would be interesting to have a tool that could generate the
implementation automatically to remove the risk of error in this step, and
also to make implementation faster and easier.

An additional aim is to prevent some attacks in the implementations
generated by COSP-J, that Casper is unable to detect (cf. Chapter 7 and
8).

1.3 Thesis overview

In Chapter 2, we introduce the background material that is used in this
thesis. In Chapter 3, we describe how to write a basic input file for our
compiler. In Chapter 4, we describe how to write a clean implementation
of a security protocol by writing as few lines as possible and trying to make
the code as readable as possible. This is achieved by using external libraries
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common for all protocols (some of them exist and some of them have to
be written). In Chapter 5, we highlight the main difficulties encountered
when compiling an input script into an implementation and how to deal
with these issues. Chapter 6, introduces additional features that are useful
for certain protocols, such as Vernam Encryption and hash functions, and
how they are captured in an input file so as to be able to implement a
very wide range of security protocols. In Chapter 7, we describe Type Flaw
Attacks which are difficult to detect with Casper; we show how to prevent
these attacks formally and how these preventative measures are implemented
in our proposed compiler. Chapter 8 deals with Multi-protocols Attack
and how they are prevented in COSP-J. Chapter 9, shows how to use our
proposed compiler to implement a complex e-commerce security protocol.
Finally, Chapter 10 presents the conclusions of our work, together with a
discussion of future work.



Chapter 2

Introducing Casper

Casper [Low97] is a compiler that takes a high level description of a security
protocol and generates a corresponding model in the CSP [Hoa85] language.

2.1 Introducing CSP and FDR

CSP (Communicating Sequential Processes) is a notation for describing a
system made of processes communicating with each other. CSP lets its
users describe a system and also write down some properties on the system.
FDR [Ros94] is a model-checker that can check whether these properties are
satisfied or not (and give counter-example if a property is not satisfied). It is
possible to build a CSP model describing a distributed system with processes
running a security protocol and other processes that try to interfere to create
an attack. However, building these models by hand takes a lot of time and
must be done very carefully to prevent any mistakes.

Casper is able to automatically compile a high level description of a
protocol into such a CSP script. Then we can run FDR on this CSP script
and automatically check whether the properties that the protocol is intended
to achieve are satisfied no matter what the intruders may try. If a property
is false, CSP returns a counter-example that can be interpreted by Casper

as an attack against the protocol (Figure 2.1).
The use of Casper and CSP has been very successful over the past few

years and has discovered many attacks against protocols that were thought
to be correct. The next paragraph will describe a Casper input file.

2.2 A Casper input file

In this section, we describe the Casper script for the Needham-Schroeder
Public Key (NSPK) protocol.

All Casper input scripts contain principally two kinds of information:
information on the protocol we are analyzing and information describing

6
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High level
protocol description

(input script)

Corresponding CSP
protocol model
(output script)

Casper FDR
(model checker)

High level
interpretation

of analysis

Results
(from the analysis)

Figure 2.1: The use of Casper

the actual system on which the check will be based.
The sections of a Casper input file that deal with the protocol itself are:

The “Free variables” section

#Free variables

A, B : Agent

na, nb : Nonce

PK : Agent -> PublicKey

SK : Agent -> SecretKey

InverseKeys = (PK, SK)

This section declares all the variables used in the protocol and their
corresponding type. It also specifies the relationship between encryption
and decryption keys thanks to the InverseKeys keyword.

The “Processes” section

#Processes

INITIATOR(A,na) knows PK, SK(A)

RESPONDER(B,nb) knows PK, SK(B)

This section declares the agent processes that play a role in the protocol
and their initial knowledge. The first parameter of each process is their
identity.

The “Protocol description” section

#Protocol description
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0. -> A : B

1. A -> B : {na, A}{PK(B)}

2. B -> A : {na, nb}{PK(A)}

3. A -> B : {nb}{PK(B)}

This section describes the sequence of messages that are exchanged dur-
ing the run of the protocol. For each message, it gives the name of the
sender, the name of the receiver and the content of the message.

The “Specification” section

#Specification

Secret(A, na, [B])

Secret(B, nb, [A])

Agreement(A,B,[na,nb])

Agreement(B,A,[na,nb])

This section is used to specify the requirements of the protocol to be
verified. For example, at the end of the Needham-Schroeder Public Key
protocol na and nb are secrets shared by agents a and b only, and a and b

are authenticated to each other.
The sections of a Casper input file that deal with the actual system to

check are:

The “Actual variables” section

#Actual variables

Alice, Bob, Mallory : Agent

Na, Nb, Nm : Nonce

This section declares all the variables used in the actual system to be
verified and their corresponding type in a similar way as for the free vari-
ables.

The “System” section

#System

INITIATOR(Alice, Na)

RESPONDER(Bob, Nb)

This section defines the agents participating in the actual system to be
checked.
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The “Intruder Information” section

#Intruder Information

Intruder = Mallory

IntruderKnowledge = {Alice, Bob, Mallory, Nm, PK, SK(Mallory)}

This section describes the intruder’s identity in the system to be verified
and its initial knowledge.

The “Functions” section

#Functions

symbolic PK, SK

This section defines how functions used by the agents in the protocol
description are performed. The keyword symbolic means that Casper will
produce its own values representing the results of the applications of the
functions.

As Casper and COSP-J are meant to be used together, COSP-J was
designed so that their input files have a lot in common. The next chapter
will first introduce COSP-J and then present the modifications between a
Casper script and a COSP-J script.



Chapter 3

Introducing COSP-J

This chapter introduces the compiler of security protocols COSP-J and
shows how to write a COSP-J input file.

3.1 Presentation of COSP-J

There presently exists no form of mechanical assistance to facilitate the im-
plementation of security protocols once they have been analyzed with Casper.
Even if the protocol is valid, there can be some errors in its implementation
that can be exploited by intruders. The aim of this project is to build a
tool called COSP-J that compiles the design of a security protocol into an
implementation written in Java (Figure 3.1).

COSP-J stands for Compiler Of Security Protocols into Java. It is meant
to be used in addition to Casper in order to first analyze a protocol and then
compile it.

It is important to keep in mind that Casper and COSP-J, despite their
similarities, act at two different levels of abstraction. Casper considers a
simple network of agents that communicate together (Figure 3.2). Casper

abstracts away from what these agents physically are and how they com-
municate together. If we consider that these agents are human beings, then
we do not take into account the physical network that they use, on which
computers they are logged and how the messages are transmitted from one
computer to another.

COSP-J acts at a much more concrete level of abstraction. COSP-J
considers a network of computers that communicate with each other and on
which some users can be logged (Figure 3.3). This means that we have to
make a clear distinction between computers and users. There is no way to
map a computer to a user, because a user can log on to different computers
at different times, a user can be logged on to more than one computer at a
time, and more than one user can be logged at a computer at a time. In the
rest of this thesis, we will use the word host or agent to designate a computer

10
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High level
protocol description

(input script)

Corresponding CSP
protocol model
(output script)

Casper FDR
(model checker)

High level
interpretation

of analysis

Results
(from the analysis)

Modifications
(cf. Section 3.2)

COSP-J Java code

Figure 3.1: The use of Casper and COSP-J together

Mallory

Alice Bob

Figure 3.2: Illustration of a network for Casper

192.168.1.1

Mallory

192.168.1.2

Alice
Mallory

192.168.1.3

Alice
Bob
John

Figure 3.3: Illustration of a network for COSP-J
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on which a given user is logged. The identity of the host is the name of its
user and the address of the host is the IP address of the computer.

3.2 Description of an input file

The structure of the input files of COSP-J is adapted from the general
structure of the input files of Casper. In this section, we define the sections
that compose a COSP-J input file and their meaning. Throughout the
section, we will refer to the Needham-Schroeder Public Key protocol as a
running example: we will look at the sections of a Casper input script that
we will need to keep and see what modifications have to be made to get a
COSP-J input script.

3.2.1 “Protocol description” section

The main subsection of a Casper input file, under the heading “#Protocol
description” is the list of messages to be exchanged between the partici-
pating agents. For the Needham-Schroeder Public Key protocol, described
in Chapter 1, this part of a Casper input file would be:

#Protocol description

0. -> a : b

1. a -> b : {a,na}{PK(b)}

2. b -> a : {na,nb}{PK(a)}

3. a -> b : {nb}{PK(b)}

Each step of the protocol is defined in a language very close to the usual
notation used above. {m}{k} represents the message m encrypted with the
key k. The only difference with the usual notation is the message 0. The
message 0 means that a receives the identity of the agent b from the envi-
ronment. This message may come from a user of agent a, who tells agent a

that he wants him to run the protocol with agent b.
The following two modifications are made to create a correct COSP-J

input file from this:

• We do not use the environmental message 0 anymore in COSP-J: the
fact that a initially knows the identity of b with whom he has to run
the protocol will be expressed in the section “#Processes” described
below. The difference between an environmental message and an initial
knowledge is important for the analysis of a protocol with Casper but
does not change anything for an implementation;

• We need a way to express what the results are of the protocol run
once it is finished. In the case of the Needham-Schroeder Public Key
Protocol, the agents share the secret values of na and nb and the agent
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b is sure of a’s identity. If the protocol ends successfully, we want the
agent a to return the values of na and nb and the agent b to return
the values of a, na and nb. The method in the implementation returns
these values to the calling code. These values may be useful after the
end of the protocol, for example if this implementation of the NSPK
is just a part of a big network application.

Therefore this part of the script becomes:

#Protocol description

1. a -> b : {a,na}{PK(b)}

2. b -> a : {na,nb}{PK(a)}

3. a -> b : {nb}{PK(b)}

4. a -> : na,nb

5. b -> : a,na,nb

There are some cases where the protocol description needs further changes.
For example, let us consider the Yahalom Protocol [BAN89], slightly modi-
fied by Lowe and Hui [HL99] so that the message 3 is split into messages 3a
and 3b:

Message 1. a → b : a, na

Message 2. b → s : b, {a, na, nb}ServerKey(b)

Message 3a. s → a : {b, kab, na, nb}ServerKey(a)

Message 3b. s → b : {a, kab}ServerKey(b)

Message 4. a → b : {nb}kab

where a and b are agents, s is a trusted server, ServerKey(x) is a secret
key shared by s and x, kab is a fresh key created by s, na is a fresh nonce
created by a and nb is a fresh nonce created by b.

This protocol establishes a shared secret key kab between agents a and
b. It also mutually authenticates a and b. The protocol description section
in a Casper input file would be:

#Protocol description

1. a -> b : a, na

2. b -> s : {a, na, nb}{ServerKey(b)}

3a. s -> a : {b, kab, na, nb}{ServerKey(a)}

3b. s -> b : {a, kab}{ServerKey(b)}

4. a -> b : {nb}{kab}

But this description does not provide enough information for our new
compiler for two reasons.

Firstly, if we try the protocol description above in COSP-J, an error will
be raised explaining that agent s is unable to decrypt message 2. To decrypt
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this message, s needs to know the value of ServerKey(b), but s does not
know the identity of b. In Casper it is assumed that when a sends a message
to b, b automatically knows who a is, but this is not the case in a real life
implementation; there is no way to map a host to the identity of its user.
This means that when a host receives a message from another host, he only
knows its IP address (in the case of an Internet network). So we need to
add the identity of b in message 2; that is to say, the name used for b in
the KeyStore of s. We add it in an unencrypted way, because Casper does
not make a distinction between a computer and its user, so it is logical to
send the identity of the user in the same way as the identity of the computer
(which is sent unencrypted by the IP protocol for example=.

Secondly, an error will be raised explaining that agent s is unable to
send message 3a, because he does not know who to send the message to.
In message 2, b sends to s the identity of a, but there is no way to map
an identity to a real host. Concretely, s knows the name of a but not its
IP address (in the case of an Internet network). So we need to add the
address of a in message 2. In order to do this, we use the keyword addr

which represents the address of an agent. We add it inside of the encrypted
part of the message, because Casper does not make a distinction between
a computer and its user, so it is logical to send the identity of the user in
the same way as the identity of the computer (which is the first field of the
encrypted part).

Once we take these modifications into account, we get the correct pro-
tocol description section for COSP-J:

#Protocol description

1. a -> b : a,na

2. b -> s : b, {a, addr(a), na, nb}{ServerKey(b)}

3a. s -> a : {b, kab, na, nb}{ServerKey(a)}

3b. s -> b : {a, kab}{ServerKey(b)}

4. a -> b : {nb}{kab}

5. a -> : b,kab

6. b -> : a,kab

3.2.2 “Free variables” section

The second section, under the heading “#Free variables” describes the
types of the variables and functions that are used in the protocol definition.
For the NSPK protocol, this section of an input file of Casper would be:

#Free variables

a, b : Agent

na,nb : Nonce

PK : Agent -> PublicKey

SK : Agent -> SecretKey
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InverseKey : (PK, SK)

The second and third lines declare the types of the free variables. The
names for the types do not really matter, as Casper does not know what
a Nonce is. However, standard names are generally used. But COSP-J
needs to recognize the keywords for the types and know what a Nonce is,
for example.
The 4th and 5th lines declare the types of the functions PK and SK which
take the identity of an agent and respectively return a PublicKey and a
SecretKey.
The 6th line declares that PK(x) and SK(x) are inversed for every host x,
so that anything encrypted with PK(x) can be decrypted with SK(x) and
vice-versa.
For COSP-J we need to be more specific about the type of the function
PK and SK and replace PublicKey with RSAPublicKey and also replace
SecretKey with RSASecretKey if we want to use RSA encryption [RSA78].
Therefore this subsection simply becomes:

#Free variables

a, b : Agent

na,nb : Nonce

PK : Agent -> RSAPublicKey

SK : Agent -> RSASecretKey

InverseKey : (PK, SK)

3.2.3 “Processes” section

The next section, under the heading “#Processes”, gives some information
about the agents running the protocol and their initial knowledge. Here is
this subsection of an input file of Casper for our example protocol:

#Processes

INITIATOR(a,na) knows PK,SK(a)

RESPONDER(b,nb) knows PK,SK(b)

The first line means that an agent playing role INITIATOR will be instan-
tiated with identity a and nonce na, and initially knows PK (i.e. the public
keys of all agents) and SK(a) (i.e. his own secret key).

The second line means that an agent playing role RESPONDER will be
instantiated with identity b and nonce nb, and initially knows PK (i.e. the
public keys of all agents) and SK(b) (i.e. his own secret key).

This section will have to be modified a bit for our compiler. Firstly the
INITIATOR has to know the name of b with whom it wants to run the
protocol, because we do not use the message 0 anymore (cf. the paragraph
on the protocol description section). Secondly we have to make it clear
which values are fed to the agents and which values are generated during
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the run of the protocol. In order to do so, we use another Casper notation
and this section will become:

#Processes

INITIATOR(a,b) knows PK,SK(a) generates na

RESPONDER(b) knows PK,SK(b) generates nb

3.2.4 “Functions” section

A Casper input file includes a subsection called “#Functions” which defines
how the functions used in the protocol must be created in CSP. For the
NSPK protocol, this section is as follows:

#Functions

symbolic PK, SK

This means that the functions PK and SK are not really defined but will
be simulated by the Casper code. Our compiler will need to know what the
functions PK and SK really are and where to find the secret key or the
public key of a given agent. The easiest way to store public and secret keys
in Java is to use a KeyStore. See Chapter 5 of [Knu98] for more details on
the class java.security.keystore. Therefore this subsection will become:

#Functions

PK = myKeyStore.PK

SK = myKeyStore.SK

This simply means that each time we need to apply the function PK or
SK, we need to get the public key or the secret key from a KeyStore named
myKeyStore.

This object is an external object: it is not part of the security protocol
but can be specified when we run the protocol. In order to define external
objects, we need an additional section described in the next paragraph.

3.2.5 “External” section

This section, that does not exist in Casper, describes the variables that are
used in the input file and that will be provided at runtime. For example,
the KeyStore used in the Needham-Schroeder Public Key protocol is not the
same for every run of the protocol: it will be an argument of the protocol
when we want to run it. Therefore we only need to tell the compiler that the
variable myKeyStore is of type KeyStore and that it is externally defined:

#External

myKeyStore : KeyStore
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3.3 Case studies

3.3.1 The Needham-Schroeder Public Key Protocol

We have built the complete input script of the Needham-Schroeder Public
Key protocol. Below is the complete script that we built in this chapter:

#Protocol description

1. a -> b : {a,na}{PK(b)}

2. b -> a : {na,nb}{PK(a)}

3. a -> b : {nb}{PK(b)}

4. a -> : b,na,nb

5. b -> : a,na,nb

#Free variables

a, b : Agent

na,nb : Nonce

PK : Agent -> RSAPublicKey

SK : Agent -> RSASecretKey

InverseKeys = (PK, SK)

#External

myKeyStore : KeyStore

#Functions

PK = myKeyStore.PK

SK = myKeyStore.SK

#Processes

INITIATOR(a,b) knows PK,SK(a) generates na

RESPONDER(b) knows PK,SK(b) generates nb

3.3.2 The Yahalom Protocol

In the “Protocol description” paragraph, we used the Yahalom protocol to
illustrate the modification that have to be made on this section between a
Casper input script and a COSP-J input script. Here is the complete input
script for this protocol:

#Free variables

a, b, s : Agent

na, nb : Nonce

kab : DESKey

ServerKey : Agent -> DESKey

InverseKeys = (kab, kab), (ServerKey, ServerKey)
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#External

sk : File

#Processes

INITYAHA(a,b) knows ServerKey(a) generates na

RESPYAHA(b,s) knows ServerKey(b) generates nb

SERVYAHA(s) knows ServerKey(a),ServerKey(b) generates kab

#Protocol description

1. a -> b : a,na

2. b -> s : b, {a, addr(a), na, nb}{ServerKey(b)}

3a. s -> a : {b, kab, na, nb}{ServerKey(a)}

3b. s -> b : {a, kab}{ServerKey(b)}

4. a -> b : {nb}{kab}

5. a -> : b,kab

6. b -> : a,kab

#Functions

ServerKey = sk

These two case studies do not illustrate all the features that can be used
in an input file of our compiler. Additional features will be introduced in
Chapter 6 enabling a broader spectrum of security protocols to be imple-
mented. But before having a more in depth vision of the input script, we
need to have a look at the output code that is generated by COSP-J.



Chapter 4

The output code

4.1 Java as the output language

The output code will be a script written in Java. The choice of Java as a
target language is mainly due to the fact that Java provide extensive support
for cryptography in the sets of classes called Java Cryptography Architecture
(JCA) and Java Cryptography Extension (JCE). These libraries are fully
described in [Knu98].

Another reason for choosing Java is that it is an Object Oriented Lan-
guage. We want our output code to be highly readable and as short as
possible. Therefore we will make the code as reusable as possible through
the mechanisms of Object Oriented Programming, for example inheritance
and overloading. For a complete overview of these mechanisms and their
use in Java, see [Bar00].

Finally, using Java automatically eliminates many implementation er-
rors, such as buffer overflows, dangling pointers and memory leaks, because
Java is a type-safe language with automatic memory management. Such
implementation errors occur very often when using an unsafe language such
as C or C++. For instance, from the top ten CERT/CC notes (as of Au-
gust 2003) with highest vulnerability potential, seven are buffer overflows or
integer overflows.

4.2 Structure of the output code

The structure of the output code is the list of actions that each agent has
to perform concerning each message of the protocol. Three cases can occur
for each agent concerning a given message.

Case 1 If the agent is neither sending nor receiving the message, it does
not perform any action.

19
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Case 2 If the agent is sending a message, it first builds the message and
then sends it. Each message is composed of fields. A message is built
by building all the fields and then concatenating them. A field can be
an atomic value (for example, the identity of an agent or the value of
a nonce) or an encrypted message. In the second case, the agent has
to build the sub-message first and then encrypt it.

Case 3 If the agent is receiving a message, it decomposes and decrypts it,
stores the values that were unknown and checks if the values that were
already known are correct.

For example, here is the structure of the output code for the Needham-
Shroeder Public Key Protocol described in Chapter 1:

For agent A

1. create a new nonce na and remember its value;
2. create a message containing A and na;
3. encrypt it with PK(B);
4. send it to B;
5. wait for a message;
6. try to decrypt it with SK(A), if impossible throw an exception mes-

sage;
7. check that na is right, if not throw an exception;
8. remember the value of nb;
9. create a new message containing nb;

10. encrypt it with PK(B);
11. send it to B;
12. return the values of na and nb.

For agent B

1. wait for a message;
2. try to decrypt it with SK(B), if impossible throw an exception mes-

sage;
3. remember the values of A and na;
4. create a new nonce nb and remember its value;
5. create a message containing na and nb;
6. encrypt it with PK(A);
7. send it to A;
8. wait for a message;
9. try to decrypt it with SK(B), if impossible throw an exception mes-

sage;
10. check that nb is right, if not throw an exception;
11. return the values of na and nb and the identity of agent a.



CHAPTER 4. THE OUTPUT CODE 21

The structure of the output code has to be deduced from the input code.
As we want the output code to be easy to read and understand, we need
each action to be expressed in as few code as possible (preferably just a
line). This means that we need to identify the actions that are performed
and design an Object Oriented Model that provides them in the best way
possible. For example, we notice that some actions happen quite often,
such as encryption, decryption, creation of a nonce, reception of a message,
dispatch of a message, creation of a message from its fields and so on.

The next section will describe an (much simplified) Object Oriented
Model to provide tools that let us perform all this actions easily.



CHAPTER 4. THE OUTPUT CODE 22

4.3 Object Oriented Model for the implementa-

tion of security protocols

Figure 4.1: UML schema of the main classes of the implementation

The UML [BMF01] schema in Figure 3.1 represents a simplified view of
the most important classes of the project. In this section, we describe the
role of each of these classes in turn. For a more complete overview of all the
classes of the project and their methods, see the Application Programming
Interface (API) for the package “core” in directory java/core/doc of the
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project.

4.3.1 The class Protocol

The main class is called Protocol. It is an abstract class that needs to be
inherited by each agent taking part in a given protocol. For example, the
compilation of the Needham Schroeder Public Key protocol generates two
classes called INITIATOR and RESPONDER, both inheriting of the class
Protocol. Someone who wants to run this protocol from the point of view
of the initiator has to run the class INITIATOR and someone who wants to
run the protocol from the viewpoint of the responder has to run the class
RESPONDER.

The constructor for the classes inheriting the class Protocol needs the
following arguments:

Variables An array of arguments representing the variables that the agent
knows initially (as described in the “Processes” section of the input
file). All these variables are stored in the private Vector “variables”,
together with all the new variables created during the run of the pro-
tocol. This array is optional: if it is not provided (i.e. if an empty
array is provided or if the array does not contain the required number
of arguments), then the program will prompt for the arguments one
by one from the standard input of the program.

ObjectOutputStream An ObjectOutputStream writes primitive data types
and graphs of Java objects to an OutputStream. The objects can be
read (reconstituted) using an ObjectInputStream. In this ObjectOut-
putStream all the messages sent to the environment (i.e. such as mes-
sages 4 and 5 in the input file of the Needham-Schroeder Public Key
protocol) will be sent. This lets us easily use the implementation
generated by our compiler as part of a bigger project: the object
that launches the protocol specifies from which ObjectOutputStream
it will receive the output messages of the protocol. This ObjectOut-
putStream is stored in the private member called oos. The function
writeObject is used to send an object through this stream. In the rest
of this thesis, the ObjectOutputStream will be implicitly linked to a
pretty printer which displays a readable representation of the objects
returned in environmental messages on the standard output.

The class Protocol essentially provides functions to access the local variables
of the agent. The most important methods of this class are:

addAgent This method adds a new agent to the list of known variables.

addNonce This method adds a new nonce to the list of known variables.
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getPrivateKey, getPublicKey and getSecretKey These methods re-
turn the private key, the public key or the secret key respectively for
a given agent by looking after it in the KeyStore.

agentFromId This method returns the Agent whose identity is provided
(cf. the description of the class Agent).

nonceFromId This method returns the Nonce corresponding to the given
identity (cf. the description of the class Nonce).

get This method waits for a message from the given agent and returns it.

put This method sends a message to another agent.

setNameToId This method sets the name of an Agent (cf. the description
of class Agent). If the name of the agent is already known, it checks
if the value is correct and returns an exception otherwise.

setValueToNonce This method sets the value of a Nonce (cf. the descrip-
tion of class Nonce). If the value of this nonce is already known, it
checks if the value is correct and returns an exception otherwise.

createNewNonce This method creates a new nonce for the specified id.

valueFromNonce This method returns the value of the nonce whose id is
provided.

run This method is abstract and so every class inheriting from the Protocol
class will have to implement it. It describe the actions to be performed
during the run of the protocol.

getArgs This method is abstract too. It represents the actions to be per-
formed to get the arguments of the protocol. It will be used only if
the arguments were not provided correctly during the instantiation of
an implementation of the abstract class Protocol.

All other methods of this class are not represented on the UML schema
and are less important, providing services useful only in certain cases or for
certain protocols. Some of this features will be discussed in Chapter 6.

4.3.2 The class Agent

Each instance of the class Agent represents an Agent of the distributed
system with whom the current agent might want to communicate. All the
methods of the class Agent are means to set or access one of the following
four members of an Agent:
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id This member represents the identity of the agent as it is used in the
protocol description section of the input script. The method getId

returns this value and the method setId is used to set this value.

ip This member is the IP address of the agent. For example, in the second
message of the Yahalom protocol studied in Chapter 3, b sends to a

the field addr(a). This is the IP address of agent a. The method getIp

returns this value and the method setIp is used to set this value.

name This member represents the identity of the agent as it is used in the
KeyStores. For example, in the first message of the NSPK protocol
that we have studied in Chapter 3, agent A sends its name to agent B.
The method getName returns this value and the method setName is
used to set this value.

socket This object is an instance of the class Socket that is used to commu-
nicate with the agent. It can be accessed with the getSocket method
and modified with the setSocket method.

4.3.3 The class Message

The class Message represents a message. Its only member is a String that
represents the content of the message. This content can be accessed with
the getString method or modified with the setString method. The class
Message also provides all the methods that are useful to build a message or
interpret it:

encrypt This method encrypts the content of a message with the algorithm
and the key provided.

decrypt This method decrypts the content of a message with the algorithm
and the key provided.

hash This method hashes the content of a message with the algorithm
provided. See Section 6.2 for more information on this.

addMessage This method concatenates two messages and put an ’at’ sym-
bol between them, so that we can cut it later with the method getAllF ields

for example. This means that a field of a message must never contain
the ’at’ symbol. That is the reason why all the fields are encoded in
Base64 format. Base64 is a system for representing raw byte data as
ASCII characters (and the ’at’ symbol is not an ASCII character).

getAllFields This method returns an array containing the different fields
of a message, i.e. the different messages that have been concatenated
in order to build this message.
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xor This method performs a Vernam encryption between the current mes-
sage and the message provided. See Section 6.3 for more information.

equals This method compares the current message with another and re-
turns a boolean value true if they are equal and false otherwise.

4.3.4 The class Nonce

This class inherits the class Message. It represents a nonce whose value is
stored in the member of the Message class. There is another member in
the class Nonce called Id. It represents the name of the nonce used in the
Protocol Description section of an input script. This member is private, but
can be accessed with the getId method and modified with the setId method.

4.3.5 The class MessageKey

This class also inherits from the class Message. It represents a message
containing just a key. For example, in the message 3a of the Yahalom
protocol, the field containing the key kab will be represented by this class.
It is possible to get the key that is contained inside of a MessageKey object
using the toKey method. The method createKey creates a new key for the
algorithm provided.

4.4 An example of output code

COSP-J generates a file for each agent playing a role in the protocol we
want to compile. These files contain a public class inheriting from the class
Protocol described in the previous section.

The output code for the INITIATOR of the Needham-Schroeder Public
Key Protocol defines the public class INITIATOR.

This script, like all the output files of COSP-J, is made of a class con-
structor and four methods called run, subMain, getArgs and main.

4.4.1 The constructor method INITIATOR: lines 13-16

13 public class INITIATOR extends Protocol {

14

15 public INITIATOR (ObjectOutputStream oos) {

16 super("core.Message" ,"core.MessageKey" ,"core.Nonce" );

17 this.oos=oos;

18 }

This part of the output script defines the only constructor of the class
INITIATOR. This constructor needs only one argument of type ObjectOut-
putStream that is used during the run of the protocol, to output the results
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as in the messages 4 and 5 of the NSPK protocol input file. This constructor
is used in the subMain static method described in the next paragraph.

Line 14 lets us use classes other than the Message, KeyMessage and
Nonce classes defined in the previous section. The use of this feature will
be illustrated in Chapter 7 when dealing with the prevention of type-flaw
attacks.

This constructor should never be used outside the class, as the method
subMain provides an easier way to call it.

4.4.2 The method subMain: lines 60-64

60 public static void subMain(String[] args,ObjectOutputStream oos) {

61 INITIATOR a = new INITIATOR(oos);

62 args=a.getArgs(args);

63 a.start();

64 }

The static method subMain first instantiates an object of type INITIA-
TOR using the constructor described in the previous paragraph, then calls
the method getArgs and finally starts the protocol by executing the method
run. subMain is the method to be called in order to run an INITIATOR
of the NSPK protocol.

This method takes two arguments: the first one is the list of parameters
used for the run of the protocol and will be transmitted to the INITIATOR
during the call of the getArgs method. The second one is the ObjectOutput-
Stream needed to instantiate an INITIATOR, as explained in the previous
paragraph.

4.4.3 The method getArgs: lines 66-94

66 public String[] getArgs(String[] args) {

67 try {

68 if (args.length != 5) {

69 args = (String[]) Array.newInstance("".getClass(), 5);

70 BufferedReader in2 =

71 new BufferedReader(new InputStreamReader(System.in));

72 println("Type the KeyStore file to use [keystore]");

73 args[0]=in2.readLine();

74 if (args[0].compareTo("")==0) args[0]="keystore";

75 println("Type the password to access it [pass]");

76 args[1]=in2.readLine();

77 if (args[1].compareTo("")==0) args[1]="pass";

78 println("Type the DNS name of agent b [localhost]");

79 args[2]=in2.readLine();

80 if (args[2].compareTo("")==0) args[2]="localhost";
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81 println("Type the name of agent a [a]");

82 args[3]=in2.readLine();

83 if (args[3].compareTo("")==0) args[3]="a";

84 println("Type the name of agent b [b]");

85 args[4]=in2.readLine();

86 if (args[4].compareTo("")==0) args[4]="b";

87 }

88 setKS(args[0],args[1]);

89 setIPToId(args[2],"b");

90 setNameToId(args[3],"a");

91 setNameToId(args[4],"b");

92 } catch (Exception e) {e.printStackTrace();}

93 return args;

94 }

The method getArgs sets the parameters of the INITIATOR that are
initially known. In the case of the INITIATOR in the NSPK protocol, these
parameters are:

• the KeyStore defined in the External section of the input file in which
the SecretKey of agent A and the public key of the agent B are stored;

• the password that is used to access this KeyStore;

• the IP or DNS address of the RESPONDER agent so that we can send
messages to it;

• the names of the initiator and responder agents are initial knowledge
of the protocol as specified in the Processes section of the input file.

If the array provided to the getArgs method contains the right number of
parameters, these parameters will be used. Otherwise, the program will
prompt for those values.

The method getArgs should never be used outside the class as the
method subMain provides an easier way to call it.

4.4.4 The method run: lines 18-58

18 public void run() {

19 try {

20

21 println("creating nonce na");

22 createNewNonce("na");

23

24 println("Building message m1");

25 Message m1 =message();
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26 m1.addMessage(message(agentFromId("a")));

27 m1.addMessage(message(nonceFromId("na")));

28 println("Encrypting m1");

29 m1.encrypt("RSA", getPublicKey(nameFromId("b")));

30 println("Sending message m1");

31 put("b", m1.getString(),4000);

32

33 println("waiting for m2");

34 Message m2 = message(get("b"));

35 println("Decrypting m2");

36 m2.decrypt("RSA", getPrivateKey(nameFromId("a")));

37 addParts(m2.getAllFields(),2);

38 m0=getPart();

39 setValueToNonce(m0.getString(),"na");

40 m0=getPart();

41 setValueToNonce(m0.getString(),"nb");

42

43

44 println("Building message m3");

45 Message m3 =message();

46 m3.addMessage(message(nonceFromId("nb")));

47 println("Encrypting m3");

48 m3.encrypt("RSA", getPublicKey(nameFromId("b")));

49 println("Sending message m3");

50 put("b", m3.getString());

51

52 writeObject(nameFromId("b"));

53 writeObject(nonceFromId("na"));

54 writeObject(nonceFromId("nb"));

55

56

57 } catch (Exception e) {e.printStackTrace();System.exit(0);}

58 }

The method run defines the actions that have to be done by the initiator
during a run of the NSPK protocol. The first thing to do is to create a fresh
nonce na. This is done on line 22. After that, all messages in which agent A

plays a role (namely messages 1,2,3 and 4) have to be interpreted in terms
of actions as explained in Section 4.2.

Interpretation of message 1: lines 24-31

The actions associated with message 1 are:

• creating an empty message called m1 (line 25);
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• adding the identity of agent A to this message (line 26);

• adding the value of nonce na to this message (line 27);

• encrypting this message using RSA algorithm with the public key of
agent B (line 29);

• sending this message to agent B (line 31).

Interpretation of message 2: lines 33-41

The actions associated with message 2 are:

• waiting for a message from agent B (line 34);

• decrypting it using RSA algorithm with the secret key of agent A (line
36);

• decomposing the message once decrypted in 2 fields (line 37). The two
fields are put inside of a stack;

• selecting the first field (line 38);

• checking that the value of this field is equal to the value of nonce na

(line 39);

• selecting the second field (line 40);

• storing the value of this field into nonce nb (line 41).

Interpretation of message 3: lines 44-50

The actions associated with message 3 are:

• creating of an empty message called m3 (line 45);

• adding the value of nonce nb to this message (line 46);

• encrypting this message using RSA algorithm with the public key of
agent B (line 48);

• sending this message to agent B (line 50).

Interpretation of message 4: lines 52-54

The message 4 expresses that the result of the run of the protocol are the
identity of agent B and the values of nonces na and nb. Therefore these
three values are respectively output on lines 53, 53 and 54.



CHAPTER 4. THE OUTPUT CODE 31

4.4.5 The method main: lines 96-105

96 public static void main(String[] args) {

97 ObjectOutputStream oos=null;

98 try {

99 ByteArrayOutputStream os = new ByteArrayOutputStream();

100 oos=new ObjectOutputStream(os);

101 PrintOOS p=new PrintOOS("INITIATOR",oos,os);

102 p.start();}

103 catch (Exception e) {e.printStackTrace();}

104 subMain(args,oos);

105 }

106 }

The static method main is not really part of the protocol, but provides
an easy way to test the protocol. It creates a new ObjectOutputStream
(lines 98, 99 and 100) and connects it to a pretty printer called PrintOOS
(line 101 and 102). Finally, the protocol is started (line 104). The examples
of protocol runs shown in the next paragraph use this test function.

4.5 Examples of protocol runs

A trace is the list of all output generated by all agents of a given security
protocol when they run altogether. This list is ordered chronologically and
for each item, specifies which agent generated this output. Output lines can
be of two kinds. Some of them correspond to the use of the println function
inside of the run method of a class inheriting the abstract class Protocol.
The other kind of output corresponds to the interpretation of environmental
messages such as messages 4 and 5 in the Needham-Schroeder Public Key
protocol whose input file is given in Chapter 3.

4.5.1 Trace of the Needham-Schroeder Public Key Protocol

The script used to produce the trace of the Needham-Schroeder Public Key
Protocol is:

(sleep 5 ; java protocols/INITIATOR keystore1 *** localhost Alice Bob) &

java protocols/RESPONDER keystore2 *** Bob

Both agents A and B are running on the same computer localhost, but this
does not change the way the protocol works. The file keystore1 contains
the public key and secret key of Alice and a certificate containing the public
key of Bob. The file keystore2 contains the public key and secret key of
Bob and a certificate containing the public key of Alice. The method used
to generate these two KeyStore files is presented in Appendix A. The trace
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generated by this script illustrates the actions performed by agents A and
B and also shows that they agree at the end on the values of nonces na and
nb:

INITIATOR: creating nonce na

INITIATOR: Building message m1

INITIATOR: Encrypting m1

INITIATOR: Sending message m1

RESPONDER: creating nonce nb

INITIATOR: waiting for m2

RESPONDER: waiting for m1

RESPONDER: Decrypting m1

RESPONDER: Building message m2

RESPONDER: Encrypting m2

RESPONDER: Sending message m2

RESPONDER: waiting for m3

INITIATOR: Decrypting m2

INITIATOR: Building message m3

INITIATOR: Encrypting m3

INITIATOR: Sending message m3

RESPONDER: Decrypting m3

INITIATOR: Bob

INITIATOR: na: 0QT70Ge3Dq3Bvg==

INITIATOR: nb: CAz+ZgIgegbeEA==

RESPONDER: Alice

RESPONDER: na: 0QT70Ge3Dq3Bvg==

RESPONDER: nb: CAz+ZgIgegbeEA==

4.5.2 Trace of the Yahalom protocol

Once the input script of Section 3.6.2 is compiled with COSP-J, it generates
files YAHAINIT.java, YAHARESP.java and YAHASERV.java. The compi-
lation of these three files with a java compiler creates files YAHAINIT.class,
YAHARESP.class and YAHASERV.class. We can then use these files in the
following script:

(sleep 10 ; java protocols/INITYAHA secretkeyfile localhost a b) &

(sleep 5 ; java protocols/RESPYAHA secretkeyfile localhost b s) &

java protocols/SERVYAHA secretkeyfile s

The trace generated by this script illustrates the actions that each of the 3
agents perform, together with the interactions between these agents:

INITYAHA: creating nonce na

INITYAHA: Building message m1

INITYAHA: Sending message m1
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RESPYAHA: creating nonce nb

INITYAHA: waiting for m3a

RESPYAHA: waiting for m1

RESPYAHA: Building message m2

RESPYAHA: Encrypting m0

RESPYAHA: Sending message m2

SERVYAHA: creating DESkey kab

RESPYAHA: waiting for m3b

SERVYAHA: waiting for m2

SERVYAHA: Decrypting m0

SERVYAHA: Building message m3a

SERVYAHA: Encrypting m3a

SERVYAHA: Sending message m3a

INITYAHA: Decrypting m3a

SERVYAHA: Building message m3b

SERVYAHA: Encrypting m3b

SERVYAHA: Sending message m3b

RESPYAHA: Decrypting m3b

RESPYAHA: waiting for m4

INITYAHA: Building message m4

INITYAHA: Encrypting m4

INITYAHA: Sending message m4

RESPYAHA: Decrypting m4

RESPYAHA: a

RESPYAHA: rO0ABXNyAB5jb20uc3VuLmNyeXB0by5wcm92aWRlc

i5ERVNLZXlrNJw12hVomAIAAVsAA2tleXQA

AltCeHB1cgACW0Ks8xf4BghU4AIAAHhwAAAACBwgSRk7L7z9

INITYAHA: b

INITYAHA: rO0ABXNyAB5jb20uc3VuLmNyeXB0by5wcm92aWRlc

i5ERVNLZXlrNJw12hVomAIAAVsAA2tleXQA

AltCeHB1cgACW0Ks8xf4BghU4AIAAHhwAAAACBwgSRk7L7z9

In the previous chapter, we described an input script of COSP-J. In this
chapter, we described what the output code is. The next chapter will link
these two together by explaining how COSP-J builds the output code from
the input script.



Chapter 5

Building the output code

In this chapter, we describe the main algorithms of COSP-J. COSP-J is
written in Haskell 98 [Pey03]. Haskell is a general purpose, purely functional
programming language. The reason why COSP-J is written in Haskell is that
it reuses some parts of the code of Casper which is also written in Haskell
98.

The execution of COSP-J, just like Casper, can be decomposed in 4
steps, namely the parsing, type checking, consistency checking and code
generation. The Main.lhs file executes this four steps one by one and throws
an error to the user if one of them fails.

This chapter will first describe the parts of the Casper code that are
reused in COSP-J and the modifications that have been done on them, and
then present the new algorithms that have been created for COSP-J.

5.1 The reuse of the Casper code

The similarity between a Casper input file and a COSP-J input file made it
easier to adapt the parser, type checker and consistency checker of Casper

for COSP-J instead of rewriting them.

5.1.1 The parser

A parser is a program that analyzes and organizes formal language state-
ments into a usable form for a given purpose. For instance, the Casper parser
analyzes a Casper input file, checks if its structure is correct and returns a
data structure that contains all the information of the input script.

The parser of Casper is contained in the files Parse.lhs and Parse1.lhs.
Parse1.lhs deals with the parsing of the protocol description part of an input
file and is called by Parse.lhs. Parse.lhs defines the function parse:

parse :: String -> Maybe_ Input

34
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The Input type is a tuple combining types for each of the sections of
an Input file. The Maybe_ expresses the fact that parse may also return an
error message (if the input file does not have the expected structure).

The modifications done on the Casper parser for COSP-J correspond
to the changes of structure of the Input file. For example, the addition
of the “External” section, the suppression of the “Intruder Information”,
“System”, “Specification” and “Actual Variables” sections and the complete
change of the “Functions” section.

5.1.2 The type checker

A type checker is a function that checks whether there are any type er-
ror inside of a script. For example, if PK is defined by PK : Agent ->

RSAPublicKey and na is defined by na : Nonce, then writing PK(na) will
give an error in the type checker, because PK needs an argument of type
Agent and is given one of type Nonce.

In Casper, the files TypeCheck.lhs, TypeCheckpd.lhs and TypeCheckDI.lhs
implement the type checker. The TypeCheck.lhs file uses TypeCheckDI.lhs
and TypeCheckpd.lhs which deals with the type checking of the protocol
description section of the input scripts. It defines the function typecheck:

typecheck :: Input -> (String, String)

This function returns two strings: one contains the errors detected and
the other contains the warning messages.

The modifications done on the Casper type checker for COSP-J concerns,
for example, the fact that types have to be recognized by the compiler (for
example, Nonce becomes a keyword), the different use of hash functions and
the addr function (which is predefined).

5.1.3 The consistency checker

A consistency checker is a function that checks for consistency errors inside
of a script. For example, if in the first message of a protocol, an agent a is
supposed to send the value of nonce na to agent b but does not know this
value, it will rise a consistency error.

In Casper, the files Consistency.lhs and ConsistencyDI.lhs define the con-
sistency checker. Consistency.lhs defines the function consistency:

consistency :: Input -> (String, String)

This function returns the errors and warnings that have been detected.
The modifications done on the Casper consistency checker for COSP-J

concern the addition of the consistency error described in Section 3.1 about
the impossibility to send a message to an agent whose IP address is unknown
and the fact that we do not know the name of an agent just by receiving a
message from it.
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5.2 The main routines of the code creation

The complete difference between the CSP code generated by Casper and
the Java code generated by COSP-J made it easier to rewrite from scratch
the code generation algorithms. The code generation routine of COSP-
J are included inside of the Compile.lhs and CompileRun.lhs files. The
Compile.lhs file defines a function makeOutput that creates the output of
a given protocol Input for a given agent. It is called for each agents in the
Main.lhs file and the results are stored in the corresponding java files. The
CompileRun.lhs defines a function makeRun that generates the run method
of the output. This is the most important part of the code generation.

The makeRun function is called for each of the agents of the protocol.
For each messages in which the agent plays a role, makeRun calls one of
the sub-functions called makeMsg and match. The first one generates the
code for a message to be built and sent. The second one generates the code
for to be received and interpreted. The structure of these two functions is
based on the definition of the type Msg that is used for all messages. This
type is defined recursively in the Message.lhs file:

data Msg = Atom VarName

| Encrypt Msg [Msg]

| Sq [Msg]

| Xor Msg Msg

| Undec Msg VarName

| Forwd VarName Msg

| Apply VarName Msg

deriving (Eq, Ord, Show)

This means that a message can respectively be an atomic value (for example,
the value of a nonce or the identity of an agent) or a list of messages (usually
called fields) encrypted with a message (usually called key), or a list of
messages (usually called fields), or the Vernam encryption of two messages
(see Section 6.3) or a message to store in a variable name without further
interpretation (see Section 6.1) or a variable that will be interpreted as a
message (see Section 6.1) or a function applied to a message (for example,
a hash function, as described in Section 6.2).

The makeMsg and match functions handle all these cases and recur-
sively call themselves when needed. For example, to build a message made
of a list of messages encrypted with a message (for example the first mes-
sage of the NSPK protocol), we first generate this list of messages and then
encrypt it. To generate the list of messages, we generate the messages one
by one and concatenate them.

This chapter explored the main algorithms of COSP-J and showed how
the output code is generated from an input file. The next chapter will give
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a more complete overview of how to build an input script by presenting
additional features that can be used in a COSP-J input script.



Chapter 6

Additional features

There exists a wide variety of security protocols. In this chapter, we explore
some additional features that are useful in the input scripts of COSP-J for
a broader class of security protocols than we have seen so far.

6.1 The use of the %-notation

The %-notation is a feature of Casper’s input files that lets the user express
the fact that a given part of a message is not intended to be decrypted, but
just forwarded in a next step to another agent. For example, here is another
version of the Yahalom protocol [BAN89]:

Message 1. a → b : a, na

Message 2. b → s : b, {a, na, nb}ServerKey(b)

Message 3. s → a : {b, kab, na, nb}ServerKey(a), {a, kab}ServerKey(b)

Message 4. a → b : {a, kab}ServerKey(b), {nb}kab

where a and b are agents, s is a trusted server, ServerKey(x) is a secret
key shared by s and x, kab is a fresh key created by s, na is a fresh nonce
created by a and nb is a fresh nonce created by b.

In this version of the Yahalom protocol, s sends to a both messages 3a
and 3b of the previous version of the Yahalom protocol that we used in
Section 3.1 as a single message 3.

This means that a receives {a, kab}ServerKey(b) but is not able to decrypt
it: he simply forwards it on to b in the fourth message.

We write m%v where m is a message and v the name for a variable to
denote that the receiver stores the message m into the variable v.

We write v%m to indicate that the receives should receive a message of
structure m whereas the sender simply sends the value of variable v.

This very useful feature works in COSP-J exactly in the same way as in
Casper.
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The protocol description section of a COSP-J input file for this version
of the Yahalom protocol is therefore:

#Protocol description

1. a -> b : a,na

2. b -> s : {a, b, addr(a), na, nb}{ServerKey(b)}

3. s -> a : {b, kab, na, nb}{ServerKey(a)},{a, kab}{ServerKey(b)}%c

4. a -> b : c%{a, kab}{ServerKey(b)}, {nb}{kab}

5. a -> : b,kab

6. b -> : a,kab

The rest of the input script is the same as for the previous version of the
Yahalom protocol that we studied in Section 3.6.2.

6.2 The use of hash functions

A hash (also called message digest) is a special number calculated from an
arbitrary amount of input data.

A signature (also called MAC for Message Authentication Code) is basi-
cally a hash encrypted with a key. When an agent receives a signature along
with a message, he can be sure of who sent this message. For example, con-
sider the following security protocol:

Message 1. a → b : {a, b, na}PK(b)

Message 2. b → a : {a, b, na}PK(a)

where a and b are agents, PK(x) is the public key of agent x and na is a
fresh nonce created by a.

The aim of this protocol is to achieve mutual authentication of agents a

and b, and to establish a secret value na known only by a and b.
When a sends {a, b, na}PK(b) to b, he can be sure that nobody else other

than b can read it. But how can b be sure that the message comes from a?
This protocol suffers the following obvious attack:

Message 1. IA → B : {A,B, na}PK(B)

Message 2. B → IA : {B,A, na}PK(A)

where A and B are playing roles a and b respectively, and IX represents the
intruder impersonating agent X.

Even if the intruder I is unable to decrypt message 2, agent B thinks
he completed a run of the protocol with agent A. We propose tackling this
issue by adding a signature in the first message as follows:

Message 1. a → b : {a, b, na}PK(b), {hash({a, b, na}PK(b))}SK(a)

Message 2. b → a : {a, b, na}PK(a)
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And now an intruder is not able to forge message 1 anymore, because he
cannot encrypt the message digest with SK(a). This protocol was success-
fully checked with Casper. The Casper input script used for the check can
be found in Appendix E.

To implement this protocol with COSP-J, we need to define a function
f of type MD5HashFunction and use it in the protocol description:

#Free variables

f : MD5HashFunction

A, B : Agent

na : Nonce

PK : Agent -> RSAPublicKey

SK : Agent -> RSASecretKey

InverseKeys = (PK, SK)

#External

myKeyStore : KeyStore

#Processes

INITXAV(A,B) knows PK, SK(A), f generates na

RESPXAV(B) knows PK, SK(B), f

#Protocol description

1. A -> B : {A,B,na}{PK(B)}, {f({A,B,na}{PK(B)})}{SK(A)}

2. B -> A : {A,B,na}{PK(A)}

3. A -> : B,na

4. B -> : A,na

#Functions

PK = myKeyStore.PK

SK = myKeyStore.SK

6.3 The use of Vernam encryption

Vernam encryption is a common form of encryption in which we form the
bitwise exclusive-or of two arrays of bytes. We write a ⊕ b to indicate the
Vernam encryption of a with b. If an agent knows a ⊕ b and a, he can find
the value of b which is equal to (a⊕ b)⊕a. If an agent knows a⊕ b and b, he
can find the value of a which is equal to (a ⊕ b) ⊕ b. But if an agent knows
only a ⊕ b, he cannot deduce a or b.

The TMN protocol [TMN90] makes use of Vernam encryption:
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Message 1. a → s : b, {ka}PK(s)

Message 2. s → b : a

Message 3. b → s : a, {kb}PK(s)

Message 4. s → a : kb ⊕ ka

where a and b are agents, s is a trusted server, PK(x) is the public key of
agent x, ka and kb are session symmetric keys freshly created by a and b

respectively.
The TMN protocol seeks to establish a session key kb between agents a

and b.
To implement this protocol with COSP-J, we use the (+) notation that

indicates the use of Vernam encryption:

#Free variables

a, b, s : Agent

ka, kb : Nonce

PK : Agent -> RSAPublicKey

SK : Agent -> RSASecretKey

InverseKeys = (PK, SK) , (ka, ka) , (kb, kb)

#External

myKeyStore : KeyStore

#Processes

INITTMN(a,b,s) knows PK, SK(a) generates ka

RESPTMN(b) knows PK, SK(b) generates kb

SERVTMN(s) knows PK, SK(s)

#Protocol description

1. a -> s : a,b,addr(b), {ka}{PK(s)}

2. s -> b : s, a

3. b -> s : a, {kb}{PK(s)}

4. s -> a : kb (+) ka

5. a -> : b,kb

6. b -> : a,kb

#Functions

PK = myKeyStore.PK

SK = myKeyStore.SK
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6.4 The use of the angle brackets notation

The angle brackets notation is a Casper feature that is used to make some
assignments.

In order to illustrate this, we will consider the famous Diffie-Hellman key
exchange algorithm [DH76]:

Message 1. A → B : P,G

Message 2. A → B : GX mod P

Message 3. B → A : GY mod P

In this protocol, P , G and X are big integers created by A and Y is a big
integer created by B. Diffie-Hellman key establishment aims to establish a
session key between agents A and B who do not already share a secret key.
At the end of the protocol, A is able to calculate K = (GY mod P )X mod P

and B can calculate K = (GX mod P )Y mod P . These are both equal to
GXY mod P .

An intruder who listens to this protocol will not be able to gain the value
of k from the values of P , G, GX mod P and GY mod P .

Diffie-Hellman key establishment only works if the messages are authen-
ticated in some way. Otherwise there is the following obvious attack in
which an intruder I can calculate the key that B thinks he is sharing with
A:

Message 1. IA → B : P,G

Message 2. IA → B : GX mod P

Message 3. B → IA : GY mod P

The Station-to-Station protocol [DvOW92] provide a way to run Diffie-
Hellman key establishment in an authenticated way by having the agents
sign the exponents. Appendix B presents the COSP-J input file of the
Station-to-Station protocol.

To implement the Diffie-Hellman key establishment algorithm using COSP-
J, we need the angle brackets notation:

#Free variables

A, B : Agent

g, m, x, y, gEx, gEy, k : BigInteger

InverseKeys = (k,k)

#Processes

INITDH(A,B) generates g,m,x

RESPDH(B) generates y



CHAPTER 6. ADDITIONAL FEATURES 43

#Protocol description

1. A -> B : g,m

<gEx := g.modPow(x,m)>

2. A -> B : g,m,gEx

<k := gEx.modPow(y,m) ; gEy := g.modPow(y,m)>

3. B -> A : gEy

<k := gEy.modPow(x,m)>

4. A -> : k

5. B -> : k

In message 1, agent A sends the values of G and P to agent B. Before
sending message 2, agent A calculates GX mod P , bounds it in the variable
gEx and send it to B in message 2. Then B calculates (GX mod P )Y mod P

and store it in variable k and also calculate GY mod P , bounds it in the
variable gEy and send it to A in message 3. Finally, the agent A calculates
(GY mod P )X mod P and assign it to variable k.
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Preventing type flaw attacks

This chapter presents the system that is implemented in COSP-J in order
to prevent type flaw attacks.

7.1 Definition of a type flaw attack

Some protocols suffers from type flaw attacks, where a field of one type is
interpreted as being of another type.

For example, consider the Woo and Lam Protocol Pi1 [WL94]:

Message 1. a → b : a

Message 2. b → a : nb

Message 3. a → b : {a, b, nb}shared(a,s)

Message 4. b → s : {a, b, {a, b, nb}shared(a,s)}shared(b,s)

Message 5. s → b : {a, b, nb}shared(b,s)

where a and b are agents, s is a trusted server, shared(x, s) is a secret key
that agents x and s share, and nb is a nonce.

The aim of this protocol is to have agent b be sure that agent a is who
he claims to be in message 1. But it suffers from the following attack:

Message 1. IA → B : A

Message 2. B → IA : Nb

Message 3. IA → B : Nb

Message 4. B → IS : {A,B,Nb}shared(B,S)

Message 5. IS → B : {A,B,Nb}shared(B,S)

where A and B are playing roles of a and b respectively, and IX represents
the intruder impersonating agent X.

In this attack, the intruder I initiates a protocol run pretending to be
agent A. I sends A’s identity in message 1 to B, receives the nonce Nb
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in message 2 from B and sends back Nb to B in message 3 instead of
{A,B,Nb}shared(A,S). Since B is not supposed to decrypt this message,
it will simply forward it to S in message 4. I intercepts message 4, is unable
to decrypt it but simply sends it back to B in message 5. B receives exactly
what it was expecting in message 5 (supposedly from S) and therefore thinks
he has completed a run of the protocol with A.

As explained in [DNL99], Casper (in common with most of the protocol
analysis techniques) is not good at finding type flaw attacks. Casper has
a limited feature whereby an atomic value can be defined as having two
different types. This feature can be used to find the attack upon the Woo
and Lam Pi1 protocol, as reported in [Low96b].

That is the reason why COSP-J includes a type flaw preventing system.

7.2 How to prevent type flaw attacks

Type flaw attacks can be prevented by tagging each field –atomic values,
concatenations, encrypted components, etc.– with some information giving
a claimed type. The tag for concatenations must include enough information
to allow the concatenation to be split into components correctly. The tag for
encryptions must include the type of the encryption key and of the body. All
the honest agents check that the tags of a received message is as expected
and tag their own messages accordingly. This technique is fully described
and proved in [HLS00]. We illustrate how such a tag system would prevent
the attack upon the Woo and Lam Pi1 protocol as follows:

If the intruder I tries to perform the same attack above with the tagging
system, he needs to put a tag in message 3, pretending that it is of the
type of {a, b, nb}shared(a,s). B receives it and includes it in the message 4.
I intercepts this message 4 and sends it back to B without being able to
modify the tag inside of the encryption. When B receives message 5 and
decrypts it, he see that the last field is of type of {a, b, nb}shared(a,s), whereas
a simple nonce tag was expected. Therefore the attack described above does
not work anymore thanks to the tagging system.

7.3 Implementation in COSP-J

This section describes how the system to prevent type flaw attacks is imple-
mented in COSP-J.

7.3.1 Object-Oriented Model to prevent type flaw attacks

Figure 7.1 is a UML schema showing how the type flaw prevention system
described above is implemented in COSP-J.
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Figure 7.1: UML schema of the type flaw prevention system

Section 4.3 has already presented the Message, Nonce and MessageKey
classes that are used to represent a message, a nonce and a message contain-
ing a key respectively. Figure 7.1 shows three more classes called MessageT,
NonceT and MessageKeyT. They are used to represent a tagged message,
a tagged nonce and a tagged message containing a key respectively. This
means that, depending on whether or not we want to activate the type flaw
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prevention system, we will use one set of classes or the other. In order to do
so, COSP-J defines three interfaces: the IMessage interface implemented by
the Message and MessageT classes, the INonce interface implemented by the
Nonce and NonceT classes and the IMessageKey interface implemented by
the MessageKey and MessageKeyT classes. These interfaces are useful for
the rest of the code to handle the classes implementing the different kind of
messages. For example, a method in the Protocol class can use an IMessage
object without knowing if the message is tagged or not, because the IMes-
sage interface defines all the abstract methods that the inheriting classes will
need to implement (such as the encrypt or decrypt methods that have the
same signature in the Message and MessageT classes, but are implemented
differently because for a tagged message we need to check if the tag is valid).

7.3.2 Modifications of the output code when the type-flaw
prevention system is active

The 11th line of the CompileRun.lhs file determines if the type-flaw pre-
vention system is active or not: it is active if the tag variable is equal to
True and inactive if it is equal to False.

The Protocol abstract class contains three members that were hidden
in Figure 4.1. These members are private, abstract and of the Class type.
Instances of the class Class represent classes and interfaces in a running
Java application. These members point to the three implementations of the
IMessage, INonce and IMessageKey that will be used by the protocol. These
members are set during the instantiation of the Protocol class. The Protocol
class contains only one constructor (that is hidden on Figure 4.1), taking
three parameters that are the names of the classes to use. For example,
in the output code of the Needham-Schroeder Public Key protocol initiator
that we studied in Section 4.4, the first line of the INITIATOR constructor
(line 14) reads:

super("core.Message" ,"core.MessageKey" ,"core.Nonce" );

The call to the super method is in fact a call to the constructor of the
Protocol class, because the INITIATOR class inherits the Protocol class.
This line means that the Message, MessageKey and Nonce classes will be
used throughout this implementation of the NSPK initiator. In turn, this
means that the type flaw prevention system is deactivates.

If we activate the type flaw prevention system and recompile the NSPK
protocol, this line becomes:

super("core.MessageT" ,"core.MessageKeyT" ,"core.NonceT" );

This means that now the MessageT, MessageKeyT and NonceT are used.
The tags will therefore be created automatically when we call the methods
of these classes. The only other change in the output code is the tag check
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system. If we activate the type flaw prevention system and recompile the
NSPK protocol, the run method becomes:

18 public void run() {

19 try {

20

21 println("creating nonce na");

22 createNewNonce("na");

23

24 println("Building message m1");

25 Message m1 =message();

26 m1.addMessage(message(agentFromId("a")));

27 m1.addMessage(message(nonceFromId("na")));

28 println("Encrypting m1");

29 m1.encrypt("RSA", getPublicKey(nameFromId("b")));

30 println("Sending message m1");

31 put("b", m1.getString(),4000);

32

33 println("waiting for m2");

34 Message m2 = message(get("b"));

35 checkTag(m2,"PNN)");

36 println("Decrypting m2");

37 m2.decrypt("RSA", getPrivateKey(nameFromId("a")));

38 checkTag(m2,"NN");

39 addParts(m2.getAllFields(),2);

40 m0=getPart();

41 setValueToNonce(m0.getString(),"na");

42 m0=getPart();

43 setValueToNonce(m0.getString(),"nb");

44

45 println("Building message m3");

46 Message m3 =message();

47 m3.addMessage(message(nonceFromId("nb")));

48 println("Encrypting m3");

49 m3.encrypt("RSA", getPublicKey(nameFromId("b")));

50 println("Sending message m3");

51 put("b", m3.getString());

52

53 writeObject(nameFromId("b"));

54 writeObject(nonceFromId("na"));

55 writeObject(nonceFromId("nb"));

56

57 } catch (Exception e) {e.printStackTrace();System.exit(0);}

58 }
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If we compare this output code with the one generated without the type
flaw prevention system in Section 4.4, we find that it is exactly the same,
except that lines 35 and 38 have been added. These lines correspond to the
tag check system.

In line 35, the tag for the whole message m2 that was received in line
34 is compared to what it is supposed to be, namely a tag representing two
nonces encrypted with a public key. The “N” letter represents a nonce and
the “Pxxx)” form represents the message xxx encrypted with a public key.
Therefore the correct tag for the second message of the Needham-Schroeder
Public Key protocol is “PNN)”.

In line 38, the tag inside of the encryption of message m2 is compared
to what it is supposed to be, namely a tag “NN” representing two nonces
unencrypted.

The checkTag method will check if the tag is as expected and will return
an exception if it is not the case.

7.3.3 The tagging system

The tag string is created according to the following rules:

• the letter “N” represents a nonce;

• the letter “A” represents the identity of an agent;

• the letter “p” represents a public key;

• the letter “s” represents a private key;

• the letter “k” represents another type of key;

• the letter “I” represents a big integer;

• the concatenation of two tags represents the concatenation of two mes-
sages. For example “NN” is the tag representing a message containing
two nonces unencrypted;

• the “Pxxx)” form represents the message xxx encrypted with a public
key;

• the “Sxxx)” form represents the message xxx encrypted with a secret
key;

• the “Kxxx)” form represents the message xxx encrypted with another
type of key.
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7.3.4 Example: NSPK protocol

When the type-flaw prevention system is activated, the trace of the Needham-
Schroeder Public Key protocol run becomes:

INITIATOR: creating nonce na

INITIATOR: Building message m1

INITIATOR: Encrypting m1

INITIATOR: Sending message m1

RESPONDER: creating nonce nb

INITIATOR: waiting for m2

RESPONDER: waiting for m1

RESPONDER: Tag check successful for PAN)

RESPONDER: Decrypting m1

RESPONDER: Tag check successful for AN

RESPONDER: Building message m2

RESPONDER: Encrypting m2

RESPONDER: Sending message m2

RESPONDER: waiting for m3

INITIATOR: Tag check successful for PNN)

INITIATOR: Decrypting m2

INITIATOR: Tag check successful for NN

INITIATOR: Building message m3

INITIATOR: Encrypting m3

INITIATOR: Sending message m3

RESPONDER: Tag check successful for PN)

RESPONDER: Decrypting m3

INITIATOR: Bob

RESPONDER: Tag check successful for N

RESPONDER: Alice

This trace is the same as the one we studied in Section 4.5.1, except that
each time an agent receives a message, it checks the validity of all tags.

This chapter showed what type flaw attacks are, how to prevent them
formally and how they are prevented in COSP-J. The next chapter will deal
with multi-protocol attacks.



Chapter 8

Preventing multi-protocol

attacks

In this chapter, we deal with another kind of attack that can not be detected
by Casper called multi-protocol attack. Firstly we define what multi-protocol
attacks are, then we formally present a system to prevent them and finally
we show how this system is implemented in COSP-J. Our goal is to ensure
that the implementations of security protocols created by COSP-J are not
vulnerable to multi-protocol attacks.

8.1 Definition of a multi-protocol attack

It is sometimes possible to replay a message from a protocol P1 in a run of
some other protocol P2 that is being executed concurrently with P1; attacks
arising from such replays are known as multi-protocol attacks. Casper can
check the validity of a protocol, but is unable to check a set of protocols
running at the same time. This means that Casper is unable to detect
multi-protocol attacks.

8.2 Preventing multi-protocol attacks

In order to prevent multi-protocol attacks, we need to make it possible to
tell from which protocol a component comes. If we can achieve this and
ensure that all honest agents check that the messages really come from
the expected protocol, then it is impossible for an attacker to replay an
encrypted component from one protocol to another.

One solution is to include a protocol identification field inside each en-
crypted component. [GT00] proves that this prevents multi-protocol attacks.

This method is the one we will implement in COSP-J to prevent multi-
protocols attacks.
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8.3 Implementation within COSP-J

The 12th line of the CompileRun.lhs file determines if the system preventing
multi-protocol attacks is active or not: it is active if the protoTag variable
is equal to True and inactive if it is equal to False.

The tags we use in COSP-J to identify from which protocol a given
component comes, are generated by using a hash function on the input
script. The hash function we use is a MD5 hash function. The haskell
code for the MD5 function we use in COSP-J was created by Ian Lynagh,
a research student from the Oxford University Computing Laboratory. It is
included is the MD5.lhs file.

The Protocol class contains a static protected member called protoTag
which is a String representing the tag to use for the current protocol. This
member is hidden in Figure 4.1. If we activate the multi-protocol attack
prevention system and compile the Needham-Schroeder Public Key protocol
for example, an additional line is generated for the initiator compared to the
output code in Section 4.4:

static String protoTag="6adc1b80ddc08e287b90e9b4da968770";

This line sets the value of the protoTag member to be used in the protocol.
The Message class defines three methods that are hidden in both Fig-

ures 4.1 and 7.1. They are similar to the encrypt, decrypt and hash methods
except that they take an additional argument which is the tag for the pro-
tocol. The encrypt method will include this tag in the encrypted part of the
message, the hash method will hash the tag along with the message and the
decrypt method will check that the tag is correct after the decryption of the
message; an exception is returned in the case where it is not correct.

Therefore the run method for the initiator of the Needham-Schroeder
Public Key protocol becomes:

20 public void run() {

21 try {

22

23 println("creating nonce na");

24 createNewNonce("na");

25

26 println("Building message m1");

27 Message m1 =message();

28 m1.addMessage(message(agentFromId("a")));

29 m1.addMessage(message(nonceFromId("na")));

30 println("Encrypting m1");

31 m1.encrypt("RSA", getPublicKey(nameFromId("b")),protoTag);

32 println("Sending message m1");

33 put("b", m1.getString(),4000);
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34

35 println("waiting for m2");

36 Message m2 = message(get("b"));

37 println("Decrypting m2");

38 m2.decrypt("RSA", getPrivateKey(nameFromId("a")),protoTag);

39 addParts(m2.getAllFields(),2);

40 m0=getPart();

41 setValueToNonce(m0.getString(),"na");

42 m0=getPart();

43 setValueToNonce(m0.getString(),"nb");

44

45

46 println("Building message m3");

47 Message m3 =message();

48 m3.addMessage(message(nonceFromId("nb")));

49 println("Encrypting m3");

50 m3.encrypt("RSA", getPublicKey(nameFromId("b")),protoTag);

51 println("Sending message m3");

52 put("b", m3.getString());

53

54 writeObject(nameFromId("b"));

55 writeObject(nonceFromId("na"));

56 writeObject(nonceFromId("nb"));

57

58

59 } catch (Exception e) {e.printStackTrace();System.exit(0);}

60 }

The only difference with the run method that we studied in Section 4.4,
without the multi-protocols attacks prevention system, is that all encrypt
and decrypt methods use the additional “protoTag” argument.

Thanks to this system, the implementation of security protocols gener-
ated by COSP-J are not vulnerable to multi-protocols attacks. The next
chapter presents a complete case study for the implementation of an e-
commerce protocol.



Chapter 9

Case-study: An e-commerce

protocol

This chapter is a case study of the implementation of a complex protocol.
E-commerce (electronic commerce or EC) is the buying and selling of goods
and services on the Internet, usually through the World Wide Web. Clearly,
we want e-commerce to be carried out securely: a customer wants to be sure
of what he is buying and the price he is paying; the merchant wants to be
sure of receiving payment; both sides want to end up with evidence of the
transaction, in case either side denies it took place; and the act of purchase
should not leak secrets, such as credit card details, to an eavesdropper.

9.1 An e-commerce protocol

The e-commerce protocol that we implement in this chapter was designed
in [Men02] but never implemented. This protocol is completely based on
Public-Key Cryptography. Three actors are involved in this protocol: a
customer a, who wants to purchase goods on the Internet, a merchant c,
who sells goods, and a bank b where customer a has an account.

The bank b is the only trusted operator of the system. This means
that the protocol must protect participants from malicious customers and
merchants, but will assume the bank to be trustworthy.

The goals of the protocol are to provide:

1. authentication between the different agents;

2. agreement and confidentiality of the goods sold and their correspond-
ing prices;

3. non-repudiation, i.e. evidence of the transaction for each participant.

Figure 10.1 illustrates the messages sent during a run of the protocol.
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Customer a Merchant c Bank b

c,request

1.

answer

2.

choice,b,carddata

3.

a,b,choice

4.

transactionID

5.

transactionID,carddata

6.

summary funds transfer

7.

receipt

8.

receipt

9.

receipt

10.

Figure 9.1: The e-commerce protocol
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The complete protocol is as follows:

Message 1. a → c : {{c}SK(a), request}PK(c)

Message 2. c → a : {request, answer}PK(a)

Message 3. a → c : {answer, choice, {b}SK(a) , {{carddata}PK(b)}SK(a)}PK(c)

Message 4. c → b : {a, {b}SK(c), price}PK(b)

Message 5. b → c : {price, transactionID}PK(c)

Message 6. c → b : {transactionID, {{carddata}PK(b)}SK(a)}PK(b)

Message 7. b → c : {{c}SK(b), {{carddata}PK(a)}SK(b), summary}PK(c)

Message 8. c → a : {{a}SK(c), {{carddata}PK(a)}SK(b), receipt}PK(a)

Message 9. a → c : {receipt, acknowledgment}PK(c)

Message 10. c → b : {{b}SK(c), acknowledgment, end}PK(b)

The design and verification of this protocol is out of the scope of this
dissertation. This protocol was checked using Casper with the script in
Appendix C.

The goal of the first three messages is to have a and c mutually authen-
ticated and agreeing on the goods to buy and their price: a sends a request
to c concerning goods of interest, c replies with a list of available goods and
their prices, and a then chooses which good he wants to buy and sends his
card data to b.

The goal of messages 4 to 6 is to have c and b mutually authenticated
and agree on the fund transaction: firstly c sends a’s identity to b as well
as the goods that were ordered by a. Then b sends back the order and an
identification number (transactionID). Finally c answers with the transac-
tionID (achieving authentication between c and b) and the card data that
it received in message 3. At that point, the bank can securely transfer the
funds to the merchant.

The goal of messages 7 to 10 is the establishment of evidences of the
transaction. Firstly b sends to c a summary of the transaction. Then c

sends a receipt of the transaction to a, who answers with the receipt so that
c can be sure that a has received the receipt. Finally c sends the receipt to
b, concluding the transaction.

9.2 Implementation with COSP-J

In order to implement the e-commerce protocol, we have to build the in-
put script for COSP-J, compile it with COSP-J, modify the output code if
necessary, compile the output code and finally test it. We describe each of
these phases in turn.
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9.2.1 Building the input script

The COSP-J input file is built from the Casper code presented in Appendix
C. We will consider all the sections of the COSP-J input script in turn.

The “Free variables” section

The Casper script in Appendix C uses many types for the different data
transferred during the protocol (for example REQUEST, ANSWER and
CHOICE). Here we will simulate all these types by the single type Nonce.
The “Free variables” section therefore becomes:

#Free variables

A, B, C : Agent

request, answer, choice, carddata, transactionID, summary, \

receipt, acknowledgment, end, price : Nonce

PK : Agent -> RSAPublicKey

SK : Agent -> RSASecretKey

InverseKeys = (PK, SK)

The “Protocol description” section

The “Protocol description” section of the COSP-J input file is based on the
Casper input file with the following three modifications:

Firstly, Casper assumes that when c receives message 1, he knows the
identity of the sender a. This is not the case in COSP-J, as we discussed in
Section 3.1. Therefore, we need a to send its identity in message 1.

Secondly, in message 3, the user a sends the identity of his bank b to the
merchant c. However, c needs to be able to contact b and therefore we also
need a to send the address of his bank (as described in Section 3.1). So we
add addr(b) in this message.

Finally, Casper assumes that when b receives message 4, he knows the
identity of the sender c. This is not the case in COSP-J as we discussed in
Section 3.1. Therefore we need c to send its identity along with this message.

Once we apply these modifications, we get the following COSP-J “Pro-
tocol description” section:

#Protocol description

-- AUTHENTICATION A-C AND REQUEST

1. A -> C : A,{{C}{SK(A)}, request}{PK(C)}

2. C -> A : {request, answer}{PK(A)}

3. A -> C : {answer, choice, {B,addr(B)}{SK(A)}, \

{{carddata}{PK(B)}}{SK(A)}%c}{PK(C)}

-- AUTHENTICATION C-B AND TRANSACTION

4. C -> B : C,{A, {B}{SK(C)}, price}{PK(B)}

5. B -> C : {price, transactionID}{PK(C)}
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6. C -> B : {transactionID, \

c%{{carddata}{PK(B)}}{SK(A)}}{PK(B)}

-- ### B transfers funds ###

-- EVIDENCE OF THE TRANSACTION

7. B -> C : {{C}{SK(B)}, \

{{carddata}{PK(A)}}{SK(B)}%e, summary}{PK(C)}

8. C -> A : {{A}{SK(C)}, \

e%{{carddata}{PK(A)}}{SK(B)}, receipt}{PK(A)}

9. A -> C : {receipt, acknowledgment}{PK(C)}

10. C -> B : {{B}{SK(C)}, acknowledgment, end}{PK(B)}

11. A -> : choice,receipt

12. B -> : A,C,price,summary

13. C -> : A,choice,price,receipt

The “Processes” section

This section is based on the Casper input file, with the following two modi-
fications.

Firstly, we have to make it clear that the nonces are generated during
the run of the protocol thanks to the “generates” keyword.

Secondly, we do not use an environmental message 0 anymore to transmit
the identity of the merchant to the customer anymore. This means that the
customer needs to be instantiated with the identity of the merchant.

This section therefore becomes:

#Processes

CUSTOMER(A,B,C) knows PK, SK(A) generates carddata, \

choice, request, acknowledgment

BANK(B) knows PK, SK(B) generates transactionID, summary

MERCHANT(C) knows PK,SK(C) generates answer, price, receipt, end

The “Functions” section

The only functions that this script uses are PK and SK in order to get the
public and secret key of an agent respectively. In our implementation, these
keys will be stored in a KeyStore. Therefore, we specify that PK and SK

need to get the keys from the KeyStore as follows:

#Functions

PK = myKeyStore.PK

SK = myKeyStore.SK

The “External” section

In this section, we define the only external object that we use in this protocol,
namely the KeyStore “myKeyStore” that we use in the “Functions” section.
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The “External” section of our COSP-J input script is therefore:

#External

myKeyStore : KeyStore

This completes the COSP-J input file. We can compile it with our
COSP-J compiler to generate the following three java files: CUSTOMER.java,
MERCHANT.java and BANK.java.

9.2.2 Modifying and compiling the output code

It is sometime useful to apply a few modifications to the java files before
compiling them. For example, we may want the bank to transfer the funds
between the receipt of message 6 and the sending of message 7. Or we may
want the bank to check that the customer has enough money in his account
to perform the transaction.

Another way to do this is to use the angle brackets notation (as described
in Section 6.4) but this feature is limited to making a few assignments. De-
pending on the number of actions to be performed, we will either choose the
angle brackets notation or modify the output of COSP-J. These modifica-
tions are not really part of the security protocol so we will not discuss them
further in this dissertation, but they are another motivation for making the
output of COSP-J as accessible as possible.

Once the modifications of the java files are completed, we compile all
three java files CUSTOMER.java, MERCHANT.java and BANK.java.

9.2.3 Running the e-commerce protocol

We are now able to run the implementation of the protocol we have created.
The following script generates the trace for the e-commerce protocol:

(sleep 10 ; java protocols/CUSTOMER keystoreA *** \

localhost localhost A B C) &

(sleep 5 ; java protocols/MERCHANT keystoreC *** C) &

java protocols/BANK keystoreB *** B

The first line runs an instance of the customer class. Its parameters are the
KeyStore where are keys are stored, the password used to access it, the DNS
addresses of the merchant and the bank, and the names of the customer,
bank and customer. The file keystoreA contains the secret key of agent A

and the public keys of agents A, B and C.
The second line runs an instance of the merchant class. Its parameters

are the KeyStore where are keys are stored, the password used to access it,
and the name of the merchant. The file keystoreC contains the secret key
of agent C and the public keys of agents A, B and C.
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The last line runs an instance of the bank class. Its parameters are the
KeyStore where are keys are stored, the password used to access it, and the
name of the bank. The file keystoreB contains the secret key of agent B and
the public keys of agents A, B and C.

The complete trace of the e-commerce protocol generated by this script
can be found in Appendix D. In this trace, the type-flaw prevention system
described in Chapter 7 is also active.

In addition to this case study, we successfully compiled many other pro-
tocols into COSP-J, as summarized in Chapter 10. Their input scripts can
be found in the main directory of the COSP-J project. They all use the “spl”
file extension. All the output codes generated during compilation of these
security protocols are stored in the java/protocols directory of COSP-J.

The next chapter presents the conclusions of our work, together with a
discussion of future work.



Chapter 10

Conclusion

10.1 Summary

In this thesis, we have presented COSP-J, a compiler for security protocols
into Java implementation. The following three principles were followed when
developing COSP-J:

Firstly, we designed the input script of COSP-J upon that of Casper. This
lets users easily use COSP-J with Casper. Chapters 3 and 6 presented the
design of the input file for COSP-J. The use of Casper and COSP-J together
makes it very easy to firstly verify the validity of a security protocol with
Casper and then generate a corresponding java implementation with COSP-
J. The many examples studied in this thesis, and especially the e-commerce
protocol studied in Chapter 9, has demonstrated how successful this ap-
proach is. The Casper input file structure was designed to make it easy to
verify a very wide scope of protocols. As COSP-J is based on the same input
file structure, it is able to compile many different security protocols. The
list of protocols successfully implemented by COSP-J is as follows: Andrew
Secure RPC, CCITT X.509, Denning-Sacco shared key, Diffie Helman key
exchange algorithm, Kao Chow Authentication, Needham-Schroeder Pub-
lic Key, Neumann Stubblebine, Otway Rees, Station-to-Station, TMN, Ya-
halom. The description of all these protocols can be found in [CJ97]. The
COSP-J input files for these protocols are in the main directory of the COSP-
J project, under the .spl extension.

Secondly, we wanted the Java code generated by COSP-J to be accessi-
ble, even for someone who does not know the classes described in Section 4.3.
We believe this aim was reached: a protocol such as the Needham-Schroeder
Public Key protocol generates around 100 lines of fully commented code for
each agent, and the names of the functions used are very explicit. The
Application Programming Interface (API) for the package “core” that is lo-
cated in directory java/core/doc is also a precious help for anyone who
wants to make the most of COSP-J: it describes all the classes used by the
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implementations generated by COSP-J.
Thirdly, our aim was to make the implementations generated by COSP-

J as secure as possible. The fact that these implementations are written
in Java is a first step towards achieving this, as we showed that Java is a
secure language in Section 4.1. As Java is an Object-Oriented Language,
we used a very clean object oriented model (cf. Section 4.3) that minimizes
human errors. The systems preventing type-flaw attacks (cf. Chapter 7)
and multi-protocol attacks (cf. Chapter 8) also improves the security of our
implementations. This is especially useful as Casper is not good at detecting
type-flaw attacks and unable to find multi-protocol attacks.

10.2 Comparison with other existing tools

There are few compilers for generating implementations of security proto-
cols. The only one that we are aware of was created in the Computer Science
Division of the University of California, Berkeley. It is part of the AGVI
toolkit (Automatic Generation, Verification, and Implementation of Security
Protocols) [SPP01]. This toolkit is made of three tools. APG (Automatic
Protocol Generator) takes a system specification and the security require-
ments, and automatically designs a security protocol. APV (Automatic
Protocol Analyzer) is an analyzer of security protocols: it can both produce
a proof (when a protocol is correct), and generate a counter-example (when
a protocol is flawed). ACG (Automatic Code Generator) is an automatic
compiler that translates high level specifications of security protocols into
low level implementations (Java source code).

It is not possible to directly compare ACG and COSP-J, because the
first one is made to be used along with APG and APV, whereas COSP-J is
designed to be used together with Casper: the leading principles that were
followed when creating COSP-J (summarized in the previous section) do
not apply to ACG. A comparison of Casper with other automatic checking
systems is beyond the scope of this thesis, but the CSP/Casper approach
is one of the most successful concerning protocol analysis (see [DNL99] for
further details). This makes COSP-J (which is the only security protocol
compiler into implementations based on Casper) a very useful tool.

Although COSP-J was designed to work with Casper, the input script is
very accessible and can be used with other verification methods as well.

10.3 Future Work

One of the aims of our work was to make COSP-J able to compile as many
security protocols as possible as discussed in Section 10.1. But there exists
a very wide variety of security protocols. One possible direction for fur-
ther work would be to try to compile different security protocols and adapt
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COSP-J if needed. For example, we could try to use COSP-J to implement
the CAM [OR01] protocol which is a protocol used by mobile computers to
inform their peers when their network address has changed, and the SK3
protocol [SR96] which deals with symmetric key distribution using Smart
Cards. More examples can be found in [CJ97].

Another interesting avenue for future research that builds upon the work
presented in this thesis would be to try and create a formal proof of the
correctness of COSP-J. The aim would be to formally prove that if Casper

did not detect an error in a given protocol, its implementation with COSP-J
will be free of error. In order to do so, we need to prove that the assumptions
made by Casper are true in COSP-J. The proof may involve a few changes
in the COSP-J code. For example, Casper assumes that if a message is
encrypted with a key k, it cannot be decrypted with anything other than k.
This is not always true in COSP-J: if a nonce na is encrypted with a key k1,
it may be possible (depending on the encryption and decryption algorithms
that are used) to decrypt it with a key k2, even if the key k2 is not the
inverse of key k1. Of course the result would not be the value of na, but
another random amount of data. It would be surprising that this would lead
to an actual attack; however, a formal proof is needed to ensure that such
an assumption made by Casper remains true in COSP-J. The proof will also
probably need to assume that the Java Virtual Machine (JVM) on which
the protocol is run and the Java classes used are error-free. See [Oak01] for
a complete discussion on this topic.
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Appendix A

Script generating keystore1

and keystore2

# This script creates files keystore1 and keystore2

# First we delete keystore1 and keystore2

rm keystore1 2>/dev/null

rm keystore2 2>/dev/null

# Then we create keystore1 with A’s public and secret key

keytool -genkey -alias Alice -keyalg RSA -keysize 1024 \

-keystore keystore1 -dname "CN=Alice" -storepass duitama -keypass duitama

# Then we create keystore2 with B’s public and secret key

keytool -genkey -alias Bob -keyalg RSA -keysize 1024 \

-keystore keystore2 -dname "CN=Bob" -storepass duitama -keypass duitama

# Now we export the certificate containing A’s public key from keystore1

keytool -export -keystore keystore1 -alias Alice -file output \

-storepass duitama 2>/dev/null

# And we import it in keystore2

echo Yes | keytool -import -alias Alice -keystore keystore2 \

-file output -storepass duitama >/dev/null 2>/dev/null

# Finally we export the certificate containing B’s public key from keystore2

keytool -export -keystore keystore2 -alias Bob -file output2 \

-storepass duitama 2>/dev/null

# And we import it in keystore1

echo Yes | keytool -import -alias Bob -keystore keystore1 \
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-file output2 -storepass duitama >/dev/null 2>/dev/null

# Clean tempory files

rm output

rm output2

# Display keystore1

echo CONTENT OF KEYSTORE1:

keytool -keystore keystore1 -list -storepass duitama

# Display keystore2

echo -e \\n\\n\\nCONTENT OF KEYSTORE2:

keytool -keystore keystore2 -list -storepass duitama



Appendix B

The Station-to-Station

protocol

#Free variables

A, B : Agent

g, m, x, y, gEx, gEy, k : BigInteger

PK : Agent -> RSAPublicKey

SK : Agent -> RSASecretKey

InverseKeys = (PK, SK),(k,k)

#Processes

INITSTS(A,B) knows PK,SK(A) generates g,m,x

RESPSTS(B) knows PK,SK(B) generates y

#Protocol description

<gEx := g.modPow(x,m)>

1. A -> B : g,m,gEx

<k := gEx.modPow(y,m) ; gEy := g.modPow(y,m)>

2. B -> A : gEy

<k := gEy.modPow(x,m)>

2b.A -> B : A

2c.B -> A : {{gEy,gEx}{SK(B)}}{k}

3. A -> B : {{gEx,gEy}{SK(A)}}{k}

4. A -> : B,k

5. B -> : A,k

#External

myKeyStore : KeyStore

#Functions

PK = myKeyStore.PK

SK = myKeyStore.SK
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Appendix C

Casper script: E-commerce

protocol

#Free variables

A, B, C : Agent

request : REQUEST

answer : ANSWER

choice : CHOICE

carddata : CARDDATA

transactionID : TRANSACTIONID

summary : SUMMARY

receipt : RECEIPT

acknowledgement : ACKNOWLEDGEMENT

end : END

price : PRICE

PK : Agent -> PublicKey

SK : Agent -> SecretKey

InverseKeys = (PK, SK)

#Processes

ANTOINE(A,B,carddata, choice, request, acknowledgement) knows PK, SK(A)

BANK(B,transactionID, summary) knows PK, SK(B)

COMPANY(C,answer, price, receipt, end) knows PK,SK(C)

#Protocol description

0. -> A : C

1. A -> C : {{C}{SK(A)}, request}{PK(C)}

2. C -> A : {request, answer}{PK(A)}

3. A -> C : {answer, choice, {B}{SK(A)}, \

{{carddata}{PK(B)}}{SK(A)}%c}{PK(C)}

4. C -> B : {A, {B}{SK(C)}, price}{PK(B)}
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5. B -> C : {price, transactionID}{PK(C)}

6. C -> B : {transactionID, c%{{carddata}{PK(B)}}{SK(A)}}{PK(B)}

7. B -> C : {{C}{SK(B)}, {{carddata}{PK(A)}}{SK(B)}%e, summary}{PK(C)}

8. C -> A : {{A}{SK(C)}, e%{{carddata}{PK(A)}}{SK(B)}, receipt}{PK(A)}

9. A -> C : {receipt, acknowledgement}{PK(C)}

10. C -> B : {{B}{SK(C)}, acknowledgement, end}{PK(B)}

#Functions

symbolic PK,SK

#Specification

Secret(A, request, [C])

Secret(A, choice, [C])

Secret(A, carddata, [B])

Secret(B, transactionID, [C])

Secret(B, summary, [C])

Secret(C, answer, [A])

Secret(C, receipt, [A])

Secret(A, acknowledgement, [C,B])

Secret(C, price, [B])

Secret(C, end, [B])

Agreement(A,C,[request,choice,answer,receipt,acknowledgement])

Agreement(C,A,[request,answer,receipt])

Agreement(C,B,[price,transactionID,acknowledgement,end])

Agreement(B,C,[price,transactionID,summary])

Agreement(B,A,[carddata])

#System

ANTOINE(Antoine, Bank, Carddata, Choice, Request, Acknowledgement)

BANK(Bank, TransactionID, Summary)

COMPANY(Company, Answer, Price, Receipt, End)

#Intruder Information

Intruder = Mallory

IntruderKnowledge = {Antoine, Bank, Company, Mallory, Answerm, Choicem, \

Carddatam, TransactionIDm, Summarym, Receiptm, Acknowledgementm, Endm, \

Pricem, PK, SK(Mallory)}

#Actual variables

Antoine, Bank, Company, Mallory : Agent

Request : REQUEST

Answer : ANSWER

Choice : CHOICE

Carddata : CARDDATA
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TransactionID : TRANSACTIONID

Summary : SUMMARY

Receipt : RECEIPT

Acknowledgement : ACKNOWLEDGEMENT

End : END

Price : PRICE

Requestm : REQUEST

Answerm : ANSWER

Choicem : CHOICE

Carddatam : CARDDATA

TransactionIDm : TRANSACTIONID

Summarym : SUMMARY

Receiptm : RECEIPT

Acknowledgementm : ACKNOWLEDGEMENT

Endm : END

Pricem : PRICE



Appendix D

Trace of the e-commerce

protocol

ANTOINE: creating nonce carddata

ANTOINE: creating nonce choice

ANTOINE: creating nonce request

ANTOINE: creating nonce acknowledgement

ANTOINE: Building message m1

ANTOINE: Encrypting m0

ANTOINE: Encrypting m0

ANTOINE: Sending message m1

COMPANY: creating nonce answer

ANTOINE: waiting for m2

COMPANY: creating nonce price

COMPANY: creating nonce receipt

COMPANY: creating nonce end

COMPANY: waiting for m1

COMPANY: Tag check successful for APSA)N)

COMPANY: Decrypting m0

COMPANY: Tag check successful for SA)N

COMPANY: Decrypting m0

COMPANY: Tag check successful for A

COMPANY: Building message m2

COMPANY: Encrypting m2

COMPANY: Sending message m2

ANTOINE: Tag check successful for PNN)

ANTOINE: Decrypting m2

COMPANY: waiting for m3

ANTOINE: Tag check successful for NN

ANTOINE: Building message m3

ANTOINE: Encrypting m0
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ANTOINE: Encrypting m0

ANTOINE: Encrypting m0

ANTOINE: Encrypting m3

ANTOINE: Sending message m3

COMPANY: Tag check successful for PNNSAD)SPN)))

COMPANY: Decrypting m3

ANTOINE: waiting for m8

COMPANY: Tag check successful for NNSAD)SPN))

COMPANY: Decrypting m0

COMPANY: Tag check successful for AD

COMPANY: Building message m4

COMPANY: Encrypting m0

COMPANY: Encrypting m0

COMPANY: Sending message m4

BANK: creating nonce transactionID

COMPANY: waiting for m5

BANK: creating nonce summary

BANK: waiting for m4

BANK: Tag check successful for APASA)N)

BANK: Decrypting m0

BANK: Tag check successful for ASA)N

BANK: Decrypting m0

BANK: Tag check successful for A

BANK: Building message m5

BANK: Encrypting m5

BANK: Sending message m5

COMPANY: Tag check successful for PNN)

COMPANY: Decrypting m5

BANK: waiting for m6

COMPANY: Tag check successful for NN

COMPANY: Building message m6

COMPANY: Encrypting m6

COMPANY: Sending message m6

BANK: Tag check successful for PNSPN)))

BANK: Decrypting m6

COMPANY: waiting for m7

BANK: Tag check successful for NSPN))

BANK: Decrypting m0

BANK: Tag check successful for PN)

BANK: Decrypting m0

BANK: Tag check successful for N

BANK: Building message m7

BANK: Encrypting m0

BANK: Encrypting m0
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BANK: Encrypting m0

BANK: Encrypting m7

BANK: Sending message m7

COMPANY: Tag check successful for PSA)SPN))N)

COMPANY: Decrypting m7

BANK: waiting for m10

COMPANY: Tag check successful for SA)SPN))N

COMPANY: Decrypting m0

COMPANY: Tag check successful for A

COMPANY: Building message m8

COMPANY: Encrypting m0

COMPANY: Encrypting m8

COMPANY: Sending message m8

ANTOINE: Tag check successful for PSA)SPN))N)

ANTOINE: Decrypting m8

COMPANY: waiting for m9

ANTOINE: Tag check successful for SA)SPN))N

ANTOINE: Decrypting m0

ANTOINE: Tag check successful for A

ANTOINE: Decrypting m0

ANTOINE: Tag check successful for PN)

ANTOINE: Decrypting m0

ANTOINE: Tag check successful for N

ANTOINE: Building message m9

ANTOINE: Encrypting m9

ANTOINE: Sending message m9

COMPANY: Tag check successful for PNN)

COMPANY: Decrypting m9

COMPANY: Tag check successful for NN

COMPANY: Building message m10

COMPANY: Encrypting m0

COMPANY: Encrypting m10

COMPANY: Sending message m10

BANK: Tag check successful for PSA)NN)

BANK: Decrypting m10

COMPANY: A

BANK: Tag check successful for SA)NN

BANK: Decrypting m0

BANK: Tag check successful for A

BANK: A

BANK: C



Appendix E

Casper script: protocol in

Section 6.2

#Free variables

f : HashFunction

A, B : Agent

na : Nonce

PK : Agent -> PublicKey

SK : Agent -> SecretKey

InverseKeys = (PK, SK)

#Processes

INITIATOR(A,na) knows PK, SK(A), f

RESPONDER(B) knows PK, SK(B), f

#Protocol description

0. -> A : B

[A!=B]

1. A -> B : {A,B,na}{PK(B)},{f({A,B,na}{PK(B)})}{SK(A)}

2. B -> A : {A,B,na}{PK(A)}

#Specification

Secret(A, na, [B])

Agreement(A,B,[na])

Agreement(B,A,[na])

#Actual variables

Alice, Bob, Mallory : Agent

Na , Nm : Nonce

#Functions
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symbolic PK, SK

#System

INITIATOR(Alice, Na)

RESPONDER(Bob)

#Intruder Information

Intruder = Mallory

IntruderKnowledge = {Alice, Bob, Mallory, Nm, PK, SK(Mallory)}


