Workshop de Agentes

y Sistemas Inteligentes

CACIC 2003 - RedUNCI 752

The Monkey and Bananas Problem Revisited:
A Situation Calculus Approach

Gerardo I. Simari Diego R. Garcia Gabriel R. Filocamo

Laboratorio de Investigacién y Desarrollo en Inteligencia Artificial (LIDIA)
Departamento de Ciencias e Ingenieria de la Computacion
Universidad Nacional del Sur. Av. Alem 1253, (8000) Bahia Blanca, Argentina
Tel: ++454 291 4595135 - Fax: ++454 291 4595136
{gis,drg,grf}@cs.uns.edu.ar

Abstract

This work develops a complete example of how to obtain a Situation Calculus Action
Theory. The problem selected is a simple one, yet it is enough to cover the important
details of the process without unnecessary complications. After obtaining the action
theory, a running Prolog program is derived from the axioms; at this point, some problems,
and a proposed solution, are presented.

Key Words: Artificial Intelligence, Cognitive Robotics, Action Theories, Situation Calculus.

1 Background and Motivation

The main objective of this work is to develop a complete example of an action theory in
Reiter’s Situation Calculus [Rei01], including details of every step of the process [SGF03]. The
problem selected covers the process well, being simple enough to not introduce unnecessary
complications.

After obtaining an action theory for the problem, we implement it as a Prolog program
using the formalisms also described in [Rei01]. At the implementation stage, we encountered
some problems while transforming the axioms into Prolog clauses; these problems, and how we
solved them, will be described in the corresponding section.

The Situation Calculus is a second order language, quite suitable for representing dynami-
cally changing worlds. Every one of the changes in the world is the result of a specific action,
which is defined in the language. A situation stands for a history of the actions taken in the
world (simply a sequence of actions), and is represented as a first order formula. A special
situation, the constant sy, is used to represent the initial state of the world. Every other situ-
ation is denoted by the special functional symbol do(c«, s); this means that action « executed
in situation s leads to a new situation, called do(c, s), where s is a situation built in this same
way, or sp. For example, for action grab(z) (which denotes grabbing object z), do(grab(z), s)
is the situation which results from grabbing object z in situation s.

There exist a certain type of relations which have truth values that may vary from situation
to situation; such relations are called Relational Fluents. They are represented by predicates
that take a situation term as their last argument. Functions whose values depend on the situ-
ation are called Functional Fluents, and also take a situation term as their last argument. For
example, the relational fluent nextTo(z), which holds in sy, no longer holds in do(walk(y), so),
where object z is different from object .

CACIC 2003 - RedUNCI 753

Another type of relations, which do not depend on the situation, are represented by pred-
icates without a situation parameter, and are called Non-Fluent predicates. Similarly, those
functions that are situation independent are called Non-Fluent functions.

The theory is completed by a variety of axioms, which capture the different aspects of the
world that is being modelled. These axioms are: action precondition axioms, effect axioms,
and successor state axioms; these will be introduced in the corresponding section, following the
example presented.

The rest of this work is organized as follows: in Section 2, we describe the problem to be
solved, and the basic components of the problem are identified as elements of the Situation
Calculus (actions, fluents, etc). Section 3 uses this description to obtain the full axiomatization
for the action theory. Once this theory is obtained, Section 4 transforms the axioms into Lloyd-
Topor Normal Form (LTNF) [L10o87], suitable for obtaining corresponding Prolog clauses, which
are included in Section 5.

2 The Monkey and Bananas Problem

The Monkey and Bananas Problem is one of the first planning problems. It was proposed by
John McCarthy in 1963, and later reprinted in [McC68]. A monkey is in a room that contains
a bunch of bananas hanging from the ceiling, and a chair. The monkey can’t reach the bananas
from the floor. Nevertheless, if the chair were below the bananas, and the monkey were standing
on top of it, then the bananas would become reachable. Initially, the monkey is not next to
the chair, and the chair is not below the banana bunch. This description can be formalized by
the following;:

e Actions:

— walk(z): The monkey walks to object z.

— pushUnder(z, y): The monkey pushes object z to the location under object y.
— climb(z): The monkey climbs onto object z.

— climbDown(z): The monkey climbs down from object z.

— grab(z): The monkey grabs object z.
¢ Relational Fluents:

— onCeiling(z, s): Object x is on the ceiling in situation s.

— holding(z, s): The monkey is holding object z in situation s.
— nextTo(z, s): The monkey is next to object x in situation s.
— on(z, s): The monkey is on top of object z in situation s.

— below(z,y, s): Object z is below object y in situation s.
e Functional Fluents:

— stamina : situation — IN: The monkey’s stamina in situation s.
e Non-Fluent Predicates:

— onFloor(z): Object z is on the floor.

CACIC 2003 - RedUNCI 754

e Objects:
— Chair

— Bananas

3 Problem Axiomatization

In this section, we will introduce the axioms necessary to model the problem in the Situation
Calculus. In order to do this, the following steps will be followed:

e Specify the Action Precondition Axioms.

Specify the Effect Axioms.

Obtain the Normal Forms for the Effect Axioms.

Derive the Successor State Axioms.

Specify the initial database.

Specify Non-fluent Predicates.

In order to expose the solution in a clear, non-redundant manner, some axioms will not be
specified. Nevertheless, these axioms may appear as part of those axioms that emerge as the
solution evolves.

3.1 Action Precondition Axioms

The Action Precondition Axioms specify the requirements that must be satisfied for an action
to be executed. For this reason, there will be one axiom for each action. In the definition
of these axioms the predicate poss(a,s) is used, meaning that action a is possible (can be
executed) in situation s.

An Action Precondition Axiom will have the following general form: poss(a, s) = Y, where
T is a first order formula. For the running example, the following are the Action Precondition
Axioms for walk and pushUnder:

poss(walk(z),s) = onFloor(z) A —on(z,s) A stamina(s) =y Ay > 1

poss(pushUnder(x,y),s) = mnextTo(z,s) A onCeiling(y, s) A onFloor(z)A
—on(z, s) A stamina(s) =z ANz > 2

The intuitive meaning of the first axiom, for example, is that in order to be able to walk
to object z, object x must be on the floor, the monkey must not be on any object (denoted by
variable z in the formula), and finally, the monkey’s stamina must be at least 1. The symbol
‘="in the axioms means that the reverse implication is also true. The other formula can be
read in a similar fashion.

CACIC 2003 - RedUNCI 755

3.2 Effect Axioms

The Effect Axioms specify how the relational and functional fluents’ values change after the
execution of an action. In this case, there will be at least one axiom for each fluent. An Effect
Axiom for a relational fluent f will have the following general form:

¢f — f(tn7 dO(Oé, S))
and for a functional fluent g¢:
’Yg — g(tn7 dO(Oé, 3)) =T

where t" = #, b, .-+, t,, are terms, ¢y,7, are first order formulas, and ‘—’ is the logical connective
for material implication. The Effect Axioms for relational fluents can be subdivided into positive
and negative axioms. An axiom is positive if the relational fluent f is not negated in the formula,
and negative otherwise. The following are the Effect Axioms for nextTo, below, and stamina:

nextTo(x, do(walk(z), s)) stamina(do(walk(x), s) = stamina(s) — 1

nextTo(z, do(climbDown(z), s)) stamina(do(pushUnder(z,y), s) = stamina(s) — 2

(do(
(do
z # y — —nextTo(z, do(walk(y), s)) stamina(do(climb(z), s) = stamina(s) — 1
—nextTo(z, do(climb(z), s)) stamina(do(climbDown(z), s) = stamina(s) — 1
below(z,y, do(pushUnder(z,y), s)) stamina(do(grab(z), s) = stamina(s) — 1

y # z — —below(z,y, do(pushUnder(z, z), s))

The intuitive meaning of the first axiom, for example, is that the monkey will be next to
object z in the situation resulting from executing action walk(z) in a given situation s.

3.3 Normal Forms for Effect Axioms

In the previous section we saw that there can be more than one Effect Axiom for any given
fluent. The result of transforming the Effect Axioms to the Normal Form are two axioms
for each fluent: one that groups the positive effect axioms, called positive normal form Effect
Axiom, and one that groups the negative ones, called negative normal form Effect Axiom.
The need for this separation in positive and negative Normal Form Effect Axioms will become
apparent in the following section.

3.3.1 Relational Fluents
For each positive Effect Axiom, for a relational fluent f of the form:
¢p — f(", do(a, s))

where t" = t;, ty, -+, t, are terms, and ¢} is a first order formula, we rewrite it in the equivalent
form:

a=aAnz"=t"Adt — f(z", do(a,s))

where ™ = t" abbreviates x; = t; Ay = b A--- Az, = t,, and 2" are new and distinct
variables. This last formula can be rewritten:

Fyr, - ym)a =anz" =t" Adg] — f(z", do(a, s))

CACIC 2003 - RedUNCI 756

where ¥, - -+, y, are all the free variables (except for s) that appear in the original effect axiom.
This last process is done for every one of the k positive Effect Axioms for a fluent f. The
result of this is a set of formulas:

/N f(z", do(a,s)),- -, /LN f(z", do(a,s))
These k£ formulas can be rewritten:
[TtV VU] — f(z", do(a, s))

This is the Positive Normal Form for Effect Axioms for a fluent f. The Negative Normal Form
is obtained in the same way, using the negative Effect Axioms instead.

The following are the Normal Forms for last section’s Effect Axioms, where the first formulas
are the original Effect Axioms, and the formulas following the “=" are the corresponding
Normal Forms:

e nextTo(t, do(walk(t), s)), nextTo(t, do(climbDown(t), s)) =

{[(3t)a = walk(t) Nz = t] V [(It)a = climbDown(t) A\ z; = t|} — nextTo(z,, do(a,s))
o below(ty, ta, do(pushUnder(ty, t2), s)) =

[(3t1, t2)a = pushUnder(ty, t) A 11 =t A 22 =] — below (1, 12, do(a, s))
o t) # ty — —mnextTo(ty, do(walk(ty), s)), ~nextTo(t, do(climb(t),s)) =

{{(3t, t2)a = walk(te) Nmy =t ANzp = o Aty # 1]V [(Tt)a = climb(t) Az = t]}
— —nextTo(zy, do(a, s))

o ty # ty — —below(ty, ta, do(pushUnder(ty, t3),s)) =
[(Eltl, tg, tg)a = pushUnder(tl, tg)/\ I = tl A Ty = tg N T3 = tg VAN t2 7é tg]
— —below(zy, 2, do(a, s))
3.3.2 Functional Fluents

In much the same way as in the case of the Relational Fluents, for each Effect Axiom, for a
functional fluent f of the form:

¢F — f(tna dO(O&, 5)) =T

where t" = t, ty, - -+, t, are terms, and ¢ is a first order formula, we rewrite it in the equivalent
form:

a=aNz"=t"Ny=rAo¢r— f(z",do(a,s)) =y

where ™ = t" abbreviates 1 = t; Ax = b A--- Az, = t,, and 2" are new and distinct
variables. This last formula can be rewritten:

(Elyla"'vym)[a:a/\xn:tn/\yzr/\QSF]_>f(xn7d0(a’73)):y

where 1, - -+, y,, are all the free variables (except for s) that appear in the original effect axiom.

CACIC 2003 - RedUNCI 757

This process is done for every one of the k Effect Axioms for a functional fluent f. The
result of this is a set of formulas:

Ul — f(2™ do(a,s)),- -, UF = f(2™ do(a,s))
As before, these k formulas can be rewritten:
[TtV VU] = f(z", do(a, s))

This is the Normal Form for Effect Axioms for a functional fluent f. The following are the
transformations for the functional fluent in our example:

stamina(do(walk(t), s)) = stamina(s) — 1,

stamina(do(pushUnder(t, t), s)) = stamina(s) — 2,
stamina(do(climb(t), s)) = stamina(s) — 1,

stamina(do(climbDown(t), s)) = stamina(s) — 1,

stamina(do(grab(t), s)) = stamina(s) — 1 =

{{3t)a = walk(t,)) A z; = &y Ay = stamina(s) — 1]V

[(Ft1, t2)a = pushUnder(ty, ts) A 21 = t1 A 22 = bo Ay = stamina(s) — 2]V
[(Ft1)a = climb(ty) N zp = t1 Ay = stamina(s) — 1]V

[(Ft1)a = climbDown(t,) A 1 =ty A\ y = stamina(s) — 1]V

[(Ft)a = grab(ty) N x = t; Ay = stamina(s) — 1]}

— stamina(do(a, s)) =y

3.4 Successor State Axioms

The Successor State Axioms provide a complete way of describing how the world evolves as
a response to the execution of actions. Each axiom describes how to compute the value of a
fluent for the next situation, given its value for the current situation. Intuitively the successor
state axiom for a fluent f has the following structure [RN95]:

True afterwards < [An action made it true
V True already and no action made it false]

The use of ‘=’ means that the axiom will be true after the execution of the action if it is
made true or it stays true; and that it will be false otherwise. For each relational fluent f, the
successor state axiom has the following form:

f(z", do(a,s)) = %T(x”, a,s)V f(z",8) Ny (2", a, s)

where 7/ (2", a,s) — f(z",do(a,s)) and v; (2", a,5) — f(z", do(a,s)) are the positive and
negative normal form effect axioms for the fluent f, respectively.

CACIC 2003 - RedUNCI 758

The successor state axioms for our example are:

o nextTo(zy,do(a,s)) =
{[(3t)a = walk(ty) A z1 = t;] V [(It1)a = climbDown(t;) A z; =]} V
nextTo(xy, s) A —~{[(Ft1, tr)a = walk(L) Ny =t ANay =ty ANty # BV
[(Ft1)a = climb(ty) Ny = 4]}

o below(zy, 15, do(a, s)) =
[(Tt1, t2) a = pushUnder(ty, &) AN 21 = t1 A 23 =]V
below(xy, 12, 8) A =[(ty, to, t3)a = pushUnder(ty, t3) N @xy = g AN 2 = to/\ 13 = t3 A\ by # t3]

For each functional fluent f, the successor state axiom has the following form:
F(z", do(a,s)) =y =7r(z",y,a,s)Vy=F(z",s) A=y)yr(z", ¢, a,s)

where vp(z™,y, a,s) — F(z", do(a,s)) = y is the normal form effect axiom for the functional
fluent f. Intuitively, the successor state axiom for a functional fluent f has the following
structure:

The value of f is v < an action changed its value to v, or its value was already v
and no action modified it.

The following is the Successor State Axiom for the sole functional fluent stamina:
stamina(do(a,s)) =y =
{I3t)a = walk(t;) ANz = &y Ay = stamina(s) — 1]V
[(3t1, t2)a = pushUnder(ty, t) A 21 = t1 A 23 = to Ay = stamina(s) — 2]V
[(Ft1)a = climb(ty)) N2y = t1 Ay = stamina(s) — 1]V
[(3t1)a = climbDown(t;) A 21 =t Ay = stamina(s) — 1]V
[(Ft1)a = grab(ty) ANz = &y Ay = stamina(s) — 1]}
V y = stamina(s) A =(3y){[(Ft)a = walk(ty) Nz = 4, Ay’ = stamina(s) — 1)V
[(3t1, t2)a = pushUnder(ty, &) Az =ty A1 = ty Ay’ = stamina(s) — 2]V
[(Ft1)a = climb(ty)) Nz =ty Ay = stamina(s) — 1]V
[(Ft1)a = climbDown(t,) N 21 =ty A\ y' = stamina(s) — 1]V
(

[(Ft)a = grab(ty) ANz = t1 Ny’ = stamina(s) — 1]}

CACIC 2003 - RedUNCI 759

3.5 The Initial Database

Up to now, we have only defined how the world evolves as a result of the actions that are
performed, but have said nothing about the initial situation sy. In this section, we specify what
holds in this situation in order to have a picture of the how the world “begins”. The general
form of the definitions is:

F(.Tn, 80) = \IJF<xn> 30)

where Uy is a first order formula. The following formulas define the initial database for the
running example:

onCeiling(z, so) = z = bananas —on(z,s) =z = chair
—holding(z, sy) = x = bananas —below(xy, 23, 8) = 1 = chair A 23 = bananas
—nextTo(z, sy) = x = chair stamina(sy) =y =y = 8

3.6 Non-Fluent Predicates

All of the predicates used in the example so far have been fluent; this means that they can
change their value depending on the situation. There exist, however, predicates whose values
don’t change, called Non-Fluent Predicates. These predicates obey the following general form:

where ©,,(z™) is a situation independent first order formula. In our example, the only predicate
of this sort is:

onFloor(z) = z = chair

4 Implementation of the Action Theory

In order to obtain a Prolog program that implements a situation calculus action theory, Lloyd
and Topor [Llo87] propose a set of transformations based on Clark’s theorem [Cla78] that
reformulate the Action Precondition and Successor State axioms in a way that results in a
direct translation to Prolog clauses.

Once an action theory is obtained (following the process described above), the following
steps are necessary to build a Prolog program:

e Transform the Action Precondition and Succesor State Axioms:

— Obtain the if-halves from the Action Precondition Axioms.

— Apply the Lloyd-Topor transformation rules to the if-halves in order to obtain for-
mulas that are easy to implement (Lloyd-Topor normal form).

e Initial Database definition: Obtain the if-halves from the initial database definition.
Recall that these definitions obey the form:

F(iﬂm 80) = \I’F(l”n, 50)

CACIC 2003 - RedUNCI 760

where F(z,,sy) will not be negated in this case. This is due to the fact that negative
information is represented in Prolog by the Closed World Assumption (CWA). It should
also be noted that F' cannot be a functional fluent in this case because this type of fluent
cannot be directly implemented in Prolog. Notwithstanding, an n-ary functional fluent
can be implemented as a (n + 1)-ary Prolog predicate, where the last argument represents
the value of the fluent.

e Non-Fluent Predicate definition: Obtain the if-halves from the definitions, and then
apply the Lloyd-Topor transformation rules to these if-halves.
4.1 Transformation of Action Precondition Axioms

The following are the Action Precondition Axioms, followed by their corresponding if-halves.
It is worth noting that these if-halves are already in Lloyd-Topor Normal Form.

e poss(walk(z),s) = onFloor(z) A —on(y, s)
If-half: onFloor(z) A —on(y,s) — poss(walk(x), s)
e poss(pushUnder(z,y),s) = nextTo(z, s) A onCeiling(y, s) A onFloor(z) A —on(z, s)
If-half: nextTo(z,s) A onCeiling(y, s) A onFloor(z) A —on(z, s)
— poss(pushUnder(z,y), s)
4.2 Transformation of Successor State Axioms

We now describe the transformed Successor State Axioms. The list includes the axiom, its
corresponding if-half, and the resulting formula in Lloyd-Topor Normal Form (LTNF).

o nextTo(zy, do(a,s)) =
{[(3t)a = walk(t) N2y = t] V [(It)a = climbDown(t) A z; = t]}V
nextTo(zy, s) A —{[(3t1, ta)a = walk(ty) N 11 =t A 22 = HA
t #)V [(3t)a = climb(t) Az = t]}
If-half: [(3t)a = walk(t) A2 = t] vV [(It)a = climbDown(t) A x; = t]V
nextTo(zy, s) A —{[(3t1, ta)a = walk(ts) N2y = th AN22 =ty Aty # o]V
[(Ft)a = climb(t) A 2, = t|} — nextTo(zy, do(a, s))
LTNEF: {[a = walk(t) A z; = t] V [a = climbDown(t) Az = t]}V
nextTo(zy, s) A {[~(a = walk(ty)) V =(z1 = t1) V = (22 =)V
—(t #)|V [~(a = climb(t)) V =(z; = t)]} — nextTo(zy, do(a,s))
o below(zy, 3, do(a, 5)) =
[(3t1, t2)a = pushUnder(ty, &) ANz =ty A 2 =]V
below(x1, 1, s) A =[(Tta, b2, t3)a = pushUnder(ty, t3) Az = A

T =hA\ss=1t3 N\t #

CACIC 2003 - RedUNCI 761

If-half: [(3ty, t2)a = pushUnder(t, t) ANz =t A1y = BV
below(zy, 12, s) A —[(It1, to, t3) a = pushUnder(ty, t3) Az = HA
Ty =l Nag = t3 A\ by # t3] = below(zy, x3, do(a, s))

LTNF: [a = pushUnder(ty, t) N x = 1 A\ 2 = to] V below(zy, 23, s)A
[—(a = pushUnder(ty, t3)) V = (21 = t) V =(22 = &) V ~(23 = t3)V
—(te # t3)] — below(xy, 22, do(a, s))

4.3 Non-Fluent Predicate and Initial Database Definitions

Next, we specify the LTNF for the Initial Database. Some of the formulas that appeared in
the definition above will no longer apply, due to the fact that negated formulas are captured
by the CWA. Note that the database is closed.

e onCeiling(z, s9) = x = bananas
If-half, LTNF: z = bananas — onCeiling(z, so)
e —holding(z, sy) = = = bananas,
T=c

—nextTo(x, so) hair,—on(z,s) = z = chair,
—below (1, 23, 8) = 1 = chair A\ xy = bananas-

These formulas don’t have corresponding Prolog clauses due to the CWA.
In last place, we have the LTNF for our sole Non-Fluent Predicate:

onFloor(z) = z = chair

If-half, LTNF: z = chair — onFloor(z)

5 A Prolog Program

The prolog clauses of the program that implements the definitional theory are obtained from
the LTNF of the If-halves described in the last section. Simply replace the occurrences of “—”
by Prolog’s not, and replace conjunction and disjunction by Prolog’s “,” and “;” respectively.

To guarantee the soundness of a Prolog implementation of a definitional theory, a proper
Prolog interpreter must be used. A proper Prolog interpreter is one that evaluates a negative
literal not A, using negation as failure only when (at the time of evaluation) the atom A is
ground. When A is not ground, the interpreter may suspend its evaluation, working on other
literals until A becomes ground, or it may abort its evaluation. Either way, it never tries to
fail on non-ground atoms [Rei01]. The implementation was developed in ECLiPSe Prolog, a
proper Prolog interpreter which uses “~” for negation as failure with the semantics described
above.

During the implementation, we encountered certain problems with the clauses obtained
from applying these transformations. For example, the following shows the transformation of
the LTNF successor state axiom for the fluent next7To into the corresponding Prolog clause:

CACIC 2003 - RedUNCI 762

LTNF: {[a = walk(t) A 21 = t] V [a = climbDown(t) A x; = t]}V
nextTo(xy, s) AN{[~(a = walk(t)) V —(z; =) V =(22 =)V
—(t #)|V [~(a = climb(t)) V =(z; = t)]} — nextTo(zy, do(a,s))

nextTo(X,do(A,S)):-

1. (A=walk(T), X=T

2. ,A=climeown(T), X=T

3. ’nextTo(X,S) s

4. (“(A=climb(T1)) ; ~(X=T1)),

5. ("(A=walk(T2)) ; ~(X=T1) ; ~(Y=T2); ~(X=Y))

).

Note that in line 5 neither T2 nor Y will be instantiated when ~(Y=T2) and ~(X=Y) are
evaluated. This is due to the fact that Prolog does not maintain the bindings of the variables
from one clause to another in a disjunction of clauses when using “;”.

The solution we found to this problem is to never apply the followmg transformation:

lt(ﬁ[Wl VAN WQ]) - lt(_‘ Wl) V lt(_‘ Wg)

given that the application of this transformation generates a disjunction of negated clauses,
which gives rise to the problem mentioned above. Instead of applying this transformation,

apply:
B(=[Wi AN ANW,)) =—-p(Xq, -+ Xin)

where p is a new predicate symbol not appearing in the formulas, and Xj,- - -, X,,, are all the
free variables in Wy, - - -, W,. The new predicate is defined as follows:

WiN-- AW, = p(Xy, - Xn)
The new derivation will be as follows:
If-half: [(3t)a = walk(t) A z; = t] V [(It)a = climbDown(t) A z; = t]V
nextTo(zy, s) A ={[(Ft1, ta)a = walk(t) Nz =ty A2 =ty ANt #]V
[(Ft)a = climb(t) A 2, = t|} — nextTo(zy, do(a, s))
After applying the new transformation:
[(Ft)a = walk(t) ANz = t] V [(3t)a = climbDown(t) A 7 = t]V
nextTo(x, s) A —p(x1, a) A —q(x1, a) — nextTo(zy, do(a, s))

where [(Ft, th)a = walk() ANz =t N2 =t ANt # t] = p(x,a)
and [(Jt)a = climb(t) A 2, = t] — q(x1, a).

The following is the Prolog code for this axiom:

CACIC 2003 - RedUNCI 763

p(X,A):- A climb(T1), X = T1.
q(X,A):- A walk(T2), X =T1, Y =T2, ~ (T1 = T2).
nextTo(X,do(A,S)):-(A = climbDown(T), X =T
A
nextTo(X,S),
" pX,8), 7 qX,h)

walk(T), X =T

).

6 Final Remarks and Future Work

In this paper, we have implemented an action theory for a simple problem. In the process, we
have found (and suggested a solution to) a problem in the transformation rules that are the
basis for obtaining Prolog implementations from a set of axioms. Even though the Monkey
and Bananas problem is a simple one, the process of deriving an implementation can be quite
tedious. Furthermore, this process is quite sensitive to modifications to the original axioms. For
example, a simple modification such as adding a new object to the world would imply deriving
the complete action theory from scratch.

Future work, motivated by the previous observations, involves obtaining an automatic
process that derives an executable implementation of a given action theory. In other words,
what we want is to be able to compile the language of the Situation Calculus into an object
language such as Prolog. There are many advantages to having such a compiler, such as easing
the design of action theories. For example, if the initial axioms suffer modifications, the final
result can be quickly visualized.

References

[Cla78] K. L. Clark. Negation as failure. In H. Gallaire and J. Minker, editors, Logic and Databases,
pages 293-322, New York, 1978. Plenum Press.

[L1o87] J. W. Lloyd. Foundations of Logic Programming, Second Edition. Springer-Verlag, 1987.

[McC68] J. McCarthy. Situations, actions, and causal laws. In Semantic Proceedings of the tri-annual
IFIP Conf, Minsky (ed), Machine Intelligence, eds: Meltzer, and Michie, vars. PublishersT
Press. 1968.

[Rei01] Raymond Reiter. Knowledge in Action: Logical Foundations for Specifying and implement-
ing Dynamical Systems. MIT Press, Cambridge, Massachusetts - London, England, 2001.

[RN95] Stuart J. Russell and Peter Norvig. Artificial Intelligence. A Modern Approach. Prentice-
Hall, Englewood Cliffs, 1995.

[SGF03] Gerardo I. Simari, Diego R. Garcia, and Gabriel R. Filocamo. A general approach to the
implementation of action theories. In Nelson Acosta, editor, Proceedings of the V Workshop
de Investigadores en Ciencias de la Computacion, pages 541-545. Universidad del Centro de
la Provincia de Buenos Aires, Tandil, Buenos Aires, Argentina, 2003.

CACIC 2003 - RedUNCI 764

