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Abstract

Much effort has been dedicated to provide a general model of agents working in complex
environments. This research focuses on the high level cognition used in determining the behavior
of the agent.

The language of the Situation Calculus represents a very useful way of modeling an agent’s
knowledge of its environment. One of its advantages is that there exist methods to derive an
executable program from a basic set of axioms. This program can then be used to determine
the actions that are necessary in order to accomplish certain goal states. The main objective
of this line of work is to obtain an automatic way of deriving such an executable program.

1 Introduction and Background

An important goal in the research programme of Artificial Intelligence is to develop autonomous
entities called agents. This autonomy is of utmost relevance for an agent to be considered
intelligent in the environment that it occupies; the study of the relationship among beliefs,
actions, and their consequences is one way to go in obtaining this objective.

The research we are conducting in the LIDIA lies within the area of Cognitive Robotics.
Work in this field is directed towards the provision of a uniform theoretical and implementation
framework for autonomous robotic or software agents that reason, act, and perceive in com-
plex environments. The difference between “traditional” robotics and cognitive robotics is the
emphasis placed on higher level cognition in determining agent behaviors.

One way of modeling an agent’s beliefs about the world, the possible actions it can take,
and its effects on the environment is the Situation Calculus [11, 12].

1.1 A Brief Introduction to the Situation Calculus

We will briefly introduce the Situation Calculus in order to provide the framework necessary
in the rest of the presentation.

The Situation Calculus is a second order language, quite suitable for representing dynam-
ically changing worlds. Each change in the world is the result of a specific action, which is



defined in the language. A situation stands for a history of the actions taken in the world
(simply a sequence of actions), and is represented as a first order formula. A special situation,
the constant s0, is used to represent the initial state. Every other situation is denoted by the
special functional symbol do(α, s); this means that action α executed in situation s leads to a
new situation, called do(α, s), where s is a situation built in the same way, or s0. For exam-
ple, for action grab(x) (which denotes grabbing object x), do(grab(x), s) is the situation which
results from grabbing object x in situation s.

There exists a certain type of relations that may vary from situation to situation, which
are called Relational Fluents. These are represented by predicates that take a situation term
as their last argument. Functions whose values depend on the situation are called Functional
Fluents, and also take a situation term as their last argument. For example, the relational fluent
nextTo(x), which holds in s0, no longer holds in do(walk(y), s0), where object x is different
from object y.

Another type of relations, which do not depend on the situation, are represented by pred-
icates without a situation parameter, and are called Non-Fluent predicates. Similarly, those
functions that are situation independent are called Non-Fluent functions.

The theory is completed by a variety of axioms, which capture the different aspects of the
world that is being modeled. These axioms are:

• Action Precondition Axioms:
The Action Precondition Axioms specify the requirements that must be satisfied for an
action to be executed. For this reason, there will be one axiom for each action. In
the definition of these axioms the predicate poss(a, s) is used, meaning that action a is
possible (can be executed) in situation s.

An Action Precondition Axiom will have the following general form poss(a, s) ≡ Υ, where
Υ is a first order formula.

• Effect Axioms The Effect Axioms specify how the relational and functional fluents’
values change after the execution of an action. In this case, there will be at least one
axiom for each fluent.

An Effect Axiom for a relational fluent f will have the following general form:
φf → f(tn, do(α, s)), and for a functional fluent g, γg → g(tn, do(α, s)) = r, where
tn = t1, t2, ..., tn are terms, and φf ,γg are first order formulas. The Effect Axioms for
relational fluents can be subdivided into positive and negative axioms. An axiom is
positive if the relational fluent f is not negated in

• Successor State Axioms
The Successor State Axioms provide a complete way of describing how the world evolves
as a response to the execution of actions. Each axiom describes how to compute a the
value of a fluent for the next situation, given its value for the current situation. Intuitively
the successor state axiom for a fluent f has the following structure:

True afterwards ⇔ [An action made it true ∨
True already and no action made it false]



The use of ⇔ means that the axiom will be true after the execution of the action if it is
made true or it stays true; and that it will be false otherwise. For each relational fluent
f , the successor state axiom has the following form:

f(xn, do(a, s)) ≡ γ+f (x
n, a, s) ∨ f(xn, s) ∧ ¬γ−f (xn, a, s)

where γ+f (x
n, a, s) → f(xn, do(a, s)) and γ−f (x

n, a, s) → f(xn, do(a, s)) are the positive
and negative normal form effect axioms for the fluent f , respectively.

2 Objectives

Central in this work is the goal of making the process of obtaining an executable implementation
of the action theory an automatic one. Therefore, what we want is to be able to compile the
language of the Situation Calculus into an object language such as Prolog. There are many
advantages to having such a compiler; the implementation of an action theory can be quite
tedious, and having an automatic processor can ease the design of such a theory. For example,
if the initial axioms suffer modifications, the final result can be quickly visualized.

There exists a process, based on work done by Lloyd and Topor [10], that can be used to
obtain a prolog program from the initial Situation Calculus axioms. They propose a set of
transformations suggested by Clark’s theorem [1] which reformulate the Action Precondition
and Successor State axioms in a way that results in a direct translation into Prolog clauses.

Once the basic axioms are specified, the automatic process should generally consist of the
following steps:

• Transform the Action Precondition Axioms:

— Obtain the if-halves from the Action Precondition Axioms.

— Apply the Lloyd-Topor transformation rules to the if-halves in order to obtain for-
mulas that are easy to implement (Lloyd-Topor normal form).

• Transform the Successor State Axioms:

— Obtain the if-halves from the Successor State Axioms.

— Apply the Lloyd-Topor transformation rules to the if-halves in order to obtain for-
mulas that are easy to implement (Lloyd-Topor normal form).

• Initial Database definition: Obtain the if-halves from the initial database definition.
These definitions obey the form:

F (xn, s0) ≡ ΨF (xn, s0)
where F (xn, s0) will not be negated in this case. This is due to the fact that negative
information is represented in Prolog by the Closed World Assumption (CWA). It should
also be noted that F cannot be a functional fluent in this case because this type of fluent
cannot be directly implemented in Prolog. Notwithstanding, an n-ary functional fluent
can be implemented as a (n+ 1)-ary Prolog predicate, where the last argument represents
the value of the fluent.



• Non-Fluent Predicate definition: Obtain the if-halves from the definitions, and then
apply the Lloyd-Topor transformation rules to these if-halves.

• Obtain a program in a given object language: Using the formulae obtained in the
previous steps, derive a fully functional program that models the specified action theory.

3 Current Research Line

Current work is being dedicated to the study of the applications of the Situation Calculus. One
way of understanding the implementation of an action theory seems to be the resolution of a
simple problem that covers all of the details of the process. One such problem is the Monkey
and Bananas Problem

The Monkey and Bananas Problem is a classic planning problem. It was proposed by John
McCarthy in 1963, and later reprinted in [11]. A monkey is in a room that contains a bunch of
bananas hanging from the ceiling, and a chair. The monkey can’t reach the bananas from the
floor. Nevertheless, if the chair were below the bananas, and the monkey were standing on top
of it, then the bananas would become reachable. One possible setup for an initial state is the
monkey not standing next to the chair, and the chair not sitting below the banana bunch.

One advantage to using this problem as a first approach is that, with a simple world like the
one described, there shouldn’t be obstacles that obscure the process of obtaining an executable
program from an initial formulation. Because there are few objects and actions, the number
of axioms needed to formalize an action theory will be reduced, which is useful in dealing with
errors committed in the initial stages of the resolution.

Once the program is obtained, it can be used to obtain plans in which a set of fluents are
valid (or not). For example, it could be used to obtain a plan which the monkey can use to
grab the bananas and get down from the chair.

Having solved a simple problem like the one described, it will be easier to approach broader
problems that could contain special cases that must be taken into account in the construction
of an automated tool.
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