
Nested Hoare Triples and Frame Rules for
Higher-order Store

Jan Schwinghammer1?, Lars Birkedal2, Bernhard Reus3, and Hongseok Yang4

1Saarland University, Germany 2IT University of Copenhagen, Denmark
3University of Sussex, Brighton, UK 4Queen Mary University of London, UK

Abstract. Separation logic is a Hoare-style logic for reasoning about
programs with heap-allocated mutable data structures. As a step toward
extending separation logic to high-level languages with ML-style general
(higher-order) storage, we investigate the compatibility of nested Hoare
triples with several variations of higher-order frame rules.
The interaction of nested triples and frame rules can be subtle, and the
inclusion of certain frame rules is in fact unsound. A particular combina-
tion of rules can be shown consistent by means of a Kripke model where
worlds live in a recursively defined ultrametric space. The resulting logic
allows us to elegantly prove programs involving stored code. In partic-
ular, it leads to natural specifications and proofs of invariants required
for dealing with recursion through the store.

Keywords. Higher-order store, Hoare logic, separation logic, semantics.

1 Introduction

Many programming languages permit not only the storage of first-order data, but
also forms of higher-order store. Examples are code pointers in C, and ML-like
general references. It is therefore important to have modular reasoning principles
for these language features. Separation logic is an effective formalism for modular
reasoning about pointer programs, in low-level C-like programming languages
and, more recently, also in higher-level languages [12, 6, 8]. However, its assertions
are usually limited to talk about first-order data.

In previous work, we have begun the study of separation logic for languages
with higher-order store [2, 11]. A challenge in this research is the combination of
proof rules from separation logic for and modular reasoning, and proof rules for
code stored on the heap. Ideally, a program logic for higher-order store provides
sufficiently expressive proof rules that, e.g., can deal with recursion through the
store, and at the same time interact well with (higher-order) frame rules, which
enable modular program verification.

Our earlier work shows that separation logic is consistent with higher-order
store. However, the formulation of [2, 11] has a shortcoming: code is treated like

? Corresponding author. Email:jan@ps.uni-sb.de. Address: Programming Systems
Lab, Universität des Saarlandes, Campus E1 3, 66123 Saarbrücken, Germany.

any other data in that assertions can only mention concrete commands. For
modular reasoning, however, it is clearly desirable to abstract from particular
code and instead (partially) specify its behaviour. For example, when verifying
mutually recursive procedures on the heap, one would like to consider each pro-
cedure in isolation, relying on properties but not the implementations of the
others. The recursion rule in [2, 11] does not achieve this. A second, and less
obvious consequence of lacking behavioural specifications for code in assertions
is that one cannot take full advantage of the frame rules of separation logic. For
instance, the language in [2] can simulate higher-order procedures by passing
arguments through the heap, but the available (higher-order) frame rules are
not useful here because an appropriate specification for this encoding is missing.

In this article, we address these shortcomings by investigating a program logic
in which stored code can be specified using Hoare triples, i.e., an assertion lan-
guage with nested triples. This is an obvious idea, but the combination of nested
triples and frame rules turns out to be tricky: the most natural combination
turns out to be unsound.

The main technical contributions of this paper are therefore: (1) the obser-
vation that certain “deep” frame rules can be unsound, (2) the suggestion of a
“good” combination of nested Hoare triples and frame rules, and (3) the ver-
ification of those by means of an elegant Kripke model, where the worlds are
themselves world-dependent sets of heaps. The worlds form a complete metric
space and the (denotation of the) tensor ⊗, needed to generically express higher-
order frame rules, is contractive; as a consequence, our logic permits recursively
defined assertions.

After introducing the syntax of language and assertions in Section 2 we dis-
cuss some unsound combinations of rules in Section 3, which also contains the
suggested set of rules for our logic. The soundness of the logic is then shown in
Section 4.

2 Syntax of Programs and Assertions

We consider a simple imperative programming language extended with oper-
ations for stored code and heap manipulation. The syntax of the language is
shown in Fig. 1. The expressions in the language are integer expressions, vari-
ables, and the quote expression ‘C’ for representing an unevaluated command
C. The integer or code value denoted by expression e1 can be stored in a heap
cell e0 using [e0]:=e1, and this stored value can later be looked up and bound
to the (immutable) variable y by let y=[e0] in D. In case the value stored in cell
e0 is code ‘C’, we can run (or “evaluate”) this code by executing eval [e0]. Our
language also provides constructs for allocating and disposing heap cells such as
e0 above. We point out that, as in ML, all variables x, y, z in our language are
immutable, so that once they are bound to a value, their values do not change.
This property of the language lets us avoid side conditions on variables when
studying frame rules. Finally, we do not include while loops in our language,
since they can be expressed by stored code (using Landin’s knot).

d ∈ Exp ::= 0 | −1 | 1 | . . . | d1+d2 | . . . | x integer expressions, variable
| ‘C’ quote (command as expression)

C ∈ Com ::= [e1]:=e2 | let y=[e] in C | eval [e] assignment, lookup, unquote
| let x=new (e1, . . . , en) in C | free e allocation, disposal
| skip | C1;C2 | if (e1=e2) then C1 else C2 no op, sequencing, conditional

P, Q∈Assn ::= false | true | P ∨Q | P ∧Q | P ⇒Q intuitionistic-logic connectives
| ∀x.P | ∃x.P | int(e) | e1 = e2 | e1≤ e2 quantifiers, atomic formulas
| e1 7→ e2 | emp | P ∗Q separating connectives
| {P}e{Q} | P ⊗Q | . . . Hoare triple, invariant extension

Fig. 1. Syntax of expressions, commands and assertions

P ◦R
def
= (P ⊗R) ∗R

{P}e{Q}⊗R ⇔{P ◦R}e{Q ◦R} (κx.P)⊗R ⇔ κx.(P ⊗R) (κ∈{∀, ∃}, x /∈ fv(R))
(P ⊗R)⊗R′ ⇔ P ⊗ (R ◦R′) (P ⊕Q)⊗R ⇔ (P ⊗R)⊕ (Q⊗R) (⊕∈{⇒,∧,∨, ∗})

P ⊗R ⇔ P (P is one of true, false, emp, e=e′, e7→e′ and int(e))

Fig. 2. Axioms for distributing −⊗R

Our assertion language is standard first-order intuitionistic logic, extended
with separating connectives emp, ∗, the points-to predicate 7→ [12], and with
recursively defined assertions. The syntax of assertions appears in Fig. 1. Each
assertion describes a property of states, which consist of an immutable stack and
a mutable heap. Formula emp means that the heap component of the state is
empty, and P ∗ Q means that the heap component can be split into two, one
satisfying P and the other satisfying Q, both evaluated w.r.t. the same stack.
The points-to predicate e0 7→ e1 states that the heap component consists of only
one cell e0 whose contents is (some approximation of) e1.

One interesting aspect of our assertion language is that it includes Hoare
triples {P}e{Q} and invariant extensions P ⊗ Q; previous work [4, 2] does not
treat them as assertions, but as so-called specifications, which form a differ-
ent syntactic category. Intuitively, {P}e{Q} means that e denotes code satisfy-
ing {P} {Q}, and P ⊗ Q denotes a modification of P where all the pre- and
post-conditions of triples inside P are ∗-extended with Q. For instance, the
assertion (∃k. (1 7→ k) ∧{emp}k{emp}) ⊗ (27→0) is equivalent to (∃k. (1 7→ k) ∧
{2 7→0}k{27→0}). This assertion says that cell 1 is the only cell in the heap and
it stores code k that satisfies the triple {2 7→0} {27→0}. This intuition of the ⊗
operator can also be seen in the set of axioms in Fig. 2, which let us distribute
⊗ through all the constructs of the assertion language.

Note that since triples are assertions, they can appear in pre- and post-
conditions of triples. This nested use of triples is useful in reasoning, because
it allows one to specify stored code behaviourally, in terms of properties that
it satisfies. Another important consequence of having these new constructs as

assertions is that they allow us to study proof rules for exploiting locality of
stored code systematically, as we will describe shortly.

The last case . . . in Fig. 1 represents pre-defined assertions, including recur-
sively defined ones. In particular, it contains all recursively defined assertions
of the form R = P ⊗ R, where R does not appear in P . These assertions are
always well-defined (because ⊗ is “contractive” in its second argument, as shown
in Lemma 4), and they let us reason about self-applying stored code, without
using specialized rules [2]. We will say more about the use of recursively defined
predicates and their existence in Sections 3 and 4.1

We shall make use of two abbreviations. The first is P ◦R, which stands for
(P ⊗R) ∗R (already used in Fig. 2). This abbreviation is often used to add an
invariant R to a Hoare triple{P}e{Q}, so as to obtain{P ◦R}e{Q ◦R}. We use ◦
instead of ∗ here to extend not only P by R but also ensure, via ⊗, that all Hoare
triples nested inside P preserve R as an invariant. The ◦ operator has been intro-
duced in [10], where it is credited to Paul-André Melliès and Nicolas Tabareau.
The second abbreviation is for the “7→” operator: e1 7→P [e2]

def= e1 7→ e2 ∧P [e2]
and e1 7→P [] def= ∃x. e1 7→P [x]. Here x is a fresh (logic) variable and P [·] is an
assertion with an expression hole, such as{Q} · {R}, int(·), · = e or · ≤ e.

3 Proof Rules for Higher-order Store

In our formal setting, reasoning about programs is done by deriving the judge-
ment Γ ` P , where P is an assertion expressing properties of programs and Γ
is a list of variables containing all the free variables in P . For instance, to prove
that command C stores at cell 1 the code that initializes cell 10 to 0,2 we need
to derive Γ ` {1 7→ }‘C’{1 7→ {10 7→ } {10 7→ 0}}. In this section, we describe
inference rules and axioms for assertions that let one efficiently reason about
programs. We focus on those related to higher-order store.

Standard proof rules The proof rules include the standard proof rules for
intuitionistic logic and the logic of bunched implications [7] (not repeated here).
Moreover, the proof rules include variations of standard separation logic proof
rules, see Fig. 3.3 The figure neither includes the rule for executing stored code
with eval [e] nor the frame rule for adding invariants to triples; the reason for
this omission is that these two rules raise nontrivial issues in the presence of
higher-order store and nested triples, as we will now discuss.
1 More generally, we may need to solve mutually recursive assertions 〈R1, . . . , Rn〉 =
〈P1⊗(R1 ∗ . . .∗Rn), . . . , Pn⊗(R1 ∗ . . .∗Rn)〉 in order to deal with mutually recursive
stored procedures. For brevity we omit formal syntax for such; see Theorem 11 for
the semantic existence proof.

2 One concrete example of such C is [1]:=‘[10]:=0’.
3 The Update, Free and Skip rules in the figure are not the usual small axioms in

separation logic, since they contain assertion P describing the unchanged part. Since
we have the standard frame rule for ∗, we could have used small axioms instead here.
But we chose not to do this, because the current non-small axioms make it easier to
follow our discussions on frame rules and higher-order store in the next subsection.

Deref
Γ, x`{P ∗ e 7→x}‘C’{Q}

Γ `{∃x.P ∗ e 7→x}‘let x=[e] in C’{Q}
(x6∈fv(e, Q))

Update

Γ `{e 7→ ∗P}‘[e] := e0’{e 7→ e0 ∗P}
New

Γ, x`{P ∗ x 7→ e}‘C’{Q}
Γ `{P}‘let x=new e in C’{Q}

(x6∈fv(P, e, Q))
Free

Γ `{e 7→ ∗ P}‘free(e)’{P}

Skip

Γ `{P}‘skip’{P}

Seq
Γ `{P}‘C’{R} Γ `{R}‘D’{Q}

Γ `{P}‘C; D’{Q}

If
Γ `{P ∧ e0=e1}‘C’{Q} Γ `{P ∧ e0 6=e1}‘D’{Q}

Γ `{P}‘if (e0=e1) then C else D’{Q}

Conseq
Γ ` P ′⇒P Γ ` Q⇒Q′

Γ ` {P}e{Q} ⇒{P ′}e{Q′}

Fig. 3. Proof rules from separation logic

Frame rule for higher-order store The frame rule is the most important
rule in separation logic, and it formalizes the intuition of local reasoning, where
proofs focus on the footprints of the programs we verify. Developing a similar
rule in our setting is challenging, because nested triples allow for several choices
regarding the shape of the rule. Moreover, the recursive nature of the higher-
order store muddies the water and it is difficult to see which choices actually
make sense (i.e., do not lead to inconsistency).

To see this problem more clearly, consider the rules below:

Γ `{P}e{Q}
Γ `{P � R}e{Q � R}

and
Γ `{P}e{Q} ⇒{P � R}e{Q � R}

for � ∈ {∗, ◦}.

Note that we have four choices, depending on whether we use � = ∗ or � = ◦
and on whether we have an inference rule or an axiom. If we choose ∗ for �, we
obtain shallow frame rules that add R to the outermost triple{P}e{Q} only; they
do not add R in nested triples appearing in pre-condition P and post-condition
Q. On the other hand, if we choose ◦ for �, since (A ◦ R) = (A ⊗ R ∗ R), we
obtain deep frame rules that add the invariant R not just to the outermost triple
but also to all the nested triples in P and Q.

The distinction between inference rule and axiom has some bearing on where
the frame rule can be applied. With the axiom version, we can apply the frame
rule not just to valid triples, but also to nested triples appearing in pre- or post-
conditions. With the inference rule version, however, we cannot add invariants
to (or remove from) nested triples.

Ideally, we would like to have the axiom versions of the frame rules for both
∗ and ◦. Unfortunately, this is not possible for ◦. Adding the axiom version for
◦ makes our logic unsound. The source of the problem is that with the axiom
version for ◦, one can add invariants selectively to some, but not necessarily all,
nested triples. This flexibility can be abused to derive incorrect conclusions.

Concretely, with the axiom version for ◦ we can make the following derivation:

Γ `{P ◦S}e{Q ◦S}
Γ `{P}e{Q} ⊗S

⊗-Dist
Γ `{P}e{Q} ⇒{P ◦R}e{Q ◦R}

Frame

Γ `{P}e{Q} ⊗S ⇒{P ◦R}e{Q ◦R} ⊗S
⊗-Mono

Γ `{P ◦R}e{Q ◦R} ⊗S

Γ `{(P ◦R) ◦S}e{(Q ◦R) ◦S}
⊗-Dist

ModusPon

Here we use the distribution axioms for ⊗ in Fig. 2 and the monotonicity of
−⊗R. This derivation means that when adding R to nested triples, we can skip
the triples in the S part of the pre- and post-conditions of{P ◦S}e{Q ◦S}. This
flexibility leads to the unsoundness:

Proposition 1. Adding the axiom version of the frame rule for ◦ renders our
logic unsound.

Proof. Let R be the predicate defined by R = (3 7→ {17→ } {17→ }) ⊗ R. Then,
we can derive the triple:

(†)
k ` {2 7→ {17→ } {17→ } ◦R}k{2 7→ ◦R}

k ` {
`
2 7→ {17→ } {17→ } ◦ 1 7→

´
◦R}k{

`
2 7→ ◦ 1 7→

´
◦R}

k ` {2 7→ ‘free(−1)’ ∗ 1 7→ ∗R}k{2 7→ ∗ 1 7→ ∗ 3 7→ {17→ ∗R} {17→ ∗R}}

Here the first step uses the derivation above for adding invariants selectively,
and the last step uses the Consequence axiom with the below two implications:

2 7→ {1 7→ } {1 7→ } ◦ 17→ ◦R ⇐⇒ 2 7→ {1 7→ ∗ 1 7→ ∗R} {1 7→ ∗ 17→ ∗R} ∗ 1 7→ ∗R
⇐⇒ 2 7→ {false} {false} ∗ 17→ ∗R
⇐= 2 7→‘free(−1)’ ∗ 17→ ∗R

2 7→ ◦ 1 7→ ◦R ⇐⇒ 2 7→ ∗ 1 7→ ∗R ⇐⇒ 2 7→ ∗ 1 7→ ∗ ((3 7→ {17→ } {17→ })⊗R)
⇐⇒ 2 7→ ∗ 1 7→ ∗ 3 7→ {1 7→ ∗R} {1 7→ ∗R}.

Consider C ≡ let x=[2] in [3]:=x. When P [y] ≡ {17→ }y{1 7→ } ⊗R,

` {27→P [] ∗ 37→P []}‘C’{27→P [] ∗ 37→P []}
` {2 7→ {17→ } {17→ } ◦R}‘C’{2 7→ ◦R}

Now we instantiate k in (†) with C, discharge the premise of the resulting deriva-
tion with the above derivation for C, and obtain

` {2 7→ ‘free(−1)’ ∗ 1 7→ ∗R}‘C’{2 7→ ∗ 1 7→ ∗ 3 7→ {17→ ∗R} {17→ ∗R}}
` {2 7→ ‘free(−1)’ ∗ 1 7→ ∗R}‘C; free(2)’{1 7→ ∗ 3 7→ {17→ ∗R} {17→ ∗R}}

Here the second step uses the rules Free and Seq in Fig. 3. But the post-
condition of the conclusion here is equivalent to 1 7→ ∗R by the definition of R
and the distribution axioms for ⊗. Thus, as our rule for eval will show later, we
should be able to conclude that

`{2 7→ ‘free(−1)’ ∗ 1 7→ ∗R}‘C; free(2); eval [3]’{17→ ∗ 3 7→ {17→ ∗R} {17→ ∗R}}

However, since −1 is not even an address, the program (C; free(2); eval [3]) always
faults, contradicting the requirement of separation logic that proved programs
run without faulting. ut

Notice that in the derivation above it is essential that R is a recursively defined
assertion, otherwise we would not obtain that 2 and 3 point to code satisfying
the same P .

Fortunately, the second best choice leads to a consistent proof system:

Proposition 2. Both the inference rule version of the frame rule for ◦ and the
axiom version for ∗ are sound in our semantics, which will be given in Section 4.
In fact, the semantics also validates the following more general version of the
rule for ◦:

Γ ` P

Γ ` P ⊗R

Rule for executing stored code An important and challenging part of the
design of a program logic for higher-order store is the design of a proof rule for
eval [e], the command that executes code stored at e. Indeed, the rule should
overcome two challenges directly related to the recursive nature of higher-order
store: (1) implicit recursion through the store (i.e., Landin’s knot), and (2) ex-
tensional specifications of stored code.

These two challenges are addressed, using the expressiveness of our assertion
language, by the following rule for eval [e]:

Eval
Γ, k ` R[k] ⇒{P ∗ e 7→R[]}k{Q}

Γ `{P ∗ e 7→R[]}‘eval [e]’{Q}

This rule states that in order to prove {P ∗ e 7→R[]}‘eval [e]’{Q} for executing
stored code in [e] under the assumption that e points to arbitrary code k (ex-
pressed by the which is an abbreviation for ∃k.e 7→ R[k]), it suffices to show
that the specification R[k] implies that k itself fulfils triple{P ∗ e 7→R[]}k{Q}.

In the above rule we do not make any assumptions about what code e actually
points to, as long as it fulfils the specification R. It may even be updated between
recursive calls. However, for recursion through the store, R must be recursively
defined as it needs to maintain itself as an invariant of the code in e.

The Eval rule crucially relies on the expressiveness of our assertion language,
especially the presence of nested triples and recursive assertions. In our previous
work, we did not consider nested triples. As a result, we had to reason explicitly
with stored code, rather than properties of the code, as illustrated by one of our
old rules for eval [2]:

OldEval
Γ `{P}‘eval [e]’{Q} ⇒ {P}‘C’{Q}

Γ `{P ∗ e 7→ ‘C’}‘eval [e]’{Q ∗ e 7→ ‘C’}

EvalNonRec1

Γ `{P ∗ e 7→ ∀y.{P} {Q}}‘eval [e]’{Q ∗ e 7→ ∀y.{P} {Q}}

EvalNonRecUpd

Γ `{P ∗ e 7→ ∀y.{P ∗ e 7→ } {Q}}‘eval [e]’{Q}

EvalRec

Γ `{P ◦R}‘eval [e]’{Q ◦R}
(where R = (e 7→ ∀y.{P} {Q} ∗ P0)⊗R)

Fig. 4. Derived rules from Eval

Here the actual code C is specified explicitly in the pre- and post-conditions of
the triple. In both rules the intuition is that the premise states that the body of
the recursive procedure fulfils the triple, under the assumption that the recursive
call does so as well. In the Eval rule this is done without direct reference to the
code itself, but rather via a k satisfying R. The soundness proof of OldEval
proceeded along the lines of Pitts’ method for establishing relational properties
of domains [9]. On the other hand, Eval relies on the availability of recursive
assertions, the existence of which is guaranteed by Banach’s fixpoint theorem.

From the Eval rule one can easily derive the axioms of Fig. 4. The first two
axioms are for non-recursive calls. This can be seen from the fact that in the
pre-condition of the nested triples e does not appear at all or does not have a
specification, respectively. Only the third axiom EvalRec allows for recursive
calls. The idea of this axiom is that one assumes that the code in [e] fulfills the
required triple provided the code that e points to at call-time fulfils the triple as
well. Let us look at the actual derivation of EvalRec to make this evident. We
write S[k] ≡ ∀y.{P ◦R}k{Q ◦R} such that for the original R of rule EvalRec
we have R ⇔ (e 7→S[] ∗ (P0 ⊗R)). Note that Γ contains the variables y which
may appear freely in P and Q.

Γ, k ` (∀y.{P ◦R}k{Q ◦R}) ⇒{P ◦R}k{Q ◦R}
Γ, k ` S[k] ⇒{(P ⊗R) ∗ (P0 ⊗R) ∗ e 7→ S[]}k{Q ◦R}

Γ `{(P ⊗R) ∗ (P0 ⊗R) ∗ e 7→ S[]}‘eval [e]’{Q ◦R}
Eval

Γ `{P ◦R}‘eval [e]’{Q ◦R}
Conseq

Conseq

FOL

In the derivation tree above, the axiom used at the top is simply a first-order ax-
iom for ∀ elimination. The quantified variables y are substituted by the variables
with the same name from the context. After an application of the EvalRec rule
those variables y can then be substituted further.

The use of recursive specification R = (e 7→ ∀y.{P} {Q}∗P0)⊗R is essential
here as it allows us to unroll the definition so that the Eval rule can be applied.
Note that in the logic of [5], which also uses nested triples but features neither
a specification logic nor expresses any frame rules or axioms, such recursive
specifications are avoided. This is possible under the assumption that code does
not change during recursion. One can then express the recursive R above as

⊗-Frame
Γ ` P

Γ ` P ⊗R

∗-Frame

Γ `{P}e{Q} ⇒{P ∗R}e{Q ∗R}

Eval
Γ, k ` R[k] ⇒{P ∗ e 7→R[]}k{Q}

Γ `{P ∗ e 7→R[]}‘eval [e]’{Q}

Fig. 5. Proof rules specific to higher-order store

follows (we can omit the P0 now, as this is only needed for mutually recursively
defined triples):

e 7→{e 7→ k ∗ P}k{e 7→ k ∗Q} .

The question however remains how the assertion can be proved for some concrete
‘C’ in [e]. In loc.cit. this is done by an induction on some appropriate argument,
as total correctness is considered only. Note that our old OldEval can be viewed
as a fixpoint induction rule for proving such specifications, if one quantifies
away the concrete appearances of ‘C’. In any case, our new Eval is obviously
elegant to use, and it does not only allow for recursion through the store but
also disentangles the reasoning from the concrete code stored in the heap.

Before finishing this section, we summarize a particular choice of a proof-
rule set from the current and previous subsections in Fig. 5. They will be proved
sound in Section 4.

4 Semantics of Nested Triples

This section develops a model for the programming language and logic we have
presented. The semantics of programs, given in the next subsection using an
untyped domain-theoretic model, is standard. The following semantics of the
logic is, however, unusual; it is a possible world semantics where the worlds
live in a recursively defined metric space. Finally, we discuss the existence of
recursively defined assertions, which have been used in the previous sections.

Semantics of expressions and commands The interpretation of the pro-
gramming language is given in the category Cppo⊥ of pointed cpos and strict
continuous functions, and is the same as in our previous work [2]. That is, com-
mands denote strict continuous functions JCKη ∈ Heap (Terr(Heap) where

Heap = Rec(Val) Val = Integers⊥⊕Com⊥ Com = Heap (Terr(Heap) (1)

In these equations, Terr(D) = D⊕{error}⊥ denotes the error monad, and Rec(D)
denotes records with entries from D and labelled by positive natural numbers.4

We use some evident record notations, such as {|`1=d1, . . . , `n=dn|} for the record
mapping label `i to di, and dom(r) for the set of labels of a record r. The
disjointness predicate r#r′ on records holds if r and r′ are not ⊥ and have
disjoint domains, and a continuous partial combining operation r ·r′ is defined by

r · r′ def= if r#r′ then r ∪ r′ else (if r=⊥ ∨ r′=⊥ then ⊥ else undefined).

4 Formally, Rec(D) =
`P

N⊆finNats+(N→D↓)
´
⊥ where (N→D↓) is the cpo of maps

from the finite address set N to the cpo D↓ = D−{⊥} of non-bottom elements of D.

JskipKη h
def
= h

JC1;C2Kη h
def
= if JC1Kη h∈{⊥, error} then JC1Kη h else JC2Kη (JC1Kη h)

q
if e=e′ then C1 else C2

y
η

h
def
= if {Je1Kη , Je2Kη} ⊆ Com⊥ then ⊥

else if (JeKη =
q
e′

y
η
) then JC1Kη h else JC2Kη h

Jlet x=new e1, ..., en in CKη h
def
= let ` = min{` | ∀`′. (`≤`′<`+n) ⇒ `′ /∈ dom(h)}

in JCKη[x7→`] (h · {|`= Je1Kη , . . . , `+n−1= JenKη|})
Jfree eKη h

def
= if JeKη /∈ dom(h) then error

else (let h′ s.t. h = h′ · {|JeKη =h(JeKη)|} in h′)

J[e1]:=e2Kη h
def
= if Je1Kη /∈ dom(h) then error else (h[Je1Kη 7→ Je2Kη])

Jlet x=[e] in CKη h
def
= if JeKη /∈ dom(h) then error else JCKη[x7→h(JeKη)] h

Jeval [e]Kη h
def
= if (JeKη /∈ dom(h) ∨ h(JeKη) /∈ Com) then error

else (h(JeKη))(h)

Fig. 6. Interpretation of commands JCKη ∈ Heap (Terr(Heap)

The interpretation of commands is repeated in Fig. 6 (assuming h 6= ⊥). The
interpretation of the quote operation, ‘C’, uses the injection of Com into Val .
The interpretation of the remaining expressions is entirely standard and omitted.

A solution to equation (1) for Heap can be obtained by the usual inverse limit
construction [13] in the category Cppo⊥. This solution is an SFP domain (e.g.,
[14]), and thus comes equipped with an increasing chain πn : Heap → Heap of
continuous projection maps, satisfying π0 = ⊥,

⊔
n∈ω πn = idHeap , and πn◦πm =

πmin{n,m} . The image of each πn is finite, hence each πn(h) is a compact element
of Heap. Moreover, the projections are compatible with composition of heaps:
we have πn(h · h′) = πn(h) · πn(h′) for all h, h′.

Semantic domain for assertions A subset p ⊆ Heap is admissible if ⊥ ∈ p
and p is closed under taking least upper bounds of ω-chains. It is uniform [3]
if it is closed under the projections, i.e., if p satisfies that h ∈ p ⇒ πn(h) ∈ p
for all n. We write UAdm for the set of all uniform admissible subsets of Heap.
For p ∈ UAdm and n ∈ ω, p[n] denotes the image of p under πn. Note that also
p[n] ∈ UAdm.

The uniform admissible subsets will form the basic building block when in-
terpreting the assertions of our logic. Since assertions in general depend on in-
variants for stored code, the space of semantic predicates Pred will consist of
functions W → UAdm from a set of “worlds,” describing the invariants, to the
collection of uniform admissible subsets of heaps. But, the invariants for stored
code are themselves semantic predicates, and the interaction between Pred and
W is governed by (the semantics of) ⊗. Hence we seek a space of worlds W that
is “the same” as W → UAdm. We now show how to obtain such a W using
metric spaces.

Recall that a 1-bounded ultrametric space (X, d) is a metric space where
the distance function d : X × X → R takes values in the closed interval [0, 1]

and satisfies the strong triangle inequality d(x, y) ≤ max{d(x, z), d(z, y)}, for
all x, y, z ∈ X. An (ultra-)metric space is complete if every Cauchy sequence
has a limit. A function f : X1 → X2 between metric spaces (X1, d1), (X2, d2) is
non-expansive if for all x, y ∈ X1, d2(f(x), f(y)) ≤ d1(x, y). It is contractive if
for some 0 < δ < 1, d2(f(x), f(y)) ≤ δ · d1(x, y) for all x, y ∈ X1.

The complete, 1-bounded ultrametric spaces and non-expansive functions
between them form a Cartesian closed category CBUlt . Products in CBUlt are
given by the set-theoretic product where the distance is the maximum of the
componentwise distances, and exponentials are given by the non-expansive func-
tions equipped with the sup-metric. A functor F : CBUltop×CBUlt −→ CBUlt
is locally non-expansive if d(F (f, g), F (f ′, g′)) ≤ max{d(f, f ′), d(g, g′)} for all
non-expansive f, f ′, g, g′, and it is locally contractive if d(F (f, g), F (f ′, g′)) ≤ δ ·
max{d(f, f ′), d(g, g′)} for some δ < 1. By multiplication of the distances of (X, d)
with a shrinking factor δ < 1 one obtains a new ultrametric space, δ · (X, d) =
(X, d′) where d′(x, y) = δ · d(x, y). By shrinking, a locally non-expansive functor
F yields a locally contractive functor (δ · F)(X1, X2) = δ · (F (X1, X2)).

The set UAdm of uniform admissible subsets of Heap becomes a complete, 1-
bounded ultrametric space when equipped with the following distance function:
d(p, q) def= if (p 6=q) then (2−max{i∈ω | p[i]=q[i]}) else 0. Note that d is well-defined:
first, because π0 = ⊥ and ⊥ ∈ p for all p ∈ UAdm the set {i ∈ ω | p[i] = q[i]}
is non-empty; second, this set is finite, because p 6= q implies p[i] 6= q[i] for all
sufficiently large i by the uniformity of p, q and using

⊔
n∈ω πn = idHeap .

Theorem 3. There exists an ultrametric space W and an isomorphism ι from
1
2 · (W → UAdm) to W in CBUlt.

Proof. By an application of America & Rutten’s general existence theorem for
fixed points of locally contractive functors on complete ultrametric spaces [1].
See also [3] for details of a similar recent application. ut

We write Pred for 1
2 · (W → UAdm) and ι−1 : W ∼= Pred for the inverse to ι.

For an ultrametric space (X, d) and n ∈ ω we use the notation x
n= y to

mean that d(x, y) ≤ 2−n. By the ultrametric inequality, each n= is an equivalence
relation on X [3]. Since all non-zero distances in UAdm are of the form 2−n for
some n ∈ ω, this is also the case for the distance function on W . Therefore, to
show that a map is non-expansive it suffices to show that f(x) n= f(y) whenever
x

n= y. The definition of Pred has the following consequence: for p, q ∈ Pred,
p

n= q iff p(w) n−1= q(w) for all w ∈ W . This fact is used repeatedly in our proofs.
For p, q ∈ UAdm, the separating conjunction p ∗ q is defined as usual, by

h ∈ p∗q
def⇔ ∃h1, h2. h = h1 ·h2∧h1 ∈ p∧h2 ∈ q. This operation is lifted to non-

expansive functions p1, p2 ∈ Pred pointwise, by (p1 ∗ p2)(w) = p1(w) ∗ p2(w).
This is well-defined, and moreover determines a non-expansive operation on the
space Pred. The corresponding unit for the lifted ∗ is the non-expansive function
emp=λw.{{||} ,⊥} (i.e., p ∗ emp= emp ∗ p = p, for all p). We let emp = ι(emp).

Lemma 4. There exists a non-expansive map ◦ : W × W → W and a map
⊗ : Pred × W → Pred that is non-expansive in its first and contractive in its

second argument, satisfying q ◦ r = ι(ι−1(q)⊗ r ∗ ι−1(r)) and p⊗ r = λw.p(r ◦w)
for all p∈Pred and q, r∈W .

Proof. The idea of the proof is that the defining equations of both operations
give rise to contractive maps, which have (unique) fixed points by Banach’s fixed
point theorem. The detailed proof is given in Appendix A.1. ut

Lemma 5. (W, ◦, emp) is a monoid in CBUlt. Moreover, ⊗ is an action of this
monoid on Pred.

Proof. First, emp is a left-unit for ◦, emp◦q = ι((λw.ι−1(emp)(q◦w))∗ι−1(q)) =
ι(ι−1(q)) = q. Using this, one shows that it is also a right-unit for ◦. Next, one
shows by induction that for all n ∈ ω, ◦ is associative up to distance 2−n, from
which associativity follows. By the 1-boundedness of W the base case is clear.
For the inductive step n > 0, by definition of the distance function on Pred it
suffices to show that for all w ∈ W , ι−1((p ◦ q) ◦ r)(w) n−1= ι−1(p ◦ (q ◦ r))(w).
This equation follows from the definition of ◦ and the inductive hypothesis.

That ⊗ forms an action of W on Pred follows from these properties of ◦. First,
p ⊗ emp = λw.p(emp ◦ w) = p since emp is a unit for ◦. Next, (p ⊗ q) ⊗ r =
λw.p(q ◦ (r ◦ w)) = λw.p((q ◦ r) ◦ w) = p⊗ (q ◦ r) by the associativity of ◦.

The full proof is given as Lemma 14 in Appendix A.1. ut

Semantics of triples and assertions Since assertions appear in the pre-
and post-conditions of Hoare triples, and triples can be nested inside assertions,
the interpretation of assertions and triples must be defined simultaneously. To
achieve this, we first define a notion of semantic triple.

Definition 6 (Semantic triple). A semantic Hoare triple consists of predi-
cates p, q ∈ Pred and a strict continuous function c ∈ Heap (Terr(Heap),
written {p}c{q}. For w ∈ W , a semantic triple {p}c{q} is forced by w, denoted
w |={p}c{q}, if for all r ∈ UAdm and all h ∈ Heap:

h ∈ p(w) ∗ ι−1(w)(emp) ∗ r ⇒ c(h) ∈ Ad(q(w) ∗ ι−1(w)(emp) ∗ r),

where Ad(r) denotes the least downward closed and admissible set of heaps con-
taining r. A semantic triple is valid, written |= {p}c{q}, if w |= {p}c{q} for
all w ∈ W . We extend semantic triples from Com = Heap (Terr(Heap) to all
d ∈ Val, by w |={p}d{q} iff d = c for some command c ∈ Com and w |={p}c{q}.

Thus, semantic triples bake in the first-order frame property (by conjoining
r), and “close” the “open” recursion (by applying the world w, on which the
triple implicitly depends, to emp). The admissible downward closure that is
applied to the entire post-condition is in line with a partial correctness inter-
pretation of triples. In particular, it entails that {c ∈ Com | w |= {p}c{q}}
is an admissible and downward closed subset of Com. Finally, semantic triples
are non-expansive, in the sense that if w

n=w′ for n>0 and w |={p}c{q}, then

JtrueKη w = Heap JP ∧QKη w = JP Kη w ∩ JQKη w

JfalseKη w = {⊥} JP ∨QKη w = JP Kη w ∪ JQKη w

JempKη w = {{||} ,⊥} JP ∗QKη w = JP Kη w ∗ JQKη w

Je1 7→ e2Kη w = {h | h v {|Je1Kη = Je2Kη|}} JP ⊗QKη w = (JP Kη ⊗ ι(JQKη))w

Je1 = e2Kη w = {h | h 6= ⊥ ⇒ Je1Kη = Je2Kη} J∀x.P Kη w =
T

d∈Val JP Kη[x:=d] w

J∃x.P Kη w = {h | ∀n ∈ ω. πn(h) ∈
S

d∈Val JP Kη[x:=d] w}
JP ⇒ QKη w = {h | ∀n ∈ ω. πn(h) ∈ JP Kη w implies πn(h) ∈ JQKη w}

J{P}e{Q}Kη w = {h | w |={JP Kη} JeKη {JQKη}}
∪ {πn(h) | n > 0 ⇒ w |={JP Kη}πn−1; JeKη ; πn−1{JQKη}}

Fig. 7. Semantics of assertions

w′ |={p}c′{q} for c′
def=πn−1 ◦ c ◦πn−1. This observation plays a key role in the

following definition of the semantics of nested triples.
Assertions are interpreted as elements JP Kη ∈ Pred. Note that (UAdm,⊆) is a

complete Heyting BI algebra. Using the pointwise extension of the operations of
this algebra to the set of non-expansive functions W → UAdm, we also obtain a
complete Heyting BI algebra on Pred = 1

2 · (W → UAdm) which soundly models
the intuitionistic predicate BI part of the assertion logic. Moreover, the monoid
action of W on Pred serves to model the invariant extension of the assertion
logic. This interpretation of assertions is spelled out in detail in Fig. 7.

The interpretation of a triple {P}e{Q} is a union of two sets, and deserves
some comment. The first set in this union is the expected interpretation, and
states that if the triple holds in the current world w, then this set equals the
top element Heap. But, considering this first set alone, we would not be able to
prove that J{P}e{Q}Kη is a non-expansive function from W to UAdm, since it
lacks sufficient “approximation information.” Guided by the non-expansiveness
of semantic triples mentioned above (and proved in Lemma 17 in the Appendix),
the second set in the interpretation adds this information. Basically, it states that
if a triple is “approximately valid” (meaning that it holds for πn; c;πn rather than
c), then the assertion is “approximately true” (i.e., it contains Heap[n+1]). A
similar approach has been taken in [3] to force non-expansiveness for a reference
type constructor for ML-style references.

We can recover the (approximate) validity of a nested triple from its interpre-
tation: If h is a compact element of Heap, then the least r for which πr(h) = h
is the rank of h. Now, if h ∈ J{P}e{Q}Kη w for some h of rank r, then the
interpretation indeed yields w |={JP Kη}πr−1; JeKη ;πr−1{JQKη}.

Soundness of the proof rules We prove soundness of the proof rules listed in
Sections 2 and 3. We first consider the distribution axioms for −⊗R in Fig. 2.

Lemma 7 (⊗-Dist, 1). The axiom (P ⊗Q)⊗R ⇔ P ⊗ (Q ◦R) is valid.

Proof. This is an instance of the fact that ⊗ is a monoid action: by definition of
the semantics, the equivalence of both sides follows from Lemma 5. ut

Lemma 8 (⊗-Dist, 2). The axiom{P}e{Q} ⊗R ⇔{P ◦R}e{Q ◦R} is valid.

Proof. The statement follows from the following claim: for all p, q, r ∈ Pred,
strict continuous c : Heap (Terr(Heap) and all w ∈ W , ι(r) ◦ w |={p}c{q} iff
w |={p⊗ ι(r) ∗ r}c{q ⊗ ι(r) ∗ r}. The proof of this claim uses the equation

(p⊗ ι(r) ∗ r)(w) ∗ ι−1(w)(emp) = p(ι(r) ◦ w) ∗ ι−1(ι(r) ◦ w)(emp),

which is a consequence of the definitions of ⊗ and ◦. ut

The proofs of the remaining distribution axioms are more direct: the inter-
pretation of the logical connectives is defined pointwise, and emp and (e1 7→ e2)
are constant. The full proofs can be found in Appendix A.2.

Next, we consider the rules for higher-order store given in Fig. 5.

Lemma 9 (⊗-Frame). The ⊗-Frame rule is sound: if h ∈ p(w) for all h ∈
Heap and w ∈ W , then h ∈ (p⊗ ι(r))(w) for all h ∈ Heap, w ∈ W and r ∈ Pred.

Proof. Assume ∀h.∀w.h∈ p(w). Let r∈Pred, w∈W and h∈Heap. We show that
h∈ (p⊗ ι(r))(w). Note that (p⊗ ι(r))(w) = p(ι(r) ◦w) by the definition of ⊗. So,
for w′ def= ι(r) ◦w, the assumption shows that h∈ p(w′) = (p⊗ ι(r))(w). ut

Lemma 10 (∗-Frame).{P}e{Q} ⇒{P ∗R}e{Q ∗R} is valid for all P,Q,R, e.

Proof. We show that for all w∈W , p, q, r∈Pred and c∈Com, if w |={p}c{q},
then w |={p ∗ r}c{q ∗ r}. This implies the lemma as follows. If k is the rank of
πn(h) and πn(h)∈ J{P}e{Q}Kw, then w |={JP Kη}c{JQKη} for c=πk−1; JeKη ;πk−1.
This lets us conclude w |= {JP ∗RKη}c{JQ ∗RKη}, which in turn implies that
πn(h) belongs to J{P ∗R}e{Q ∗R}Kw.

Assume w |={p}c{q}. We must show that w |={p ∗ r}c{q ∗ r}. Let r′ ∈ UAdm
and assume h ∈ (p ∗ r)(w) ∗ ι−1(w)(emp) ∗ r′ = p(w) ∗ ι−1(w)(emp) ∗ (r(w) ∗ r′).
Since w |={p}c{q}, it follows that c(h)∈Ad(q(w) ∗ ι−1(w)(emp) ∗ (r(w) ∗ r′)) =
Ad((q ∗ r)(w) ∗ ι−1(w)(emp) ∗ r′), which establishes w |={p ∗ r}c{q ∗ r}. ut

The other rules in Section 3 (i.e., those in Fig. 3 and rule Eval) are proved
sound in Appendix A.3.

Semantics of recursive assertions The following general fixed point theorem
is a consequence of Banach’s fixed point theorem, and it allows us to introduce
recursively defined assertions in the logic, as used in previous sections.

Theorem 11 (Mutually recursive predicates). Let I be a set and suppose
that, for each i ∈ I, Fi : PredI → Pred is a contractive function. Then there
exists a unique p = (pi)i∈I ∈ PredI such that Fi(p) = pi, for all i ∈ I.

Note that this theorem is sufficiently general to permit the mutual recursive
definition of even infinite families of predicates.

As established in Lemma 4, ⊗ is contractive in its right-hand argument.
Thus, for fixed P and η, the map F (r) = JP Kη ⊗ ι(r) on Pred is contractive

and has a unique fixed point, r. Given an equation R = P ⊗R we take r as the
interpretation of R, and note that indeed JRKη = r = JP Kη ⊗ ι(r) = JP ⊗RKη.
Along the same lines, we can interpret mutually recursive assertions: R1 = P1⊗
(R1 ∗ . . . ∗ Rn), . . . , Rn = Pn ⊗ (R1 ∗ . . . ∗ Rn). Using the non-expansiveness
of ∗ as an operation on Pred, these equations give rise to contractive functions
Fi(r1, . . . , rn) = JPiKη ⊗ ι(r1 ∗ . . . ∗ rn). We then define JRiKη as ri, where r =
(ri)i=1..n is the unique element of Predn satisfying ri = Fi(r) that exists by
Theorem 11.

Acknowledgements We would like to thank Kristian Støvring and Jacob
Thamsborg for helpful discussions. Kristian suggested that ⊗ is a monoid action.

References

1. P. America and J. J. M. M. Rutten. Solving reflexive domain equations in a
category of complete metric spaces. J. Comput. Syst. Sci., 39(3):343–375, 1989.

2. L. Birkedal, B. Reus, J. Schwinghammer, and H. Yang. A simple model of sepa-
ration logic for higher-order store. In ICALP’08, pages 348–360, 2008.

3. L. Birkedal, K. Støvring, and J. Thamsborg. Realizability semantics of parametric
polymorphism, general references, and recursive types. In FOSSACS’09, pages
456–470, 2009.

4. L. Birkedal, N. Torp-Smith, and H. Yang. Semantics of separation-logic typing
and higher-order frame rules for algol-like languages. Logical Methods in Comput.
Sci., 2(5:1), 2006.

5. K. Honda, N. Yoshida, and M. Berger. An observationally complete program logic
for imperative higher-order functions. In LICS’05, pages 270–279, 2005.

6. N. Krishnaswami, L. Birkedal, J. Aldrich, and J. Reynolds. Idealized ML and Its
Separation Logic. Available at http://www.cs.cmu.edu/˜neelk/, 2007.

7. P. W. O’Hearn and D. J. Pym. The logic of bunched implications. Bulletin of
Symbolic Logic, 5(2):215–244, June 1999.

8. M. Parkinson and G. Biermann. Separation logic, abstraction and inheritance. In
POPL’08, pages 75–86, 2008.

9. A. M. Pitts. Relational properties of domains. Inf. Comput., 127:66–90, 1996.
10. F. Pottier. Hiding local state in direct style: a higher-order anti-frame rule. In

LICS’08, pages 331–340, 2008.
11. B. Reus and J. Schwinghammer. Separation logic for higher-order store. In CSL’06,

pages 575–590, 2006.
12. J. C. Reynolds. Separation logic: A logic for shared mutable data structures. In

LICS’02, pages 55–74, 2002.
13. M. B. Smyth and G. D. Plotkin. The category-theoretic solution of recursive

domain equations. SIAM J. Comput., 11(4):761–783, 1982.
14. T. Streicher. Domain-theoretic Foundations of Functional Programming. World

Scientific, 2006.

A Proofs

This section contains the proofs omitted from the main part of the paper.

A.1 Interpretation of assertions

Lemma 12 (Separating conjunction). Separating conjunction is well-defined:
if p, q ∈ Pred then so is p ∗ q. Moreover, it is a non-expansive operation on the
space Pred.

Proof. We first show that separating conjunction on UAdm is well-defined, i.e.,
if p, q ∈ UAdm then so is p ∗ q. Since ⊥ ∈ p and ⊥ ∈ q, and ⊥ = ⊥ · ⊥, we
have ⊥ ∈ p ∗ q. If h0 v h1 v . . . is a chain in p ∗ q with lub h 6= ⊥, then
hi 6= ⊥ for almost all i and there are heaps h′i, h

′′
i such that hi = h′i · h′′i and

h′i ∈ p and h′′i ∈ q. Since the order on Heap is defined pointwise (for heaps with
equal domain), there must be a subsequence (hik

)k such that h′i1 v h′i2 v . . .
is a chain in p and h′′i1 v h′′i2 v . . . is a chain in q. Thus, also their lubs h′

and h′′ satisfy h′ ∈ p and h′′ ∈ q. It follows that h = h′ · h′′ ∈ p ∗ q, and
therefore p ∗ q is admissible. To see that p ∗ q is uniform, suppose h ∈ p ∗ q and
let n ∈ ω. By definition, h = h1 ·h2 for heaps h1, h2 such that h1 ∈ p and h2 ∈ q.
By uniformity of p and q, this gives πn(h1) ∈ p and πn(h2) ∈ q, from which
πn(h) = πn(h1) · πn(h2) ∈ p ∗ q follows.

It remains to show that for p, q ∈ Pred, p ∗ q is a non-expansive function.
Suppose w,w′ ∈ W such that w

n= w′, and suppose πn(h) ∈ (p ∗ q)(w) =
p(w)∗ q(w). We must show that πn(h) ∈ (p∗ q)(w′). By definition of ∗ on UAdm
there exist h1 ∈ p(w) and h2 ∈ q(w) such that πn(h) = h1 · h2. By uniformity,
we also have πn(h1) ∈ p(w) and πn(h2) ∈ q(w). Since we assumed w

n= w′, this
yields πn(h1 · h2) = πn(h1) · πn(h2) ∈ p(w′) ∗ q(w′) = (p ∗ q)(w′). Finally, since
πn(h) = πn(πn(h)) = πn(h1 · h2) the first statement follows.

To see that separating conjunction is non-expansive, assume that p
n= p′

and q
n= q′ for arbitrary p, p′, q, q′ ∈ Pred. We must show that p ∗ q

n= p′ ∗ q′.
Since Pred = 1

2 · (W → UAdm) we can equivalently show that p(w) ∗ q(w) n−1=
p′(w) ∗ q′(w) for all w ∈ W . This follows from the assumption that p

n= p′ and
q

n= q′ and the fact that πn−1(h) =πn−1(h1) · πn−1(h2) whenever h =h1 · h2. ut

Lemma 13 (Existence of maps ◦ and ⊗). There exists a non-expansive map
◦ : W ×W → W and a map ⊗ : Pred×W → Pred that is non-expansive in its
first and contractive in its second argument, satisfying

q ◦ r = ι(ι−1(q)⊗ r ∗ ι−1(r)) and p⊗ r = λw.p(r ◦ w)

for all p∈Pred and q, r∈W .

Proof. The idea of the proof is that the defining equations of both operations
give rise to contractive maps, which have (unique) fixed points by the Banach

fixed point theorem. More precisely, consider the endofunction · on the (non-
expansive-function) space W ×W → W , defined for all p, q ∈ W by

p ◦ q = ι((λw.ι−1(p)(q ◦ w)) ∗ ι−1(q)).

Note that ◦ is a non-expansive function: if p
n= p′ and q

n= q′ then q ◦w
n= q′ ◦w

in W for all w ∈ W and ι−1(p) n= ι−1(p′) and ι−1(q) n= ι−1(q′) in Pred. Since ∗
is non-expansive (Lemma 12),

(λw.ι−1(p)(q ◦ w)) ∗ ι−1(q) n−1= (λw.ι−1(p′)(q′ ◦ w)) ∗ ι−1(q′)

holds in W → UAdm, so that p ◦ q
n= p′ ◦ q′ in W .

We show that · is contractive. Assume ◦1
n= ◦2 in W × W → W ; we must

show that ◦1
n+1= ◦2. Let p, q ∈ W . Then by the sup-metric on W ×W → W it

suffices to prove that p ◦1 q
n+1= p ◦2 q holds in W , or equivalently, that

(λw.ι−1(p)(q ◦1 w)) ∗ ι−1(q) n= (λw.ι−1(p)(q ◦2 w)) ∗ ι−1(q)

holds in W → UAdm. By the non-expansiveness of ∗ (Lemma 12) and the sup-
metric on W → UAdm, this follows since q ◦1 w

n= q ◦2 w for all w ∈ W by the
assumption that ◦1

n= ◦2, and hence ι−1(p)(q ◦1 w) n= ι−1(p)(q ◦2 w).
By contractiveness of · and the Banach fixed point theorem, there exists a

unique non-expansive map ◦ satisfying p◦q = p ◦ q = ι(λw.ι−1(p)(q◦w)∗ι−1(q)).
We can now define the operation ⊗ : Pred×W → Pred by p⊗ r = λw.p(r ◦ w)
for all p ∈ Pred and r ∈ W , from which the required equivalences follow. Finally,
we note that if p

n= p′ and r
m= r′ then p ⊗ r

k= p′ ⊗ r′ for k = min{n, m + 1},
i.e., the operation is non-expansive in its first component and contractive in its
second. To see this, suppose p

n= p′ in Pred and r
m= r′ in W . Without loss

of generality we may assume n > 0, so that p
n−1= p′ holds in W → UAdm.

By non-expansiveness of ◦ it follows that r ◦ w
m= r′ ◦ w for all w, and therefore

λw.p(r◦w)
min{n−1,m}

= λw.p′(r′◦w) in W → UAdm. Hence p⊗r
min{n,m+1}

= p′⊗r′

in Pred as required. ut

Lemma 14. (W, ◦, emp) is a monoid in CBUlt. Moreover, ⊗ is an action of
this monoid on Pred.

Proof. We check that W is a monoid. First, emp is a left-unit for ◦: if q ∈ W
then

emp ◦ q = ι(λw.ι−1(emp)(q ◦ w) ∗ ι−1(q)) = ι(ι−1(q)) = q

It is also a right-unit for ◦:

p ◦ emp = ι(λw.ι−1(p)(emp ◦ w) ∗ ι−1(emp)) = ι(λw.ι−1(p)(w) ∗ emp) = p

for all p ∈ W . By induction on n we show that for all n ∈ ω, ◦ is associative up
to distance 2−n from which associativity follows. By 1-boundedness of W it is

clear that (p ◦ q) ◦ r
0= p ◦ (q ◦ r) holds for all p, q, r ∈ W . For the inductive step

n > 0, by definition of the distance function on Pred it suffices to show that for
all w ∈ W , ι−1((p ◦ q) ◦ r)(w) n−1= ι−1(p ◦ (q ◦ r))(w). Suppose w ∈ W , then

ι−1((p ◦ q) ◦ r)(w) = ι−1(p ◦ q)(r ◦ w) ∗ ι−1(r)(w)

= ι−1(p)(q ◦ (r ◦ w)) ∗ ι−1(q)(r ◦ w) ∗ ι−1(r)(w)

= ι−1(p)(q ◦ (r ◦ w)) ∗ ι−1(q ◦ r)(w)
n−1= ι−1(p)((q ◦ r) ◦ w) ∗ ι−1(q ◦ r)(w)

= ι−1(p ◦ (q ◦ r))(w)

using the induction hypothesis in the fourth equation.
That ⊗ forms an action of W on Pred follows from these properties of ◦:

first, p⊗ emp = λw.p(emp ◦ w) = p since emp is a unit for ◦, and

(p⊗ q)⊗ r = λw.p(q ◦ (r ◦ w)) = λw.p((q ◦ r) ◦ w) = p⊗ (q ◦ r)

by the associativity of ◦. ut

Since there is a closure applied to the post-condition of semantic triples, but
no similar closure used in the pre-condition, it is not immediately clear how to
compose commands. The following characterisation permits the proof for the
rule of sequential composition.

Lemma 15 (Closure). If f :D (D′ is a strict continuous function, q ⊆ D′ is
an admissible and downwards closed subset of D′, and p ⊆ D is an arbitrary
subset of D, then f(p) ⊆ q implies f(Ad(p)) ⊆ q.

Proof. Since f is continuous, the pre-image f−1(q) of q is admissible and down-
ward closed. From the assumption that f(p)⊆ q it follows that p⊆ f−1(q), and
thus Ad(p)⊆ f−1(q) as the former is by definition the least admissible and down-
ward closed subset of D containing p. Thus, if h∈Ad(p) then f(h)∈ q. ut

Lemma 16 (Admissibility and downward closure of semantic triples).
Assume w ∈ W and p, q ∈ Pred. Then the set {c ∈ Com | w |={p}c{q}} is an
admissible and downward closed subset of Com.

Proof. Both properties follow from the definition of w |={p}c{q}, specifically
from the respective properties of the closure applied in the post-condition. ut

Lemma 17 (Non-expansiveness of semantic triples). Assume w,w′ ∈W

and let n>0 s.t. w
n=w′. If w |={p}c{q}, then w′ |={p}c′{q} for c′

def=πn−1 ◦ c ◦πn−1.

Proof. Assume w
n= w′, and let p, q ∈ Pred and c : Heap (Terr(Heap) such

that w |={p}c{q}. To show that w′ |={p}c′{q} for c′(h) def= πn−1(c(πn−1(h))), let
r ∈ UAdm and h ∈ Heap such that h ∈ p(w′) ∗ ι−1(w′)(emp) ∗ r. We must prove
that c′(h) ∈ Ad(q(w′) ∗ ι−1(w′)(emp) ∗ r).

Since w
n= w′, we have ι−1(w′)(emp) n−1= ι−1(w)(emp). Hence, by the

non-expansiveness of p and the compatibility of ∗ with projections, we have
πn−1(h) ∈ p(w) ∗ ι−1(w)(emp) ∗ r. By the assumption that w |= {p}c{q}, this
yields c(πn−1(h)) ∈ Ad(q(w)∗ι−1(w)(emp)∗r). Using the non-expansiveness of q,
the uniformity of r, and the fact that ι−1(w)(emp) n−1= ι−1(w′)(emp) again, we
know that πn−1(h′) ∈ q(w′)∗ι−1(w′)(emp)∗r whenever h′ ∈ q(w)∗ι−1(w)(emp)∗
r. Thus πn−1(c(πn−1(h))) ∈ Ad(q(w′) ∗ ι−1(w′)(emp) ∗ r) by Lemma 15 and the
continuity of πn−1. This was to show. ut

Lemma 18 (Heyting BI algebra). Let I = {{||} ,⊥}. Then (UAdm,⊆, ∗, I)
is a complete BI algebra. That is, (UAdm,⊆) is a residuated complete Heyting
algebra with a (monotone) commutative monoid structure (UAdm, ∗, I) and the
∗ operator also has the corresponding residuation operator.

Proof. Since admissibility and uniformity are preserved by arbitrary intersec-
tions, UAdm is a complete lattice, with meets given by set-theoretic intersec-
tion, least element {⊥} and greatest element Heap. Binary joins are given by
set-theoretic union, and arbitrary joins by

⊔
i pi =

⋂
{p ∈ UAdm | p ⊇

⋃
i pi}.

The join is described more explicitly as
⊔

i pi = {h | ∀n ∈ ω. πn(h) ∈
⋃

i pi}.
First, note that the right hand side r

def= {h | ∀n ∈ ω. πn(h) ∈
⋃

i pi} is an
element of UAdm: r is uniform, i.e., h ∈ r implies πm(h) ∈ r for all m ∈ ω, since
πn · πm = πmin{n,m}. To show that r is also admissible suppose h0 v h1 v . . . is
a chain in r, and let h be the lub of this chain. We must show that πn(h) ∈

⋃
i pi

for all n ∈ ω. By compactness, πn(h) v hk v h for some k, and hence πn(h) =
πn(hk) ∈

⋃
pi using the idempotency of πn and the fact that hk ∈ r. To see

the inclusion r ⊆
⊔

i pi, note that for all h, if πn(h) ∈
⋃

i pi ⊆ p for all n ∈ ω
and some arbitrary p ∈ UAdm, then also h = tnπn(h) ∈ p by admissibility, and
hence h ∈

⊔
i pi follows. For the other inclusion, we claim that the right hand

side r
def= {h | ∀n ∈ ω. πn(h) ∈

⋃
i pi} is one of the elements appearing in the

intersection; from this claim it is immediate that r ⊇
⊔

i pi. The claim follows
since r ⊇

⋃
i pi by the uniformity of the pi’s.

The implication of this complete lattice UAdm is described by p ⇒ q
def=

{h | ∀n ∈ ω. if πn(h) ∈ p then πn(h) ∈ q}: Using πn · πm = πmin{n,m} it is easy
to see that p ⇒ q is uniform. Admissibility follows analogously to the case of
joins: if h0 v h1 v . . . is a chain in p ⇒ q with lub h, and if n ∈ ω is such that
πn(h) ∈ p then we must show that πn(h) ∈ q. Since πn(h) v h is compact, there
is some k such that πn(h) v hk v h, and thus the required πn(h) = πn(hk) ∈ q
follows from hk ∈ p ⇒ q. Next, to see that p ⇒ q is indeed the implication
in UAdm, first note that we have p ∩ (p ⇒ q) ⊆ q, using the uniformity of p
and the admissibility of q. If p ∩ r ⊆ q for some r ∈ UAdm, and h ∈ r and
πn(h) ∈ p for some n ∈ ω, then the uniformity of r yields πn(h) ∈ q. Thus we
obtain p ∩ r ⊆ q ⇔ r ⊆ p ⇒ q.

That ∗ is an operation on UAdm is established in the proof of Lemma 12. It
is easy to check that ∗ is commutative and associative and that it is monotone,
i.e., if p ⊆ p′ and q ⊆ q′ then p ∗ q ⊆ p′ ∗ q′. Moreover, we have I ∈ UAdm, and

the fact that p∗I = p = I ∗p follows from the definition of the heap combination
h · h′. Finally, the separating implication is given by

p−∗ q = {h | ∀n ∈ ω.∀h′ ∈ p. if πn(h)#h′ then πn(h) · h′ ∈ q}.

One can check that p−∗ q is uniform and admissible, and that it satisfies p ∗ r ⊆
q ⇔ r ⊆ p−∗ q. ut

Lemma 19 (Well-definedness). The interpretation in Fig. 7 is well-defined:
each JP Kη denotes a non-expansive function from W to UAdm.

Proof. The proof is by induction on the structure of P .

– Cases false, true and emp. By Lemma 18, we have that JP Kη w ∈ UAdm for
all w ∈ W . In all three cases, JP Kη is constant, and thus non-expansive.

– Cases P1 ∧ P2, P1 ∨ P2 and ∀x.P1. By Lemma 18, we have that JP Kη w ∈
UAdm for all w ∈ W . To prove non-expansiveness of JP1 ∧ P2Kη, assume
p, q : W → UAdm are non-expansive, w

n= w′, and let h ∈ (p ∩ q)(w) =
p(w)∩q(w). By the non-expansiveness of p and q we have πn(h) ∈ (p∩q)(w′).
Using a symmetric argument, this shows (p ∩ q)(w) n= (p ∩ q)(w′), i.e., the
non-expansiveness of p ∩ q. Non-expansiveness of JP1 ∧ P2Kη and J∀x.P1Kη

is analogous, by showing that p ∪ q and ∩ipi are non-expansive for all non-
expansive p, q, pi : W → UAdm.

– Case P1 ⇒ P2. By Lemma 18, we have that JP Kη w ∈ UAdm for all w ∈ W .
To prove non-expansiveness of JP1 ⇒ P2Kη, assume p, q : W → UAdm are
non-expansive, w

n= w′, and let h ∈ (p(w) ⇒ q(w)). It suffices to show that
πn(h) ∈ (p(w′) ⇒ q(w′)). So let m ∈ ω and assume πm(πn(h)) ∈ p(w′). Thus
also πm(πn(h)) ∈ p(w), and therefore πm(πn(h)) ∈ q(w) by the assumption
that h ∈ (p ⇒ q)(w). Consequently, also πm(πn(h)) ∈ q(w′), and we have
proved that πn(h) ∈ (p(w′) ⇒ q(w′)), i.e., that p ⇒ q is non-expansive.

– Case ∃x.P ′. By Lemma 18, we have that JP Kη w ∈ UAdm for all w ∈ W . To
prove non-expansiveness of J∃x.P ′Kη, assume that for i ∈ I, pi : W → UAdm
are non-expansive, w

n= w′, and choose h such that πm(h) ∈
⋃

i pi(w) for
all m ∈ ω. We must show that πm(πn(h)) ∈

⋃
i pi(w′) for all m ∈ ω. By

assumption, there exists i such that πm(h) ∈ pi(w), so that πn(πm(h)) ∈
pi(w′) by the non-expansiveness of pi. This proves πm(πn(h)) = πn(πm(h)) ∈⋃

i pi(w′).
– Case P1 ∗ P2 and P1 ⊗ P2. These cases have already been considered in

Lemmas 12 and 13.
– Case e1 7→ e2. Since Je1 7→ e2Kη is a constant function, it is non-expansive.

That its codomain is UAdm follows from the admissibility and downward
closure of {d ∈ Val | d v d′}.

– Case e1 = e2. Since Je1 = e2Kη is a constant function, it is non-expansive.
That its codomain is UAdm follows since it either equals Heap or {⊥}.

– Case{P1}e{Q1}. We first prove the non-expansiveness of J{P1}e{Q1}Kη. As-
sume that w

n= w′, and let h ∈ J{P}e{Q}Kη w. We must show that πn(h) ∈

J{P}e{Q}Kη w′. We distinguish two cases. First, if h is not finite, i.e., h 6=
πn(h) for all n, then the assumption h ∈ J{P}e{Q}Kη w implies that w |=
{JP1Kη} JeKη {JQ1Kη}. By Lemma 17 we have

w′ |={JP1Kη}πn−1; JeKη ;πn−1{JQ1Kη}

and therefore πn(h) ∈ J{P}e{Q}Kη w′.
In the second case, h has finite rank k, say. By assumption we have

w |={JP1Kη}πk−1; JeKη ;πk−1{JQ1Kη} ,

By Lemma 17 we obtain

w′ |={JP1Kη}πm−1; JeKη ;πm−1{JQ1Kη} ,

for m = min{k, n}, and therefore πm(h) ∈ J{P}e{Q}Kη w′. The result follows
since πm(h) = πn(h) (using πk(h) = h).
Since w

n= w for all n, the uniformity of J{P1}e{Q1}Kη w follows as a special
case from non-expansiveness. That ⊥ ∈ J{P1}e{Q1}Kη w is immediate from
the definition. Finally, to see the closure under least upper bounds, let h0 v
h1 v . . . be a chain in J{P1}e{Q1}Kη w, and let h be its lub. Then, either
there exists a bound n for the ranks of all hi, which implies that h = hi

for some i so that h ∈ J{P1}e{Q1}Kη w follows trivially. Otherwise, for each
n ∈ ω there exists an index in such that hin is of rank n. Thus from the
assumption and the fact that hin = πn(hin) we get

w |={JP1Kη}πn−1; JeKη ;πn−1{JQ1Kη}

for all n ∈ ω. By the admissibility of semantic triples in the command po-
sition (Lemma 16), it follows that the triple is forced at w also for the lub⊔

n πn; JeKη ;πn. Since
⊔

n πn = id , we obtain w |={JP1Kη} JeKη {JQ1Kη} from
this. Therefore h ∈ J{P1}e{Q1}Kη w holds. ut

A.2 Soundness of the distribution axioms

Lemma 20 (⊗-Dist, 1). The axiom (P ⊗Q)⊗R ⇔ P ⊗ (Q ◦R) is valid.

Proof. By definition, the semantics of the left-hand side (P ⊗ Q) ⊗ R is given
by (JP Kη ⊗ ι(JQKη))⊗ ι(JRKη). This is the same as JP Kη ⊗ (ι(JQKη) ◦ ι(JRKη)) by
Lemma 5. By definition of ◦, we can write this equivalently as JP Kη ⊗ ι(JQKη ⊗
ι(JRKη) ∗ JRKη), which is the semantics of P ⊗ (Q⊗R ∗R) = P ⊗ (Q ◦R). ut

Lemma 21 (⊗-Dist, 2). The axiom{P}e{Q} ⊗R ⇔{P ◦R}e{Q ◦R} is valid.

Proof. The statement follows from the following claim: for all p, q, r ∈ Pred,
strict continuous c : Heap (Terr(Heap) and all w ∈ W ,

ι(r) ◦ w |={p}c{q} ⇔ w |={p⊗ ι(r) ∗ r}c{q ⊗ ι(r) ∗ r} .

The proof of this claim makes use of the following equation:

(p⊗ ι(r) ∗ r)(w) ∗ ι−1(w)(emp) = p(ι(r) ◦ w) ∗ ι−1(ι(r) ◦ w)(emp),

and analogously with q in place of p. To obtain this equation, note that by
expanding the definition of ⊗ we have:

(p⊗ ι(r) ∗ r)(w) ∗ ι−1(w)(emp) = (p⊗ ι(r))(w) ∗ r(w) ∗ ι−1(w)(emp)

= p(ι(r) ◦ w) ∗ r(w ◦ emp) ∗ ι−1(w)(emp)

= p(ι(r) ◦ w) ∗ (r ⊗ w)(emp) ∗ ι−1(w)(emp)

= p(ι(r) ◦ w) ∗ (r ⊗ w ∗ ι−1(w))(emp)

= p(ι(r) ◦ w) ∗ ι−1(ι(r) ◦ w)(emp)

i.e., the equation is a direct consequence of the definitions of ⊗ and ◦. ut
Lemma 22 (⊗-distribution, 3). The axioms (P⊕Q)⊗R ⇔ (P⊗R)⊕(Q⊗R)
for ⊕ ∈ {⇒,∧,∨, ∗} are valid.

Proof. We consider the case of separating conjunction. This case follows, since
for all p, q, r ∈ Pred and w ∈ W we have

((p ∗ q)⊗ ι(r))(w) = (p ∗ q)(ι(r) ◦ w)
= p(ι(r) ◦ w) ∗ q(ι(r) ◦ w)
= (p⊗ ι(r))(w) ∗ (q ⊗ ι(r))(w)
= (p⊗ ι(r) ∗ q ⊗ ι(r))(w).

Note that these equations only depended on the fact that ∗ on Pred is defined
pointwise. The cases for ⇒, ∧ and ∨ follow completely analogously. ut
Lemma 23 (⊗-distribution, 4). The axioms (κx.P) ⊗ R ⇔ κx.(P ⊗ R) for
κ ∈ {∀,∃} and x /∈ fv(R) are valid.

Proof. We consider the case of universal quantification. Let r
def= JRKη, and note

that r = JRKη[x:=d] for any d ∈ Val , since x /∈ fv(R). The validity of the axiom
follows since

J(∀x.P)⊗RKη w = J∀x.P Kη (ι(r) ◦ w)

=
⋂

d∈Val

JP Kη[x:=d] (ι(r) ◦ w)

=
⋂

d∈Val

(JP Kη[x:=d] ⊗ ι(JRKη[x:=d]))(w)

= J∀x.(P ⊗R)Kη w.

The case of existential quantification is analogous. ut
Lemma 24 (⊗-distribution, 5). The following axioms are all valid:

false⊗R ⇔ false, true⊗R ⇔ true, emp⊗R ⇔ emp, (e1 7→ e2)⊗R ⇔ e1 7→ e2.

Proof. For all P , JP ⊗RKη w = JP Kη (ι(JRKη) ◦ w) by definition of ⊗. Since
JfalseK, JtrueK, JempK and Je1 7→ e2K are all constant, the claim follows. ut

A.3 Soundness of standard rules from separation logic

The following lemmas show that the usual rules of separation logic, expressed
using triples containing quoted commands as shown in Fig. 3, are sound.

Lemma 25 (Skip). The axiom{P}‘skip’{P} is valid.

Proof. This follows from the fact that JskipKη h = h for all h ∈ Heap, and that
Ad(·) is a closure operation. ut

Lemma 26 (Conditional). If{P ∧ e0=e1}‘C’{Q} and{P ∧ e0 6=e1}‘D’{Q} are
both valid, then so is{P}‘if (e0=e1) then C else D’{Q}.

Proof. Let w ∈ W and r ∈ UAdm and suppose h ∈ JP Kη w ∗ ι−1(w)(emp) ∗ r.
From the semantics of the conditional, we can assume without loss of generality
that Je0Kη and Je1Kη are not both in Com⊥. We must show that

c(h) ∈ Ad(JQKη w ∗ ι−1(w)(emp) ∗ r),

where c(h) = if (Je0Kη = Je1Kη) then JCKη h else JDKη h. Depending on whether
Je0Kη = Je1Kη or not, we have Je0=e1Kη w = Heap or Je0 6=e1Kη w = Heap. There-
fore, the statement follows from either the first or the second assumed triple. ut

Lemma 27 (Sequencing). If {P}‘C’{R} and {R}‘D’{Q} are valid, then so is
{P}‘C;D’{Q}.

Proof. Let η ∈ Env and fix w ∈ W . Let r ∈ UAdm and assume h ∈ JP Kη (w) ∗
ι−1(w)(emp)∗r. We must show that JC;DKη h ∈ Ad(JQKη (w)∗ι−1(w)(emp)∗r).
First note that JCKη h ∈ Ad(JRKη (w) ∗ ι−1(w)(emp) ∗ r), by the assumption
that {P}‘C’{R} is valid. In particular, JCKη h 6= error. Moreover, in the case
where JCKη h = ⊥ we also have JC;DKη h = ⊥ by the semantics of sequential
composition, so that the admissibility of Ad(JQKη (w) ∗ ι−1(w)(emp) ∗ r) gives
the result.

Thus, we can assume that JC;DKη h = JDKη (JCKη h). From the assumption
that{R}‘D’{Q} is valid it follows that JDKη maps JRKη (w)∗ι−1(w)(emp)∗r into
Ad(JQKη (w) ∗ ι−1(w)(emp) ∗ r). Since JCKη h ∈ Ad(JRKη (w) ∗ ι−1(w)(emp) ∗ r)
we obtain JDKη (JCKη h) ∈ Ad(JQKη (w) ∗ ι−1(w)(emp) ∗ r) by Lemma 15. ut

Lemma 28 (Eval). Suppose that R[k] ⇒{P ∗ e 7→R[]}k{Q} is a valid implica-
tion. Then, if there are no free occurrences of k, also {P ∗ e 7→R[]}‘eval [e]’{Q}
is valid.

Proof. Let w ∈ W , η ∈ Env and r ∈ UAdm. Let h ∈ JP ∗ e 7→ R[]Kη w ∗
ι−1(w)(emp) ∗ r, so that h = h′ · h′′ for some h′ and h′′ such that

h′ ∈ Je 7→ R[]Kη w and h′′ ∈ JP Kη w ∗ ι−1(w)(emp) ∗ r. (2)

We must show that Jeval [e]Kη h ∈ Ad(JQKη w ∗ ι−1(w)(emp) ∗ r). Recall that
e 7→ R[] abbreviates ∃k.e 7→ k ∧ R[k] for fresh k. By (2) we have for all n ∈ ω
such that πn(h′) 6= ⊥:

JeKη ∈ dom(πn(h′)) ⊆ dom(h) (3)

∃dn. πn(h)(JeKη) = πn(h′)(JeKη) v dn and πn(h′) ∈ JR[k]Kη[k:=dn] w (4)

Let us denote η[k := dn] by ηn. The assumption that R[k] ⇒{P ∗ e 7→R[]}k{Q}
is valid yields:

πn(h′) ∈ JR[k]Kηn
w implies πn(h′) ∈ J{P ∗ e 7→R[]}k{Q}Kηn

w

Therefore, by (4), πn(h′) ∈ J{P ∗ e 7→R[]}k{Q}Kηn
w holds for all n. Let rn be

the rank of πn(h′). Since πn(h′) 6= ⊥ we have rn > 0. It follows that

∀n. w |={JP ∗ e 7→R[]Kηn
}πrn−1; dn;πrn−1{JQKηn

}

Since πn(h′)(JeKη) = πrn
(πn(h′))(JeKη) v πrn−1; dn;πrn−1, the downward clo-

sure of semantic triples in the command argument (Lemma 16) shows:

∀n. w |={JP ∗ e 7→R[]Kηn
}πn(h′)(JeKη){JQKηn

}

Since k was chosen fresh, and by the admissibility of semantic triples (Lemma 16),
we obtain the following:

∀n. w |={JP ∗ e 7→R[]Kη}h
′(JeKη){JQKη} (5)

In particular, (5) entails that h(JeKη) = h′(JeKη) ∈ Com, and thus Jeval [e]Kη h =
h′(JeKη)(h). Since we assumed that h ∈ JP ∗ e 7→ R[]Kη w ∗ ι−1(w)(emp) ∗ r, we
obtain Jeval [e]Kη h ∈ Ad(JQKη w ∗ ι−1(w)(emp) ∗ r) by (5). ut

Lemma 29 (Update). The axiom{e 7→ ∗P}‘[e] := e0’{e 7→ e0 ∗P} is valid.

Proof. By Lemma 10, it suffices to prove the validity of

{e 7→ }‘[e] := e0’{e 7→ e0} .

Let η ∈ Env, p = Je 7→ Kη, q = Je 7→ e0Kη and c = J[e] := e0Kη. We will show that
w |={p}c{q} holds for all w ∈ W .

Let w ∈ W and r ∈ UAdm, and suppose h ∈ p(w)∗ ι−1(w)(emp)∗r. We may
assume that h 6= ⊥, for otherwise c(h) = ⊥ ∈ q(w) ∗ ι−1(w)(emp) ∗ r is immedi-
ate. Thus, h = h′ ·h′′ such that h′ ∈ p(w) and h′′ ∈ ι−1(w)(emp)∗r. In particular,
since h′ ∈ p(w) = Je 7→ Kη w, we obtain that JeKη ∈ dom(h′) ⊆ dom(h). There-
fore, from the semantics of the assignment command, c(h) = h[JeKη 7→ Je1Kη].
But this heap is the same as {|JeKη = Je1Kη|} · h′′, and therefore c(h) ∈ q(w) ∗
ι−1(w)(emp) ∗ r ⊆ Ad(q(w) ∗ ι−1(w)(emp) ∗ r). ut

Lemma 30 (Free). The axiom{e 7→ ∗ P}‘free(e)’{P} is valid.

Proof. By Lemma 10, it suffices to prove the validity of

{e 7→ }‘free(e)’{emp} .

Let η ∈ Env, p = Je 7→ Kη, q = JempKη and c = Jfree(e)Kη. We will prove that
w |={p}c{q} holds for all w ∈ W .

Let w ∈ W , let r ∈ UAdm and suppose h ∈ p(w) ∗ ι−1(w)(emp) ∗ r. Since
q(w) is the unit for ∗ and Ad(·) is a closure operation, we must only show
c(h) ∈ ι−1(w)(emp) ∗ r. We may assume that h 6= ⊥, for otherwise c(h) =
⊥ ∈ ι−1(w)(emp) ∗ r is immediate. Thus, h = h′ · h′′ such that h′ ∈ p(w) and
h′′ ∈ ι−1(w)(emp)∗r. In particular, since h′ ∈ p(w) = Je 7→ Kη w, we obtain that
{JeKη} = dom(h′) ⊆ dom(h). Therefore, from the semantics of the deallocation
command, c(h) = h′′. It follows that c(h) ∈ ι−1(w)(emp) ∗ r. ut

Lemma 31 (Deref). If {P ∗ e 7→x}‘C’{Q} is valid and x is not free in e and
Q, then{∃x.P ∗ e 7→x}‘let x=[e] inC’{Q} is also valid.

Proof. Assume that {P ∗ e 7→x}‘C’{Q} is valid, and pick η ∈ Env. Let c =
Jlet x=[e] inCKη. We will show that w |={J∃x.P ∗ e 7→xKη}c{JQKη} for all w ∈ W .

Let w ∈ W , r ∈ UAdm and h ∈ J∃x.P ∗ e 7→xKη (w) ∗ ι−1(w)(emp) ∗ r. We
must show that c(h) ∈ Ad(JQKη (w) ∗ ι−1(w)(emp) ∗ r). By definition there are
heaps h′, h′′ such h = h′·h′′ and h′ ∈ J∃x.P ∗ e 7→xKη (w) and h′′ ∈ ι−1(w)(emp)∗
r. By definition this means that

∀n. ∃dn ∈ Val . πn(h′) ∈ JP ∗ e 7→xKη[x:=dn] (w).

Let us write ηn for η[x := dn]. In the remainder of the proof, we will prove that

∀n. c(πn(h)) ∈ Ad(JQKη ∗ ι−1(w)(emp) ∗ r),

because then, by admissibility and the continuity of c, we obtain the required
c(h) ∈ Ad(JQKη ∗ ι−1(w)(emp) ∗ r).

Without loss of generality we can assume that πn(h) 6= ⊥, so that πn(h′) 6= ⊥
as well. Then, since x /∈ fv(e), we have in particular JeKη ∈ dom(πn(h′)) ⊆
dom(h) and πn(h′)(JeKη) v dn. Using the monotonicity of commands with re-
spect to the environment, this gives

c(πn(h)) = JCKη[x:=πn(h′)(JeKη)] (πn(h)) v JCKηn
(πn(h))

By uniformity of ι−1(w)(emp)∗r, we have πn(h) ∈ JP ∗ e 7→ xKηn
∗ι−1(w)(emp)∗

r, so that the assumption gives us

c(πn(h)) v JCKηn
(πn(h)) ∈ Ad(JQKηn

∗ ι−1(w)(emp) ∗ r).

Since Ad(p′) is a downward-closed set for every p′, the above formula implies
that c(πn(h)) belongs to the set on the right hand side. Furthermore, since
x /∈ fv(Q), we have JQKηn

= JQKη. The combination of these two facts give the
desired c(πn(h)) ∈ Ad(JQKη ∗ ι−1(w)(emp) ∗ r). ut

Lemma 32 (New). If {P ∗x 7→ e}‘C’{Q} is valid and x is not free in P , Q and
e, then{P}‘let x=new e inC’{Q} is valid.

Proof. Let w ∈ W , η ∈ Env, r ∈ UAdm. Suppose h ∈ JP Kη (w)∗ι−1(w)(emp)∗r.
We must show that c(h) ∈ Ad(JQKη (w)∗ι−1(w)(emp)∗r). Consider the following
environment η′ and heap h′:

η′
def= η[x := `] h′

def= h · {|` = JeKη|}

where ` is the least natural number not contained in dom(h). Since x is not free
in e and P , we have JeKη = JeKη′ and JP Kη = JP Kη′ . Thus by the assumption on
h we obtain:

h′ ∈ JP ∗ x 7→ eKη′ w ∗ ι−1(w)(emp) ∗ r.

Then the assumption that{P ∗ x 7→ e}‘C’{Q} is valid implies:

JCKη′ h′ ∈ Ad(JQKη′ (w) ∗ ι−1(w)(emp) ∗ r).

Using the fact that Jlet x=new e inCKη (h) = JCKη′ h′ and since JQKη′ = JQKη,
this proves the statement. ut

Up until now, we have proved the soundness of all the rules in Fig. 3, ex-
cept the rule of Consequence. The soundness proof of this Consequence rule
is slightly different from those of the others, because Consequence is an axiom
involving an implication between triples, whereas the other rules are inference
rules for transforming valid Hoare triples. Due to the pointwise interpretation
of implication and the inclusion of the approximations in the interpretation of
triples, this form of the Consequence rule could be potentially problematic. Our
proof of Consequence overcomes this potential problem, exploiting the fact that
the rule is parametric in the command: it is the same command that appears
in all the triples of the rule. To illustrate this proof technique, in addition to
the soundness of Consequence, we will prove two other rules that also involve
implications between triples.

Lemma 33 (Consequence). If P ′ ⇒ P and Q ⇒ Q′ are valid, then so is
{P}e{Q} ⇒{P ′}e{Q′}.

Proof. Let η ∈ Env and fix w ∈ W and n > 0. Let p = JP Kη, p′ = JP ′Kη,
q = JQKη and q′ = JQ′Kη, and assume that πn(h) ∈ J{P}e{Q}Kη w. We must
show that πn(h) ∈ J{P ′}e{Q′}Kη w.

Let k denote the rank of πn(h). Without loss of generality, we can assume
k > 0. Let c be πk−1; JeKη ;πk−1. Then the assumption yields w |={p}c{q}, and it
suffices to establish w |={p′}c{q′}. For this, suppose that r ∈ UAdm and let h ∈
p′(w)∗ ι−1(w)(emp)∗ r. We must show that c(h) ∈ Ad(q′(w)∗ ι−1(w)(emp)∗ r).
By the assumption that P ′ ⇒ P is valid, we also have h ∈ p(w)∗ι−1(w)(emp)∗r
by the monotonicity of ∗. By assumption, c(h) ∈ Ad(q(w) ∗ ι−1(w)(emp) ∗ r).
By the assumption that Q ⇒ Q′ is valid, and using monotonicity of ∗ and Ad(·),
we obtain c(h) ∈ Ad(q′(w) ∗ ι−1(w)(emp) ∗ r) as required. ut

Lemma 34 (Auxiliary variable). Assume that x is not free in e. Then the
axiom

ExistAux

Γ ` (∀x.{P}e{Q}) ⇒{∃x.P}e{∃x.Q}

is valid.

Proof. Let η ∈ Env, and fix w ∈ W . For each d ∈ Val , let ηd = η[x:=d],
pd = JP Kηd

and qd = JQKηd
. Since x is not free in e, we have JeKηd

= JeKη. Thus,
a similar reasoning with rank as that in the proof of Consequence implies that
it is sufficient to prove the following claim:

for all c, if w |={pd}c{qd} for every d, then w |={
⊔

d pd}c{
⊔

d qd}.

Assume w |={pd}c{qd}, let r ∈ UAdm and h ∈ (
⊔

d pd)(w)∗ ι−1(w)(emp)∗r. We
must show that c(h) ∈ Ad((

⊔
d qd)(w)∗ι−1(w)(emp)∗r). By definition, h = h′ ·h′′

where h′ ∈ (
⊔

d qd)(w) and h′′ ∈ ι−1(w)(emp) ∗ r. Thus, for each n there exists
d ∈ Val such that πn(h′) ∈ pd(w), and therefore πn(h) ∈ pd(w)∗ ι−1(w)(emp)∗r
by the uniformity of ι−1(w)(emp) ∗ r. From the assumption w |={pd}c{qd} we
then obtain that for each n,

c(πn(h)) ∈ Ad(qd(w) ∗ ι−1(w)(emp) ∗ r) ⊆ Ad((
⊔
d

qd)(w) ∗ ι−1(w)(emp) ∗ r).

Using the admissibility of Ad((
⊔

d qd)(w) ∗ ι−1(w)(emp) ∗ r) and the continuity
of c, it follows that c(h) ∈ Ad((

⊔
d qd)(w) ∗ ι−1(w)(emp) ∗ r). ut

Lemma 35 (Disjunction). For all P, P ′, Q,Q′ and e, the axiom

Disj

{P}e{Q} ∧{P ′}e{Q′} ⇒{P ∨ P ′}e{Q ∨Q′}

is valid.

Proof. Let η ∈ Env and fix w ∈ W . Let p = JP Kη, p′ = JP ′Kη, q = JQKη and
JQ′Kη. As in the preceding proofs, it suffices to show that

for all c, if w |={p}c{q} and w |={p′}c{q′}, then w |={p ∪ p′}c{q ∪ q′}.

For this, suppose that r ∈ UAdm and let h ∈ (p ∪ p′)(w) ∗ ι−1(w)(emp) ∗
r. We must show that c(h) ∈ (q ∪ q′)(w) ∗ ι−1(w)(emp) ∗ r. Note that h ∈
(p ∪ p′)(w) ∗ ι−1(w)(emp) ∗ r entails that h ∈ p(w) ∗ ι−1(w)(emp) ∗ r or h ∈
p′(w) ∗ ι−1(w)(emp) ∗ r. Therefore, by the assumption we know that c(h) ∈
Ad(q(w) ∗ ι−1(w)(emp) ∗ r) or c(h) ∈ Ad(q′(w) ∗ ι−1(w)(emp) ∗ r), from which
it follows that c(h) ∈ Ad((q ∪ q′)(w) ∗ ι−1(w)(emp) ∗ r) by the monotonicity of
∗ and of the closure operation. ut

A.4 Recursion

Theorem 36 (Mutually recursive predicates). Suppose that for each i ∈
I, Fi : PredI → Pred is a contractive function. Then there exists a unique
p = (pi)i∈I ∈ PredI such that Fi(p) = pi for all i ∈ I.

Proof. Recall that PredI is an ultrametric space, with distance function d(p, q) =
supi dPred(pi, qi) for p = (pi)i∈I and q = (qi)i∈I in PredI . By assumption, each
Fi is contractive. In particular, since all distances in Pred are of the form 2−n,
we have dPred(Fi(p), Fi(q)) ≤ 1

2 · d(p, q). Then F : PredI → PredI given by
F (p) = (Fi(p))i∈I is a contractive endofunction on this ultrametric space, which
by the Banach fixed point theorem has a unique fixed point p, satisfying pi =
(F (p))i = Fi(p). ut

