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Abstract. We propose a shape analysis that adapts to some of the
complex composite data structures found in industrial systems-level pro-
grams. Examples of such data structures include “cyclic doubly-linked
lists of acyclic doubly-linked lists”, “singly-linked lists of cyclic doubly-
linked lists with back-pointers to head nodes”, etc. The analysis in-
troduces the use of generic higher-order inductive predicates describ-
ing spatial relationships together with a method of synthesizing new
parametrized spatial predicates which can be used in combination with
the higher-order predicates. In order to evaluate the proposed approach
for realistic programs we have implemented the analysis and performed
experiments with it on examples drawn from device drivers. During our
experiments the analysis proved the memory safety of several routines
belonging to an IEEE 1394 (firewire) driver, and also found several previ-
ously unknown memory safety bugs and memory leaks. To our knowledge
this represents the first known successful application of shape analysis
to non-trivial systems-level code.

1 Introduction

Shape analyses are program analyses which aim to be accurate in the presence
of deep-heap update. They go beyond aliasing or points-to relationships to infer
properties such as whether a variable points to a cyclic or acyclic linked list
(e.g., [1, 7, 11, 16, 17, 9]). Unfortunately, today’s shape analysis engines fail to
support many of the composite data structures used within industrial software.
If the input program happens only to use the data structures for which the
analysis is defined (usually unnested lists in which the field for forward pointers
is specified beforehand), then the analysis is often successful. If, on the other
hand, the input program is mutating a complex composite data structure such
as a “singly-linked list of structures which each point to five cyclic doubly-linked
lists in which each node in the singly-linked list contains a back-pointer to the
head of the list” (and furthermore the list types are using a variety of field names
for forward/backward pointers), today’s fully-automatic shape analyses will all
fail to deliver informative results. Instead, in these cases, the tools typically
report false declarations of memory-safety violations when there are none. This
is one of the key reasons why shape analysis has to date had only a limited
impact on industrial code.



In order to make shape analysis generally applicable to industrial software
we need methods by which shape analyses can adapt to the combinations of
data structures used within these programs. Towards a solution to this problem,
we propose a new shape analysis that dynamically adapts to the types of data
structures encountered in systems-level code.

In this paper we make two novel technical contributions. We first propose
a new abstract domain which includes a higher-order inductive predicate that
specifies a family of linear data structures. We then propose a method that
synthesizes new parametrized spatial predicates from old predicates using infor-
mation found in the abstract states visited during the execution of the analysis.
The new predicates can be defined using instances of the inductive predicate in
combination with previously synthesized predicates, thus allowing our abstract
domain to express a variety of complex data structures.

We have tested our approach on set of small (i.e. <100 LOC) examples
representative of those found in systems-level code. We have also performed a
case study: applying the analysis to data-structure manipulating routines found
in a Windows IEEE 1394 (firewire) device driver. Our analysis proved memory
safety in a number of cases, and found several previously unknown memory-
safety violations in cases where the analysis failed to prove memory safety.

Related work. A few shape analyses have been defined that can deal with some
limited forms of nesting. For example, the tool described in [10] infers new in-
ductive data-structure definitions during analysis. Here, we take a different tack.
We focus on a single inductive predicate which can be instantiated in multiple
ways using higher-order predicates. What is discovered here is the predicates
for instantiation. The expressiveness of the two approaches is incomparable. [10]
can handle varieties of trees, where the specific abstraction given in this paper
cannot. Conversely, our analysis supports doubly-linked list segments, lists of
cyclic lists with back-pointers, and lists of cyclic doubly-linked lists (as in the
1394 driver), where [10] cannot due to the fact that these data structures require
inductive definitions with more than two parameters and the abstract domain
of [10] cannot express such definitions.

Work on analysis of complex structures using regular model checking includes
an example on a list of lists [4]. We do not believe that the abstraction there
can deal with back-pointers as we have had to in the 1394 driver, but it might
be possible to modify it to do so.

The parametric shape analysis framework of [12, 21] can in principle describe
any finite abstract domain: there must exist some collection of instrumentation
predicates that could describe a range of nested structures. Indeed, it could be
the case that the work of [14], which uses machine learning to find instrumen-
tation predicates, would be able in principle to infer predicates precise enough
for the kinds of examples in this paper. The real question is whether or not the
resulting collection of instrumentation predicates would be costly to maintain
(whether in TVLA or by other means) [13]. There has been preliminary work
on instrumentation predicates for composite structures [19], but as far as we are
aware it has not been implemented or otherwise evaluated experimentally.

3



As previously mentioned, deep shape analyses have not been often applied
to the source code of real-world programs that mutate data structures,1 and
this is recognized as a limitation in the field. This paper represents one attempt
to do so, and the design of our abstract domain was influenced by the kinds
of data structure found in systems programs. To the best of our knowledge,
our experiments with the IEEE 1394 driver represent the first known successful
application of a shape analysis to non-trivial systems-level code.

2 Synthesized predicates and general inductions schemes

The analysis described in this paper fits in to the common structure of shape
analyses based on abstract interpretation (e.g. [7, 5, 15, 4, 20]) in which a fixed-
point computation performs symbolic execution (a.k.a. update) together with fo-
cusing (a.k.a. rearrangement or coercion) to partially concretize abstract heaps
and abstraction (a.k.a. canonicalization or blurring) in order to ensure the ex-
istence of a fixed point. In this work we use a representation of abstract states
based on separation logic [8, 18] formulæ, building on the methods of [2, 5].

There are two key technical ideas used in our new analysis:

Generic inductive spatial predicates: We define a new abstract domain which
uses a higher-order generalization of the list predicates considered in the
literature on separation logic.2 In effect, we propose using a restricted subset
of a higher-order version of separation logic [3]. The list predicate used in
our analysis, ls Λ (x, y, z, w), describes a (possibly empty, possibly cyclic,
possibly doubly-) linked list segment where each node in the segment itself
is a data structure (e.g. a singly-linked list of doubly-linked lists) described
by Λ. The ls predicate allows us to describe lists of lists or lists of structs of
lists, for example, by an appropriate choice of Λ.

Synthesized parametrized non-recursive predicates: The abstraction phase of the
analysis, which simplifies the symbolic representations of heaps, in our case is
also designed to discover new predicates which are then fed as parameters to
the higher-order inductive (summary) predicates, thereby triggering further
simplifications. It is this predicate discovery aspect that gives our analysis
its adaptive flavor.

Example. Fig. 1 shows a heap configuration typical of a Windows device driver.
This configuration can be found, for example, in the Windows device driver
supporting IEEE 1394 (firewire) devices, 1394DIAG.SYS, when it is loaded on

1 One noteworthy exception is [7], which obtains impressive results by intentionally
restricting expressiveness to certain flat list structures, in order to gain efficiency.

2 In this paper we have concentrated on varieties of linked lists motivated by problems
seen during the application of the analysis to device driver code, but we expect that
the basic ideas can also be applied with varieties of tree and other structures, and
hope to report on that in future work. In order to support trees we would need to
add an additional higher-order recursive predicate describing that structure.
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Fig. 1. Device-driver like heap configuration.

ΛBus , λ[x′, y′, z′, w′]. x′ = w′ ∧ (x′ 7→ BUS RESET IRP(BusResetIrps Blink : y′, BusResetIrps Flink : z′))

ΛCROM , λ[x′, y′, z′, w′]. x′ = w′ ∧ (x′ 7→ CROM DATA(CromData Blink : y′, CromData Flink : z′))

ΛDevice , λ[x′, y′, z′, w′].∃e′, b′, b′′, c′, c′′. x′ = w′∧

x′ 7→ DEVICE OBJECT(NextDevice : z′, DeviceExtension : e′, DriverObject : driobj) ∗

e′ 7→ DEVICE EXTENSION(BusResetIrps Blink : b′, BusResetIrps Flink : b′′,

CromData Blink : c′, CromData Flink : c′′) ∗
ls ΛBus (b′′, e′, e′, b′) ∗ ls ΛCROM (c′′, e′, e′, c′)

Fig. 2. Parametrized predicates inferred from the heap in Fig. 1.

the 1394 bus driver and three 1394 devices are connected to the machine. In
this figure the pointer driobj is a pointer to a driver object defined by a Win-
dows kernel C structure called DRIVER_OBJECT. Amongst their many other fields,
driver objects hold the sentinel node to a list of device objects, defined by another
Windows kernel structure called DEVICE_OBJECT. Each device object has a back-
pointer to the original driver object. Moreover, each device object has a pointer
to a device extension, which is used in essence as a method of polymorphism: de-
vice drivers declare their own driver-specific device extension type. In the case of
1394DIAG.SYS, the device extension is named DEVICE_EXTENSION and is defined
to hold a number of locks, lists, and other data. For simplicity, in Fig. 1 we have
depicted only two of the five cyclic doubly-linked lists in DEVICE_EXTENSION:
one cyclic list of BUS_RESET_IRP structures, and one of CROM_DATA structures.

When the abstraction step from our analysis is applied to the heap in Fig. 1
several predicates are discovered. Consider the doubly-linked lists at the bot-
tom of the figure. These are circular doubly-linked lists, and can be described
using certain instances of ls. The linked lists of BUS_RESET_IRP and CROM_DATA
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entries can be described using predicates of the form “ls ΛBus (x, y, z, w)” and
“ls ΛCROM (x, y, z, w)”, where the predicates ΛBus and ΛCROM are shown in
Fig. 2. ΛBus , for example, is a predicate that takes in four parameters (in this
work all parameterized predicates take 4 parameters) and then, using 7→ from
separation logic, declares that a block of memory with type BUS_RESET_IRP is
allocated at the location pointed to by x′. ΛBus also specifies the values of the
fields in the BUS_RESET_IRP to be equal to y′ and z′.

Next, the singly-linked list of DEVICE_OBJECTs can be defined as a further
instance of ls, obtained from a predicate ΛDevice , from Fig. 2, that is built from
the predicates for the circular linked lists. ΛDevice uses three instances of separa-
tion logic’s separating conjunction connective ∗ to indicate the existence of four
distinct segments of the heap pointed to by x′, e′, b′′, and c′′. The ∗-conjunction
specifies that the only aliasing occurring between these four independent heaps
be via the variables in the formula. Note that ΛDevice is not itself recursive but
is defined in terms of instances of ls where the parameters are previously syn-
thesized predicates. Note also that, using ΛBus and ΛCROM as parameters to ls,
the specific number of elements in each list is forgotten.

After abstraction, the original heap can be covered by the symbolic heap
H , driobj 7→ DRIVER OBJECT(DeviceObject: x′

1)∗ ls Λdevice (x′
1, , nil, ). This

formula is more abstract than the beginning heap in that the lengths of the
singly-linked list of DEVICE_OBJECTs and of the doubly-linked lists have been
forgotten: this formula is also satisfied by heaps similar to that in Fig. 1 but of
different size.

3 Symbolic heaps with higher-order predicates

We now define the abstract domain of symbolic heaps over which our analysis is
defined. Let Var be a finite set of program variables, and Var ′ be an infinite set
of variables disjoint from Var . We use Var ′ as a source of auxiliary variables to
represent quantification, parameters to predicates, etc. Let Fld be a finite set of
field names and Loc be a set of memory locations.

In this paper, we consider the storage model given by Stack , (Var ∪
Var ′)�Val , Heap , Loc ⇀fin (Fld ⇀ Val), and States , Stack × Heap. Thus, a
state consists of a stack s and a heap h, where the stack s specifies the values of
program (non-primed) variables as well as those of auxiliary (primed) variables.
In our model, each heap cell stores a whole structure; when h(l) is defined, it is
a partial function k where the domain of k specifies the set of fields declared in
the structure l, and the action of k specifies the values of those fields.

Our analysis uses symbolic heaps specified by the following grammar:

expressions E ::=x | x′ | nil

pure formulæ Π ::= true | E=E | E 6= E | Π ∧ Π

spatial formulæ Σ ::= emp | Σ ∗ Σ | E 7→ T (~f : ~E) | ls Λ (E, E, E, E) | true

symbolic heaps H ::=Π ∧ Σ

par. symb. heaps Λ ::=λ[x′, y′, z′, w′]. ∃~x′. H
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Here x and x′ are drawn from Var and Var ′, respectively, and f from Fld .
We will use a macro Λ[D, E, F, G, ~E′] to express the symbolic heap derived by
instantiating Λ’s parameters (x′, y′, z′, w′) with (D, E, F, G) and existentially

quantified variables ~v′ with ~E′.

The predicate “ls Λ (If , Ob, Of , Ib)” represents a segment of a (generic)
doubly-linked list, where the shape of each node in the list is described by the first
parameter Λ (i.e., each node satisfies this parameter), and some links between
this segment and the rest of the heap are specified by the other parameters. Pa-
rameters If (the forward input link) and Ib (the backward input link) denote the
(externally visible) memory locations of the first and last nodes of the list seg-
ment. The analysis maintains the links from the outside to these exposed cells,
so that the links can be used, say, to traverse the segment. Usually, If denotes
the address of the “root” of a data structure representing the first node, such
as the head of a singly-linked list. The common use of Ib is similar. Parameters
Ob (called backward output link) and Of (called forward output link) represent
links from (the first and last nodes of) the list segment to the outside, which the
analysis decides to maintain. Pictorially this can be viewed as:

....
Ob

Λ Λ
Of

Ib
Λ

If

When lists are cyclic, we will have Of =If and Ob=Ib.

Generalized ls. The formal definition of ls is given as follows. For a parameterized
symbolic heap Λ, ls Λ (If , Ob, Of , Ib) is the least predicate that holds iff

(If = Of ∧ Ib = Ob∧emp)∨ (∃x′, y′, ~z′. (Λ[If , Ob, x
′, y′, ~z′]) ∗ ls Λ (x′, y′, Of , Ib))

where x′, y′, ~z′ are chosen fresh. A list segment is empty, or it consists of a node
described by an instantiation of Λ and a tail satisfying ls Λ (x′, y′, Of , Ib). Note
that Λ is allowed to have free primed or non-primed variables. They are used to
express the links from the nodes that are targeted for the same address, such as
head-pointers common to every element of the list.

Examples. The generic list predicate can express a variety of data structures:

– When Λs is λ[x′, y′, z′, x′]. (x′ 7→ Node(Next : z′)) then the symbolic heap
ls Λs (x, y′, z, w′) describes a standard singly-linked list segment from x to
z. (Here note how we use the syntactic shorthand of including x′ twice in
the parameters instead of adding an equality to the predicate body.)

– A standard doubly-linked list segment is expressed by ls Λd (x, y, z, w) when
Λd is λ[x′, y′, z′, x′]. x′ 7→ DNode(Blink : y′, Flink : z′).

– If Λh is λ[x′, y′, z′, x′]. x′ 7→ HNode(Next : z′, Head : k), the symbolic heap
ls Λh (x, y′, nil, w′) expresses a nil-terminated singly-linked list x where each
element has a head pointer to location k.
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– Finally, when Λ is

λ[x′, y′, z′, x′].

∃v′, u′.x′ 7→ SDNode(Next : z′, Blink : u′, Flink : v′) ∗ ls Λd (v′, x′, x′, u′)

then ls Λ (x, y′, nil, w′) describes a singly-linked list of cyclic doubly-linked
lists where each singly-linked list node is the sentinel node of the cyclic
doubly-linked list.

Abstract domain. Let FV(X) be the non-primed variables occurring in X and
FV′(X) be the primed variables. Let close(H) be an operation which existentially
quantifies all the free primed variables in H (i.e. close(H) , ∃FV′(H). H). We
use � to mean semantic entailment (i.e. that any concrete state satisfying the
antecedent also satisfies the consequent). The meaning of a symbolic heap H

(i.e. set of concrete states H represents) is defined to be the set of states that
satisfy close(H) in the standard semantics [18]. Our analysis assumes a sound
theorem prover `, where H ` H ′ implies H � close(H ′). The abstract domain
D# of our analysis is given by: SH , {H | H 0 false} and D# , P(SH)>. That
is, the abstract domain is the powerset of symbolic heaps with the usual subset
order, extended with an additional greatest element > (indicating a memory-
safety violation such as a double dispose). Semantic entailment � can be lifted
to D# as follows: d � d′ if d′ is >, or if neither d nor d′ is > and any concrete
state that satisfies the (semantic) disjunction

∨
d also satisfies

∨
d′.

4 Shape analysis with spatial predicate discovery

As is standard, our shape analysis computes an invariant assertion for each pro-
gram point expressed by an element of the abstract domain. This computation
is accomplished via fixed-point iteration of an abstract post operator that ove-
approximates the concrete semantics of the program.

The abstract semantics consists of three phases: materialization, execution,
and canonicalization. That is, the abstract post [[C]] for some loop-free concrete
command C is given by the composition materializeC ; executeC ; canonicalize .
First, materializeC partially concretizes an abstract state into a set of abstract
states such that, in each, the footprint of C (that portion of the heap that C

may access) is concrete. Then, executeC is the pointwise lift of symbolically
executing each abstract state individually. Finally, canonicalize abstracts each
abstract state in effort to help the analysis find a fixed point.

The materialization and execution operations of [2, 5] are easily modified for
our setting. In contrast, the canonicalization operator for our abstract domain
significantly departs from [5] and forms the crux of our analysis. We describe it
in the remainder of this section.

4.1 Canonicalization

Canonicalization performs a form of over-approximation by soundly removing
some information from a given symbolic heap. It is defined by the rewriting
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Define spatial(Π ∧ Σ) to be Σ.

E=x′ ∧ H ; H[E/x′]
(Equality)

x′ 6∈ FV′(spatial(H))

E 6=x′ ∧ H ; H
(Disequality)

FV(If , Ib) = ∅ FV′(If , Ib) ∩ FV′(spatial(H)) = ∅

H ∗ ls Λ (If , Ob, Of , Ib) ; H ∗ true
(Junk 1)

FV(E) = ∅ FV′(E) ∩ FV′(spatial(H)) = ∅

H ∗ (E 7→ T (~f : ~E)) ; H ∗ true
(Junk 2)

H0 ` H1 ∗ ls Λ (If , Ob, x′, y′) ∧ If 6= x′ {x′, y′} ∩ FV′(spatial(H)) ⊆ {If , Ib}

H0 ∗ ls Λ (x′, y′, Of , Ib) ; H1 ∗ ls Λ (If , Ob, Of , Ib)
(Append Left)

H0 ` H1 ∗ ls Λ (x′, y′, Of , Ib) ∧ x′ 6= Of {x′, y′} ∩ FV′(spatial(H)) ⊆ {If , Ib}

H0 ∗ ls Λ (If , Ob, x′, y′) ; H1 ∗ ls Λ (If , Ob, Of , Ib)
(Append Right)

Λ ∈ Discover(H0) H0 ` H1 ∗ Λ[If , Ob, x
′

, y
′

, ~u′] ∗ Λ[x
′

, y
′

, Of , Ib, ~v′]

({x′, y′} ∪ ~u′ ∪ ~v′) ∩ FV
′(spatial(H)) ⊆ {If , Ib}

H0 ; H1 ∗ ls Λ (If , Ob, Of , Ib)
(Predicate Intro)

Fig. 3. Rules for Canonicalization.

rules (;) in Fig. 3. Canonicalization applies those rewriting rules to a given
symbolic heap according to a specific strategy until no rules apply; the resulting
symbolic heap is called canonical .

The Predicate Intro rule from Fig. 3 represents a novel aspect of our canon-
icalization procedure. It scrutinizes the linking structure of a symbolic heap to
infer a set of predicates Λ that describe subheaps that form a list. Then two
appropriately connected Λ nodes are removed from the symbolic heap and re-
placed with a ls Λ formula. The second step is accomplished by frame inference
(`, described below), and the first step is accomplished by predicate discovery
(Discover, described in Section 4.2).

The AppendLeft and AppendRight rules (for the two ends of a list) roll up
the inductive predicate, thereby building new lists by appending one list onto
another. Note that the appended lists may be single nodes (i.e. singleton lists).
Crucially, in each case we should be able to use the same parameterized predicate
Λ to describe both of the to-be-merged entities: The canonicalization rules build
homogeneous lists of Λ’s. Note that, as in predicate discovery and introduction,
frame inference is used in these rules to perform semantic decomposition of
formulæ. The variable side-conditions on the rules are necessary for precision
but not soundness; they prevent the rules from firing too often.

Frame inference. In practice the canonicalization procedure often fails when syn-
tactic rather than semantic methods are used to infer predicates. For this reason
we make use of a frame inferring theorem prover [2]— a prover for entailments
H ` H1 ∗ H0 where only H and H0 are given and H1 is inferred. This enables
canonicalization to identify instances of predicates Λ that can only be revealed by
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taking the semantics of symbolic heaps into account. Thus, taking the semantics
of formulæ into consideration when subtracting predicate instances from sym-
bolic heaps makes canonicalization stronger than it would be with pure syntactic
subtraction. While the aim of a frame inferring theorem prover is to find a de-
composition of H into H1 and H0 such that the entailment holds, frame inference
should just decompose the formula, not weaken it (or else frame inference could
always return H1 = true). So for a call to frame inference H ` H1 ∗ H0, we not
only require the entailment to hold, but also require that there exists a disjoint
extension of the heap satisfying H0, and the extended heap satisfies H .

4.2 Predicate discovery

We next describe our heuristic implementation of Discover, which is designed
to generate new predicates. The idea is to treat the spatial part of a symbolic
heap H as a graph, where each atomic ∗-conjunct in H becomes a node in the
graph; for instance, E 7→ T (~f : ~E) becomes a node E with outgoing edges ~E. The
algorithm starts by looking for nodes that are connected together by some fields,
in a way that they can in principle become the forward and/or backward links
of a list. Call these potential candidates root nodes, say E0 and E1. Once root
nodes are found, Discover(H) traverses the graph from E0 as well as from E1

simultaneously, and checks whether those two traverses can produce two disjoint
isomorphic subgraphs. The shape defined by these subparts is then generalized
to give the definition of the general pattern of their shape which provides the
definition of the newly discovered predicate Λ.

Fig. 4 shows the pseudo code for the discovery algorithm. The set I denotes
the disjoint subgraph isomorphism between the traverses of the two subgraphs
reachable from the chosen root nodes. The set C marks the already traversed
part and is used for cycle detection. The main purpose of sets I and C, however,
is to enable construction of the parameter list for the discovered predicate: these
sets tell us what the forward and backward links between the two traverses are.
For this reason C is not simply a set, but a multiset, i.e. if a pair (E0, E1) is
reachable from the root nodes in more than one way, then C keeps track of all of
them. Multiple occurrences of the same pair (E0, E1) in C may then contribute
multiple links to the parameter list.

Whenever a new pair of nodes E0, E1 in the graph is discovered, the algo-
rithm needs to check whether they actually correspond to ∗-conjuncts of the
same shape. The simplest solution would be to check for syntactic equality. Un-
fortunately, this makes the discovery heuristic rather weak, e.g. we would not
be able to discover the list of lists predicate from a list where the sublists are
alternating between proper list segments and singleton instances of the sublist
predicate. Instead of syntactic equality our algorithm therefore uses the theorem
prover to check that the two nodes have the same shape. If they are not syntac-
tically equal, then the theorem prover tries to generalize it via frame inference:

Σ ` P (E0, ~F0) ∗ P (E1, ~F1) ∗ Σ′ .
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discover(H : symbolic heap) : predicate =

let Σ = spatial(H)
let ΣΛ = emp

let I = ∅ : set of expression pairs

let C = ∅ : multiset of expression pairs

choose (E0, E1) ∈ {(E0, E1) | Σ = E0 7→f : E1 ∗ E1 7→f : E ∗ Σ′}

let W = {(E0, E1)} : multiset of expression pairs
do

choose (E0, E1) ∈ W
if E0 6= E1 then

if (E0, E1) /∈ C ∧ E0 /∈ rng(I) ∧ E1 /∈ dom(I) then

if Σ ` P (E0, ~F0) ∗ P (E1, ~F1) ∗ Σ′ then

W := W ∪ {(F0,0, F1,0), . . . , (F0,n, F1,n)}

I:= I ∪ {(E0, E1)}

Σ:= Σ′

ΣΛ:= ΣΛ ∗ P (E0, ~F0)
else fail

C:= C ∪ {(E0, E1)}
W := W − {(E0, E1)}

until W = ∅

let ~If , ~Of = [(E, F ) | (E, F ) ∈ C ∧ F ∈ rng(I)]

let ~Ib, ~Ob = [(E, F ) | (F, E) ∈ C ∧ E ∈ dom(I)]

let ~x′ = FV′(ΣΛ) − FV′( ~If , ~Of , ~Ib, ~Ob)

return (λ( ~If , ~Ob, ~Of , ~Ib). ∃~x′. ΣΛ)

Fig. 4. Predicate discovery algorithm, where Discover(H) = {P | P = discover(H)}

Here the predicate P (E, ~F ) stands for either a points-to predicate or a list seg-

ment ls Λ ( ~If , ~Ob, ~Of , ~Ib) where E ∈ ~If ∪ ~Ib and ~F = ~Of , ~Ob. The generalized

shape P (E, ~F ) then contributes to the spatial part of the discovered predicate.
Note that we must perform a bit of bookkeeping on the inputs and outputs to

the discovery procedure. Before applying discovery each expression in H should
be replaced by fresh primed variables. Later, after a predicate has been discov-
ered, we must then substitute each of these free primed variables in the predicate
with the expressions from the original H .

Example. Table 1 shows an example run of the discovery algorithm. The input
heap H consists of a doubly-linked list of doubly-linked sublists where the back-
ward link in the top-level list comes from the first node in the sublist. Note that
the discovery of the predicate describing the shape of the list would fail without
the use of frame inference.

4.3 Soundness

All canonicalization rules correspond to sound implications in separation logic,
i.e. we have that H � H ′ whenever H ; H ′, and this is the crucial fact un-
derlying soundness of canonicalization. The relation ; is nondeterministic, but
our implementation uses a specific reduction strategy. There is a progress mea-
sure for the rewrite rules, so ; is strongly normalizing. So, mathematically, we
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Input symbolic heap

H = x′

0
7→T (f : x′

1
, g : y′

0
) ∗ x′

1
7→T (f : x′

2
, g : y′

1
) ∗ x′

2
7→T (f : x′

3
, g : y′

2
) ∗

ls Λ1 (y′

0
, nil, z′

1
, nil) ∗ y′

1
7→S(f : nil, b : x′

0
) ∗ ls Λ1 (y′

2
, x′

1
, z′

2
, nil)

where Λ1 = (λ(x′

1
, x′

0
, x′

2
, x′

1
). x′

1
7→S(f : x′

2
, b : x′

0
))

#Iters W C I ΣΛ

0 {(x′

1
, x′

2
)} ∅ ∅ emp

1 {(x′

2
, x′

3
), (y′

1
, y′

2
)} {(x′

1
, x′

2
)} {(x′

1
, x′

2
)} x′

1
7→T (f : x′

2
, g : y′

1
)

2 {(y′

1
, y′

2
)} {(x′

1
, x′

2
), (x′

2
, x′

3
)} {(x′

1
, x′

2
)} x′

1
7→T (f : x′

2
, g : y′

1
)

3 {(x′

0
, x′

1
)}

{(x′

1
, x′

2
), (x′

2
, x′

3
),

(y′

1
, y′

2
)}

{(x′

1
, x′

2
), (y′

1
, y′

2
)}

x′

1
7→T (f : x′

2
, g : y′

1
) ∗

ls Λ1 (y′

1
, x′

0
, z′

1
, nil)

4 ∅
{(x′

1
, x′

2
), (x′

2
, x′

3
),

(y′

1
, y′

2
), (x′

0
, x′

1
)}

{(x′

1
, x′

2
), (y′

1
, y′

2
)}

x1 7→T (f : x′

2
, g : y′

1
) ∗

ls Λ1 (y′

1
, x′

0
, z′

1
, nil)

Discovered predicate

λ(x′

1
, x′

0
, x′

2
, x′

1
).∃y′

1
, z′

1
. x′

1
7→T (f : x′

2
, g : y′

1
) ∗ ls Λ1 (y′

1
, x′

0
, z′

1
, nil)

Table 1. Example run of discovery algorithm

assume a function abs : SH −→ SH, where abs(H) is always canonical. We ob-
tain canonicalize : D# −→ D#, by setting canonicalize(>) = >, and otherwise
canonicalize(d) = {abs(H) | H ∈ d}.

Lemma (Canonicalization Soundness). d � canonicalize(d).

5 Experimental results

In order to evaluate our analysis we have developed a preliminary implementa-
tion and applied it to a series of programs. This section describes the results of
these experiments.

Small challenge problems. Before applying our analysis to larger programs we
first successfully applied our tool to a set of challenge problems reminiscent of
those described in the introduction (e.g. “Creation of a cyclic doubly-linked list
of cyclic doubly-linked lists in which the inner link-type differs from the outer list
link-type”, “traversal of a singly-linked list of singly-linked list which reverses
each sublist twice and dereferences a dangling pointer after the second reversal
of a sublist, but only if sublists are non-empty”, etc). These challenge problems
were all less than 100 lines of code. We also intentionally inserted memory leaks
and faults into variants of these and other programs, which were also correctly
discovered.

IEEE 1394 (firewire). We applied our analysis to a number of data-structure
manipulating routines from the IEEE 1394 (firewire) device driver discussed in
Section 2. In our experiments, we expressed the routine’s calling context and
environment as non-deterministic C code that constructed representative data
structures (though in one case we needed to manually supply a precondition
expressed in separation logic due to performance difficulties).
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Our experimental results are reported in Table 2. Our analysis proved a num-
ber of driver routines to be memory-safe in a sequential execution environment
(see [6] for notes on how we can lift this analysis to a concurrent setting). Our
analysis also found several previously unknown errors in the routines. As an
example, one error (from t1394 CancelIrp, Table 2) involves a procedure that
takes a list pointed to by a structure contained in another list and commits a
memory-safety error when the nested list is empty (the presumption that the list
can never be empty turns out not to be justified). This bug has been confirmed
by the Windows kernel team and placed into the database of device driver bugs
to be repaired. Note that this driver has already been analyzed by Slam and
other analysis tools—These bugs were not previously found due to the limited
treatment of the heap in the other tools. Indeed, Slam assumes memory safety.

Routine LOC Space (Mb) Time (sec) Result

t1394 BusResetRoutine 718 322.44 663 X

t1394Diag CancelIrp 693 1.97 0.56 �

t1394Diag CancelIrpFix 697 263.45 724 X

t1394 GetAddressData 693 2.21 0.61 �

t1394 GetAddressDataFix 398 342.59 1036 X

t1394 SetAddressData 689 2.21 0.59 �

t1394 SetAddressDataFix 694 311.87 956 X

t1394Diag PnpRemoveDevice 1885 >2000.00 >9000 T/O

t1394Diag PnpRemoveDevice∗ 1801 369.87 785.43 X

Table 2. Experimental results with the analysis on a IEEE 1394 (firewire) Windows
device driver code. “X” indicates the proof of memory safety and memory-leak absence.
“�” indicates that a genuine memory-safety warning was reported. The lines of code
(LOC) column includes the struct declarations and the environment model code. The
t1394Diag PnpRemoveDevice∗ experiment used a precondition expressed in separation
logic rather than non-deterministic environment code. Experiments conducted on a
2.0GHz Intel Core Duo with 2GB RAM.

6 Conclusion

We have described a novel shape analysis designed to fill the gap between the
data structures supported in today’s shape analysis tools and those used in in-
dustrial systems-level software. The key idea behind this new analysis is the use
of a higher-order inductive predicate which, if given the appropriate parame-
ter, can summarize a variety of composite linear data structures. The analysis
is then defined over symbolic heaps which use the higher-order predicate when
instantiated with elements drawn from a cache of non-recursive predicates. Our
abstraction procedure incorporates a method of synthesizing new non-recursive
predicates from an examination of the current symbolic heap. These new pred-
icates are immediately added into the cache of non-recursive predicates, thus
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triggering new rewrites in the analysis’ abstraction procedure. These new predi-
cates are expressed as the combination of old predicates, including instantiations
of the higher-order predicates, thus allowing us to express complex composite
structures. The adaptive abilities of our new shape analysis have enabled us,
for the first time, to successfully apply a fully-automatic shape analysis to the
source code of a device driver.
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