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Abstract. We present a framework for defining abstract interpreters for
liveness properties, in particular program termination. The framework
makes use of the theory of metric spaces to define a concrete seman-
tics, relates this semantics with the usual order-theoretic semantics of
abstract interpretation, and identifies a set of conditions for determining
when an abstract interpreter is sound for analysing liveness properties.
Our soundness proof of the framework is based on a novel relationship
between unique fixpoints in metric semantics and post-fixpoints com-
puted by abstract interpreters. We illustrate the power of the framework
by providing an instance that can automatically prove the termination
of programs with general (not necessarily tail) recursion.

1 Introduction

Recently, there has been great interest in the automatic verification of program
termination. Quite a few techniques for automatically verifying termination or
general liveness properties of imperative programs have been proposed [1, 2, 4–
8,16–18], some of which have led to successful tools, such as Terminator [7].

In this paper, we step back from all these technological advances, and re-
examine a theoretical foundation of automatic techniques for verifying termi-
nation or liveness properties of programs. Most of the proposed techniques are
based on abstracting programs (in addition to clever results on well-founded
relations such as [3, 19]), but these abstraction methods are justified by rather
ad-hoc arguments [4]. This is in contrast with the soundness of abstraction for
safety properties, which follows a standard framework of abstract interpreta-
tion [10, 11]. Our aim is to develop a theory that provides a similar systematic
answer for when an abstraction is sound for proving liveness properties. By doing
so, we want to relieve the burden of inventing a new way of proving soundness
from designers of liveness analysis.

Our main result is a new framework for developing sound precise abstract
interpreters for liveness properties of programs with general recursion. Techni-
cally, the key feature of our framework is to use a concrete semantics based on
metric space [13, 14, 20] and to spell out a condition under which this concrete
metric-space semantics can be related to a usual order-theoretic semantics of ab-
stract interpretation. We illustrate the power of the framework by providing an
instance that can automatically prove the termination of recursive procedures.



Our framework uses a metric-space semantics, because such a semantics jus-
tifies a novel strategy for computing approximate fixpoints during abstract in-
terpretation for liveness. Imagine that we want to develop a sound termination
analysis. Our analysis needs to overapproximate the set of all computation traces
of a given program and to check whether the overapproximation does not include
an infinite trace. In the standard order-theoretic setting, the set of computation
traces of a program is defined in terms of the greatest fixpoint of some function
F [9], but overapproximating the greatest fixpoint of F precisely wrt. termina-
tion is difficult. For instance, a post-fixpoint x of F (i.e., F (x) v x), which is
normally computed by an abstract interpreter for safety, does not overapprox-
imate the greatest fixpoint in general. Hence, fixpoint-computation strategies
from safety analyses cannot be used for termination analysis without changes.
Alternatively, one might consider the following sequence converging to the great-
est fixpoint of F (under the assumption of the continuity of F ):

> w F (>) w F 2(>) w F 3(>) w . . .

and want to compute an overapproximating sequence {xn} such that Fn(>) v
xn for all n, and xm = xm+1 for some m. In this case, a fixpoint-computation
strategy finds this xm, and returns it as a result. The problem here is that
the strategy is very imprecise; it cannot prove termination of most nontrivial
programs (especially those whose time complexity is not constant).

The metric-space semantics of our framework resolves this overapproximation
issue. It defines the set of computation traces of a program in terms of a unique
fixpoint of a function G, and then it guarantees that this unique fixpoint can be
overapproximated by a post-fixpoint of G, as long as the post-fixpoint lives in a
restricted semantic universe, such as the one with the closed sets of traces.3 Thus,
when developing a sound termination analysis in our framework, one can re-use
fixpoint-computation strategies from existing safety analyses (which compute
post-fixpoints), after adjusting the strategies so that computed post-fixpoints
live in the restricted universe.

Using a metric-space semantics has another benefit that our framework can
hide call stacks, which appear in a small-step operational semantics of recur-
sive procedures. Hence, a user of the framework does not need to worry about
abstracting call stacks [15], and can focus on the problem of proving a desired
liveness property.

Related Work Among the automatic techniques for proving program termi-
nation cited already, we discuss two techniques further [4, 8]. The first is our
previous work [4], where we proved the soundness of a termination analysis,
by directly relating greatest fixpoints in the concrete trace semantics with post-
fixpoints computed by the termination analysis. Our proof relied on the fact that
the language contained only tail recursions so that greatest fixpoints could be

3 A trace set is closed iff all Cauchy sequences in the set have limits in the set. We
will explain it further in the main part of the paper.
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Fig. 1. Programming Language with General Recursion

rephrased in terms of least fixpoints and infinite iterations. This rewriting is not
applicable if a programming language includes non-tail recursions. In contrast,
the framework of this paper can handle programs with general recursion.

The second technique is a termination analysis for recursive procedures in
[8]. This technique works by replacing each recursive function call by a non-
deterministic choice between entering a procedure body (in the case that the
procedure does not terminate) or the application of a summary of the procedure
(in the case that the procedure does terminate). The instance of our framework
in this paper can be seen as a modified version of this technique where pro-
gram transformations are done on the fly and termination proofs and procedure
summarizations are done at the same time.

Recently Cousot et al. [12] defined bi-inductive domains to account for both
infinite and finite program properties. They combine a domain for finite be-
haviours with another for infinite behaviours, and produce a new domain whose
order is defined using the orders from the two underlying domains. A least fix-
point on this new domain can overapproximate the union of the least fixpoint
in the finite domain and the greatest fixpoint in the infinite domain. However,
the semantic functions may not be monotone with respect to the order of the
new domain, and so cannot be computed by the usual fixpoint iteration. This
limitation means that we once again have to reason about least and greatest
fixpoints, a situation that we avoid in this paper by using metric spaces.

2 Programming Language

Let PName be the set of procedures names, ranged over by f, g, and let Var be
a finite set of program variables x, y that contain rational numbers in Q. We
consider a simple imperative language with parameterless procedures f, g and
rational variables x, y. The grammar of the language is given in Fig. 1, where
we use r to denote a rational constant.

Most commands in our language are standard. The only unusual case is the
definition of recursive procedure fix f. c. It defines a recursive procedure f whose
body is c, and then it immediately calls the defined procedure. Note that while
loops can be expressed in this language using recursion. We write Γ ` c for a
finite subset Γ of PName, where Γ includes all the free function names in c.



3 Framework

In this section we describe our framework for developing a sound abstract inter-
preter for liveness properties. Throughout the paper, we will use N for the set
of positive integers.

3.1 Review on Metric Spaces

We start with a brief review on metric spaces. For further information on metric
semantics, we refer the reader to the standard book and survey on this topic [13,
20].

A metric space is a non-empty set X with a function dX : X×X → [0,∞),
called metric, that satisfies the three conditions below:

1. Identity of indiscernible: ∀x, y ∈ X. dX(x, y) = 0 ⇐⇒ x = y.
2. Symmetry: ∀x, y ∈ X. dX(x, y) = dX(y, x).
3. Triangular inequality: ∀x, y, z ∈ X. dX(x, z) ≤ dX(x, y) + dX(y, z).

Consider a sequence {xn}n∈N in a metric space (X, dX). The sequence {xn}n∈N
is Cauchy iff for all real numbers ε > 0, there exists some N ∈ N such that
∀m,n ≥ N. dX(xm, xn) ≤ ε. The sequence {xn}n∈N converges to x in X iff for
all real numbers ε > 0, there exists an N ∈ N such that ∀m ≥ N. dX(xm, x) ≤ ε.

A metric space X is complete iff every Cauchy sequence converges to some
element in X. In this paper, we will consider only complete metric spaces.

Let (X, dX) and (Y, dY ) be metric spaces and let α be a positive real number.
A function F : X → Y is non-expansive iff for all x, x′ ∈ X, we have that
dY (F (x), F (x′)) ≤ dX(x, x′). It is α-contractive iff dY (F (x), F (x′)) ≤ α ×
dX(x, x′) holds for all x, x′ ∈ X. Intuitively, the non-expansiveness means that
F does not increase the distance between elements, and the contractiveness says
that F actually decreases the distance.

In this paper, we use the well-known Banach’s unique fixpoint theorem:

Theorem 1 (Banach’s Unique Fixpoint Theorem). Let (X, dX) be a met-
ric space. If X is complete and a function F : X → X is α-contractive for some
0 ≤ α < 1, the function F has the unique fixpoint. Furthermore, this unique
fixpoint can be obtained as follows: first pick an arbitrary x1 in X, then con-
struct the sequence {xn}n∈N with xn+1 = F (xn) and finally take the limit of this
sequence.4

We will denote the unique fixpoint of F by ufix(F ).

3.2 Concrete Metric-Space Semantics

Our framework consists of two parts. The first part is a concrete semantics
based on metric spaces. It is parameterized by the data below, which should be
provided by a user of the framework:
4 This limit always exists, because the constructed sequence is Cauchy.



1. A pre-ordered complete metric space (D, d,v,>) with the biggest element >.
We require that for all Cauchy sequences {xn}n∈N in D and all x ∈ D,

(∀n ∈ N. xn v x) =⇒ lim
n→∞

xn v x. (1)

Elements of D can be understood as semantic counterparts of syntactic com-
mands; our concrete semantics interprets a command c as an element in D.

2. Monotone non-expansive functions seq, asgnx,e and ifb for all assignments
x:=e and all boolean conditions b:

seq : D ×D → D, asgnx,e : D, ifb : D ×D → D.

These functions define the meaning of the sequencing, assignment and con-
ditional statements in our language.

3. A function proc : PName → D → D for modelling the execution of proce-
dures. We write procf instead of proc(f), and require that procf (−) be a
monotone 1

2 -contractive function for all f ∈ PName. Intuitively, an input x
to procf (−) denotes all the possible computations by the body of the pro-
cedure f , and procf (x) extends each of these computations with steps taken
immediately before or after running the procedure body during the call of
f .

4. A subset LivProperty of D that is downward closed with respect to v:

x v y ∧ y ∈ LivProperty =⇒ x ∈ LivProperty.

This subset consists of elements in D (which are semantic counterparts of
commands) satisfying a desired liveness property, such as termination.

Note that the semantic domain D here has both pre-order and metric-space
structures and that the semantic operators respect both structures by being
monotone and non-expansive. These two structures are related by the require-
ment (1) on v and Cauchy sequences. One important consequence of the rela-
tionship is the lemma below, and it will play a crucial role for the soundness of
our framework:

Lemma 1. For all 1
2 -contractive monotone functions F : D → D, a post-fixpoint

of F overapproximates the unique fixpoint of F . That is, if x satisfies F (x) v x,
we have that ufixF v x, where ufixF is the unique fixpoint of F .

Proof. Let x be a post-fixpoint of F . By the Banach fixpoint theorem, we know
that the unique fixpoint ufixF of F exists and is also the limit of the following
Cauchy sequence:

x, F (x), F 2(x), F 3(x), . . .

Since x is a post-fixpoint of F (i.e., F (x) v x) and F is monotone,

x w F (x) w F 2(x) w F 3(x) w F 4(x) . . .

That is, Fn(x) v x for all n. Thus, the limit ufixF of {Fn(x)}n∈N also satisfies
ufix F v x by the requirement (1) of our framework. We have just proved the
lemma. ut



[[Γ ` c]] : [[Γ ]] → D
[[Γ ` f()]]η = η(f) [[Γ ` c1; c2]]η = seq([[Γ ` c1]]η, [[Γ ` c2]]η)

[[Γ `x:=e]]η = asgnx,e [[Γ ` if b c1 c2]]η = ifb([[Γ ` c1]]η, [[Γ ` c2]]η)
[[Γ ` fix f.c]]η = ufix F (where F (x) = procf ([[Γ, f ` c]]η[f 7→ x]))

Fig. 2. Concrete Semantics defined by the Framework

The domain D and the operators above give rise to a metric-space semantics
of programs. Let [[Γ ]] be the domain for procedure environments (i.e., Πf∈ΓD),
pre-ordered pointwise and given the product metric, where the distance between
η and η′ in Πf∈ΓD is given by maxf∈Γ d(η(f), η′(f)). The semantics interprets
Γ ` c as a non-expansive map from [[Γ ]] to D, and it is given in Fig. 2.

Note that the semantics defines fix f.c as the unique fixpoint of a function
F modelling the meaning of the procedure body c. To ensure the existence of
the fixpoint here, the semantics maintains that all commands denote only non-
expansive functions. Then, it defines the function F in terms of non-expansive
[[Γ, f ` c]] and 1/2-contractive procf , and ensures that F is 1/2-contractive.
Hence, by the Banach fixpoint theorem, F has the unique fixpoint.

Lemma 2. For all commands Γ ` c, [[Γ ` c]] is a well-defined non-expansive
function from [[Γ ]] to D. Furthermore, [[Γ ` c]] is monotone.

The use of metric spaces means that in order to design an instance of our
generic framework one now needs to prove certain properties of the concrete
semantics. Firstly, one has to prove that the semantic domain D for the mean-
ing of commands is a complete metric space, in addition to having a pre-order
structure. Secondly, one needs to show that all the semantic operators are non-
expansive.

These new proof obligations often make it impossible to re-use an existing
concrete semantics. For instance, a naive trace semantics, such as the one in
[4], uses the powerset of traces as a semantic universe for commands, but this
powerset cannot be used in our framework. This is because it does not form a
complete metric space, when it is given a natural notion of distance function.
In order to use the framework in this paper, one has to modify the powerset of
traces, so that it has a good metric-theoretic structure, as will be done in Sec. 4.

However, these obligations come with a reward—the soundness of an order-
theoretic abstract semantics, which is to be presented next.

3.3 Abstract Semantics

The second part of our framework is the abstract semantics. For a function
f : Xn → X and a subset X0 of X, we say that f can be restricted to X0 if for
all x ∈ Xn

0 , we have that f(x) ∈ X0. Using this terminology, we describe the
parameters of our abstract semantics:



1. A set A with a partition Ap ] At = A. The elements of A provide abstract
meanings of commands. We call elements in At total and those in Ap partial.
The set A should come with the additional data below.
(a) Distinguished elements ⊥ and > in A such that > ∈ At.
(b) An algorithm checktot that answers the membership to At soundly but

not necessarily in a complete way. That is, checktot(A) = true means
that A ∈ At, but checktot(A) 6= true does not mean that A 6∈ At.

(c) A concretization function γ : At → D, such that γ(>) = >. Note that
the domain of γ is At, not A.

2. Functions seq], asgn]
x,e and if]

b for all assignments x:=e and booleans b:

seq] : A×A → A, asgn]

x,e : A, if]

b : A×A → A.

These functions give the abstract meaning of the sequencing, assignment and
conditional statements in our language. We require that these functions can
be restricted to At, and that they overapproximate their concrete counter-
parts:

∀A0, A1 ∈ At. seq(γ(A0), γ(A1)) v γ(seq](A0, A1))
∧ asgnx,e v γ(asgn]

x,e)
∧ ifb(γ(A0), γ(A1)) v γ(if]

b(A0, A1)).

Note that this soundness condition is only relevant for total elements in At.
3. A function proc] : PName → A → A for modelling the execution of proce-

dures. For all f ∈ PName, we require that proc]

f can be restricted to At, and
that it should overapproximate procf :

∀f ∈ PName. ∀A ∈ At. procf (γ(A)) v γ(proc]

f (A)).

4. A predicate satisfyLiv] on At such that

∀A ∈ At. satisfyLiv](A) = true =⇒ γ(A) ∈ LivProperty.

Intuitively, satisfyLiv] identifies abstract elements denoting commands
with a desired liveness property.

5. A widening operator O : A × A → A [10]. This operator needs to satisfy
three conditions. Firstly, it can be restricted to a map from At. Secondly, it
overapproximates an upper bound of its right argument: γ(A2) v γ(A1OA2)
for all A1, A2 ∈ At. Finally, it turns any sequences in A into one with a stable
element. That is, for all {An}n∈N in A, the widened sequence {A′n}n∈N with
A′1 = A1 and A′n+1 = AnOAn+1 contains an index m with A′m = A′m+1.

Note that among the abstract elements in A, only total ones in At have
meanings in the concrete domain D via γ. That is, elements in Ap need not be
concretizable in D. The absence of the concretization relationship between Ap

and D is intended, because it allows an analysis designer to use a flexible fixpoint
strategy during abstract interpretation. Concretely, even though an abstract
interpreter aims to compute a value in D (more precisely, {γ(A) | A ∈ At})



[[Γ ` c]]] : [[Γ ]]] → A
[[Γ ` f()]]]η] = η](f) [[Γ ` c1; c2]]

]η] = seq]([[Γ ` c1]]
]η], [[Γ ` c2]]

]η])
[[Γ ` x:=e]]]η] = asgn]

x,e [[Γ ` if b c1 c2]]
]η] = if]

b([[Γ ` c2]]
]η], [[Γ ` c2]]

]η])
[[Γ ` fix f.c]]]η] = dwidenfix F e (where F (A) = proc]

f ([[Γ, f ` c]]]η][f 7→ A]))

Fig. 3. Abstract Semantics defined by the Framework

at the end of a fixpoint computation, it can temporarily step outside of D and
use elements in Ap during the computation, as long as its final result is an
element in D. We found this flexibility very useful for achieving high precision
in our framework; in order to have a complete metric-space structure, a concrete
domain D often does not include certain semantic elements, such as the empty
set, that could serve as the meaning of intermediate results of a precise fixpoint-
computation strategy of an abstract interpreter.

The parameters given above are enough to induce an abstract semantics of
programs, but to do so, we need to define two operators using the parameters.
The first operator is the ceiling d−e, which replaces partial elements by >:

dAe = if (checktot(A) = true) then A else >.

The second is the widened fixpoint operator widenfix. Given a function F : A →
A, the operator constructs the sequence {An}n∈N with A1 = ⊥ and An+1 =
AnOF (An). Then, it returns the first Am with Am = Am+1. The condition on
O ensures that such Am exists.

Let [[Γ ]]] be the abstract domain for procedure environments (i.e., [[Γ ]]] =
Πf∈ΓA). The abstract semantics interprets programs Γ ` c as functions from
[[Γ ]]] to A. The defining clauses in the semantics are given in Fig. 3.

The semantics in Fig. 3 are mostly standard, but the abstract semantics
of fix f.c deserves attention. After computing a widened fixpoint, [[Γ ` fix f.c]]]

checks whether the fixpoint is a total element. If not, [[Γ ` fix f.c]]] approximates
the fixpoint by >, which should be total by the requirement of the framework.
This additional step and the requirements of our framework ensure one important
property of the semantics:

Lemma 3. For all Γ ` c and η] ∈ [[Γ ]]], if η](f) ∈ At for every f ∈ Γ , we have
that [[Γ ` c]]]η] ∈ At.

Intuitively, the lemma says that [[Γ ` c]]] can be restricted to total elements.
Using this lemma, we express the soundness of the abstract semantics:

∀η] ∈ [[Γ ]]]. (∀f ∈ Γ. η](f) ∈ At) =⇒ [[Γ ` c]]γ(η]) v γ([[Γ ` c]]]η]). (2)

In γ(η]) above, we use the componentwise extension of γ to procedure environ-
ments. Note that although γ is not defined on partial elements, the soundness
claim above is well-formed, because Lemma 3 ensures that [[Γ ` c]]]η] is total.
We prove the soundness in the next theorem:



Theorem 2. The abstract semantics is sound. That is, (2) holds for all Γ ` c.

Proof (Sketch). Our proof is by induction on the structure of c. Here we focus
on the most interesting case that c ≡ fix f.c1, where we can see the interaction
between the metric structure and the pre-order structure of D. Let F : D→D
and G : A→A be functions defined by

F (x) = procf ([[Γ, f ` c1]]γ(η])[f 7→ x]), G(A) = proc]

f ([[Γ, f ` c1]]]η][f 7→ A]).

We need to prove that

(ufix F ) v γ(dwidenfix Ge). (3)

If checktot(widenfix G) 6= true, then γ(dwidenfix Ge) = γ(>) = >. Thus, (3)
holds. Suppose that checktot(widenfix G) = true, which implies that widenfix G ∈
At. In this case, it is sufficient to prove that γ(widenfix G) is a post-fixpoint of
F . Because then, the inequality (3) follows from Lemma 1. By the definition of
widenfix, (widenfix G) = (widenfix G) OG(widenfix G). Because of the condition
on O, this implies that

γ(G(widenfix G)) v γ(widenfix G). (4)

The LHS of (4) is greater than or equal to F (γ(widenfix G)) as shown below:

γ(G(widenfix G)) = γ
(
proc]

f [[Γ, f ` c1]]]η][f 7→ (widenfix G)]
))

w procf

(
γ
(
[[Γ, f ` c1]]]η][f 7→ (widenfix G)]

))
w procf

(
[[Γ, f ` c1]]γ(η])[f 7→ γ(widenfix G)]

)
= F (γ(widenfix G)).

(5)

The first inequality holds because proc] overapproximates proc. The second fol-
lows from the induction hypothesis and the monotonicity of procf . The inequal-
ities in (4) and (5) imply the desired F (γ(widenfix G)) v γ(widenfix G). ut

3.4 Generic Analysis

Let η]
∗ be the unique abstract environment for the empty context Γ = ∅.

Our generic analysis takes a command c with no free procedures, and com-
putes the function: LivAnalysis(c) = satisfyLiv]([[c]]]η]

∗). The result is a
boolean value, indicating whether c satisfies a liveness property specified by
LivProperty.

Theorem 3. Let η∗ be the unique concrete environment for the empty context
Γ = ∅. Then, for all commands c with no free procedures, if LivAnalysis(c) =
true, we have that [[c]]η∗ ∈ LivProperty.

4 Instance of the Framework

In this section, we instantiate the framework and define a sound abstract inter-
preter for proving the termination of programs with general recursion.



4.1 Concrete Semantics

Our instance of concrete semantics of the framework interprets commands as
sets of traces satisfying certain healthiness conditions. The notion of traces here
is slightly unusual, because the traces are sequences of tagged states and they
need to meet our well-formedness conditions. In this section, we will explain
the meanings of tagged states and traces, and provide parameters necessary for
instantiating a concrete semantics from the framework.

Tagged States, Pre-traces and Traces We start with the definition of traces.
A state is a map from program variables to rational numbers, and a tagged
state is a pair of state and tag:

Tag = {none}∪PName×{call , ret}, State = Var → Q, tState = State×Tag.

The tag of a tagged state indicates whether the state is the initial or the final
state of a procedure call, or just a normal one not related to a call. The (f, call)
and (f, ret) tags mean that the state is, respectively, the initial and the final
state of the call f(), and the none tag indicates that the state is a normal state,
i.e., it is neither the initial nor the final state of a procedure call. We use symbol
σ to denote elements in tState, and use s to denote elements in State.

A pre-trace τ is a nonempty finite or infinite sequence of tagged states,
such that τ starts with a none-tagged state and if it is finite, it ends with a
none-tagged state.

nState = State× {none}, preTrace = nState(tState∗)nState ∪ nState(tState∞),

where tState∞ means the set of (countably) infinite sequences of tagged states.
A trace τ is a pre-trace that satisfies well-formedness conditions. To define

these conditions, we consider the sets W,O of sequences of tagged states that
are the least fixpoints of the below equations:

W = nState∗ ∪ WW ∪
(⋃

f∈PName,s,s1∈State{(s, (f, call))}W {(s1, (f, ret))}
)
,

O = W ∪ OO ∪
(⋃

f∈PName,s∈State{(s, (f, call))}O
)
.

Intuitively, W describes sequences where every procedure call has a matching
return and calls and returns are well-bracketed. The other set O defines a bigger
set; in each trace in O, some procedure calls might not have matching returns,
but calls and returns should be well-bracketed.

Definition 1. A pre-trace τ is a trace iff τ is finite and belongs to W, or τ
is infinite and all of its finite prefixes are in O. We write Trace for the set of
traces.

For τ ∈ Trace and n ∈ N ∪ {∞}, the projection τ [n] is the n-prefix of τ ;
in case that |τ | < n, τ [n] = τ .5 Using this projection, we define the distance
function on traces as follows:

d(τ, τ ′) = 2−max{n | τ [n]=τ ′[n]} (where we regard 2−∞ = 0).
5 τ [n] does not necessarily belong to Trace or even to preTrace, but this will not cause

problems for our results.



seq(T, T ′) = {τστ ′ | (τσ ∈T ∩ tState+) ∧ (στ ′ ∈T ′) } ∪ (T ∩ tState∞)
asgnx,e = {σσ′ | σ, σ′ ∈ nState ∧ first(σ′)= first(σ)[x 7→ [[e]]first(σ)]}

ifb(T0, T1) = {στ | (στ ∈T0 ∧ [[b]](first(σ))= true) ∨ (στ ∈T1 ∧ [[b]](first(σ))= false)}
procf (T ) = {σσ(f,call)τ | στ ∈ (T ∩ tState∞)} ∪ {σσ(f,call)σ(f,ret)σ | σ ∈ T}

∪ {σσ(f,call)τσ
(f,ret)
1 σ1 | στσ1 ∈ (T ∩ tState+)}

Here first(σ) is the first component of the tagged state σ, and σ(f,call) and σ(f,ret)

are, respectively, (first(σ), (f, call)) and (first(σ), (f, ret)). And [[b]] and [[e]] are the stan-
dard interpretation of booleans and expressions as functions from (untagged) states to
{true, false} and Q.

Fig. 4. Semantic Operators for the Instance Concrete Semantics

Lemma 4. (Trace, d) is a complete metric space.

Full Closed Sets of Well-formed Traces A subset T0 ⊆ Trace of traces is
closed if for all Cauchy sequences of traces in T0, their limits belong to T0 as
well. A trace set T0 ⊆ Trace is full if for every none-tagged state σ ∈ nState,
there is a trace τ ∈ T0 starting with σ.

The semantic domain (D, d) for interpreting commands in our concrete se-
mantics is the set Pfcl(Trace) of full closed sets of traces:

D = Pfcl(Trace), d†(T, T ′) = 2−max{n |T [n]=T ′[n]}.

Here T [n] is the result of taking the prefix of every trace in T (i.e., T = {τ [n] |
τ ∈ T}). The closedness ensures that the d† just defined satisfies the axioms for
being a complete metric space. Also, the condition about being full allows us to
meet the non-expansiveness requirement for seq in our framework.

Our domain D is ordered by the subset relation ⊆. With respect to this ⊆
order, D has the top element, which is the set Trace of all traces.

Lemma 5. (D, d†) is a complete metric space. Furthermore, the requirement (1)
of our framework in Sec. 3 holds for ⊆ and this metric space.

Semantic Operators So far we have defined the semantic domain for com-
mands, the first required parameter of the framework. The next four param-
eters are operators working on this domain, and we describe them in Fig. 4.
In the figure, the sequencing operator seq concatenates traces from T and T ′,
while treating infinite traces from T specially. And the operator procf duplicates
initial and final states, and tags the duplicated states with information about
procedure call and return.

Lemma 6. All the operators are well-defined, and satisfy the monotonicity and
non-expansiveness or 1

2 -contractiveness requirements of our framework.



E ::= r | x | ‘x | x′ | E + E | r×E P ::= E = E | E 6= E | E < E | E≤E
ϕ ::= P | true | ϕ ∧ ϕ | false | ϕ ∨ ϕ | ∃x′. ϕ

Fig. 5. Syntax for Linear Constraints

Liveness Property The only remaining parameter is LivProperty, which
describes a desired liveness property on trace sets. Here we use a property such
that if we restrict our attention to T = [[c]]η of some command c with no free
procedure names, the membership of T to this property implies that T consists
of finite traces only.

We say that a trace τ includes an infinite subsequence of open calls iff there
exists {τnσn}n∈N such that

1. τ = τ1σ1τ2σ2τ3σ3 . . . τnσn . . .,
2. for all i ∈ N, there exists some f ∈ PName such that second(σi) = (f, call),
3. for all i ∈ N, the corresponding return for σi does not appear in τ after σi,

i.e., the return does not occur in the sequence τi+1σi+1τi+2σi+2 . . ..

We specify a desired liveness property of (semantic) commands, using the follow-
ing subset LivProperty of D: T is in LivProperty iff no traces in T include
an infinite subsequence of open calls.

4.2 Abstract Semantics with Linear Ranking Relations

Our abstract semantics uses formulas ϕ for linear constraints. The syntax of
these formulas is given in Fig. 5. Note that a formula ϕ can use three kinds
of variables: normal program variables x; pre-primed ones ‘x for denoting the
value of x before running a program; primed ones x′ that can be existentially
quantified. We assume that the set Var of normal variables and the set ‘Var of
pre-primed variables are finite and that there is an one-to-one correspondence
between Var and ‘Var, which maps x to ‘x.

Let Form be the set of formulas ϕ that do not contain free primed variables.
Each ϕ ∈ Form defines a relation from (untagged) states ‘s with pre-primed
variables (i.e., ‘s ∈ ‘Var → Q) to (untagged) states s with normal variables:

(‘s, s) |= ϕ,

where |= is the standard satisfaction relation from the first-order logic. Let TForm
be a subset of Form consisting of total formulas in the sense below:

TForm = {ϕ ∈ Form | ∀‘s ∈ (‘Var → Q). ∃s ∈ (Var → Q). (‘s, s) |= ϕ}.

The abstract semantics in this section assumes a sound but possibly incom-
plete theorem prover that can answer queries of the two kinds: ϕ ` ψ and
` ∀ ‘X.∃X.ϕ. Here ‘X and X are the sets of free pre-primed variables and



normal variables in ϕ. Note that by asking the query of the second kind, we can
use a prover to check, soundly, whether a formula ϕ belongs to TForm.

Using what we have defined or assumed so far, we define an abstract domain
A and its subset At of total abstract elements as follows:

A = Form×Form×Form, At = TForm×Form×Form, Ap = A−At.

The element (false, false, false) in A serves the role of ⊥, and (true, true, true) the
role of >. The algorithm for soundly checking the totality of abstract elements
is defined using the assumed prover:

checktot(A) = if ( ` ∀ ‘X.∃X.A1) then true else unknown

where Ai is the i-th component of A and ‘X and X are the sets of free pre-primed
and free normal variables in A1.

Next, we define the concretization map γ, which will provide the intuitive
meaning of abstract elements in A. To do this, we need to introduce some ad-
ditional notations. Firstly, for a (untagged) state s, we write ‘s for the state ob-
tained from s by renaming normal variables by corresponding pre-primed ones.
Secondly, we write σ ∈ τ to mean that σ is a tagged state appearing in τ , and
iscall(σ) to mean that the tag for σ is a procedure call:

iscall(σ) ⇐⇒ ∃f ∈ PName. (second(σ) = (f, call)).

Finally, for all tagged states σ1, σ2 ∈ τ , we say that σ1 is an open call with
respect to σ2 in τ , denoted open(σ1, σ2, τ), if both σ1 and σ2 are tagged with
procedure calls, σ1 appears strictly before σ2 in τ , but the corresponding return
for σ1 does not appear before σ2. The concretization is defined as follows:

γ(A) = {τ ∈Trace | (τ ∈ tState+ =⇒ (‘first(first(τ)), first(last(τ))) |= A1) ∧
(∀σ ∈ τ. iscall(σ) =⇒ (‘first(first(τ)), first(σ)) |= A2) ∧
(∀σ1, σ2. open(σ1, σ2, τ) =⇒ (‘first(σ1), first(σ2)) |= A3)}.

Here Ai is the i-th component of A. According to this concretization, A1 relates
the initial and final states of a trace τ , and A2 and A3 describe the relationship
between certain intermediate states in τ ; A2 relates the initial state and a call
state in τ , and A3 relates states at two open calls in τ . Tracking the relationship
between intermediate states is crucial for the precision of our analysis. If the
abstract domain included only the first component (as in our previous work [4]),
the concretizations of its elements would contain traces violating LivProperty,
or they would not belong to D.

Lemma 7. For every A ∈ At, the set γ(A) is in D, i.e., it is full and closed.

Abstract Operators For ϕ,ψ ∈ Form, let ϕ;ψ be their relational composition
defined by

ϕ;ψ ≡ ∃Y ′.(ϕ[Y ′/X] ∧ ψ[Y ′/‘X]).



seq](A, A′) = ( A1; A
′
1, A2 ∨ (A1; A

′
2), A3 ∨A′

3 )
asgn]

x,e = ( eqVar−{x} ∧ (e[‘x/x] = x), false, false )

if]

b(A, A′) = let b1 = preprime(b) and b2 = preprime(neg(b))
in ( (b1 ∧A1) ∨ (b2 ∧A′

1), (b1 ∧A2) ∨ (b2 ∧A′
2), A3 ∨A′

3 )
proc]

f (A) = ( A1, eqVar ∨A2, A2 ∨A3 )

Here preprime(b) renames all the variables with the corresponding pre-primed variables,
and neg(b) is the negation of b where ¬ is removed by being pushed all the way down to
atomic predicates using logical equivalences. For instance, neg(x=y∨z<3) is x6=y∧3≤z.

Fig. 6. Semantic Operators for the Instance Abstract Semantics

Here X and ‘X respectively contain normal variables in ϕ and pre-primed vari-
ables in ψ, Y ′ is the set of fresh primed variables, and the cardinalities of these
three sets are the same so that the substitution in ϕ;ψ is well-defined. Also, for
a set X of normal variables, define the formula eqX to be the equality on the
variables in X and the corresponding pre-primed ones: eqX ≡

∧
x∈X(‘x = x).

Using these notations, we present abstract operators in Fig. 6. Note that
the abstract sequencing seq](A,A′) is not simply the relational composition of
formulas; it also describes relationships between intermediate states of a trace.
For instance, the second component A2 ∨ (A1;A′2) relates the initial state of a
trace with states at procedure call in the trace. The first disjunct A2 considers
the case that a call state is from the first argument A of the sequencing, and the
second A1;A′2 is for the other case that a call is from the second argument A′.

Lemma 8. The operators in Fig. 6 meet all the requirements of our framework.

Widening Operator Our widening operator is parameterized by three ele-
ments. The first is a positive integer k, which bounds the number of outermost
disjuncts in formulas appearing in the results of widening. We will write Ok to
make this parameterization explicit. The second is a function lower that over-
approximates a formula ϕ in Form by the conjunction of lower bounds on some
pre-primed variables (i.e., the conjunction of formulas of the form r ≤ ‘x for
some pre-primed variable ‘x and rational number r):

lower(ϕ) = (r1 ≤ ‘x1 ∧ r2 ≤ ‘x2 ∧ . . . rn ≤ ‘xn)

such that ϕ entails lower(ϕ) semantically. The third is the dual of the second
function. It is a function upper that overapproximates a formula ϕ in Form by
the conjunction of formulas of the form ‘x ≤ r.

The widening operator uses three subroutines. The first is toDNF that trans-
forms a formula ϕ ∈ Form to a disjunctive normal form, where all existential
quantifications are placed right before each conjunct. The second is the function
boundk : Form→Form for bounding the number of outermost disjuncts to k:

boundk(ϕ) = if (at most k outermost disjuncts are in ϕ) then ϕ else true



The third is an algorithm RFS that synthesizes a linear ranking function from ϕ.
such as RankFinder in [18]. Semantically, unless RFS returns fail, it computes
an overapproximation of a disjunction-free formula ϕ ∈ Form, and the overap-
proximation expresses a linear ranking relation, such as 10 < ‘x ∧ x ≤ ‘x−1 for
the ranking function x.

Using these parameters and subroutines, we can now define the widening
operator:

AOk A
′ = let (

∨
j∈Ji

κi
j) = toDNF(A′i) (i = 1, 2, 3 here and below)
χi

j =
∧
{‘x = x | x ∈ Var and κi

j ` ‘x = x}
ξi
j = if

(
RFS(κi

j) = ζi
j for some formula ζi

j

)
then

(
ζi
j ∧ lower(κi

j) ∧ upper(κi
j) ∧ χi

j

)
else

(
lower(κi

j) ∧ upper(κi
j) ∧ χi

j

)
δi = boundk(Ai ∨

∨
j∈Ji

{ξi
j | κi

j 6` Ai})
in (δ1, δ2, δ3).

Lemma 9. The operator Ok : A×A → A is a widening operator.

Abstract Liveness Predicate The abstract semantics uses the following pred-
icate satisfyLiv] onAt and checks whether an analysis result implies the desired
liveness property:

satisfyLiv](A) = let (
∨

i∈I δi) = toDNF(A3)
in

(
if (RFS(δi) 6= fail for all i ∈ I) then true else false

)
.

The predicate satisfyLiv] first transforms A3 to a disjunctive normal form.
Then, it checks whether each disjunct δi is well-founded using the function
RFS. Hence, if the predicate returns true, it means that A3 is disjunctively
well-founded. The below lemma is an easy consequence of the disjunctively well-
foundedness of A3, the result of Podelski and Rybalchenko [19] and the definition
of γ.

Lemma 10. For all A ∈ At, if satisfyLiv](A) = true, we have that γ(A) ∈
LivProperty.

5 Conclusion

In this paper, we have presented a framework for designing a sound abstract
interpreter for liveness properties. The framework incorporates the theory of
metric spaces in the concrete semantics. By doing so, it justifies a new strategy
for approximating fixpoints for an abstract interpreter for liveness, and relieves
the burden of abstracting low-level details from an analysis designer. We hope
that our results help the program analysis community to exploit metric space
semantics and other unexplored areas of the semantics research for developing
effective program analysis algorithms.
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A Missing Proofs in the Framework Section

In this appendix, we give the proofs missing in Sec. 3.

A.1 Missing Proof in the Concrete Semantics Section

Lemma 2. For all commands Γ ` c, [[Γ ` c]] is a well-defined non-expansive
function from [[Γ ]] to D. Furthermore, [[Γ ` c]] is monotone.

Proof. We first prove that [[Γ ` c]] is a well-defined non-expansive function from
[[Γ ]] to D. The proof is by induction on the structure of c. The cases of function
call and assignment follow from the fact that both projection functions and con-
stant functions are well-defined and non-expansive. The induction goes through
for the cases of the sequential composition and the if statement, because of the
induction hypothesis and the non-expansiveness requirements on seq and ifb.

The remaining case is the recursion: Γ ` fix f.c. Pick environments η, η′ and
let F,G be functions defined by

F (k) = procf ([[Γ, f ` c]]η[f 7→ k]), G(k) = procf ([[Γ, f ` c]]η′[f 7→ k]).

Firstly, we prove the well-definedness. For this, it is sufficient to prove that
F is 1

2 -contractive, so that we can apply the Banach fixpoint theorem, which
implies that the unique fixpoint of F exists. We can use this unique fixpoint to
interpret recursion. To prove the contractiveness of F , consider k, k′. By induc-
tion hypothesis, [[Γ, f ` c]] is a well-defined non-expansive map. Thus:

d(k, k′) ≥ d
(
[[Γ, f ` c]]η[f 7→ k], [[Γ, f ` c]]η[f 7→ k′]

)
. (6)

In our framework we have required that procf (−) be 1
2 -contractive. Hence:

d([[Γ, f ` c]]η[f 7→ k], [[Γ, f ` c]]η[f 7→ k′])
≥ 1

2 × d(procf ([[Γ, f ` c]]η[f 7→ k]), procf ([[Γ, f ` c]]η[f 7→ k′]))
≥ 1

2 × d(F (k), F (k′)).
(7)

Putting the conclusions of (6) and (7), we get that d(k, k′) ≥ ( 1
2×d(F (k), F (k′))),

the 1
2 -contractiveness of F .

Secondly, we prove that [[Γ ` fix f.c]] defines a non-expansive function. Since
η, η′ are chosen arbitrary, it is sufficient to show that

d(η, η′) ≥ d(ufix F, ufix G).

Pick k fromD. By the Banach fixpoint theorem, both {Fn(k)}n∈ω and {Gn(k)}n∈ω

are Cauchy sequences with limits ufix F and ufix G, respectively.
We claim that the n-th elements of these two sequences are close to each

other:
∀n ∈ ω. d(Fn(k), Gn(k)) ≤ d(η, η′). (8)



This claim can be proved by induction on n. When n = 0, the LHS of the
inequality is zero, so the claim holds. Suppose that n > 0 and also that the
claim holds for all m < n. By the induction hypothesis,

d(Fn−1(k), Gn−1(k)) ≤ d(η, η′).

Then,
d
(
η[f 7→ Fn−1(k)], η′[f 7→ Gn−1(k)]

)
≤ d(η, η′).

Now, the non-expansiveness of [[Γ, f ` c]] and procf implies that

d
(
F (Fn−1(k)), G(Gn−1(k))

)
≤ d

(
η[f 7→ Fn−1(k)], η′[f 7→ Gn−1(k)]

)
.

Combining the two inequalities above gives the claim (8) for n.
Using (8), we can complete the proof of non-expansiveness. Pick ε > 0. Then,

there exists N such that for all n > N ,

d(ufix F, Fn(k)) ≤ ε/2 and d(Gn(k), ufix G) ≤ ε/2.

By the triangular inequality, we have that

d(ufix F, ufix G) ≤ d(ufix F, Fn(k)) + d(Fn(k), Gn(k)) + d(Gn(k), ufix G)
≤ ε/2 + d(η, η′) + ε/2
= d(η, η′) + ε.

Thus, d(ufix F, ufix G) ≤ d(η, η′) + ε. Since this holds for all ε > 0, we have the
required

d(ufix F, ufix G) ≤ d(η, η′).

Next, we move on to the second part of the lemma: for all commands Γ ` c,
their meanings [[Γ ` c]] are monotone functions.

The proof is again by induction on the structure of c. The monotonicity is im-
mediate in the cases of function call and assignment. For the cases of the sequen-
tial composition and the if statement, it follows from the induction hypothesis
and the monotonicity of seq and ifb. Now, it remains to show the monotonicity
for the recursion case:

Γ ` fix f.c

Consider η, η′ such that η v η′. Let F,G be functions on D given by

F (k) = procf ([[Γ, f ` c]]η[f 7→ k]), G(k) = procf ([[Γ, f ` c]]η′[f 7→ k]).

Define x and y to be the unique fixpoints of F and G respectively. By the
induction hypothesis and the monotonicity of procf , we have that

k v k′ =⇒ η[f 7→ k] v η′[f 7→ k′] =⇒ F (k) v G(k′). (9)

We need to prove that x v y. By the Banach fixpoint theorem, x is the limit of
the below Cauchy sequence:

y, F (y), F 2(y), F 3(y), . . . .



By the requirement (1) of our framework, it suffices to show that

F k(y) v y.

We do this by induction on k. When k = 0, F k(y) = y so the inequality above
holds. Suppose that k > 0. By the induction hypothesis on k, we have that
F k−1(y) v y. Thus, by (9), this implies the required inequality:

F k(y) = F (F k−1(y)) v G(y) = y

where the last equality uses the fact that y is the fixpoint of G. ut

A.2 Missing Proofs in the Abstract Semantics Section

Lemma 3. For all Γ ` c and η] ∈ [[Γ ]]], if η](f) ∈ At for every f ∈ Γ , we have
that [[Γ ` c]]]η] ∈ At.

Proof. We prove the lemma by induction on the structure of c. Suppose we have
a procedure environment η] that map procedure names to elements in At. We
will consider each case of c separately and prove that [[Γ ` c]]]η] ∈ At.

– Case c ≡ f(). By assumption, η](f) ∈ At. Thus, [[c]]]η] ∈ At.
– Case c ≡ x:=e. Our framework requires that asgnx,e be in At. The lemma

follows from this requirement.
– Case c ≡ c1; c2. By the induction hypothesis, both [[c1]]]η] and [[c2]]]η] is

in At. Furthermore, our framework requires that seq] map pairs of total
elements to total elements. Hence,

[[c]]]η] = seq]([[c1]]]η], [[c2]]]η]) ∈ At.

– Case c ≡ if b c1 c2. This case is similar to the previous one. The desired
conclusion follows from the induction hypothesis and the requirement on if]

b

with respect to total elements.
– Case c ≡ fix f.c1. In this case, [[c]]]η] is always total, even when some com-

ponent of η] is not total. This is because of the d−e operator in the semantics
of [[fix f.c1]]], whose range contains only total elements.

ut

Theorem 2. The abstract semantics is sound. That is, (2) in Sec. 3.3 holds for
all Γ ` c.

Proof. Our proof is by induction on the structure of c.

– Case c ≡ f(). [[f()]]γ(η]) = γ(η])(f) = γ(η](f)) = γ([[f()]]]η]).
– Case c ≡ x:=e. This case follows from the requirement of our framework

that asgn]
x,e should overapproximate asgnx,e.



– Case c ≡ c1; c2. This case follows from three ingredients – the induction
hypothesis, the monotonicity of seq and the requirement that seq] should
overapproximate seq. The below derivation shows how these ingredients give
the desired conclusion.
[[c1; c2]]γ(η]) = seq([[c1]]γ(η]), [[c2]]γ(η]))

v seq(γ([[c1]]]η]), γ([[c2]]]η])) (by ind. hypo and mono. of seq)
v γ(seq]([[c1]]]η], [[c2]]]η])) (since seq] overapproximates seq)
= γ([[c1; c2]]]η]).

– Case c ≡ if b c1 c2. This case is very similar to the above. It follows from
the induction hypothesis, the monotonicity of ifb, and the overapproximation
property of if]

b, as shown below.

[[if b c1 c2]]γ(η]) = ifb([[c1]]γ(η]), [[c2]]γ(η]))
v ifb(γ([[c1]]]η]), γ([[c2]]]η])) (by ind. hypo and mono. of ifb)
v γ(if]

b([[c1]]
]η], [[c2]]]η])) (since if]

b overapproximates ifb)
= γ([[if b c1 c2]]]η]).

– Case c ≡ fix f.c1. Let

F (x) = procf ([[Γ, f ` c1]]γ(η])[f 7→ x]),
G(A) = proc]

f ([[Γ, f ` c1]]]η][f 7→ A]).

We need to prove that

(ufix F ) v γ(dwidenfix Ge). (10)

If checktot(widenfix G) 6= true, then γ(dwidenfix Ge) = γ(>) = >. Thus,
(10) holds. Suppose that checktot(widenfix G) = true, which implies that
widenfix G ∈ At. In this case, it is sufficient to prove that γ(widenfix G) is a
post-fixpoint of F . Because then, the inequality (10) follows from Lemma 1.
By the definition of widenfix,

(widenfix G) = (widenfix G)OG(widenfix G).

Because of the condition on O, this implies that

γ(G(widenfix G)) v γ(widenfix G).

The LHS of this inequality is greater than or equal to F (γ(widenfix G)) as
shown below:

γ(G(widenfix G)) = γ
(
proc]

f [[Γ, f ` c1]]]η][f 7→ (widenfix G)]
))

w procf

(
γ
(
[[Γ, f ` c1]]]η][f 7→ (widenfix G)]

))
w procf

(
[[Γ, f ` c1]]γ(η])[f 7→ γ(widenfix G)]

)
= F (γ(widenfix G)).

The first inequality holds because proc] overapproximates proc. The second
inequality follows from the induction hypothesis and the monotonicity of
procf . This shows F (γ(widenfix G)) v γ(widenfix G), as desired.

ut



A.3 Missing Proof in the Generic Analysis Section

Theorem 3. Let η∗ be the unique concrete environment for the empty context
Γ = ∅. Then, for all commands c with no free procedures, if LivAnalysis(c) =
true, we have that [[c]]η∗ ∈ LivProperty.

Proof. Consider a command c that do not contain free procedure names. Suppose
that

LivAnalysis(c) = true.

Then, by Theorem 2,

[[c]]η∗ = [[c]]γ(η]

∗) v γ([[c]]]η]

∗). (11)

In the first equality, we use the fact that γ(η]
∗) = η∗. Furthermore, satisfyLiv]

is a sound checker for the membership of LivProperty, and LivAnalysis(c) =
true. Hence, we also have that

γ([[c]]]η]

∗) ∈ LivProperty. (12)

From (11), (12) and the downward closure of LivProperty, it follows that [[c]]η∗
is in LivProperty, as desired. ut

B Missing Proofs in the Instance Section

B.1 Missing Proofs in the Concrete Semantics Section

In order to prove Lemma 4, we prove properties of the set preTrace with the
metric d in Sec. 4.1.

Lemma 11. (preTrace, d) is a metric space.

Proof. The symmetry of d is immediate from the definition. Also,

d(τ, τ ′) = 0 ⇐⇒ (max{n | τ [n] = τ ′[n]}) = ∞ ⇐⇒ τ = τ ′.

Thus, to show that d is a metric on preTrace, it remains to prove the triangular
inequality. Consider τ, τ ′, τ ′′ in preTrace. We will prove a stronger-than-required
property that

d(τ, τ ′) ≤ max
(
d(τ, τ ′′), d(τ ′′, τ ′)

)
.

Equivalently,

max{n | τ [n] = τ ′[n]} ≥ min
(
max{n | τ [n] = τ ′′[n]}, max{n | τ ′′[n] = τ ′[n]}

)
.

Let m be the minimum on the RHS of the above inequality. Then, τ [m] = τ ′′[m]
and τ ′′[m] = τ ′[m]. Thus, τ [m] = τ ′[m]. This means that the LHS of the above
inequality should be greater than or equal to m. ut



Next, we will prove that the metric space (preTrace, d) is complete. As a
preparation for this proof, we notice that our definition of the distance d allows
simpler characterization of Cauchy sequence. Recall that N is the set of positive
integers.

Lemma 12. A sequence {τi}i∈N in preTrace is Cauchy if and only if

∀m ∈ N. ∃n ∈ N. ∀n′ ≥ n. τn′ [m] = τn[m].

Proof. Recall that by the definition of Cauchy sequence a sequence {τi}i∈N in
preTrace is Cauchy if and only if

∀ε > 0. ∃n ∈ N. ∀n′ ≥ n. d(τn′ , τn) ≤ ε. (13)

Restricting ε in (13) to those of the form 2−m for some m ∈ N preserves the
meaning. Thus, (13) is equivalent to

∀m ∈ N. ∃n ∈ N. ∀n′ ≥ n. d(τn′ , τn) ≤ 2−m. (14)

But by the definition of the distance d, we have that

d(τn′ , τn) ≤ 2−m ⇐⇒ max({m′ | τn′ [m′] = τn[m′]}) ≥ m

⇐⇒ τn′ [m] = τn[m].

Thus, (14) is equivalent to

∀m ∈ N. ∃n ∈ N. ∀n′ ≥ n. τn′ [m] = τn[m].

This gives the claimed equivalence in this lemma. ut

Lemma 13. (preTrace, d) is complete.

Proof. Consider a Cauchy sequence {τn}n∈N. By the definition of Cauchy se-
quence, we have that

∀m ∈ N. ∃nm ∈ N. ∀n ≥ nm. τnm
[m] = τn[m]. (15)

For each m, define

m∗ = max({nm′ | m′ ≤ m} ∪ {m})

where nm′ is the index in (15). Using this notation, we define a sequence τ∞ as
follows:

proj(τ∞,m) =
{

proj(τm∗ ,m) if proj(τm∗ ,m) is defined
undefined otherwise

where proj(τ∞,m) means the m-th element of τ∞. Note that since every τn has
length at least 1 and it starts with a state in nState, proj(τ∞, 1) is defined and
it is a state in nState. To show that τ∞ is the limit, it is sufficient to prove that

∀m ∈ N. ∃nm ∈ N. ∀n ≥ nm. τn[m] = τ∞[m]. (16)



Before proving this, we note that it implies that τ∞ is a pre-trace, i.e., τ∞ ∈
preTrace. If τ∞ is infinite, τ∞ belongs to nState(tState∞) ⊆ preTrace, because
τ∞ starts with a state in nState. If τ∞ is finite, (16) implies that τ∞ = τn for
some n ∈ N, so τ∞ ∈ preTrace.

Now, let’s go back to our task of proving (16). Pick m. We claim that m∗

is the witness nm of the existential quantification in (16). To prove our claim,
consider n ≥ m∗. We need to show that

∀k ∈ N. 1 ≤ k ≤ m =⇒ proj(τn, k) = proj(τ∞, k) (17)

where the equality should be interpreted as both undefined or both defined and
equal. (In the rest of the proof, we use the same interpretation of equality.) By
the definition of m∗, if 1 ≤ k ≤ m, then k∗ ≤ m∗, so k∗ ≤ n. This implies that

proj(τk∗ , k) = proj(τn, k).

But by definition, proj(τ∞, k) = proj(τk∗ , k). From this, the desired (17) follows.
ut

Lemma 4. (Trace, d) is a complete metric space.

Proof. Notice that (Trace, d) is a metric space, because Trace is a subset of
preTrace, it inherits the metric from preTrace and preTrace is a metric space.

It remains to prove the completeness of (Trace, d). Consider a Cauchy se-
quence {τn}n∈N in Trace. Let τ∞ be the limit of this sequence in preTrace, which
exists because of Lemma 13. It remains to prove that τ∞ belongs to Trace. By
the definition of metric d and Lemma 12, we have that

∀m ∈ N. ∃nm ∈ N. ∀n ≥ nm. τ∞[m] = τn[m]. (18)

Thus, if τ∞ is finite, it has to be the same as some τn. So, it has to be in Trace,
as desired. Otherwise, τ∞ is infinite. In this case, (18) implies that all prefixes of
τ∞ are also prefixes of some traces. But, prefixes of traces always belong to O,
by the definition of traces. Thus, all prefixes of τ∞ are in O. This implies that
τ∞ is a trace. ut

We move on to the proof of Lemma 4:

Lemma 4. (D, d†) is a complete metric space. Furthermore, the requirement
(1) of our framework in Sec. 3 holds for ⊆ and this metric space.

This lemma claims several properties of (D, d†). We prove them separately
in the following series of lemmas. Our starting point is a slightly simpler char-
acterization of Cauchy sequences in (D, d), which we will use in the following
proofs:

Lemma 14. A sequence {Tn}n∈N in D is Cauchy if and only if

∀m ∈ N. ∃n ∈ N. ∀n′ ≥ n. Tn′ [m] = Tn[m].



Proof. The proof is almost identical to that of Lemma 12, except that we replace
τn, τn′ and their m prefix projections by Tn, Tn′ and the m prefix projections of
Tn and Tn′ . ut

Lemma 15. (D, d†) is a metric space.

Proof. The symmetry of d† is immediate from the definition. Next, we show that

d†(T, T ′) = 0 ⇐⇒ T = T ′.

By the definition of d†, d†(T, T ) = 0 for all T ∈ D. The right-to-left direc-
tion of the equivalence follows from this. For the other direction, suppose that
d†(T, T ′) = 0. Pick τ ∈ T . Then, for all n ∈ N,

τ [n] ∈ T [n] = T ′[n].

This implies that
∀n ∈ N. ∃τ ′n ∈ T ′. (τ ′n)[n] = τ [n].

Thus, {τ ′n}n∈N is a Cauchy sequence with τ as its limit. Since T ′ is closed and
the sequence {τ ′n}n∈N is in T ′, the limit τ should be in T ′ as well. We have just
shown that T ⊆ T ′. The other inclusion can be proved similarly.

Finally, we prove that d satisfies the triangular inequality. In fact, we prove
a stronger property that for all T, T ′, T ′′ ∈ D,

d†(T, T ′) ≤ max(d†(T, T ′′), d†(T ′′, T ′)),

which is equivalent to

max{n | T [n] =T ′[n]} ≥ min
(
max{n | T [n] =T ′′[n]}, max{n | T ′′[n] =T ′[n]}

)
.

Let m be the value of the RHS of the above inequality. Then, T [m] = T ′′[m]
and T ′′[m] = T ′[m]. Thus, T [m] = T ′[m]. This means that the LHS of the above
inequality should be at least m. ut

Lemma 16. For all Cauchy sequences {Tn}n∈N in D and indices m, k ∈ N, if

∀k′ ≥ k. Tk[m] = Tk′ [m],

then for all τ ∈ Tk, there exists a Cauchy sequence {τi}i∈N in Trace such that

1. τ [m] = τi[m] for all i ∈ N, and
2. the sequence is taken from an infinite subsequence of {Tn}n∈N, i.e.,

∃{ki}i∈N. (∀i ∈ N. τi ∈ Tki
) ∧ (∀i, j ∈ N. i < j =⇒ ki < kj).

Proof. Let {Tn}n∈N and m, k be the ones satisfying the conditions of the lemma.
Pick τ from Tk. Using these data, we will construct two desired sequences—the
Cauchy sequence {τi}i∈N and the sequence {ki}i∈N of indices. Note that since
{Tn}n∈N is Cauchy,

∀o ∈ N. ∃no ∈ N. ∀n ≥ no. Tno
[o] = Tn[o].



Using no’s, we define the desired sequence of indices by

k1 = nm and ki+1 = max(n(m+i), ki + 1 ).

Note that this sequence is strictly increasing. It remains to construct the other
sequence {τi}i∈N of traces. We do this inductively. By the assumption on Tk and
the choice of nm, we must have that

Tk[m] = Tmax(k,nm)[m] = T(nm)[m] = T(k1)[m].

Hence,
τ [m] = τ ′[m] for some τ ′ ∈ T(k1).

We define the first element of the sequence by

τ1 = τ ′.

For the rest, we assume that τi is chosen from T(ki), and we inductively pick
trace τi+1 from T(ki+1) as follows. Since ki+1 > ki ≥ n(m+i−1), we have that

T(ki+1)[m+ i− 1] = Tn(m+i−1) [m+ i− 1] = T(ki)[m+ i− 1].

Furthermore, τi is in T(ki). Thus, there must exist τ ′′ ∈ T(ki+1) such that

τi[m+ i− 1] = τ ′′[m+ i− 1].

We define τi+1 to be this τ ′′.
By construction, it is immediate that {τi}i∈N is from the infinite subsequence

{T(ki)}i∈N of {Tn}n∈N. Furthermore, {τi}i∈N is Cauchy, because

∀n ∈ N. ∀i ≥ n. τi[m+ i− 1] = τi+1[m+ i− 1],

and so,
∀n ∈ N. ∀i ≥ n. τn[n] = τi[n].

(Remember here that m ∈ N and so m ≥ 1.) Finally, by construction, τ1[m] =
τi[m] for all i ∈ N. But τ1[m] = τ ′[m] = τ [m]. Thus, τi[m] = τ [m] for all i ∈ N,
as desired. ut

Proposition 1. (D, d†) is complete.

Proof. Consider a Cauchy sequence {Tn}n∈N in D. Define T∞ as follows:

T∞ = { lim
i→∞

τi | {τi}i∈N is Cauchy ∧
∃{ki}i∈N. (∀i ∈ N. τi ∈Tki) ∧ (∀i, j ∈N. i < j =⇒ ki<kj) }.

Firstly, we show that T∞ is closed. Consider a Cauchy sequence {αn}n∈N in T∞.
Let α∞ be the limit of this sequence. To prove the closedness, we need to show
that α∞ belongs to T∞. Equivalently, we need to find a Cauchy sequence {τi}i∈N
such that



1. the limit of the sequence is α∞, and
2. the sequence is taken from an infinite subsequence of {Tn}n∈N, i.e., it satisfies

that

∃{ki ∈ N}i∈N. (∀i ∈ N. τi ∈Tki
) ∧ (∀i, j ∈N. i < j =⇒ ki<kj).

Since {αn}n∈N converges to α∞, we have that

∀m ∈ N. ∃nm ∈ N. ∀n′ ≥ nm. αn′ [m] = α∞[m].

For each m ∈ N, we let

m∗ = max({nm′ | m′ ≤ m} ∪ {m}).

The maximum is used to ensure that −∗ is monotone with respect to ≤. Since
αn is in T∞, the definition of T∞ implies the existence of a Cauchy sequence
{τn

i }i∈N such that the limit of the sequence is αn and the sequence satisfies that

∃{kn
i ∈ N}i∈N. (∀i∈N. τn

i ∈T(kn
i )) ∧ (∀i, j ∈N. i < j =⇒ kn

i <k
n
j ).

Thus,
∀n ∈ N. ∀m ∈ N. ∃in,m ∈ N. ∀i′ ≥ in,m. τ

n
i′ [m] = αn[m].

For each m ∈ N, define
m† = im∗,m

Also, construct an increasing sequence {ji}i∈N of natural numbers by

j1 = 1† and ji+1 = min{ j′ | k(i+1)∗

(j′) > k
(i∗)
(ji)

∧ j′ ≥ (i+ 1)† }.

Using these −∗ and {ji}i∈N, we construct the required {τi}i∈N as follows:

τi = τ
(i∗)
(ji)

Then, for all m ∈ N and all i ≥ m,

τi[i] = τ
(i∗)
(ji)

[i] = α(i∗)[i] = α∞[i].

The first equality is just the unrolling of the definition of τi. The second equality
holds, because ji ≥ i† and so τ (i∗)

(ji)
[i] = α(i∗)[i]. The third equality follows from

the definition of i∗. We have just shown that τi[i] = α∞[i], and since i ≥ m, this
implies

τi[m] = α∞[m].

Thus, {τi}i∈N is a Cauchy sequence that converges to α∞. Furthermore, this se-
quence is taken from an infinite subsequence of {Tn}n∈N. Concretely, the indices
of this infinite subsequence are

k
(i∗)
(ji)

for all i ∈ N.



By the choice of ji, the index sequence is strictly increasing: if i < l, then
k

(i∗)
(ji)

< k
(l∗)
(jl)

.
Secondly, we prove that T∞ is full. Note that this implies that T∞ ∈ D.

Choose a none-tagged state σ ∈ nState. It is sufficient to construct a Cauchy
sequence {τi}i∈N such that

1. for all i ∈ N, τi[1] is the singleton trace σ, and
2. there exists {ki}i∈N satisfying that

∀i, j ∈ N. τi ∈ T(ki) ∧ (i < j =⇒ ki < kj).

We will construct the desired sequence {τi}i∈N using Lemma 16. Note that since
{Tn}n∈N is Cauchy,

∃n1 ∈ N. ∀n ≥ n1. Tn[1] = T(n1)[1].

Since all Tn’s are full, there must be a trace τ in T(n1) whose starting state is σ.
Now, Lemma 16 implies the existence of a Cauchy sequence {τi}i∈N such that

1. τi[1] = τ [1] for all i ∈ N, and
2. there exists {ki}i∈N satisfying

∀i, j ∈ N. τi ∈ T(ki) ∧ (i < j =⇒ ki < kj).

But, τi[1] = τ [1] means that τi[1] is the singleton trace σ. Thus, {τi}i∈N is the
sequence that we are looking for.

Finally, we prove that T is the limit of {Tn}n∈N. Pick m ∈ N. We need to
find nm ∈ N such that

∀n ≥ nm. Tn[m] = T∞[m].

Since {Tn}n∈N is Cauchy, there exists k ≥ 1 such that

∀n ≥ k. Tn[m] = Tk[m].

We claim that k is the desired nm. Let n be an index such that n ≥ k. To show
the inclusion

Tn[m] ⊇ T∞[m],

pick τ from T∞[m]. This means that τ = τ ′[m] for some τ ′ ∈ T∞. Then, by the
definition of T∞, there must be a Cauchy sequence {τi}i∈N, that is taken from
an infinite subsequence {T(ki)}i∈N, and that converges to τ ′. Thus,

∃j ∈ N. τj ∈ T(kj) ∧ τj [m] = τ ′[m] ∧ (kj ≥ n).

Since Tn[m] = Tk[m] = T(kj)[m], there exists τ ′′ ∈ Tn such that

τ ′′[m] = τj [m] = τ ′[m] = τ.

Thus, τ ∈ Tn[m]. It remains to show the other inclusion

Tn[m] ⊆ T∞[m].

Pick τ from Tn[m]. This means that τ = τ ′[m] for some τ ′ ∈ Tn. By Lemma 16,
there exists a Cauchy sequence {τi}i∈N such that



1. τi[m] = τ ′[m] for all i ∈ N, and
2. the sequence is taken from an infinite subsequence of {Tn}n∈N.

By definition, the limit τ∞ of {τi}i∈N should belong to T∞. Furthermore, since
the first m-prefixes of τi’s equal τ ′[m], we should also have that τ∞[m] = τ ′[m].
Since τ ′[m] = τ , it follows that τ ∈ T∞[m], as desired. ut

Lemma 17. The condition (1) of our framework on the distance and the pre-
order in Sec. 3 holds for (D, d†,⊆,Trace).

Proof. Let T ∈ D and consider a Cauchy sequence {Tn}n∈N in D such that
Tn ⊆ T for all n. Also, let T∞ be the limit of this sequence. We need to prove
that T∞ ⊆ T . Pick τ from T∞. Since T∞ is the limit of {Tn}n∈N, we have that

∀m ∈ N. ∃n ∈ N. Tn[m] = T∞[m].

Hence, for all m ∈ N, there exist nm and τ(nm) ∈ T(nm) such that

τ(nm)[m] = τ [m].

Because T(nm) is a subset of T , τ(nm) belongs to T as well. Furthermore, {τ(ni)}i∈N
is a Cauchy sequence converging to τ . This is because for all m ∈ N and k ≥ m,
τ(nk)[k] = τ [k], so

τ(nk)[m] = τ [m].

Now, the closedness of T implies that the limit τ of the Cauchy sequence
{τ(ni)}i∈N in T should belong to T as well. Since τ is chosen arbitrary, this
membership of τ to T means that T∞ ⊆ T , as desired. ut

The remaining lemma to prove in Sec. 4.1 is Lemma 6:

Lemma 6. All the operators are well-defined, and satisfy the monotonicity and
non-expansiveness or 1

2 -contractiveness requirements of our framework.

This lemma claims several facts on the semantic operators. We prove each
one separately.

Lemma 18. seq(T, T ′) consists of traces.

Proof. Pick τ from seq(T, T ′). It is immediate from the definition of seq that τ
is a pre-trace. We will show that τ satisfies the additional condition for traces
as well. If τ belongs to T ∩ tState∞, it should be in T as well. This implies that
τ is a trace. Suppose that τ 6∈ (T ∩ tState∞). Then, there exist τ0, σ0, τ1 such
that

(τ0σ0 ∈ (T ∩ tState+)) ∧ (σ0τ1 ∈ T ′) ∧ τ = τ0σ0τ1.

Since σ0τ1 is a pre-trace, σ0 should be tagged with none. Furthermore, since
τ0σ0 is a finite trace, it has to be in W. We now do the case analysis depending
on whether σ0τ1 is finite. If σ0τ1 is finite, σ0τ1 has to be in W. Hence, τ = τ0σ0τ1
is a finite sequence belonging to W. From this, it follows that τ is a trace. If
σ0τ1 is infinite, all prefixes of σ0τ1 belong to O. Thus, all prefixes of τ = τ0σ0τ1
also belong to O. This implies that τ is a trace. ut



Lemma 19. For all T, T ′ ∈ D, seq(T, T ′) is in D, i.e., it is closed and full.

Proof. Let T, T ′ be trace sets in D. Firstly, we prove that seq(T, T ′) is full. Pick
a none-tagged state σ ∈ nState. Since T is full, there is a trace τ in T that starts
with σ. If τ is infinite, it also belongs to seq(T, T ′), so we have just found a
trace in seq(T, T ′) starting with σ. If τ is finite, it must be of the form τ0σ0 for
some none-tagged state σ0 ∈ nState. This is because τ is a finite pre-trace, so it
should start and end with none-tagged states. But, T ′ is full. Hence, σ0τ

′ ∈ T ′
for some sequence τ ′ of tagged states. Now, the definition of seq(T, T ′) implies
that

τ0σ0τ
′ ∈ seq(T, T ′).

Since τ0σ0τ
′ starts with σ, it is the trace that we are looking for.

Secondly, we show that seq(T, T ′) is closed. Consider a Cauchy sequence
{τn}n∈N in seq(T, T ′). Let τ∞ be the limit of this sequence. We need to show
that τ∞ ∈ seq(T, T ′). There are two cases to consider.

The first case is that there is an infinite subsequence {τ(ni)}i∈N of {τn}n∈N
such that

∀i ∈ N. τ(ni) ∈ (T ∩ tState∞).

Since the original sequence {τn}n∈N is Cauchy, the subsequence {τ(ni)}i∈N is
Cauchy as well. Furthermore, the two sequences have the same limit τ∞. This
limit has to be an infinite sequence, because every member of {τ(ni)}i∈N is infi-
nite. It also belongs to T , since T is closed. Hence,

τ∞ ∈ (T ∩ tState∞) ⊆ seq(T, T ′).

The second case is that all elements of {τn}n∈N except finitely many are from

{ τστ ′ | (τσ ∈ T ∩ tState+) ∧ (στ ′ ∈ T ′) }.

This means that there is some n0 ∈ N such that

∀n ≥ n0. ∃τ0
n, σn, τ

1
n. (τn = τ0

nσnτ
1
n) ∧ (τ0

nσn ∈ T ∩ tState+) ∧ (σnτ
1
n ∈ T ′).

We sub-divide this case based on whether there is some u ∈ N with

∀n ≥ n0. |τ0
nσn| ≤ u. (19)

Suppose that there exists such an upper bound u. Since {τn}n∈N is Cauchy, this
implies that there is some n1 ≥ n0 such that

∀n ≥ n1. (τ0
nσn = τ0

n1
σn1).

In this sub-case, {σnτ
1
n}n≥n1 is also Cauchy, its limit τ ′∞ starts with σn, and it

satisfies the below relationship with the limit τ∞ of {τn}n∈N:

τ0
n1
τ ′∞ = τ∞.



Note that the sequence {σnτ
1
n}n≥n1 is in T ′, which is a closed set. Thus, τ ′∞ is

in T ′. Because τ ′∞ starts with σn1 and τn1σn1 is in T , we have that

τ∞ = τn1τ
′
∞ ∈ seq(T, T ′).

The other sub-case is that there does not exist u satisfying (19). In this sub-case,
{τ0

nσn}n≥n0 becomes a Cauchy sequence in T with τ∞ as its limit. Since T is
closed, τ∞ is in T . Also, |τ0

nσn| goes to the infinity as n increases, so τ∞ belongs
to T ∩ tState∞. Hence, τ∞ is in seq(T, T ′), as desired. ut

Lemma 20. The function seq is non-expansive.

Proof. By the definition of the distance d† on D, proving the non-expansive of
seq is equivalent to showing that for all T0, T

′
0, T1, T

′
1 in D and all m ∈ N,

(T0[m] = T1[m] ∧ T ′0[m] = T ′1[m]) =⇒ (seq(T0, T
′
0)[m] = seq(T1, T

′
1)[m]).

Let T0, T
′
0, T1, T

′
1,m be the data in the above equivalent statement, and as-

sume the condition of the implication. We need to show that seq(T0, T
′
0)[m] =

seq(T1, T
′
1)[m]. We will prove that seq(T0, T

′
0)[m] ⊆ seq(T1, T

′
1)[m]. The other

subset inclusion can be proved similarly. Pick τ ∈ seq(T0, T
′
0)[m]. This means

that
∃τ ′ ∈ seq(T0, T

′
0). τ ′[m] = τ.

Since τ ′ ∈ seq(T0, T
′
0), we have

(τ ′ ∈ T0 ∩ tState∞) ∨ (∃τ0, σ, τ ′0. τ ′ = τ0στ
′
0 ∧ τ0σ ∈ T0 ∧ στ ′0 ∈ T ′0). (20)

Suppose that the first disjunct holds. Since T0[m] = T1[m], there is τ ′′ ∈ T1 such
that

|τ ′′| ≥ m ∧ τ ′′[m] = τ ′[m] = τ.

If τ ′′ is infinite, it is also in seq(T1, T
′
1). So, τ = τ ′′[m] ∈ seq(T1, T

′
1)[m] as desired.

Consider the other case that τ ′′ is finite. In this case, we note two facts. Firstly,
since τ ′′ is a trace, it should end with a none-tagged state, say, σ ∈ nState.
Secondly, since T1 is full, there is στ ′′′ ∈ T ′1 for some sequence τ ′′′ of tagged
states. Hence, τ ′′τ ′′′ is in seq(T1, T

′
1). But |τ ′′| ≥ m, which means that

(τ ′′τ ′′′)[m] = τ ′′[m] = τ.

So, τ is in seq(T1, T
′
1).

Now, suppose that the second disjunct of (20) holds. Let τ0, σ, τ ′0 be the
witnesses of the existential quantification in (20). Since m ≥ 1, T0[m] = T1[m]
and T ′0[m] = T ′1[m],

∃τ1, τ ′1. τ1 ∈ T1 ∧ (στ ′1) ∈ T ′1 ∧ (τ0σ)[m] = τ1[m] ∧ (στ ′0)[m] = (στ ′1)[m].

Let m0 be |τ0σ|. If m0 ≥ m, we can ignore τ ′1, and complete the proof similarly
as in the previous case, just doing the case-analysis on whether τ1 is infinite or
not. Suppose that m0 < m. In this case,

τ1 = τ0σ ∧ τ ′0[m−m0] = τ ′1[m−m0].



Thus,

τ = τ ′[m] = (τ0σ)(τ ′0[m−m0]) = (τ1)(τ ′1[m−m0]) = (τ1τ ′1)[m].

Since τ1τ ′1 ∈ seq(T, T ′), this means that τ ∈ seq(T, T ′)[m]. ut

Lemma 21. For all T ∈ D, if all traces in T have length at least 2 (i.e., ∀τ ∈
T. |τ | ≥ 2), the specialization seq(T,−) by T is 1/2-contractive on D, i.e.,

∀T1, T2 ∈ D. d(seq(T, T1), seq(T, T2)) ≤ (1/2× d(T1, T2)).

Proof. Let T be a trace set satisfying the condition in the lemma. Pick T1, T2

from D. We need to prove that:

d†(seq(T, T1), seq(T, T2)) ≤ (
1
2
× d†(T1, T2)). (21)

Let A and B be trace sets defined by

A = { τστ ′ | (τσ ∈ T ∩ tState+) ∧ (στ ′ ∈ T1) },
B = {τστ ′ | (τσ ∈ T ∩ tState+) ∧ (στ ′ ∈ T2) }.

Then, by the definition of seq,

seq(T, T1) = A ∪ (T ∩ tState∞) and seq(T, T2) = B ∪ (T ∩ tState∞).

Thus, to prove (21), it is sufficient to show that for all m ∈ N,

T1[m] =T2[m] =⇒
(
(A∪(T∩tState∞))[m+1]= (B∪(T∩tState∞))[m+1]

)
. (22)

Suppose that T1[m] = T2[m]. We will show that A[m + 1] = B[m + 1]. From
this, the equality in the conclusion of the implication (22) follows, because the
“−[m+ 1]” operator distributes over ∪.

Here we will show only one inclusion A[m+1] ⊆ B[m+1]; the other inclusion
can be shown similarly. Suppose that we have a trace τ ∈ A[m+ 1]. This means
that there is a trace τ ′ ∈ A such that

τ = (τ ′[m+ 1]).

By the definition of A,

∃τ0, σ0, τ1. (τ ′ = τ0σ0τ1) ∧ (τ0σ0 ∈ T ∩ tState+) ∧ (σ0τ1 ∈ T1). (23)

Since T1[m] = T2[m] by assumption (and m ≥ 1), we also have that

∃τ2. (σ0τ2 ∈ T2) ∧ (σ0τ2[m] = σ0τ1[m]). (24)

Note that τ0σ0τ2 ∈ B by the definition of B, (23) and (24). Since τ = (τ ′[m+1])
and τ ′ = τ0σ0τ1, we can show the desired τ ∈ B[m+ 1], if we prove that

(τ0σ0τ1)[m+ 1] = (τ0σ0τ2)[m+ 1]. (25)

Now, recall that T contains traces of length at least 2, so |τ0σ0| ≥ 2. This
means that the second conjunct of (24) implies (25). ut



Lemma 22. The operator seq is ⊆-monotone

Proof. In the definition of seq(T, T ′), the argument trace sets T and T ′ appear
only in positive positions, i.e., they do not occur under the left of implication or
under negation. The monotonicity follows from this. ut

Lemma 23. For all T0, T1 ∈ D, the trace set ifb(T0, T1) is in D, i.e., it is closed
and full.

Proof. Let T = ifb(T0, T1). We consider the closedness property of T first. Con-
sider a Cauchy sequence {τi}i∈N in T . By the definition of Cauchy sequence,
there exists an index n in N such that

∀i ≥ n. τi[1] = τn[1].

Let σ be τn[1]. If [[b]](first(σ)) = true, all the elements of {τi}i∈N except the first
n−1 belong to T0 and have the same σ as their starting state. This implies that
the limit τ∞ of the sequence belongs to T0 and it has σ as its starting state. But
[[b]](first(σ)) = true by assumption. Thus, τ∞ is also in T . The other case that
[[b]](first(σ)) = false is similar.

Next, we prove that T is full. Pick a none-tagged state σ ∈ nState. We con-
sider the case that [[b]](first(σ)) = false only, because the other case [[b]](first(σ)) =
true can be proved similarly. Since T1 is full, there is a trace of the form στ ∈ T1.
Since [[b]](first(σ)) = false, the trace στ is also included in T . We have just found
a trace in T that starts with σ. ut

Lemma 24. The function ifb is non-expansive.

Proof. By the definition of distance d† on D, proving the non-expansiveness is
equivalent to showing that for all (T0, T1) and (T ′0, T

′
1) in D ×D and all m ∈ N,

(T0[m] = T ′0[m] ∧ T1[m] = T ′1[m]) =⇒ (ifb(T0, T1)[m] = ifb(T ′0, T
′
1)[m]).

Pick στ from ifb(T0, T1)[m]. Since m ≥ 1, this means that there exists στ ′ in
ifb(T0, T1) such that

στ = (στ ′)[m].

If [[b]](first(σ)) = true, the trace στ ′ is from T0. Since T0[m] = T ′0[m] (and m ≥ 1),
there is στ ′′ ∈ T ′0 such that

(στ ′′)[m] = (στ ′)[m] = στ.

Furthermore, since [[b]](first(σ)) = true, this trace στ ′′ should be in ifb(T ′0, T
′
1) as

well. Putting all these together, we can conclude that

στ = (στ ′′)[m] ∈ ifb(T ′0.T
′
1).

The case that [[b]](first(σ)) = false can be proved similarly. Hence,

ifb(T0, T1)[m] ⊆ ifb(T ′0, T
′
1)[m]

Using a similar argument, we can prove the other inclusion. ut



Lemma 25. The operator ifb is monotone with respect to the subset order ⊆.

Proof. In the definition of ifb(T0, T1), the argument trace sets T0 and T1 are used
only positively. From this, the monotonicity of the lemma follows. ut

Lemma 26. procf (T ) consists of traces only.

Proof. Note that the definition of procf (T ) is given by the union of three sets.
The first two sets there consist of finite pre-traces, because all traces in T start
and end with none-tagged states and so, σ, σ1 in the description of the first two
sets have none as their tags. Furthermore, they are subsets of W, because all
finite traces in T belong to W. Hence, the sets contain traces only. For the third
set in the definition of procf (T ), we note that all pre-traces there are infinite,
because again traces in T start with none-tagged states and so σ in the definition
of the third set should be tagged with none. Furthermore, all prefixes of infinite
traces in T belong to O, so that all prefixes of traces in the third set should be in
O as well. From these observation, it follows that procf (T ) consists of traces. ut

Lemma 27. For all procedures f ∈ PName and T ∈ D, procf (T ) belongs to D.
That is, it contains traces only, and it is full and closed. Furthermore, for all
f ∈ PName, function procf (−) is 1/2-contractive and monotone.

Proof. Pick f ∈ PName and T ∈ D. Firstly, we prove that procf (T ) is full and
closed. Let

prologf = { σσ(f,call)σ | σ ∈ nState },
epilogf = { σσ(f,ret)σ | σ ∈ nState }.

Note that these sets consist of pre-traces, not traces. But,

procf (T ) = seq(seq(prologf , T ), epilogf )

when we use the definition of seq for sets of pre-traces as well. Furthermore, the
proof of Lemma 19 does not rely on the fact that its arguments contain traces
only, so it also works when we change the lemma such that the arguments of seq
are full closed sets of pre-traces. Hence, to show that procf (T ) is full and closed,
it is sufficient to prove that prologf and epilogf are full and closed. Note that all
sequences in prologf or epilogf have length 3. So, every Cauchy sequence in the
sets converges to the n-th element in the sequence for some n ∈ N, which means
that prologf and epilogf are closed. The remaining condition that prologf and
epilogf are full is an immediate consequence of their definitions.

Secondly, we prove that procf (−) is 1
2 -contractive and monotone. Recall that

procf (T ) is seq(seq(prologf , T ), epilogf ) for all T . We again rely on the observa-
tion that the proofs of Lemmas 20 and 21 can be generalized to full closed sets
of pre-traces. Both proofs are independent of the fact that the arguments of seq
consist of traces. They work equally well, when we change the lemmas such that
seq takes full closed sets of pre-traces as its parameters. Hence, the generaliza-
tion of Lemma 20 and 21 implies the 1/2-contractiveness of procf (−), because
every pre-trace in prologf has length greater than 2. The remaining monotonicity
condition is immediate from the definition of procf (−). ut



Lemma 28. For all assignments x:=e, asgnx,e is in D.

Proof. From the definitions of asgnx,e, it is immediate that asgnx,e consists of
traces and that they are full. For the closedness, we note that asgnx,e contains
traces of size 2. Thus, every Cauchy sequence {τn}n∈N in this set should contain
some τi that is the limit of the sequence. From this property of Cauchy sequence,
the closedness follows. ut

Lemma 29. LivProperty is downward closed wrt. the ⊆ order.

Proof. This follows from the fact that T ∈ LivProperty is defined in terms of
a universal requirement on traces in T . ut

B.2 Missing Proofs in the Abstract Semantics Section

Lemma 7. For every A ∈ At, the set γ(A) is in D, i.e., it is full and closed.

Proof. Consider A = (ϕ1, ϕ2, ϕ3) in At. Let T be γ(ϕ1, ϕ2, ϕ3). Firstly, we prove
that T is full. Since (ϕ1, ϕ2, ϕ3) ∈ At, its first component ϕ1 should be total:

∀‘s ∈ (‘Var → Q). ∃s ∈ (Var → Q). (‘s, s) |= ϕ1.

This implies that for every none-tagged state σ0, there exists a none-tagged
state σ1 such that

(‘first(σ0), first(σ1)) |= ϕ1.

Furthermore, when σ0σ1 is viewed as a trace, it does not contain any procedure
calls, so it satisfies the requirements imposed by ϕ2 and ϕ3. Hence, σ0σ1 is in
T . Note that σ0 is chosen arbitrarily. Hence, we have just shown that T is full.

Next, we show that T is closed. Let {τn}n∈N be a Cauchy sequence in T , and
let τ∞ be the limit of the sequence. We will prove that τ∞ is in T . If τ∞ is finite,
it has to be the same as some τn in the sequence. Thus, τ∞ is in T . Suppose that
τ∞ is infinite. We have to prove that τ∞ satisfies the two requirements imposed
by ϕ2 and ϕ3. To discharge the requirement from ϕ2, pick σ ∈ τ∞ such that the
tag of σ is a procedure call. Let m be the position of σ in the trace τ∞. Then,
since τ∞ is the limit of {τn}n∈N, there exists τn such that τn[m] = τ∞[m]. But,
τn is in T , and so,

(‘first(first(τn)), first(σ)) |= ϕ2.

The LHS of |= is the same as (‘first(first(τ∞)), first(σ)). Hence, the requirement
from ϕ2 holds for τ∞. Now, it remains to prove that τ∞ satisfies the requirement
from ϕ3. Pick σ1, σ2 such that open(σ1, σ2, τ∞). Let m be the position of σ2 in
the trace τ∞. Again, we use the fact that τ∞ is the limit of {τn}n∈N, so there
exists τn such that τn[m] = τ∞[m], which implies that open(σ1, σ2, τn). Thus,

(‘first(σ1), first(σ2)) |= ϕ3.

This completes the proof that τ∞ satisfies the condition for ϕ3. ut

Next, we prove Lemma 8:



Lemma 8. The operators in Fig. 6 meet all the requirements of our framework.

This lemma claims several properties of abstract operators. We prove them
separately.

Lemma 30. If both A and A′ are in At, their sequential composition seq](A,A′)
is in At as well.

Proof. Suppose that A = (ϕ1, ϕ2, ϕ3) and A′ = (ψ1, ψ2, ψ3) are in At. This
means that both ϕ1 and ψ1 belong to TForm. Then, ϕ1;ψ1 is also in TForm,
because the −;− operator for formulas means the composition of state relations
and the composition of two total relations is total. Hence,

seq]
(
(ϕ1, ϕ2, ϕ3), (ψ1, ψ2, ψ3)

)
=

(
ϕ1;ψ1, ϕ2 ∨ (ϕ1;ψ2), ϕ3 ∨ ψ3

)
belongs to At as well. ut

Lemma 31. For all A and A′ in At, we have that

seq(γ(A), γ(A′)) ⊆ γ(seq](A,A′)).

Proof. Let (ϕ1, ϕ2, ϕ3) = A and (ψ1, ψ2, ψ3) = B. Also, let T0 = γ(ϕ1, ϕ2, ϕ3)
and T1 = γ(ψ1, ψ2, ψ3). Pick a trace τ from seq(T0, T1). By the definition of seq],

seq]
(
(ϕ1, ϕ2, ϕ3), (ψ1, ψ2, ψ3)

)
=

(
ϕ1;ψ1, ϕ2 ∨ (ϕ1;ψ2), ϕ3 ∨ ψ3

)
.

Hence, it suffices to prove that τ satisfies the three requirements in the definition
of γ, which are determined by (ϕ1;ψ1), ϕ2 ∨ (ϕ1;ψ2), and (ϕ3 ∨ψ3). To do this,
we do the case analysis on τ .

1. The first case is that τ = τ0στ1 for some finite trace τ0σ in T0 and a trace
στ1 in T1. Let’s start with the first requirement given by ϕ1;ψ1:

τ ∈ tState+ =⇒ (‘first(first(τ)), first(last(τ))) |= (ϕ1;ψ1), (26)

Note that when τ is infinite, the requirement holds vacuously. Suppose that
τ is finite. In this case, the suffix στ1 is finite as well. Since τ0σ ∈ T0, στ1 ∈
T1 and both traces are finite, these two traces satisfy the below condition
imposed by ϕ1 and ψ1 in the definition of γ:

(‘first(first(τ0σ)), first(σ)) |= ϕ1 ∧ (‘first(σ), first(last(στ1))) |= ψ1.

This implies that

(‘first(first(τ0σ)), first(last(στ1))) |= (ϕ1;ψ1), (27)

because the −;− operator for formulas models relational composition cor-
rectly. But first(τ0σ) = first(τ) and last(τ) = last(στ1). Thus, (26) follows
from (27).



Next, we prove the second requirement given by ϕ2 ∨ (ϕ1;ψ2):

∀σ0 ∈ τ. iscall(σ0) =⇒ (‘first(first(τ)), first(σ0)) |= (ϕ2 ∨ (ϕ1;ψ2)). (28)

Note that σ0 appears in the prefix τ0σ or in the suffix στ1. If the former
holds,

(‘first(first(τ)), first(σ0)) = (‘first(first(τ0σ)), first(σ0)) |= ϕ2.

Hence, (28) holds. Now, suppose that σ0 appears in the suffix στ1. Since στ1
satisfies the second requirement on ψ2,

(‘first(first(στ1)), first(σ0)) |= ϕ2. (29)

Furthermore, since τ0σ satisfies the requirement from ϕ1,

(‘first(first(τ0σ)), first(last(τ0σ))) |= ϕ1. (30)

The desired (28) follows from (29) and (30), because the sequential compo-
sition ϕ1;ψ2 precisely means the relational composition.
Finally, we show the third requirement ϕ3 ∨ ψ3. Pick σ1 and σ2 such that
open(σ1, σ2, τ). We should show that

(‘first(σ1), first(σ2)) |= (ϕ3 ∨ ψ3). (31)

Note that τ = τ0στ1 for τ0σ in T0 and στ1 in T1. Furthermore, since τ0σ is
finite, if a state in τ0σ is tagged with a procedure call, the corresponding
return should appear in τ0σ as well, because this is one of the conditions in
the definition of the concrete semantic domain D. Hence, either the states
σ1 and σ2 tagged with procedure calls appear in τ0σ, or they both appear
in στ1. In the first case,

(‘first(σ1), first(σ2)) |= ϕ3, (32)

because τ0σ satisfies the requirement regarding two call states. Similarly, in
the second case, we have that

(‘first(σ1), first(σ2)) |= ψ3. (33)

The desired (31) follows from (32) and (33).
2. The second case is that τ is an infinite trace from T0. In this case, the first

requirement given by (ϕ1;ψ1) holds vacuously. The other two requirements
also hold for a simple reason. Since the trace τ is in T0, it satisfies the second
and third requirements regarding ϕ2 and ϕ3. But, we have that

ϕ2 |= ϕ2 ∨ (ϕ1;ψ2)
and

ϕ3 |= ϕ3 ∨ ψ3.

The second and third requirements are monotone with respect to formulas.
Thus, τ also satisfies the two requirements given by weaker formulas ϕ2 ∨
(ϕ1;ψ2) and ϕ3 ∨ ψ3.



ut

Lemma 32. If both A and A′ are in At, the conditional statement if]

b(A,A
′) is

in At as well.

Proof. Suppose that both A = (ϕ1, ϕ2, ϕ3) and A′ = (ψ1, ψ2, ψ3) are in At. This
means that ϕ1, ψ1 ∈ TForm. To prove this lemma, it suffices to show that

(b1 ∧ ϕ1) ∨ (b2 ∧ ψ1) ∈ Form, (34)

where b1 and b2 are defined as in the lemma. Note that b2 is equivalent to ¬b1.
Thus, for all ‘s in ‘Var → Q, ‘s satisfies b1 or b2. In the first case, the totality of
ϕ1 (i.e., ϕ1 ∈ TForm) implies that

∃s ∈ (Var → Q). (‘s, s) |= (b1 ∧ ϕ1) ∨ (b2 ∧ ψ1).

In the second case, the same conclusion follows from the totality of ψ1. Since ‘s
is chosen arbitrarily, we have just shown the required (34). ut

Lemma 33. For all A and A′ in At, we have that

ifb(γ(A), γ(A′)) ⊆ γ(if]

b(A,A
′)).

Proof. Pick A = (ϕ1, ϕ2, ϕ3) and A′ = (ψ1, ψ2, ψ3) from At. Let

b1 = preprime(b), b2 = preprime(neg(b)).

We will show that every τ ∈ ifb(γ(A), γ(A′)) belongs to γ(if]

b(A,A
′)). Choose an

arbitrary τ from ifb(γ(A), γ(A′)), and let σ be first(τ). Then, [[b]](first(σ)) = true,
or [[b]](first(σ)) = false. In the proof, we will consider the former case only, since
the latter can be proved similarly. Suppose that [[b]](first(σ)) = true. Then, for
all s ∈ (Var → Q),

(‘first(σ), s) |= b1. (35)

Furthermore, by the definition of ifb and the assumption that [[b]](first(σ)) = true,
the trace τ should be in γ(A), which means that

(τ ∈ tState+ =⇒ (‘first(first(τ)), first(last(τ))) |= ϕ1) and
(∀σ ∈ τ. iscall(σ) =⇒ (‘first(first(τ)), first(σ)) |= ϕ2) and
(∀σ1, σ2. open(σ1, σ2, τ) =⇒ (‘first(σ1), first(σ2)) |= ϕ3).

(36)

From (35) and (36), the below property follows:

(τ ∈ tState+ =⇒ (‘first(first(τ)), first(last(τ))) |= (b1 ∧ ϕ1) ∨ (b2 ∧ ψ1)) and
(∀σ ∈ τ. iscall(σ) =⇒ (‘first(first(τ)), first(σ)) |= (b1 ∧ ϕ2) ∨ (b2 ∧ ψ2)) and
(∀σ1, σ2. open(σ1, σ2, τ) =⇒ (‘first(σ1), first(σ2)) |= ϕ3 ∨ ψ3).

Thus, τ is in γ(if]

b(A,A
′)), as desired. ut



Lemma 34. If A is in At, so is proc]

f (A).

Proof. Suppose that A = (ϕ1, ϕ2, ϕ3) is in At. This means that ϕ1 is total, i.e.,
it belongs to TForm. Since the first component of proc]

f (ϕ1, ϕ2, ϕ3) is again ϕ1,
the totality of ϕ1 implies that proc]

f (ϕ1, ϕ2, ϕ3) is in At, as desired. ut

Lemma 35. For all f ∈ PName and all A in At, we have that

procf (γ(A)) ⊆ γ(proc]

f (A)).

Proof. Pick A = (ϕ1, ϕ2, ϕ3) ∈ At. Consider a trace τ in procf (γ(ϕ1, ϕ2, ϕ3)).
We need to prove that

τ ∈ γ
(
proc]

f (ϕ1, ϕ2, ϕ3)
)

= γ(ϕ1, eqVar ∨ ϕ2, ϕ2 ∨ ϕ3).

Recall that procf is defined to be the disjunction of three cases. In all three cases,
there is some trace τ1 ∈ γ(ϕ1, ϕ2, ϕ3) such that

1. first(τ1) = first(τ), and
2. if τ is finite, so is τ1 and last(τ) = last(τ1).

Furthermore, τ1 satisfies the first requirement in the definition of γ(ϕ1, ϕ2, ϕ3),
which is given by ϕ1. So, τ satisfies the first requirement of γ(proc]

f (ϕ1, ϕ2, ϕ3))
as well.

In the rest of the proof, we prove the remaining two requirements for

γ(proc]

f (ϕ1, ϕ2, ϕ3)).

Let T = γ(ϕ1, ϕ2, ϕ3). Our proof will treat the three cases in the definition of
procf separately.

1. The first case is that τ = σσ(f,call)σ(f,ret)σ for some σ ∈ T . In this case, the
second requirement in the definition of γ is:

(‘first(σ), first(σ(f,call))) |= eqVar ∨ ϕ2,

which holds because of eqVar on the RHS. For the third requirement, we
note that there are no σ1 and σ2 in τ satisfying open(σ1, σ2, τ). Hence, the
requirement holds vacuously.

2. The second case is that τ = σσ(f,call)τ2σ
(f,ret)
2 σ2 for some στ2σ2 ∈ (T ∩

tState+). To prove the second requirement, consider σ3 ∈ τ such that iscall(σ3).
If σ3 is the second element in τ , it is σ(f,call), so

(‘first(σ), first(σ3)) |= eqVar. (37)

Otherwise, σ3 ∈ στ2σ2. Since στ2σ2 is in T = γ(ϕ1, ϕ2, ϕ3), it satisfies the
requirement given by ϕ2. This implies that

(‘first(σ), first(σ3)) |= ϕ2. (38)



The satisfaction relationships (37) and (38) imply the desired property:

(‘first(σ), first(σ3)) |= eqVar ∨ ϕ2.

For the third requirement, pick σ3, σ4 such that open(σ3, σ4, τ). If σ3 is not
the second element of τ , we have that

open(σ3, σ4, στ2σ2).

Thus, (‘first(σ3), first(σ4)) |= ϕ3, and the desired third requirement follows
from this. Otherwise, i.e., σ3 is the second element of τ , it is σ(f,call). Thus,
first(σ3) = first(σ). Since σ4 is a call and it appears in στ2σ2 ∈ T , it has to
satisfy

(‘first(σ), first(σ4)) |= ϕ2.

Now this satisfaction relationship and first(σ3) = first(σ) imply that the
desired third requirement holds.

3. The last case is that τ ∈ σσ(f,call)τ2 for στ2 ∈ (T ∩ tState∞). The proof
of this case is almost identical to the one for the second. Simply replacing
στ2σ2 there by στ2 gives the proof of this third case.

ut

Lemma 36. For all assignments x:=e, asgn]
x,e is in At. Furthermore, it satisfies

the following soundness requirements:

asgnx,e ⊆ γ(asgn]

x,e).

Proof. The first claim of the lemma about the membership to At holds, because
the formula eqVar−{x} ∧ (x = e[‘x/x]) is in TForm. Next, we show that

asgnx,e ⊆ γ(asgn]

x,e).

Pick τ from asgnx,e. By the definition of asgnx,e, the trace τ should be of the
form σ1σ2 such that

1. σ1 and σ2 are none-tagged states and
2. first(σ2) = first(σ1)[x 7→ [[e]]first(σ1)].

This characterization of τ implies that τ does not include any function calls, and
also that τ ’s starting and ending states σ1 and σ2 satisfy

(‘first(σ1), first(σ2)) |= eqVar−{x} ∧ (x = e[‘x/x]).

From these, it follows that τ is in γ(asgn]
x,e), as desired. ut

Lemma 37. A binary operator O : A × A → A is a widening operator, if it
turns every sequence in A into one with a stable element and it satisfies the
condition below:(

(ϕ1, ϕ2, ϕ3)O(ψ1, ψ2, ψ3) = (δ1, δ2, δ3)
)

=⇒ ∀i ∈ {1, 2, 3}.
(
ψi |= δi

)
,

where |= is the semantic entailment.



Proof. We need to prove two properties of O. Firstly, it can be restricted to a
map from At×At to At. Secondly, it computes an upper bound of its arguments:

∀A,A′ ∈ At. γ(A′) ⊆ γ(AOA′).

Pick A = (ϕ1, ϕ2, ϕ3) and A′ = (ψ1, ψ2, ψ3) from At. Let (δ1, δ2, δ3) be AOA′.
Since A,A′ are in At, their first components ϕ1 and ψ1 define total relations
(i.e., ϕ1, ψ1 ∈ TForm). Note that δ1 is weaker than ϕ1 and ψ1 by assumption.
Hence, δ1 also defines a total relation, so (δ1, δ2, δ3) is in At, as desired by the
first property. Now, we move on to the second property: γ(A′) ⊆ γ(AOA′). Pick
a trace τ from γ(A′). By the definition of γ, we have that

(τ ∈ tState+ =⇒ (‘first(first(τ)), first(last(τ))) |= ψ1) and
(∀σ ∈ τ. iscall(σ) =⇒ (‘first(first(τ)), first(σ)) |= ψ2) and
(∀σ1, σ2. open(σ1, σ2, τ) =⇒ (‘first(σ1), first(σ2)) |= ψ3).

By assumption, ψi semantically implies δi for all i ∈ {1, 2, 3}. Thus, the three
conjuncts above imply

(τ ∈ tState+ =⇒ (‘first(first(τ)), first(last(τ))) |= δ1) and
(∀σ ∈ τ. iscall(σ) =⇒ (‘first(first(τ)), first(σ)) |= δ2) and
(∀σ1, σ2. open(σ1, σ2, τ) =⇒ (‘first(σ1), first(σ2)) |= δ3).

That is, τ belongs to γ(AOA′), as desired. ut

Lemma 38. The operator Ok : A×A → A is a widening operator.

Proof. All the subroutines and parameters used in the definition of Ok overap-
proximate their input formulas. From this and the definition of Ok above, it
follows that(

(ϕ1, ϕ2, ϕ3) Ok (ψ1, ψ2, ψ3) = (δ1, δ2, δ3)
)

=⇒ ∀i ∈ {1, 2, 3}.
(
ψi |= δi

)
,

where |= is the semantic entailment. Thus, by Lemma 37, to prove this lemma,
we just need to show that Ok turns every sequence into one with a stable element.
Note that the formula δi in the result of the widening is in the range of boundk,
so it cannot have more than k outermost disjuncts. Furthermore, δi in the result
of the widening is true, or it has one more disjunct than ϕi, or it is the same
as ϕi. These imply that for every sequence {An = (δn

1 , δ
n
2 , δ

n
3 )}n∈N in A, if we

construct the widened sequence {A′n = ((δ′)n
1 , (δ

′)n
2 , (δ

′)n
3 )}n∈N by

A′1 = A1 and A′n+1 = A′nOkAn+1,

then for all i ∈ {1, 2, 3}, every disjunct in (δ′)n
i is included in (δ′)n+1

i , unless
(δ′)n+1

i is true. Thus, the sequence {(δ′)n
i }n∈N goes over the bound k and remains

true forever, or it hits a limit element before reaching the bound k. This implies
that {A′n}n∈N has a stable point. ut

Finally, we prove Lemma 10



Lemma 10. For all A ∈ At, if satisfyLiv](A) = true, we have that γ(A) ∈
LivProperty.

Proof. Consider A ∈ At such that satisfyLiv](A) = true. Pick a trace τ ∈ γ(A).
For the sake of contradiction, suppose that τ includes an infinite subsequence of
open calls. That is, there exists {τiσi}i∈N such that

(τ = τ1σ1τ2σ2 . . .) ∧ (∀i, j ∈ N. i < j =⇒ open(σi, σj , τ)).

By the definition of γ, we should have that

∀i ∈ N. (‘first(σi), first(σj)) |= ϕ3.

Furthermore, the formula ϕ3 is disjunctively well-founded, since satisfyLiv](A) =
true. Hence, the result of Podelski and Rybalchenko in [19] implies that the se-
quence σ1σ2 . . . is finite. But, this is impossible, since σ1σ2 . . . is an infinite
sequence. We have just derived the desired contradiction. ut

B.3 An Example of the Analysis

We illustrate the abstract interpreter with the command below:

C ≡ fix f.
(
if

(
x ≤ 0

) (
x:=x

) (
x:=x−1; f(); x:=x+1

) )
Note that this command is not tail recursive, but it always terminates.

To simplify presentation, we will assume that x is the only program variable.
We also assume that lower returns lower bounds of the form ‘x ≥ 0 only. Similarly,
we assume that upper computes upper bounds of the form ‘x ≤ 0 only.

Our abstract interpreter calculates the abstract semantics of C by an iterative
fixpoint computation. The first iteration of this computation works as follows.
It picks the environment η0 defined by:

A0 = (false, false, false), η0 = [f 7→ A0].

Then, the abstract interpreter analyzes the true and false branches of the con-
ditional statement in f :

[[x:=x]]]η0 = (‘x=x, false, false),
[[x:=x−1; f();x:=x+1]]]η0 = (false, false, false).

Finally, it computes the abstract meaning of the body of f :

A1 = A0 O
(
proc]

f ([[if (x ≤ 0) (x:=x) (x:=x−1; f();x:=x+1)]]]η0)
)

= (false, false, false) O proc]

f (‘x ≤ 0 ∧ ‘x=x, false, false)
= (false, false, false) O (‘x ≤ 0 ∧ ‘x=x, ‘x=x, false)
= (‘x ≤ 0 ∧ ‘x=x, ‘x=x, false).



The second fixpoint iteration proceeds similarly. It picks the environment η1:

η1 = [f 7→ A1].

Then, it computes the abstract semantics of the true and false branches:

[[x:=x]]]η1 = (‘x=x, false, false),
[[x:=x−1; f();x:=x+1]]]η1 =

(
(∃a′b′. ‘x−1=a′ ∧ a′ ≤ 0 ∧ a′=b′ ∧ b′+1=x),
(∃a′. ‘x−1=a′ ∧ a′=x),
false

)
.

Finally, the abstract interpreter combines the above two abstract values, and
finishes the second iteration:

A2 = A1 O proc]

f ([[if (x ≤ 0) (x:=x) (x:=x−1; f();x:=x+1)]]]η1)
= A1 O

(
(‘x ≤ 0 ∧ ‘x=x) ∨ (‘x > 0 ∧ ∃a′b′. ‘x−1=a′ ∧ a′ ≤ 0 ∧ a′=b′ ∧ b′+1=x),
(‘x=x) ∨ (‘x > 0 ∧ ∃a′. ‘x−1=a′ ∧ a′=x),
(‘x > 0 ∧ ∃a′. ‘x−1=a′ ∧ a′=x)

)
=

(
(‘x ≤ 0 ∧ ‘x=x) ∨ (‘x ≥ 0 ∧ ‘x=x),
(‘x=x) ∨ (‘x ≥ 0 ∧ ‘x−1 ≥ x),
(‘x ≥ 0 ∧ ‘x−1 ≥ x)

)
.

The computed A2 is the fixpoint, and becomes the result of analyzing the com-
mand C.

After the fixpoint computation, the abstract interpreter checks whether A2

satisfies satisfyLiv]. In this case, we have that satisfyLiv](A2) = true, because
the third component of A2 is a well-founded relation. Hence, by Lemma 10, the
concrete meaning of C belongs to LivProperty, i.e., [[C]] does not contain an
infinite subsequence of open calls. In still other words, C terminates.


