
Local Action and Abstract Separation Logic

Extended version of paper from LICS’07, version of April 30, 2007

Cristiano Calcagno
Imperial College, London

Peter W. O’Hearn
Queen Mary, University of London

Hongseok Yang
Queen Mary, University of London

Abstract

Separation logic is an extension of Hoare’s logic which
supports a local way of reasoning about programs that mu-
tate memory. We present a study of the semantic structures
lying behind the logic. The core idea is of a local action, a
state transformer that mutates the state in a local way. We
formulate local actions for a general class of models called
separation algebras, abstracting from the RAM and other
specific concrete models used in work on separation logic.
Local actions provide a semantics for a generalized form of
(sequential) separation logic. We also show that our condi-
tions on local actions allow a general soundness proof for a
separation logic for concurrency, interpreted over arbitrary
separation algebras.

1 Introduction

Separation logic is an extension of Hoare’s logic which
has been used to attack the old problem of reasoning about
the mutation of data structures in memory [32, 16, 21, 33].
Separation logic derives its power from an interplay be-
tween the separating conjunction connective ∗ and proof
rules for commands that use ∗. Chief among these are the
frame rule [16, 21] and the concurrency rule [22].

{p}C {q}
{p ∗ r}C {q ∗ r} FrameRule

{p1}C1 {q1} {p2}C2 {q2}
{p1 ∗ p2}C1 ‖ C2 {q1 ∗ q2}

ConcurrencyRule

The frame rule codifies an intuition of local reasoning. The
idea is that, if we establish a given Hoare triple, then the
precondition contains all the resources that the command
will access during computation (other than resources allo-
cated after the command starts). As a consequence, any

additional state will remain unchanged; so the invariant as-
sertion R in the rule (the frame axiom), can be freely tacked
onto the precondition and the postcondition. Similarly, the
concurrency rule states that processes that operate on sepa-
rate resources can be reasoned about independently.

Syntactically, the concurrency and frame rules are
straightforward. But, the reason for their soundness is sub-
tle, and rests on observations about the local way that im-
perative programs work [37]. Typically, a program accesses
a circumscribed collection of resources; for example, the
memory cells accessed during execution (the memory foot-
print). Our purpose in this paper is to describe these seman-
tic assumptions in a general way, for a collection of models
that abstract away from the RAM and other concrete models
used in work on separation logic.

By isolating the circumscription principles for a class
of models, the essential assumptions needed to justify the
logic become clearer. In particular, our treatment of concur-
rency shows that soundness of a concurrent version of sepa-
ration logic relies only on locality properties of the prim-
itive actions (basic commands) in the programming lan-
guage. Soundness of the concurrent logic was very dif-
ficult to come by, originally, even for a particular sepa-
ration algebra (the RAM model); it was proven in a re-
markable work of Brookes [12]. Our treatment of concur-
rency builds on Brookes’s original insights, but makes sev-
eral different choices in formulation which allow for a more
general proof that applies to arbitrary separation algebras.
In high-level terms we show that as long as the primitive
commands in a language satisfy the frame rule, one ob-
tains a model of a concurrent logic. This is in contrast to
Brookes’s original further papers on concurrent separation
logics [10, 11, 15, 14], all of which have proven soundness
for particular models in a way that relies on very specific in-
terpretations of the primitive actions, rather than for a gen-
eral class of models.

This paper will not contain any practical uses of the

logic. We refer the reader to, e.g., [36, 27, 5, 4] and their ref-
erences for examples of manual proofs in separation logic
and work on automatic proof tools. Related work will be
discussed at the end of the paper.

Warning. In this paper we avoid the traditional Hoare
logic punning of program variables as logical variables, to
avoid nasty side conditions in the proof rules; see [9, 26] for
further discussion. This is for theoretical simplicity; our re-
sults can be extended to cover variable alteration, as is done
in most separation logic papers, with their associated modi-
fies clauses. (Furthermore, avoiding the pun is more in line
with real languages like C or ML, even if it departs slightly
from the theoretical tradition in program logic.)

2 Separation Algebras and Predicates

Most papers on separation logic make use of a domain
of heaps, which is equipped with a partial operator for glu-
ing together heaps that are separate in some sense (various
senses have appeared in the literature). We abstract from
this situation with the following definition.

Definition 1 (Separation Algebra) A separation algebra
is a cancellative, partial commutative monoid (Σ, •, u) . A
partial commutative monoid is given by a partial binary
operation where the unity, commutativity and associativity
laws hold for the equality that means both sides are de-
fined and equal, or both are undefined. The cancellative
property says that for each σ ∈ Σ, the partial function
σ • (·) : Σ ⇀ Σ is injective. The induced separateness
(#) and substate (�) relations are given by

σ0#σ1 iff σ0 • σ1 is defined
σ0 � σ2 iff ∃σ1. σ2 = σ0 • σ1.

Examples of separation algebras:

1. Heaps, as finite partial functions from l-values to r-
values

H = L ⇀fin RV

where the empty partial function is the unit and where
h0 • h1 takes the union of partial functions when h0

and h1 have disjoint domains of definition. h0 • h1 is
undefined when h0(l) and h1(l) are both defined for at
least one l-value l ∈ L. By taking L to be the set of
natural numbers and RV the set of integers we obtain
the RAM model [21, 33]. By taking L to be a set of
locations and RV to be certain tuples of values or nil
we obtain models where the heap consists of records
[32, 16]. And by taking L to be sequences of field
names we obtain a model of hierarchical storage [1].

2. Heaps with permissions [8],

HPerm = L ⇀fin RV × P

where P is a permission algebra (i.e., a set with a par-
tial commutative and associative operation ◦ satisfy-
ing the concellativity condition). h0 • h1 is again the
union when the domains are disjoint. Some overlap
is allowed, though: when h0(l) = (rv, p0), h1(l) =
(rv, p1) and p0 ◦p1 is defined then h0 and h1 are com-
patible at l. When all common l-values are compatible,
h0 • h1 is defined, and (h0 • h1)(l) = (rv, p0 ◦ p1) for
all compatible locations l. An example of a permission
algebra is the interval (0, 1] of rational numbers, with
◦ being addition but undefined when permissions add
up to more than 1.

Another permission algebra is given by the set
{R,RW} of read and read-write permissions, where
R ◦ R = R and RW ◦ p is undefined. At first sight,
it might be thought that this algebra models the idea of
many readers and a single writer. But, unfortunately,
it does not allow conversion of a total (RW) permis-
sion to several read permissions, or vice versa. In con-
trast, the algebra (0, 1] does allow such conversion us-
ing identities such as 1/2 + 1/2 = 1; see [8].

3. Variables as resource [9, 26] is S × H , where H is as
above and

S = Var ⇀fin Val

has the “union of disjoint functions” partial monoid
structure. Variables-as-resource models can also be
mixed with the permission construction.

4. Multisets over a given set of Places, with • as multiset
union, which can be used to model states in Petri nets
without capacity [31].

5. The monoid [Places ⇀fin {marked, unmarked}] of
partial functions, again with union of functions with
disjoint domain, can be used to model Petri nets with
capacity 1. Note that the • operation in nets with ca-
pacity 1 is partial, while in nets without capacity it is
total.

Definition 2 Let Σ be a separation algebra. Predicates
over Σ are just elements of the powerset P (Σ). It has an
ordered total commutative monoid structure (∗, emp) given
by

p ∗ q = {σ0 • σ1 | σ0#σ1 ∧ σ0 ∈ p ∧ σ1 ∈ q}
emp = {u}

2

P (Σ) is in fact a boolean BI algebra, where p ∗ (·) and
p u (·) have right adjoints [29]. Because they are left ad-
joints they preserve all joins, so we automatically get two
distributive laws⊔

X ∗ p =
⊔
{x ∗ p | x ∈ X}⊔

X u p =
⊔
{x u p | x ∈ X}.

Similar laws do not hold generally for
d

, but the predi-
cates p that satisfy an analogue of the first law play a crucial
role in this work.

Definition 3 (Precise Predicates) A predicate p ∈ P (Σ) is
precise if for every σ ∈ Σ, there exists at most one σp � σ
such that σp ∈ p. We let Prec denote the set of precise
predicates.

Examples.

1. In the heap model, if l ∈ L is an l-value and rv ∈ R an
r-value, then the predicate l 7→ rv ∈ P (Σ) is the set
{σ} consisting of a single state σ where σ(l) = rv and
σ(l′) is undefined for other l-values l′. It is precise.

2. l0 7→ rv0 ∗ l1 7→ rv1 is the set {σ} where σ is defined
only on locations l0 and l1, mapping them to rv0 and
rv1. Again, this predicate is precise.

3. l0 7→ rv0 t l1 7→ rv1 is the disjunction, i.e. the set
{σ0, σ1}where σi maps li to rvi and is undefined else-
where. l0 7→ rv0 t l1 7→ rv1 is not a precise predicate.

Lemma 4 (Precision Characterization) 1. Every
singleton predicate {σ} is precise.

2. p is precise iff for all X ⊆ P (Σ),
l

X ∗ p =
l
{x ∗ p | x ∈ X}

Condition 2 in this lemma can be taken as a basis for a def-
inition of precision in a complete lattice endowed with an
ordered commutative monoid (rather than the specific lat-
tices P (Σ)). Also, the assumption that σ • (·) be injective is
equivalent to the requirement

l
X ∗ {σ} =

l
{x ∗ {σ} | x ∈ X}.

This property is used in the characterization of the lattice
structure of local functions, in the proof of completeness
for the sequential logic, and again later when we turn to
concurrency. In sum, precision plays a greater role here
than in previous work, where it arose as a technical reaction
to soundness problems in proof rules for information hiding
[24, 12, 22].

3 Local Actions

3.1 Conceptual Development

In [37] a soundness proof was given for separation logic
in terms of an operations semantics for the RAM (heaps)
model. The development there revolved around relations

R ⊆ Σ× (Σ ∪ {fault})

(σ, σ′) ∈ R signifies that the program can deliver final
state σ′ when started in σ, and (σ, fault) ∈ R signifies
that a memory fault can occur (by dereferencing a dangling
pointer). In terms of these relations, two properties were
identified that correspond to the frame rule:

1. Safety Monotonicity: (σ, fault) 6∈ R and σ � σ′

implies (σ′, fault) 6∈ R.

2. Frame Property: If (σ0, fault) 6∈ R and σ = σ0•σ1

and (σ, σ′) ∈ R then ∃σ′
0. σ′ = σ′

0•σ1 and (σ0, σ
′
0) ∈

R.

The first condition says that if a state has enough resource
for safe execution of a command, then so do superstates.
The second condition says that if a little state σ0 has enough
resource for the command to execute safely, then execution
on any bigger state can be tracked back to the small state.

These two conditions can be shown to be equivalent to
the frame rule: a relation R satisfies Safety Monotonicity
and the Frame Property iff the frame rule is sound for it.
But, the formulation of the second property is unpleasant: it
is a tabulation of a true operational fact (as shown in [37]),
but in developing our theory we seek a simpler condition.

The first step to this simpler formulation is to make use
of the fact that fault trumps; that is, in separation logic
Hoare triples are interpreted so that fault falsifies a triple
[16, 37, 33]. The result is that Hoare triples cannot distin-
guish between a command that just faults, and one that non-
deterministically chooses between faulting and terminating
normally. This suggests that in the semantics we can use
functions from states to the powerset P (Σ), together with
fault, rather than relations as above.

But, order-theoretically, where should fault go? The an-
swer is on the top, as in functions

f : Σ → P (Σ)>.

Conceptually, faulting is like Scott’s top: an inconsistent
or over-determined value. Technically, putting fault on the
top allows us to characterize the pointwise order in terms
of Hoare triples (Proposition 7), which shows that it is the
correct order for our purposes.

This much is mostly a standard essay on relations versus
functions into powersets. The payoff comes in the treatment

3

of locality. Using functions into the (topped) powerset, we
can work with a much simpler condition:

locality : σ1#σ2 implies f(σ1 • σ2) v (fσ1) ∗ {σ2}.

Here, the ∗ operation is extended with >, by p ∗ > = > ∗
p = >. It can be verified that a relation R satisfies Safety
Monotonicity and Frame Property iff the corresponding
function func(R) : Σ → P (Σ)> satisfies locality.1

Aside on total correctness. The use of P (Σ)> above is
strongly oriented to a partial correctness logic, where di-
vergence does not falsify a Hoare triple. The empty set
in P (Σ)> represents divergence. For total correctness we
would just have to flip P (Σ)> upside down, obtaining
(P (Σ)>)op. In total correctness divergence and faulting are
identified, and both denote > (which in (P (Σ)>)op is the
least element, traditionally called “chaos”.) The empty set
is a “miracle” element, included just to make sure we get a
complete partial order. In the total correctness semantics we
would have to work with monotone rather than continuous
functions, to account for infinite nondeterminism (as repre-
sented by allocation in separation logic works). (P (Σ)>)op

is just the standard Smyth domain used for demonic nonde-
terminism, while P (Σ)> is an unusual angelic domain (the
extra > is usually not present in the angelic domains).

Aside on predicate transformers. If we were to use
maps P (Σ) → P (Σ) for backwards predicate transform-
ers, or P (Σ)> → P (Σ)> for forwards transformers, then
a mathematically simpler expression of locality would be
possible. For the forwards transformers it is F (p ∗ r) v
F (p) ∗ r and for the backwards it is the reverse. We do not
use predicate transformers as a semantics here, because it
would be circular to use them to justify the logic:2 they are
essentially rewriting (Hoare) logic in order-theoretic terms.
We use state-transformers on separation algebras because
they are comparatively removed from the logic, and closer
to the way that programs work.

3.2 Technical Development

Definition 5 P (Σ)> is obtained by adding a new greatest
element to P (Σ). It has a total commutative monoid struc-
ture, keeping the unit emp the same as in P (Σ), and ex-
tending ∗ so that p ∗ > = > ∗ p = >.

Definition 6 (Semantic Hoare Triple) If p, q ∈ P (Σ) and
f : Σ → P (Σ)> then

1func(R)σ returns > when (σ, fault) ∈ R, even if we also have
(σ, σ′) ∈ R for some σ′ 6= fault.

2This is not to deny their usefulness for other purposes, such as in ab-
stract interpretation.

〈〈p〉〉 f 〈〈q〉〉 holds iff for all σ ∈ p. fσ v q

This is fault-avoiding because the postcondition does not
include top. A justification for putting fault on the top is the
following.

Proposition 7 (Order Characterization) f v g iff for all
p, q ∈ P (Σ), 〈〈p〉〉 g 〈〈q〉〉 implies 〈〈p〉〉 f 〈〈q〉〉

Definition 8 (Local Action) Suppose Σ is a separation al-
gebra. A local action f : Σ → P (Σ)> is a function satis-
fying the locality condition:

σ1#σ2 implies f(σ1 • σ2) v (fσ1) ∗ {σ2}.

We let LocAct denote the set of local actions, with pointwise
order.

Lemma 9 LocAct is a complete lattice, with meets and
joins defined pointwise (and inherited from the function
space [Σ → P (Σ)>]).

Proof: Assume that σ = σ0#σ1. Then we can show that
the pointwise meet is local

(
d

F)(σ0 • σ1) =
d
{f(σ0 • σ1) | f ∈ F}

v
d
{f(σ0) ∗ {σ1} | f ∈ F}

=
(d

{f(σ0) | f ∈ F}
)
∗ {σ1}

= ((
d

F)σ0) ∗ {σ1}.

The second-last step used that {σ1} is precise (Lemma 4).
For pointwise joins,

(
⊔

F)(σ0 • σ1) =
⊔
{f(σ0 • σ1) | f ∈ F}

v
⊔
{f(σ0) ∗ {σ1} | f ∈ F}

=
(⊔

{f(σ0) | f ∈ F}
)
∗ {σ1}

= ((
⊔

F)σ0) ∗ {σ1}.

In the second-last step, this time, we used the distribution of⊔
over (·)∗{σ1}, which in fact holds for arbitrary predicates

rather than just singletons.

Given any precondition p1 and postcondition p2, we can
define the best or largest local action satisfying the triple
〈〈p1〉〉 − 〈〈p2〉〉3.

Definition 10 (Best Local Action) bla[p1, p2] is the func-
tion of type Σ → P (Σ)> defined by

bla[p1, p2](σ) =
l
{p2 ∗ {σ0} | σ = σ0 • σ1, σ1 ∈ p1}.

Lemma 11 Let f = bla[p1, p2]. The following hold:

• f is a local action;

3This is an analogue of the “specification statement” studied in the re-
finement literature

4

• 〈〈p1〉〉 f 〈〈p2〉〉;

• If 〈〈p1〉〉 t 〈〈p2〉〉 and t is local then t v f .

Proof: To show that f is local, consider σ′, σ′′ such that
σ′#σ′′. We then calculate

bla[p1, p2](σ′ • σ′′)
=

d
{p2 ∗ {σ0} | σ′ • σ′′ = σ0 • σ1, σ1 ∈ p1}

v
d
{p2 ∗ {σ0 • σ′′} | σ′ = σ0 • σ1, σ1 ∈ p1}

=
d
{p2 ∗ {σ0} ∗ {σ′′} | σ′ = σ0 • σ1, σ1 ∈ p1}

=
(d

{p2 ∗ {σ0} | σ′ = σ0 • σ1, σ1 ∈ p1}
)
∗ {σ′′}

= bla[p1, p2](σ′) ∗ {σ′′}.

In the second-last step we used that {σ′′} is precise (Lemma
4).

To show that f satisfies 〈〈p1〉〉 f 〈〈p2〉〉, consider σ ∈ p1.
Then f(σ) v p2 ∗ emp = p2.

For the last point, suppose {p1} t {p2} and t is local.
Then for all σ, σ1, σ2 such that σ = σ1 • σ2 and σ1 ∈ p1,

t(σ) = t(σ1 • σ2)
v t(σ1) ∗ {σ2}
v p2 ∗ {σ2}.

Thus t(σ) v f(σ).

Local actions form a one-object category (a monoid),
where the identity is bla[emp, emp] and the composition
f ; g functionally composes f with the obvious lifting g† :
P (Σ)> → P (Σ)>.4 This structure is used in the semantics
of skip and sequential composition in Figure 1.

Examples.

1. For the Heaps model, the function f which always re-
turns emp is not local. The function f that sets all
allocated locations to some specific r-value (say, 0) is
not local. For, f applied to a singleton heap [l 7→ 2] re-
turns [l 7→ 0]. According to locality, it should not alter
any location other than l. But, f([l 7→ 2, l′ 7→ 2]) =
{[l 7→ 0, l′ 7→ 0]}. Such a function is not definable in
the languages used in separation logic (and is typically
not definable in, say, C or Java.). In contrast, the op-
erations of heap mutation and allocation and disposal
are local actions (see the next section).

2. Any transition on a Petri net without capacity defines
a local action on the multiset monoid (in fact, a de-
terministic local action). Any transition on a net with
capacity 1 determines a local action on the separation
algebra [Places ⇀fin {marked, unmarked}]. Interest-
ingly, transitions for nets with capacity do not define
local actions on the separation algebra which is the set
of places with union of disjoint subsets as •.

4How to make this into a more genuine, many object, category is not
completely obvious.

JcKv = v(c)

JskipKvσ = {σ} (= bla[emp, emp]σ

JC1;C2Kv = (JC1Kv); (JC2Kv)

JC?Kv =
⊔

nJC nKv

JC1 + C2Kv = JC1Kv t JC2Kv

- v : PrimCommands → LocAct

- JCKv ∈ LocAct

- (f ; g)σ =
{

> if fσ = >⊔
{gσ′ | σ′ ∈ fσ} otherwise

Figure 1. Denotational Semantics

3. Generally, bla[p, emp] is the local action that disposes
of, or annihilates, p. Similarly, bla[emp, p] allocates p,
or lets the knowledge of p materialize.

The annihilation bla[p, emp] behaves strangely when p is
not precise. For example, when p is l0 7→ r0 t l1 7→ r1 for
l0 6= l1 in the heap model, bla[p, emp] on the heap [l0 7→ r0]
disposes l0, but diverges on [l0 7→ r0, l1 7→ r1]. However,
in case p is precise, the definition is well-behaved. We set
out to analyze this.

We use the following preliminary definition of σ\p,
which removes from σ a substate satisfying p (if it exists).

Definition 12 (Removal) (·)\p : Σ → P (Σ)> is the func-
tion where

σ\p =

 > if σ 6∈ p ∗ true
{σ0 | ∃σ1. σ = σ0 • σ1

and σ1 ∈ p} otherwise

Here true means the set of all states, i.e., Σ. Note that σ0 in
this definition is necessarily unique when p is precise. The
following lemma confirms that when p is precise, annihila-
tion successfully deletes the state described by p.

Lemma 13 If p is precise, then bla[p, emp]σ = σ\p.

4 Programming Language

The commands of our language are as follows:

C ::= c | skip | C;C | C + C | C?

Here, c ranges over an unspecified collection
PrimCommands of primitive commands, + is non-
deterministic choice, ; is sequential composition, and (·)?

is Kleene-star (iterated ;). We use + and (·)? instead of

5

conditionals and while loops for theoretical simplicity:
given appropriate primitive actions the conditionals and
loops can be encoded, but we do not need to explicitly
consider boolean conditions in the abstract theory.

The denotational semantics of commands is given in Fig-
ure 1. The meanings of primitive commands are given by
a valuation v. The meaning of Kleene-star is a local action
because of Lemma 9.

Example Language and Model. We illustrate this defini-
tion with a particular concrete model and several primitive
commands. As a model we take

Σ = S ×H = (Var ⇀fin RV)× (L ⇀fin RV)

as in Section 2. We assume further that L ⊆ RV .
For a given rv and x, y ∈ Var , we can define

load(l, x)
=

d
rv bla[l 7→ rv ∗ x 7→ − , l 7→ rv ∗ x 7→ rv]

store(x, l)
=

d
rv bla[l 7→ – ∗ x 7→ rv , l 7→ rv ∗ x 7→ rv]

move(x, y)
=

d
rv bla[x 7→ rv ∗ y 7→ – , x 7→ rv ∗ y 7→ rv]

Here, load is the analogue of the assembly language in-
struction that retrieves a value from memory and puts it in
a register, while store takes a value from the register bank
and puts it into memory, and move copies a value from one
register to another. Here the use of

d
is the meet of local

actions (not just assertions), and is essentially being used to
model universal quantification outside of a triple to treat rv
as a ghost variable (a variable that is not a program vari-
able). 5

Primitive commands free(l) and new(x) for disposing
and allocating heap locations denote the following best lo-
cal actions.

free(l) = bla[l 7→ –, emp]
new(x) = bla[x 7→ –,

⊔
l x 7→ l ∗ l 7→ −]

So, allocation and deallocation are special cases of the gen-
eral concepts of materialization and annihilation. In these
definitions l 7→ − is the predicate denoting {σ} where σ(l)
is defined and where σ(l0) is undefined for l0 6= l. In the

5We could have defined these operations without using
d

if we took
ghosts seriously in our theory. For instance, bla[l 7→ rv ∗ x 7→ −, l 7→
rv ∗ x 7→ rv] is a good specification of load , as long as we understand
that rv is a ghost. But, we can get the same mathematical effect using

d

outside of triples, which helps to keep the theory simpler by not having
a special kind of variable. Put another way, we have all the mathematical
structure needed to explain ghosts, but just use that structure directly rather
than undertake additional formalization.

postcondition for new(x) we are using
⊔

l to play the role
of existential quantification in the evident way.6

We have used the best local actions bla[−,−] to define
these functions, but we could also define them by more ex-
plicit reference to states. For example, load(l, x) is

λσ.if (l, x ∈ dom(σ)) then (σ|x:=σ(l)) else >

where we use (σ|x:=rv) for updating a partial function.
In this model we can have boolean expressions for test-

ing, say, whether two locations have the same value ([l] ==
[l′]). Following [16], we call a predicate p intuitionistic if
p ∗ true = p, and define the intuitionistic negation ¬ip of
p to be {σ | ∀σ′. σ • σ′ 6∈ p}. Generally, we can pre-
sume a collection of primitive boolean expressions b, which
give rise to primitive commands assume(B) for some in-
tuitionistic predicate B ∈ P (Σ). Our valuation v has to
map assume(B) to a local action v(assume(B)) ∈ LocAct
which returns an input state σ if B holds in σ; diverges if
¬iB holds; faults otherwise. Then, we can encode condi-
tionals and loops as

(assume(B);C1) + (assume(¬iB));C2)
(assume(B);C)?; assume(¬iB)

The point of this is just to make clear that, in the general
theory, we do not need to consider boolean expressions ex-
plicitly: the assume statements can be taken to be given
primitive commands, in which case their use in loops and
conditionals can be encoded in terms of the more basic non-
deterministic choice and Kleene iteration.7

5 An Abstract Separation Logic

5.1 Proof Theory

The rules for Abstract Separation Logic are in Figure 2.
Note that we have to require that I be nonempty in the con-
junction rule because {true}C{true} does not generally
hold in separation logic (because of the fault-avoiding in-
terpretation of triples).

Definition 14 (Axioms) An axiom set Ax is a set of triples

{p}c{q}

for primitive commands c, where there is at least one axiom
for each primitive command.8

6The assertion would sometimes be written ∃l.x 7→ l ∗ l 7→ −, and
we are just using the ability of a complete Boolean algebra to interpret
quantification.

7If we wanted to include booleans explicitly in the general theory we
could use “local booleans”, functions Σ → {t, f}⊥ that are monotone wrt
the � order on Σ.

8The canonical axiom {false} c {false} can be taken when a specific
choice is not desired.

6

STRUCTURAL RULES

{p}C {q}
{p ∗ r}C {q ∗ r}

p′ v p {p}C {q} q v q′

{p′}C {q′}

{pi}C {qi}, all i ∈ I

{
⊔

i∈I pi}C {
⊔

i∈I qi}
{pi}C {qi}, all i ∈ I

{
d

i∈I pi}C {
d

i∈I qi}
I 6= ∅

BASIC CONSTRUCTS

{p} skip {p}
{p}C1 {q} {q}C2 {r}

{p}C1;C2 {r}

{p}C1 {q} {p}C2 {q}
{p}C1 + C2 {q}

{p}C {p}
{p}C? {p}

Figure 2. Rules of Abstract Separation Logic

Definition 15 (Proof-theoretic Consequence Relation)
We write

Ax ` {p}C {q},

to mean that {p}C {q} is derivable from Ax using the rules
in Figure 2.

Note that the consequent, but not the antecedent, in Ax `
{p}C {q} might involve a composite command.

5.2 Semantics

Definition 16 (Satisfaction) Suppose that we have a valu-
ation v as in Figure 1. We say that v satisfies {p}C {q} just
if 〈〈p〉〉 JCKv 〈〈q〉〉 is true according to Definition 6.

Definition 17 (Semantic Consequence Relation) We
write

Ax |= {p}C {q}

to mean that for all valuations v, if v satisfies Ax then v
satisfies {p}C {q}.

Theorem 18 (Soundness) All of the proof rules preserve
semantic validity (Ax |= {p}C {q}). As a result, a proof-
theoretic consequence is also a semantic consequence:

Ax ` {p}C {q} implies Ax |= {p}C {q}.

The soundness result is easy to prove. The soundness of
the frame rule follows from the locality condition in Defini-
tion 8, and all the other rules are straightforward.

We can also prove the converse of Theorem 18. The key
to this is to induce a particular valuation from any set of
axioms.

Definition 19 (Canonical Valuation) v(Ax) is the valua-
tion mapping c to

l
{bla[p, q] | {p} c {q} ∈ Ax}.

Lemma 20 Ax |= {p}C {q} iff v(Ax) satisfies {p}C {q}

Proof: Suppose that Ax |= {p}C {q}. Then, by the defi-
nition of Ax |= {p}C {q}, every valuation v satisfying Ax
also satisfies {p}C {q}. Since v(Ax) satisfies Ax, we have
that 〈〈p〉〉 [[C]](v(Ax)) 〈〈q〉〉, as required by the only if direc-
tion of the lemma. For the reverse, assume v(Ax) satisfies
{p}C {q} and that v is some valuation satisfying Ax. Hoare
triples are downwards closed, in the sense that if 〈〈p〉〉 f 〈〈q〉〉
and g v f then 〈〈p〉〉 g 〈〈q〉〉. It is easy to see that v(Ax)
is the greatest valuation satisfying all the triples in Ax, so
v v v(Ax). (That is, where valuations are ordered point-
wise.) That v satisfies {p}C {q} follows.

Theorem 21 (Completeness)

Ax |= {p}C {q} implies Ax ` {p}C {q}

Proof: Let va = v(Ax) be the canonical valuation. We
prove that if va satisfies {p}C {q} then Ax ` {p}C {q}.
The conclusion then follows from Lemma 20. The proof
proceeds by induction on the structure of C. First, we note
that we can reduce completeness for general p’s in the pre-
condition to completeness for singletons p = {σ}. The
reason is that we can use an instance of the disjunction rule

{{σ}} c {q}, all σ ∈ p

{
⊔

σ∈p{σ}} c {q}

to reduce the general case to the case for singleton precon-
ditions. We use this reduction in the first base case below.

Suppose C = c is a primitive command.9 We assume,
wlog, that p = {σ} is a singleton. Let I be an indexing, and
let pi, qi be such that

{pi} c {qi}, where i ∈ I

is the collection of all axioms in Ax that involve c. Let

J = {σi1 | i ∈ I ∧ ∃σi0 ∈ pi. σ = σi0 • σi1}.

Since va satisfies {p} c {q} we have

(a) (
⊔

σi0∈J qi ∗ {σi0}) v q.

It is also easy to see that

(b) {σ} v (
⊔

σi0∈J pi ∗ {σi0}).

9This is sometimes called Adaptation Completeness, and is actually the
most difficult step.

7

We then reason as follows:
{pi} c {qi} all i ∈ I

{pi ∗ {σi0}} c {qi ∗ {σi0}} all σi0 ∈ J

{
⊔

σi0∈J pi ∗ {σi0}} c {
⊔

σi0∈J qi ∗ {σi0}}
{
⊔

σi0∈J pi ∗ {σi0}} c {q}
{{σ}} c {q}

The first step here uses the frame rule multiple times, the
second step uses the disjunction rule, and the third and
fourth use consequence with (a) and (b) above. This com-
pletes the proof of the case for primitive commands c.

The case of skip is straightforward.
For C1;C2, we know that va satisfies {p}C1;C2 {q}.

Therefore, it follows that JC1Kvaσ 6= > for each σ ∈ p.
Let r be

⊔
{JC1Kvaσ | σ ∈ p}. We know that va satis-

fies {p}C1 {r}, and so by the induction hypothesis Ax `
{p}C1 {r}. Similarly, by the definition of JC1;C2K it fol-
lows that va satisfies {r}C2 {q} and by induction hypoth-
esis Ax ` {r}C2 {q}. We can then apply the rule of se-
quencing to derive {p}C1;C2 {q}.

For C1 +C2, we know that va satisfies {p}C1 +C2 {q}.
Therefore, it follows that JC1Kvaσ 6= > and JC2Kvaσ 6= >
for each σ ∈ p. Let ri be

⊔
{JCiKvaσ | σ ∈ p} for i =

1, 2. We know that va satisfies {p}Ci {ri}, so by induction
hypothesis we obtain that Ax ` {p}Ci {ri}. By the rule of
consequence we obtain that Ax ` {p}Ci {r1 t r2}. We can
then apply the rule for + to obtain Ax ` {p}C1 + C2 {r1 t
r2}. By the definitions of JC1 + C2K and 〈〈p〉〉− 〈〈q〉〉 we
obtain that r1 t r2 v q. One more application of the rule of
consequence then gives us Ax ` {p}C1 + C2 {q}.

For C?, we know that va satisfies {p}C? {q}. Let r =⊔
{JCnKvaσ | σ ∈ p}. Unwinding the definitions, this

means

(a) r v q (by the definition of 〈〈p〉〉− 〈〈q〉〉),

(b) p v r (from n = 0 case in r), and

(c) va satisfies {r}C {r} (by induction on n in the defini-
tion of r).

By induction hypothesis, from (c) we obtain Ax `
{r}C {r} and using the rule for iteration, Ax ` {r}C? {r}.
From this we can derive Ax ` {p}C? {q} using the rule of
consequence with (a) and (b).

6 A Logic for Concurrency

We add three new command forms for parallel composi-
tion, lock declarations `.C, and critical sections.10

C ::= · · · | C ‖ C | `.C | with ` doC

10In [22] a conditional notion of critical section was used for conve-
nience, but this can be encoded in terms of simple sections and assume

statements.

This language assumes that there is a fixed infinite set
Locks , from which the `’s are drawn. The basic constraint
on the critical sections is that different with ` doC for the
same ` must be executed with mutual exclusion. In imple-
mentation terms, we can consider the critical section as be-
ing implemented by P(`);C;V (`) where P(`) and V (`)
are Dijkstra’s operations on (binary) mutex semaphore `.

The program logic will manipulate an environment map-
ping locks to precise predicates.

Env = Locks ⇀fin Prec.

The judgments of the logic for concurrency are of the form

η B {p}C{q}

where η ∈ Env defines all the lock variables free in C. The
rules for concurrency are in Figure 3.

Definition 22 (Proof-theoretic Consequence Relation, II)
We write

η; Ax ` {p}C {q},
to mean that η B {p}C {q} is derivable from assumptions

η′ B {p} c {q}, where {p} c {q} ∈ Ax and η′ ∈ Env ,

by the rules in Figure 3.

7 A Concurrency Model

In broad outline, our semantics for the concurrent logic
follows that of Brookes [12]. First, we define an interleav-
ing semantics based on action traces. This is a denotational
but completely syntactic model, that resolves all the concur-
rency for us. Second, we give a way to “execute” the traces
in given states. Brookes did this using an additional “local
enabling relation” defined for the traces. Here, trace exe-
cution just uses the denotational semantics in terms of local
functions. This is what allows us to formulate our model for
arbitrary separation algebras.11

7.1 Syntactic Trace Model

The traces will be made up of the primitive actions of
our programming language, plus two additional semaphore
operations to model entry and exit from critical regions.

Definition 23 An atomic action α is a primitive command
or skip or a race-check or an `-action act(`).

α ::= c | skip | check(c, c) | act(`)

act(`) ::= P(`) | V (`)

A trace τ is a sequential composition of atomic actions:

τ ::= α; · · · ;α
11Also, in contrast to [12], there will be no notion of local enabling

becoming “stuck”, where stuckness is a concept distinct from faulting.

8

η B {p1}C1 {q1} η B {p2}C2 {q2}
η B {p1 ∗ p2}C1 ‖ C2 {q1 ∗ q2}

η, ` 7→ r B {p}C {q}
η B {p ∗ r} `.C {q ∗ r}

η B {p ∗ r}C {q ∗ r}
η, ` 7→ r B {p} with ` doC {q}

Plus the rules from Figure 2 with ηB added uniformly

Figure 3. Rules for Concurrency

T (c) = {c} T (skip) = {skip} T (C1;C2) = {τ1; τ2 | τi ∈ T (Ci)}
T (C1 + C2) = T (C1) ∪ T (C2) T (C?) = (T (C))? T (C1 ‖ C2) = {τ1 zip τ2 | τi ∈ T (Ci)}
T (`.C) = {(V (`); τ ;P(`))− ` | τ ∈ T (C) is `-synchronized} T (with ` doC) = {P(`); τ ;V (`) | τ ∈ T (C)}

where τ1 zip τ2 and the auxiliary τ1 zip′ τ2 are defined as follows:

γ ::= skip | act(`)

ε zip τ = τ τ zip ε = τ ε zip′ τ = τ τ zip′ ε = τ

(c1; τ1) zip (c2; τ2) = check(c1, c2); ((c1; τ1) zip′ (c2; τ2)) (γ; τ1) zip τ2 = (γ; τ1) zip′ τ2

τ1 zip (γ; τ2) = τ1 zip′ (γ; τ2) (α1; τ1) zip′ (α2; τ2) = (α1; (τ1 zip (α2; τ2))) ∪ (α2; ((α1; τ1) zip τ2))

Figure 4. Trace Semantics

We write ε for the empty trace, τ−` for the trace obtained by
deleting all `-actions from τ , and τ |` for the trace obtained
by removing all non-` actions from τ .

Definition 24 A trace τ is `-synchronized if τ |` is an ele-
ment of the regular language (P(`);V (`))?.

We are going, in what follows, to concentrate on `-
synchronized traces only. This is justified for two reasons.
First, any P(`) will have a matching V (`) because the
semaphore operations will be generated in traces by entry to
and exit from critical regions with ` doC. The second rea-
son can be stated logically and operationally. Operationally,
if one critical region for ` is nested within another region
for the same ` then the inner region can never be executed.
Logically, the proof rule for critical regions can never be
used on the inner region, because the rule for with ` doC
in Figure 3 deletes ` from the environment.

The set of traces T (C) of a command C is defined in
Figure 4. Most cases are straightforward. The traces of `.C
are obtained by restricting to the `-synchronized traces of C
and deleting `-actions. The deletion of `-actions is justified
by Lemma 26, since `-actions behave like skip when ` is
mapped to emp by the environment η. The semantics of `.C
starts with a V (`) and ends with a P`) to model the idea that
the lock declaration begins by transferring state into the re-
source ` holds and terminates by releasing it. This follows

the view from [22] of P(`) and V (`) as resource owner-
ship transformers, a view that is formalized below using the
annihilation and materialization operations discussed at the
end of Section 3.2. The critical region with ` doC just in-
serts mutex operations before and after C. The traces of
C1 ‖ C2 are interleavings, except that any time two prim-
itive actions can potentially execute at the same time we
insert a check for races. We remark that races are not de-
tected at this stage: we merely insert check statements that
will be evaluated at execution time.

7.2 Executing Traces

As an individual trace is just a sequential composition of
simple commands, we can define its denotational semantics
following Figure 1. In detail, the definition is

JcKvη = v(c)

JskipKvησ = {σ}
JC1;C2Kvη = (JC1Kvη); (JC2Kvη)

JP (`)Kvη = bla[emp, η(`)]

JV (`)Kvη = bla[η(`), emp]

Jcheck(c1, c2)Kvη = check(v(c1), v(c2))

9

where check(f, g) is defined as follows:

check(f, g)(σ) =

 {σ} if ∃σfσg. σf • σg = σ ∧
f(σf) 6= > ∧ g(σg) 6= >

> otherwise

In words, check(f, g)(σ) faults if we cannot find a parti-
tion σf •σg of σ where the components of the partition con-
tain sufficient resource for f and g individually. In case the
entire state σ has enough resource for both f and g (mean-
ing they don’t deliver >), check(f, g)(σ) converts racing to
faulting. In different models, this sense of race takes on a
different import. For example, in the plain heap model, by
this definition racing means that two operations touch the
same location, even if they are only reading the same loca-
tion, while in permission models two operations can read
the same location without it being judged a race. Note,
though, that this determination, whether or not we have a
race, is not something that must be added to a model: it is
always completely determined just by the • operation.

Lemma 25 Jcheck(c1, c2)Kvη is local.

Proof: It suffices to show that for all local actions f1, f2,
function check(f1, f2) is local. Consider σ, σ′ such that σ •
σ′ is defined. We need to show that

check(f1, f2)(σ • σ′) v check(f1, f2)(σ) ∗ {σ′}.

When check(f1, f2)(σ) = >, the rhs of the inequality is >,
so the inequality follows. Suppose check(f1, f2)(σ) 6= >.
Then, the rhs of the inequality is {σ • σ′}, and there exists
a splitting σ1 • σ2 = σ of σ with fi(σi) 6= >. By the
locality of f2, we have that f2(σ2 •σ′) v f2(σ2)∗{σ′}. So,
f2(σ2 • σ′) 6= >. Since f1(σ1) 6= >, check(f1, f2)(σ • σ′)
is {σ1 • (σ2 •σ′)}, the same set as check(f1, f2)(σ) ∗ {σ′}.

A crucial property of trace execution is the following. It
relies essentially on lock invariants being precise, and par-
ticularly Lemma 13 and the analysis of annihilation it pro-
vides in the context of the semantics just given for V (`).

Lemma 26 If τ is an `-synchronized trace then

JV (`); τ ;P(`)Kvη w Jτ − `Kvη

Proof: For brevity we write τ [r] for JτKv(η|`:=r), and
P(r) (resp. V (r)) for (P(`))[r] (resp. (V (`))[r]). Since
P(emp) = V (emp) = skip, we obtain the result by prov-
ing

V (r); τ [r];P(r) w τ [emp].

The proof is by induction on the length of τ . If τ does not
contain `-actions, then τ = τ [emp], and the result follows
immediately from the following property

V (r); f ;P(r) w f. (1)

Otherwise, because of the `-synchronized assumption, τ [r]
must be of the form τ1;P(r); τ2;V (r); τ ′[r] where τ1, τ2

do not contain `-actions and τ ′ is `-synchronized. We then
have

V (r); τ1;P(r); τ2;V (r); τ ′[r];P(r)
w τ1; τ2;V (r); τ ′[r];P(r)
w τ1; τ2; τ ′[emp] = τ [emp].

The first inclusion uses the same result as the base case, and
the last inclusion uses the induction hypothesis.

We are left with proving property (1). We prove the in-
clusion for all σ. If V (r)σ = >, the conclusion is immedi-
ate. Otherwise, σ = σ1 • σ2 for σ2 ∈ r. We then have

(V (r); f ;P(r))σ w (f ;P(r))σ1

= (fσ1) ∗ r
w (fσ1) ∗ {σ2}
w fσ.

In the first two steps we use the semantics of V (r) and
P(r). In the last two steps we use monotonicity of ∗ and
locality of f .

7.3 Interpreting the Logic

Definition 27 (Semantic Consequence Relation, II)
Given a set of traces S, we define the semantics
JSKvη =

⊔
τ∈SJτKvη. We write

η; Ax |=I {p}C {q}

to mean that for all valuations v, if v satisfies Ax then
〈〈p〉〉 JT (C)Kvη 〈〈q〉〉 is true according to Definition 6.

The following lemma is the essential part of the proof of
soundness for parallel composition. It says that if a trace τ is
obtained as an interleaving of two traces τ1 and τ2, and exe-
cuting τ1 and τ2 sequentially on separate substates satisfies
two postconditions, then executing τ on the combination of
the separate states satisfies the separating conjunction of the
postconditions12.

Lemma 28 If σ = σ1 • σ2 and JτiKvησi v qi for i = 1, 2,
and τ ∈ (τ1 zip τ2) then JτKvησ v q1 ∗ q2.

Proof: The proof is by induction on the definition of zip
and zip′.

The first interesting case involves race checking. Con-
sider τ1 = c1; τ ′1 and τ2 = c2; τ ′2. Then τ =
check(c1, c2); τ ′ for some τ ′ ∈ (τ1 zip′ τ2). Since
Jci; τiKvησi v qi, we have JciKvησi 6= >, hence

check(Jc1Kvη, Jc2Kvη)(σ1 • σ2) = σ1 • σ2 6= >.

12This is a cousin of Brookes’s Parallel Decomposition Lemma

10

That is, Jcheck(c1, c2)Kvησ = σ. The conclusion
Jcheck(c1, c2); τ ′Kvησ v q1 ∗ q2 follows directly by in-
duction hypothesis on τ ′.

The other interesting case is the interleaving case of
zip′ (the bottom right equality in Figure 4). Consider
τ1 = α1; τ ′1 and τ2 = α2; τ ′2. and suppose that τ ∈
(α1; (τ ′1 zip (α2; τ ′2))) (the other case being symmetrical).
Then there is τ ′ ∈ (τ ′1 zip (α2; τ ′2)) with τ = α1; τ ′.

Since JτiKvησi v qi by assumption, we know that
Jτ ′1Kvησ′

1 v q1 for each σ′
1 ∈ v(α1)σ1, where v(αi)σi 6= >

by the denotational semantics of sequential composition in
Figure 1 and the fact that q1 6= >. By induction hypothesis,
for any such σ′

1 where σ′
1#σ2, we have Jτ ′Kvη(σ′

1 • σ2) v
q1 ∗ q2. This says exactly that Jτ ′Kvη(σ′) v q1 ∗ q2, for all
σ′ ∈ v(α1)σ1 ∗ {σ2}. Since α1 satisfies the locality con-
dition we have v(α1)(σ1 • σ2) v v(α1)σ1 ∗ {σ2}, and so
by the denotational semantics of sequential composition we
obtain JτKvησ v q1 ∗ q2.

Note the use of the locality property for the basic actions
α (including the semaphore operations) near the end of this
proof.

We now have all the information we need to prove our
main soundness result.

Theorem 29 (Soundness, II) All of the proof rules pre-
serve validity. As a result,

η; Ax ` {p}C {q} implies η; Ax |=I {p}C {q}

Proof: The proof is by induction on the derivation of
η; Ax ` {p}C {q}. For the rules in Figure 2 the proof is
straightforward. We consider the concurrency rules in Fig-
ure 3.

For the parallel rule, assume η; Ax |=I {pi}Ci {qi} for
i = 1, 2. We need to show η; Ax |=I {p1∗p2}C1 ‖ C2 {q1∗
q2}. Consider a valuation v that satisfies Ax and a trace τ ∈
T (C1 ‖ C2). We need to show that 〈〈p1 ∗ p2〉〉 [[τ]]vη 〈〈q1 ∗
q2〉〉 is true. Take σ = σ1 • σ2 such that σi ∈ pi for i =
1, 2. We need to show that JτKvησ v q1 ∗ q2. Since τ ∈
T (C1 ‖ C2), we have τ = τ1 zip τ2 for τi ∈ T (Ci). By
assumption, JτiKvησi v qi for i = 1, 2. Lemma 28 gives
JτKvησ v q1 ∗ q2, as required.

For the lock declaration rule, assume (η|`:=r); Ax |=I
{p}C {q}. We need to show η; Ax |=I {p ∗ r} `.C {q ∗ r}.
Consider a valuation v that satisfies Ax and a trace τ ∈
T (`.C). We need to show that 〈〈p ∗ r〉〉 [[τ]]vη 〈〈q ∗ r〉〉 holds.
Take σ ∈ p ∗ r. We need to prove that JτKvησ v q ∗
r. Since τ ∈ T (`.C), we have (V (`); τ ′;P(`)) − ` for `-
synchronized τ ′ ∈ T (C). By assumption and the semantics
of P(`) and V (`) we have JV (`); τ ′;P(`)Kv(η|`:=r)σ v
q ∗ r. Lemma 26 gives JV (`); τ ′;P(`)Kv(η|`:=r) w Jτ ′ −
`Kvη. Since τ = (τ ′ − `), we have shown JτKvησ v q ∗ r,
as required.

The proof for the with ` doC rule is straightforward.
For the critical region rule, the traces of with ` doC are

of the form P(`); τ ′;V (`). If we know that {p∗r}C{q ∗r}
holds then we can reason in sequential separation logic
about this trace as in this proof outline which shows inter-
mediate assertions for use with the sequencing rule

{p} P (`) {p ∗ r} τ ′ {q ∗ r} V (`){q}

This overall pre and post is what we need to establish for
any trace of with ` doC. The given preconditions and post-
conditions for P (`) and V (`) follow from their semantic
definitions as best local actions: you use p as a frame axiom
in the P case, and q as a frame axiom in the V case. (This
syntactic reasoning about the traces can be easily recast in
more semantic terms.)

Because failure of a race check results in value >, and
because a Hoare triple is falsified by >, the theorem also
implies that any proven program is race-free. Of course, this
notion of race-freedom is relative to the given separation
algebra. In a plain heap model [L ⇀fin R] any access to a
common location is regarded as a race, while in permission
models concurrent reads are not judged as racy. The point
is that the combining operation • of the separation algebra
contains all the information that is needed to define “race”
for the model.

In this paper we have not addressed further issues in
the semantics of concurrency such as independence [15] or
granularity [34, 10]. We hope that these issues can be ap-
proached in a general setting like that of the present paper.

Remarks on other rules. We did not include the auxiliary
variable elimination rule, which comes to separation logic
from Owicki and Gries. This rule requires variables to be
present in Σ, while the general notion of separation algebra
does not require variables to be present. It is easy to validate
the rule in Σ’s that contain variables-as-resource.

Part of the issue dealt with by auxiliary variables can be
seen, though, on the general level by appeal to a cousin of
Milner’s expansion law. For example,

{p} (with ` doC1 + with ` doC2); (C ′
1 ‖ C ′

2) {q}

it follows that

{p} ((with ` doC1);C ′
1) ‖ ((with ` doC2);C ′

2) {q}

and this inference holds in the general models.13

Neither did we explicitly include the Hoare logic rule for
introducing existentials, which is crucial in [21] for deriving

13Note that, in contrast to Milner, expansion requires protection by a
critical region (or else racing could ensue); see [15] for further discussion
and analysis.

11

completeness results. The existential rule, semantically, just
boils down to the disjunction rule, as in the inference

{p(d))}C {q(d)}, all d ∈ D

{
∨

d∈D p(d))}C {
∨

d∈D q(d)}

where p, q : D → P (Σ) for some set D.
Finally, we did not include a version of the substitution

rule from [21]. This would require formulation of a notion
of parameterized local action.

8 Operational Semantics

The interleaving semantics is still removed from the way
that programs work in two respects (even under timeslic-
ing on a single-CPU machine). The first is that the seman-
tics of lock declarations `.C simply drops all `-actions from
traces. The second is that we presume that traces have struc-
ture inspired by the intuition of mutual exclusion, but we
do not explicitly represent blocking or busy-waiting in the
semaphores used in their interpretation. To complete our
story we should justify the structure in the trace model fur-
ther, and we do so in this section by connecting to an oper-
ational semantics in the style of Plotkin.

The operational semantics, defined in Figure 8, acts
on intermediate configurations (ρ,C, σ), where ρ :
Locks ⇀fin {free, busy} is the environment for locks,
C the current command, and σ the current state. The
semantics corresponds to a blocking interpretation of the
semaphores, in that the rule for P will not fire when its lock
is busy .

A single reduction step is described by the relation
(ρ,C, σ) α

 v d, where the result d can be a new inter-
mediate configuration (ρ′, C ′, σ′), a terminal configuration
(ρ′, σ′), or the error value fault. The annotation α on α

 v ,
used to ease the comparison with the trace semantics, indi-
cates the current action, which ranges over the following set
α+ (of “extended” actions)

α+ ::= · | c | skip | check(c, c) | act(`) | decl(`)

where · is the unit of action composition, and decl(`) indi-
cates the declaration of lock `; the ` actions are not deleted
from the traces in the operational semantics. Most of the
rules in Figure 8 are straightforward. The rule for C1 ‖ C2

produces the auxiliary command C1 ∗ C2. The former per-
forms race checking, and the latter pure interleaving.

A trace τ+ (an “extended” trace) is a sequence of ac-
tions α+, where decl(`) acts as a binder for the reminder

of the sequence. We write (ρ,C, σ) τ+

 v d for the many-
step reduction. We write |τ+| for the trace obtained from τ
by deleting all the bound `-actions. We write τ+

1 ≤ τ+
2 if

∃τ+
3 . τ+

1 ; τ+
3 = τ+

2 .

We now relate the τ+ actions from the operational se-
mantics with τ actions from the denotational semantics, and
prove soundness as a corollary.

Theorem 30 (Operational Adequacy Theorem) Let C
be a command with no free lock variables, and with no
nested with ` doC ′ commands over the same `14. Let η0

and ρ0 be the empty environments. Then the following
hold:

• If (ρ0, C, σ) τ+

 v fault then ∃τ ∈ T (C). |τ+| ≤ τ and
JτKvη(σ) = >.

• If (ρ0, C, σ) τ+

 v (ρ′, σ′) then ∃τ ∈ T (C). |τ+| = τ
and σ′ ∈ JτKvη(σ).

The proof of this theorem is given in the appendix.

Definition 31 (Semantic Consequence Relation, III) Let
C be a command with no free lock variables, and let η0 be
the empty environment. We write

η0; Ax |=op {p}C {q}

to mean that for all valuations v and states σ ∈ p, if v
satisfies Ax then

• (η0, C, σ) 6 τ
+

 v fault

• (η0, C, σ) τ+

 v (η′, σ′) implies σ′ ∈ q.

Corollary 32 (Soundness, III) Let C be a command with
no free lock variables, and let η0 be the empty environment.

η0; Ax ` {p}C {q} implies η0; Ax |=op {p}C {q}

Proof: The proof is an immediate consequence of Theo-
rems 29 and 30. The no-nested condition of Theorem 30
is a consequence of the assumption that {p}C {q} is deriv-
able.

Note that this corollary does not show that the proof rules
themselves are all sound in the operational semantics. It just
shows that the overall conclusion of a Hoare triple corre-
sponds to what we expect from the operational semantics.

8.1 Proof of Operational Adequacy

As usual, to obtain a strong enough induction hypothe-
sis in the proof of Theorem 30 we need to show a stronger
result. In preparation for this we now define well-formed
commands, which generalize the notion of nesting-free
command to intermediate configurations of the operational
semantics, and constrain the occurrences of V (`) to be in
continuation position.

14The no-nesting condition is necessary to ensure that the operational
semantics produces (initial segments of) `-synchronized traces.

12

σ′ ∈ v(c)(σ)

(ρ, c, σ) c
 v (ρ, σ′)

v(c)(σ) = >
(ρ, c, σ) c

 v (ρ, fault)

ρ(`) = free

(ρ, with ` doC, σ)
P(`)
 v ((ρ|`:=busy), (C;V (`)), σ)

(ρ,V (`), σ)
V (`)
 v ((ρ|`:=free), σ)

` /∈ dom(ρ)

(ρ, `.C, σ)
decl(`)
 v ((ρ|`:=free), C, σ)

(ρ,C?, σ) ·
 v (ρ, skip + (C;C?), σ)

(ρ,C1 + C2, σ) ·
 v (ρ,C1, σ) (ρ,C1 + C2, σ) ·

 v (ρ,C2, σ)

check(v(c1), v(c2))(σ) 6= >

(ρ, (c1;C1) ‖ (c2;C2), σ)
check(c1,c2)
 v (ρ, (c1;C1) ∗ (c2;C2), σ)

C1 6≡ c1;C ′
1 or C2 6≡ c2;C ′

2

(ρ,C1 ‖ C2, σ) ·
 v (ρ,C1 ∗ C2, σ)

check(v(c1), v(c2))(σ) = >

(ρ, (c1;C1) ‖ (c2;C2), σ)
check(c1,c2)
 v fault

(ρ,C1, σ) α
 v (ρ′, C ′

1, σ
′)

(ρ,C1 ∗ C2, σ) α
 v (ρ′, C ′

1 ‖ C2, σ
′)

(ρ,C1, σ) α
 v (ρ′, σ′)

(ρ,C1 ∗ C2, σ) α
 v (ρ′, C2, σ

′)

(ρ,C1, σ) α
 v fault

(ρ,C1 ∗ C2, σ) α
 v fault

(ρ,C2, σ) α
 v (ρ′, C ′

2, σ
′)

(ρ,C1 ∗ C2, σ) α
 v (ρ′, C1 ‖ C ′

2, σ
′)

(ρ,C2, σ) α
 v (ρ′, σ′)

(ρ,C1 ∗ C2, σ) α
 v (ρ′, C1, σ

′)

(ρ,C2, σ) α
 v fault

(ρ,C1 ∗ C2, σ) α
 v fault

(ρ,C1, σ) α
 v (ρ′, C ′

1, σ
′)

(ρ,C1;C2, σ) α
 v (ρ′, C ′

1;C2, σ
′)

(ρ,C1, σ) α
 v (ρ′, σ′)

(ρ,C1;C2, σ) α
 v (ρ′, C2, σ

′)

(ρ,C1, σ) α
 v fault

(ρ,C1;C2, σ) α
 v fault

Figure 5. Small-step Operational Semantics

13

Definition 33 A command C ′ is defined to be in continua-
tion position in C if

• C ≡ C ′, or

• C ≡ C1;C2;C3 and C ′ is in continuation position in
C2, or

• C ≡ C1 ∗ C2 and C ′ is in continuation position in C1

or in C2.

Definition 34 (Well-Formed Commands) A command C
is well-formed w.r.t. an environment ρ if

• C does not contain nested (with ` do−) commands
over the same lock `;

• the free lock variables of C are contained in dom(ρ);

• if ρ(`) = free then C does not contain V (`);

• if ρ(`) = busy then following hold:

– C does not contain with ` do−;

– C contains exactly one V (`) in continuation po-
sition.

The set of traces T (C) is defined for the extended com-
mands used in the operational semantics as:

T (V (`)) = {V (`)} T (C1∗C2) = {τ1zip′τ2 | τi ∈ T (Ci)}

We now define ρ-synchronized traces, to capture the pos-
sible synchronization patterns starting from an intermediate
configuration of the operational semantics.

Definition 35 A trace τ of `-actions for ` ∈ dom(ρ) is said
to be ρ-synchronized if

• τ = · (the empy trace) and ρ(`) = free for all ` ∈
dom(ρ); or

• τ = P(`); τ ′ and ρ(`) = free and τ ′ is ρ′-
synchronized for ρ′ = (ρ|`:=busy); or

• τ = V (`); τ ′ and ρ(`) = busy and τ ′ is ρ′-
synchronized for ρ′ = (ρ|`:=free).

A general trace τ is said to be ρ-synchronized if τ |dom(ρ) is
ρ-synchronized.

This is the stronger version of the Operational Adequacy
Theorem.

Proposition 36 Let C be well-formed w.r.t. ρ and let η be
an environment such that dom(η) = dom(ρ) and ∀` ∈
dom(η). η(`) = emp. Then the following hold:

1. ∀σ,∀τ+

• (ρ,C, σ) τ+

 v fault implies ∃τ ∈ T (C). |τ+| ≤ τ
and τ is ρ-synchronized and JτKvη(σ) = >;

• (ρ,C, σ) τ+

 v (ρ′, σ′) implies ∃τ ∈
T (C). |τ+| = τ and τ is ρ-synchronized
and σ′ ∈ JτKvη(σ).

2. ∀σ, ∀τ ∈ T (C)

• if τ is ρ-synchronized and JτKvη(σ) = > then

∃τ+. |τ+| ≤ τ and (ρ,C, σ) τ+

 v fault;

• if τ is ρ-synchronized and σ′ ∈ JτKvη(σ) then

∃ρ′.∃τ+. |τ+| = τ and (ρ,C, σ) τ+

 v (ρ′, σ′).

Proof: The proof of part 1 is by induction on the length of

the derivation of (ρ,C, σ) τ+

 v d.
The most interesting case is when C ≡ `.C1 and

(ρ,C, σ) τ+

 v fault. Then (ρ, `.C1, σ)
decl(`)
 v (ρ1, C1, σ)

and (ρ1, C1, σ)
τ+
1 v fault with ρ1 = (ρ|`:=free) and τ+ =

decl ; τ+
1 . By induction hypothesis ∃τ1 ∈ T (C1). |τ+

1 | ≤ τ1

and τ1 is ρ1-synchronized and Jτ1Kvη1(σ) = > where η1 =
(η|`:=emp). Since τ1 is ρ1-synchronized and ρ1(`) = free ,
we have that τ1 is `-synchronized. Let τ = τ1 − `. By def-
inition of trace set we have that τ ∈ T (`.C1). Observe
also that |τ+| ≤ τ . Finally, since η1(`) = emp, we have
JτKvη(σ) = Jτ1Kvη1(σ) = >, which concludes the case.

The case when (ρ,C, σ) τ+

 v (ρ′, σ′) is analogous.

Case C ≡ with ` doC1 and (ρ,C, σ) τ+

 v fault.

Then (ρ, with ` doC1, σ)
P(`)
 v (ρ1, (C1;V (`)), σ) and

(ρ1, (C1;V (`)), σ)
τ+
1 v fault with ρ1 = (ρ|`:=busy) and

τ+ = P(`); τ+
1 . Since C is well-formed w.r.t. ρ then

ρ(`) = free . Furthermore, (C1;V (`)) is well-formed w.r.t.
ρ1. We can then apply the induction hypothesis and obtain
∃τ1 ∈ T (C1;V (`)). |τ+

1 | ≤ τ1 and τ1 is ρ1-synchronized
and Jτ1Kvη(σ) = >. Notice that τ1 = τ ′1;V (`) for
τ ′1 ∈ T (C1). Let τ = P(`); τ ′1;V (`). Then τ ∈ T (C) by
construction. Also, |τ+| ≤ τ . Finally, τ is ρ-synchronized
since τ1 is ρ1-synchronized, and JτKvη(σ) = > since
η(`) = emp. This concludes the case. The case when

(ρ,C, σ) τ+

 v (ρ′, σ′) is analogous.
[More cases to be added]
The proof of part 2 is by induction on the lexicographic

order:

i) size of the current command, where the size relation >
is the well-founded relation defined by

• C? > (C; . . . ;C)

• `.C > C

• C1 + C2 > Ci (for i ∈ 1..2)

14

• C1 ‖ C2 > C1 ∗ C2

ii) length of τ .

Notice that the lexicographic order is necessary because
case `.C requires the application of the induction hypoth-
esis to a longer trace.

To illustrate the use of the size relation, first consider
the case when C ≡ C?

1 and JτKvη(σ) = >. Then
τ = τ1; · · · ; τn with τi ∈ T (C1) for i ∈ 1..n. Let
C ′ = C1; . . . ;C1 with n occurrences of C1. By construc-
tion C? > C ′ and τ ∈ T (C ′) and C ′ is well-formed w.r.t.
ρ. We can then apply the induction hypothesis and obtain
the conclusion immediately. The case when JτKvη(σ) 6= >
is analogous.

Case C ≡ `.C1 when JτKvη(σ) = >. Then τ =
(V (`); τ1;P(`)) − ` for `-synchronized τ1 ∈ T (C1). Let
ρ1 = (ρ|`:=free) and η1 = (η|`:=emp). Then we have
that C1 is well-formed w.r.t. ρ1 and τ1 is ρ1-synchronized
and Jτ1Kvη1(σ) = >. Since `.C1 > C1 we can apply
the induction hypothesis and obtain ∃τ+

1 . |τ+
1 | ≤ τ1 and

(ρ1, C1, σ)
τ+
1 v fault. Let τ+ = decl(`); τ . Then |τ+| ≤ τ

and (ρ,C, σ) τ+

 v fault, which concludes the case. The case
when JτKvη(σ) 6= > is analogous.

9 Conclusion and Related Work

There are three main precursors to this work. The first
is the model theory of BI [23, 30], which Pym emphasized
can be understood as providing a general model of resource.
At first, models of BI were given in terms of total commuta-
tive monoids and then, prodded by the development in [16],
in terms of partial monoids. Separation algebras are a spe-
cial case of the models in [29], corresponding to (certain)
Boolean BI algebras.

The second precursor is [37], which identified Safety
Monotonicity and the Frame Property, conditions on an
operational semantics corresponding to the frame rule. In
comparison to [37] the main step forward – apart from con-
currency and consideration of a class of models rather than
a single one – is the use of functions into the poset P (Σ)>

instead of relations satisfying Safety Monotonicity and the
Frame Property. This shift has led to dramatic simplifica-
tions. For example, the formulation of the best state trans-
formers (Definition 10) is much simpler and easier to un-
derstand than its relational cousin in [24].

The relational version of local actions for separation al-
gebras was used in [17]. Again, that notion of local action
was based on Safety Monotonicity and the Frame Prop-
erty, prior to our move to the topped powerset. Also, the
focus there was on program refinement, rather than abstract
separation logic.

The third precursor is Brookes’s proof of the soundness
of concurrent separation logic, for the RAM model [12].
One of the key insights of Brookes’s work shows up again
here; namely,, where the semantics is factored into two
parts: i) a (stateless) trace model, where interleaving is done
on the (syntactic) actions; ii) a semantics that interprets the
actions’ effects on states. With this factoring concurrency is
handled in the action-trace model, in a way that is largely in-
dependent of the meanings of the primitive commands, and
this means that the imperative (state transforming) meaning
of commands needs only to be given in a sequential set-
ting, for the traces, after concurrency has been resolved by
interleaving. We attempted to prove soundness for an inter-
leaving operational semantics of concurrency in the style of
Plotkin, but doing so directly turned out to be prohibitively
difficult, particularly in the case of lock (resource) decla-
rations: use of a deletion operation on traces to filter out
locally-declared locks makes declarations much easier to
handle.

There are, though, several differences in our seman-
tics and Brookes’s. Most importantly, Brookes’s traces are
made up of items that are tightly tied to the RAM model,
and are not themselves primitive commands in the language
under consideration. Because we use the primitive com-
mands themselves (as well as semaphore operations) as the
elements of the interleaving, we are able to see that sound-
ness depends only on the locality properties of the primitive
commands: this gives, we feel, a sharper explanation of the
conditions needed for soundness, and it transfers immedi-
ately to the more general class of models. Also, because
of this choice our proof of soundness for an infinite class
of models is (arguably) simpler than Brookes’s proof for
a single model; for example, our Lemma 28 is consider-
ably simpler in its statement than the Parallel Decomposi-
tion Lemma, which plays an analogous role in Brookes’s
work. There are also other detailed differencessuch as: that
we detect races while executing traces, after interleaving,
while Brookes detects races at an earlier stage (during in-
terleaving); and that we connect to a blocking interpretation
of critical regions, where Brookes’s are like uses busy wait-
ing.

This being said, we fully acknowledge the leading influ-
ence of Brookes’s remarkable semantic analysis.

In formulating our results we have not aimed for the
maximum possible generality. Our results on the sequen-
tial subset of ASL could almost certainly be redone using
context logic [13], which replaces the primitive of separa-
tion by the more general primitive of pulling a state apart
into a state-with-a-hole (a context) and its filler; however,
more work on the basics of context logic would be required
to generalize our more significant results on concurrency.
Abstract predicates and higher-order separation logic have
been used to approach modules, while the treatment here

15

avoids higher-order predicates [25, 6]. Finally, it would be
desirable to go beyond algebra and formulate the essence of
local action at a categorical level, perhaps on the level of the
general theory of effects [18, 28].

Rather than shooting for maximum generality, we have
chosen a tradeoff between complexity and generality, that
demonstrates the existence of at least one abstract account
of a basis for local reasoning about programs. It is, though,
but one possible path through the subject. Recent work on
the logic for low-level code often choose to allow com-
mands that violate Safety Monotonicity and the Frame
Property, opting instead to have locality concentrated in a
novel interpretation of Hoare triples [7], or to express local-
ity explicitly by polymorphism [19, 3]. The work on Boogie
[2] achieves modularity using ideas that have at least some
hints of the primitives in separation logic [20], and a study
of the abstract principles underlying Boogie could be valu-
able. And, it does not appear that the locality condition in
our model can be used to explain the “procedure local se-
mantics” of [35]. Generally, we believe that there is more to
be learnt about local reasoning about programs, particularly
concurrent programs, and about semantics expressing local
program behaviour.

Finally, we have shown that one can get some way using
just the notion of local action on a separation algebra, but it
appears that one can go still further. For example, we can
define the parallel composition of local actions by

(f1 ‖ f2)σ =
l
{(f1σ1) ∗ (f2σ2) | σ = σ1 • σ2}

We would not advocate this as a parallel semantics of
composite commands (it is an overapproximation of the
expected meaning), but it works well for primitive com-
mands that are considered to be atomic. Using this notion,
one could conceivably obtain a truly concurrent semantics,
where primitive actions could be run at the same time rather
than be interleaved, in arbitrary separation algebras.

Acknowledgments. We are grateful to Philippa Gard-
ner and Martin Hyland for trenchant criticisms at decisive
points in this work.

We acknowledge the financial support of the EPSRC.

References

[1] A. Ahmed, L. Jia, and D. Walker. Reasoning about
hierarchical storage. In 18th LICS, pp33-44, 2003.

[2] M. Barnett, R. DeLine, M. Fahndrich, K.R.M. Leino,
and W. Schulte. Verification of object-oriented pro-
grams with invariants. Journal of Object Technology,
3(6):27–56, 2004.

[3] N. Benton. Abstracting allocation. In CSL 2006, pages
182–196, 2006.

[4] J. Berdine, C. Calcagno, and P.W. O’Hearn. Small-
foot: Automatic modular assertion checking with sep-
aration logic. In 4th FMCO, pp115-137, 2006.

[5] J. Berdine, B. Cook, D. Distefano, and P. O’Hearn.
Automatic termination proofs for programs with
shape-shifting heaps. In 18th CAV, pp386-400, 2006.

[6] L. Birkedal and N. Torp-Smith. Higher-order separa-
tion logic and abstraction. submitted, 2005.

[7] L. Birkedal and H. Yang. Relational parametricity and
separation logic. In 10th FOSSACS, to appear, 2007.

[8] R. Bornat, C. Calcagno, P. O’Hearn, and M. Parkin-
son. Permission accounting in separation logic. In
32nd POPL, pp59–70, 2005.

[9] R. Bornat, C. Calcagno, and H. Yang. Variables as
resource in separation logic. In 21st MFPS, pp247–
276, 2005.

[10] S. Brookes. A grainless semantics for parallel pro-
grams with shared mutable data. In 21st MFPS,
pp277-307, 2005.

[11] S. Brookes. Variables as resource for shared-memory
programs: Semantics and soundness. In 22nd MFPS,
pp123–150, 2006.

[12] S. D. Brookes. A semantics for concurrent separa-
tion logic. Proceedings of the 15th CONCUR, Lon-
don. August, 2004.

[13] C. Calcagno, P. Gardner, and U. Zarfaty. Context logic
and tree update. In 32nd POPL, pp271-282, 2005.

[14] X. Feng, R. Ferreira, and Z. Shao. On the relation-
ship between concurrent separation logic and assume-
guarantee reasoning. In 16th ESOP, to appear, 2007.

[15] J. Hayman and G. Winskel. Independence and concur-
rent separation logic. In 21st LICS, pp147-156, 2006.

[16] S. Isthiaq and P. W. O’Hearn. BI as an assertion lan-
guage for mutable data structures. In 28th POPL,
pages 36–49, 2001.

[17] I. Mijajlovic, N. Torp-Smith, and P. O’Hearn. Re-
finement and separation contexts. Proceedings of
FSTTCS, LNCS 3328, Chennai, December, 2004.

[18] E. Moggi. Notions of computation and monads. In-
formation and Computation 93(1), pp55-92, 1991.

16

[19] A. Nanevski, G. Morrisett, and L. Birkedal. Polymor-
phism and separation in hoare type theory. In ICFP
2006, pages 62–73, 2006.

[20] D. A. Naumann and M. Barnett. Towards imperative
modules: Reasoning about invariants and sharing of
mutable state. In 19th LICS, 2004.

[21] P. O’Hearn, J. Reynolds, and H. Yang. Local reason-
ing about programs that alter data structures. In 15th
CSL, pp1–19, 2001.

[22] P. W. O’Hearn. Resources, concurrency and local rea-
soning. Theoretical Computer Science, 375(1-3):271–
307, May 2007. Preliminary version appeared in
CONCUR’04, LNCS 3170, 49–67.

[23] P. W. O’Hearn and D. J. Pym. The logic of bunched
implications. Bulletin of Symbolic Logic, 5(2):215–
244, June 99.

[24] P. W. O’Hearn, H. Yang, and J. C. Reynolds. Sepa-
ration and information hiding. In 31st POPL, pages
268–280, 2004.

[25] M. Parkinson and G. Bierman. Separation logic and
abstraction. In 32nd POPL, pp59–70, 2005.

[26] M. Parkinson, R. Bornat, and C. Calcagno. Variables
as resource in Hoare logics. In 21st LICS, 2006.

[27] M. Parkinson, R. Bornat, and P. O’Hearn. Modular
verification of a non-blocking stack. In 34th POPL,
2007.

[28] A.J. Power and E.P. Robinson. Premonoidal cate-
gories and notions of computation. Math. Struct.
Comp. Sci. 7(5), pp453-468, 1997.

[29] D. Pym, P. O’Hearn, and H. Yang. Possible worlds and
resources: the semantics of BI. Theoretical Computer
Science, 315(1):257–305, 2004.

[30] D.J. Pym. The Semantics and Proof Theory of the
Logic of Bunched Implications. Applied Logic Series.
Kluwer Academic Publishers, 2002.

[31] W. Reisig. Petri nets. EATCS Monographs, vol. 4,
1995.

[32] J. C. Reynolds. Intuitionistic reasoning about shared
mutable data structure. In Jim Davies, Bill Roscoe,
and Jim Woodcock, editors, Millennial Perspectives
in Computer Science, pages 303–321, Houndsmill,
Hampshire, 2000. Palgrave.

[33] J. C. Reynolds. Separation logic: A logic for shared
mutable data structures. In 17th LICS, pp 55-74, 2002.

[34] J. C. Reynolds. Towards a grainless semantics for
shared variable concurrency. In 24th FSTTCS, pp35-
48, 2004.

[35] N. Rinetzky, J. Bauer, T. Reps, M. Sagiv, and R. Wil-
helm. A semantics for procedure local heaps and its
abstractions. 32nd POPL, pp296–309, 2005.

[36] N. Torp-Smith, L. Birkedal, and J. Reynolds. Local
reasoning about a copying garbage collector. In 31st
POPL, pp220–231, 2004.

[37] H. Yang and P. O’Hearn. A semantic basis for local
reasoning. In 5th FOSSACS, LNCS 2303, 2002.

17

