
Linearizability with Ownership Transfer

Alexey Gotsman and Hongseok Yang

1 IMDEA Software Institute
2 University of Oxford

Abstract. Linearizability is a commonly accepted notion of correctness for li-
braries of concurrent algorithms. Unfortunately, it assumes a complete isolation
between a library and its client, with interactions limited to passing values of
a given data type. This is inappropriate for common programming languages,
where libraries and their clients can communicate via the heap, transferring the
ownership of data structures, and can even run in a shared address space with-
out any memory protection. In this paper, we present the first definition of lin-
earizability that lifts this limitation and establish an Abstraction Theorem: while
proving a property of a client of a concurrent library, we can soundly replace the
library by its abstract implementation related to the original one by our generali-
sation of linearizability. We also prove that linearizability with ownership transfer
can be derived from the classical one if the library does not access some of data
structures transferred to it by the client.

1 Introduction

The architecture of concurrent software usually exhibits some forms of modularity. For
example, concurrent algorithms are encapsulated in libraries and complex algorithms
are often constructed using libraries of simpler ones. This lets developers benefit from
ready-made libraries of concurrency patterns and high-performance concurrent data
structures, such as java.util.concurrent for Java and Threading Building Blocks for
C++. To simplify reasoning about concurrent software, we need to exploit the available
modularity. In particular, in reasoning about a client of a concurrent library, we would
like to abstract from the details of a particular library implementation. This requires an
appropriate notion of library correctness.

Correctness of concurrent libraries is commonly formalised by linearizability [12],
which fixes a certain correspondence between the library and its specification. The latter
is usually just another library, but implemented atomically using an abstract data type. A
good notion of linearizability should validate an Abstraction Theorem [10]: it is sound
to replace a library with its specification in reasoning about its client.

The classical linearizability assumes a complete isolation between a library and its
client, with interactions limited to passing values of a given data type as parameters
or return values of library methods. This notion is not appropriate for low-level heap-
manipulating languages, such as C/C++. There the library and the client run in a shared
address space; thus, to prove the whole program correct, we need to verify that one
of them does not corrupt the data structures used by the other. Type systems [6] and
program logics [13] usually establish this using the concept of ownership of data struc-
tures by a program component. When verifying realistic programs, this ownership of
data structures cannot be assigned statically; rather, it should be transferred between

the client and the library at calls to and returns from the latter. The times when own-
ership is transferred are not determined operationally, but set by the proof method: as
O’Hearn famously put it, “ownership is in the eye of the asserter” [13]. However, own-
ership transfer reflects actual interactions between program components via the heap,
e.g., alternating accesses to a shared area of memory. Such interactions also exist in
high-level languages providing basic memory protection, such as Java.

For an example of ownership transfer between concurrent libraries and their clients
consider a memory allocator accessible concurrently to multiple threads. We can think
of the allocator as owning the blocks of memory on its free-list; in particular, it can
store free-list pointers in them. Having allocated a block, a thread gets its exclusive
ownership, which allows accessing it without interference from the other threads. When
the thread frees the block, its ownership is returned to the allocator.

As another example, consider any container with concurrent access, such as a con-
current set from java.util.concurrent or Threading Building Blocks. A typical use of
such a container is to store pointers to a certain type of data structures. However, when
verifying a client of the container, we usually think of the latter as holding the owner-
ship of the data structures whose addresses it stores [13]. Thus, when a thread inserts a
pointer to a data structure into a container, its ownership is transferred from the thread
to the container. When another thread removes a pointer from the container, it acquires
the ownership of the data structure the pointer identifies. If the first thread tries to ac-
cess a data structure after a pointer to it has been inserted into the container, this may
result in a race condition. Unlike a memory allocator, the container code usually does
not access the contents of the data structures its elements identify, but merely ferries
their ownership between different threads. For this reason, correctness proofs for such
containers [1,7,17] have so far established their classical linearizability, without taking
ownership transfer into account.

We would like to use the notion of linearizability and, in particular, an Abstrac-
tion Theorem to reason about above libraries and their clients in isolation, taking into
account only the memory that they own. When clients use the libraries to implement
the ownership transfer paradigm, the correctness of the latter cannot be defined only in
terms of passing pointers between the library and the client; we must also show that they
perform ownership transfer correctly. So far, there has been no notion of linearizabil-
ity that would allow this. In the case of concurrent containers, we cannot use classical
linearizability established for them to validate an Abstraction Theorem that would be
applicable to clients performing ownership transfer. This paper fills in these gaps.

Contributions. In this paper, we generalise linearizability to a setting where a library
and its client execute in a shared address space, and boundaries between their data
structures can change via ownership transfers (Section 3). Linearizability is usually de-
fined in terms of histories, which are sequences of calls to and returns from a library in
a given program execution, recording parameters and return values passed. To handle
ownership transfer, histories also have to include descriptions of memory areas trans-
ferred. However, in this case, some histories cannot be generated by any pair of a client
and a library. For example, a client that transfers an area of memory upon a call to a
library not communicating with anyone else cannot then transfer the same area again
before getting it back from the library upon a method return.

We propose a notion of balancedness that characterises those histories that treat
ownership transfer correctly. We then define a linearizability relation between balanced

histories, matching histories of an implementation and a specification of a library (Sec-
tion 3). We show that the proposed linearizability relation on histories is correct in the
sense that it validates a Rearrangement Lemma (Lemma 13, Section 4): if a history H ′

linearizes another historyH , and it can be produced by some execution of a library, then
so can the history H . The need to consider ownership transfer makes the proof of the
lemma highly non-trivial. This is because changing the history from H ′ to H requires
moving calls and returns to different points in the computation. In the setting without
ownership transfer, these actions are thread-local and can be moved easily; however,
once they involve ownership transfer, they become global and the justification of their
moves becomes subtle, in particular, relying on the fact that the histories involved are
balanced (see the discussion in Section 4).

To lift the linearizability relation on histories to libraries and establish the Abstrac-
tion Theorem, we define a novel compositional semantics for a language with libraries
that defines the denotation of a library or a client considered separately in an environ-
ment that communicates with the component correctly via ownership transfers (Sec-
tion 6). To define such a semantics for a library, we generalise the folklore notion of its
most general client to allow ownership transfers, which gives us a way to generate all
possible library histories and lift the notion of linearizabiliy to libraries. We prove that
our compositional semantics is sound and adequate with respect to the standard non-
compositional semantics (Lemmas 16 and 17). This, together with the Rearrangement
Lemma, allows us to establish the Abstraction Theorem (Theorem 19, Section 7).

To avoid having to prove the new notion of linearizability from scratch for libraries
that do not access some of the data structures transferred to them, such as concurrent
containers, we propose a frame rule for linearizability (Theorem 22, Section 8). It en-
sures the linearizability of such libraries with respect to a specification with ownership
transfer given their linearizability with respect to a specification without one.

The Abstraction Theorem is not just a theoretical result: it enables compositional
reasoning about complex concurrent algorithms that are challenging for existing ver-
ification methods (Section 7). We have also developed a logic, based on separation
logic [14], for establishing our linearizability. Due to space constraints, the details of
the logic are outside the scope of this paper. For the same reason, proofs of most theo-
rems are given in Appendix B.

2 Footprints of States
Our results hold for a class of models of program states called separation algebras [5],
which allow expressing the dynamic memory partitioning between libraries and clients.

Definition 1. A separation algebra is a set Σ, together with a partial commutative,
associative and cancellative operation ∗ on Σ and a unit element ε ∈ Σ. Here unity,
commutativity and associativity hold for the equality that means both sides are defined
and equal, or both are undefined. The property of cancellativity says that for each θ ∈
Σ, the function θ ∗ · : Σ ⇀ Σ is injective.

We think of elements of a separation algebra Σ as portions of program states and the
∗ operation as combining such portions. The partial states allow us to describe parts
of the program state belonging to a library or the client. When the ∗-combination of
two states is defined, we call them compatible. We sometimes use a pointwise lifting
∗ : 2Σ × 2Σ → 2Σ of ∗ to sets of states.

Elements of separation algebras are often defined using partial functions. We use the
following notation: g(x)↓ means that the function g is defined on x, dom(g) denotes
the set of arguments on which g is defined, and g[x : y] denotes the function that has
the same value as g everywhere, except for x, where it has the value y. We also write
for an expression whose value is irrelevant and implicitly existentially quantified.

Below is an example separation algebra RAM:

Loc = {1, 2, . . .}; Val = Z; RAM = Loc ⇀fin Val.

A (partial) state in this model consists of a finite partial function from allocated memory
locations to the values they store. The ∗ operation on RAM is defined as the disjoint
function union], with the everywhere-undefined function [] as its unit. Thus, the ∗
operation combines disjoint pieces of memory.

We define a partial operation \ : Σ ×Σ ⇀ Σ, called state subtraction, as follows:
θ2 \ θ1 is a state in Σ such that θ2 = (θ2 \ θ1) ∗ θ1; if such a state does not exist, θ2 \ θ1
is undefined. When reasoning about ownership transfer between a library and a client,
we use the ∗ operation to express a state change for the component that is receiving the
ownership of memory, and the \ operation, for the one that is giving it up.

Our definition of linearizability uses a novel formalisation of a footprint of a state,
which, informally, describes the amount of memory or permissions the state includes.

Definition 2. A footprint of a state θ in a separation algebra Σ is the set of states
δ(θ) = {θ′ | ∀θ′′. (θ′ ∗ θ′′)↓ ⇔ (θ ∗ θ′′)↓}.

The function δ computes the equivalence class of states with the same footprint as θ. In
the case of RAM, we have δ(θ) = {θ′ | dom(θ) = dom(θ′)} for every θ ∈ RAM. Thus,
states with the same footprint contain the same memory cells.

Let F(Σ) = {δ(θ) | θ ∈ Σ} be the set of footprints in a separation algebra Σ.
We now lift the ∗ and \ operations on Σ to F(Σ). First, we define the operation ◦ :
F(Σ)×F(Σ)⇀ F(Σ) for adding footprints. Consider l1, l2 ∈ F(Σ) and θ1, θ2 ∈ Σ
such that l1 = δ(θ1) and l2 = δ(θ2). If θ1 ∗ θ2 is defined, we let l1 ◦ l2 = δ(θ1 ∗ θ2);
otherwise l1 ◦ l2 is undefined. Choosing θ1 and θ2 differently does not lead to a different
result (Appendix B). For RAM, ◦ is just a pointwise lifting of ∗. To define a subtraction
operation on footprints, we use the following condition.

Definition 3. The ∗ operation of a separation algebra Σ is cancellative on footprints
when for all θ1, θ2, θ′1, θ

′
2 ∈ Σ, if θ1 ∗ θ2 and θ′1 ∗ θ′2 are defined, then

(δ(θ1 ∗ θ2) = δ(θ′1 ∗ θ′2) ∧ δ(θ1) = δ(θ′1))⇒ δ(θ2) = δ(θ′2).

For example, the ∗ operation on RAM satisfies this condition.
When ∗ of Σ is cancellative on footprints, we can define an operation \ : F(Σ) ×

F(Σ) ⇀ F(Σ) of footprint subtraction as follows. Consider l1, l2 ∈ F(Σ). If for
some θ1, θ2, θ ∈ Σ, we have l1 = δ(θ1), l2 = δ(θ2) and θ2 = θ1 ∗ θ, then we let
l2 \ l1 = δ(θ). When such θ1, θ2, θ do not exist, l2 \ l1 is undefined. Again, we can
show that this definition is well-formed (Appendix B). We say that a footprint l1 is
smaller than l2, written l1 � l2, when l2 \ l1 is defined. In the rest of the paper, we fix
a separation algebra Σ with the ∗ operation cancellative on footprints.

3 Linearizability with Ownership Transfer
In the following, we consider descriptions of computations of a library providing sev-
eral methods to a multithreaded client. We fix the set ThreadID of thread identifiers and
the set Method of method names. A good definition of linearizability has to allow re-
placing a concrete library implementation with its abstract version while keeping client
behaviours reproducible. For this, it should require that the two libraries have similar
client-observable behaviours. Such behaviours are recorded using histories, which we
now define in our setting.

Definition 4. An interface action ψ is an expression of the form (t, call m(θ)) or
(t, ret m(θ)), where t ∈ ThreadID, m ∈ Method and θ ∈ Σ.

An interface action records a call to or a return from a library method m by thread
t. The component θ in (t, call m(θ)) specifies the part of the state transferred upon the
call from the client to the library; θ in (t, ret m(θ)) is transferred in the other direction.
For example, in the algebra RAM (Section 2), the annotation θ = [42 : 0] implies the
transfer of the cell at the address 42 storing 0.

Definition 5. A history H is a finite sequence of interface actions such that for every
thread t, its projection H|t to actions by t is a sequence of alternating call and return
actions over matching methods that starts from a call action.

In the following, we use the standard notation for sequences: ε is the empty se-
quence, α(i) is the i-th element of a sequence α, and |α| is the length of α.

Not all histories make intuitive sense with respect to the ownership transfer reading
of interface actions. For example, let Σ = RAM and consider the history

(1, call m1([10 : 0])) (2, call m2([10 : 0]))(2, ret m2([])) (1, ret m1([])).

The history is meant to describe all the interactions between the library and the client.
According to the history, the cell at the address 10 was first owned by the client, and
then transferred to the library by thread 1. However, before this state was transferred
back to the client, it was again transferred from the client to the library, this time by
thread 2. This is not consistent with the intuition of ownership transfer, as executing the
second action requires the cell to be owned both by the library and by the client, which
is impossible in RAM.

As we show in this paper, histories that do not respect the notion of ownership, such
as the one above, cannot be generated by any program, and should not be taken into
account when defining linearizability. We use the notion of footprints of states from
Section 2 to characterise formally the set of histories that respect ownership.

A finite history H induces a partial function JHK] : F(Σ) ⇀ F(Σ), which tracks
how a computation with the history H changes the footprint of the library state:

JεK]l = l; JHψK]l = JHK]l ◦ δ(θ), if ψ = (, call (θ)) ∧ (JHK]l ◦ δ(θ))↓;
JHψK]l = JHK]l \ δ(θ), if ψ = (, ret (θ)) ∧ (JHK]l \ δ(θ))↓;
JHψK]l = undefined, otherwise.

Definition 6. A history H is balanced from l ∈ F(Σ) if JHK](l) is defined.

Let BHistory = {(l,H) | H is balanced from l} be the set of balanced histories and
their initial footprints.

Definition 7. Linearizability is a binary relation v on BHistory defined as follows:
(l,H) v (l′, H ′) holds iff (i) l′ � l; (ii) H|t = H ′|t for all t ∈ ThreadID; and (iii)
there exists a bijection π : {1, . . . , |H|} → {1, . . . , |H ′|} such that for all i and j,

H(i) = H ′(π(i)) ∧ ((i < j ∧H(i) = (, ret) ∧H(j) = (, call))⇒ π(i) < π(j)).

A history H ′ linearizes a history H when it is a permutation of the latter preserving
the order of actions within threads and non-overlapping method invocations. We addi-
tionally require that the initial footprint of H ′ be smaller than that of H , which is a
standard requirement in data refinement [9]. It does not pose problems in practice, as
the abstract library generating H ′ usually represents some of the data structures of the
concrete library as abstract data types, which do not use the heap.

Definition 7 treats parts of memory whose ownership is passed between the library
and the client in the same way as parameters and return values in the classical defini-
tion [12]: they are required to be the same in the two histories. In fact, the setting of
the classical definition can be modelled in ours if we pass parameters and return values
via the heap. The novelty of our definition lies in restricting the histories considered to
balanced ones. This restriction is required for our notion of linearizability to be correct
in the sense of the Rearrangement Lemma established in the next section.

4 Rearrangement Lemma
Intuitively, the Rearrangement Lemma says that, if H v H ′, then every execution trace
of a library producing H ′ can be transformed into another trace of the same library that
differs from the original one only in interface actions and produces H , instead of H ′.
This property is the key component for establishing the correctness of linearizability on
libraries, formulated by the Abstraction Theorem in Section 7.

Primitive commands. We first define a set of primitive commands that clients and
libraries can execute to change the memory atomically. Consider the set 2Σ ∪ {>} of
subsets of Σ with a special element > used to denote an error state, resulting, e.g.,
from dereferencing an invalid pointer. We assume a collection of primitive commands
PComm and an interpretation of every c ∈ PComm as a transformer f tc : Σ → (2Σ ∪
{>}), which maps pre-states to states obtained when thread t ∈ ThreadID executes c
from a pre-state. The fact that our transformers are parameterised by t allows atomic
accesses to areas of memory indexed by thread identifiers. This idealisation simplifies
the setting in that it lets us do without special thread-local or method-local storage for
passing method parameters and return values. For our results to hold, we need to place
some standard restrictions on the transformers f tc (see Appendix A).

Traces. We record information about a program execution, including internal actions
by components, using traces.

Definition 8. An action ϕ is either an interface action or an expression of the form
(t, c), where t ∈ ThreadID and c ∈ PComm. We denote the set of all actions by Act.

Definition 9. A trace τ is a finite sequence of actions such that its projection history(τ)
to interface actions is a history. A trace η is a client trace, if

∀i, j, t, c. i < j ∧ η(i) = (t, call)∧ η(j) = (t, c)⇒ ∃k. i < k < j ∧ η(k) = (t, ret).

A trace ξ is a library trace, if

∀i, t, c. ξ(i)= (t, c)⇒ ∃j. j < i ∧ ξ(j)= (t, call) ∧ ¬∃k. i< k < j ∧ ξ(k)= (t, ret).

In other words, a thread in a client trace cannot execute actions inside a library method,
and in a library trace, outside it. We denote the set of all traces by Trace. In the follow-
ing, η denotes client traces, ξ, library traces, and τ , arbitrary ones.

In this section, we are concerned with library traces only. For a library trace ξ, we
define a function JξKlib : 2Σ → (2Σ ∪{>}) that evaluates ξ, computing the state of the
memory after executing the sequence of actions given by the trace. We first define the
evaluation of a single action ϕ by JϕKlib : Σ → (2Σ ∪ {>}):

J(t, c)Klibθ = f tc(θ); J(t, call m(θ0))Klibθ = if (θ ∗ θ0)↓ then {θ ∗ θ0} else ∅;
J(t, ret m(θ0))Klibθ = if (θ \ θ0)↓ then {θ \ θ0} else >.

The evaluation of call and return actions follows their ownership transfer reading ex-
plained in Section 3: upon a call to a library, the latter gets the ownership of the specified
piece of state; upon a return, the library gives it up. In the former case, only transfers
of states compatible with the current library state are allowed. In the latter case, the
computation faults when the required piece of state is not available, which ensures that
the library respects the contract with its client.

Let us lift JϕKlib to 2Σ pointwise: for p ∈ 2Σ we let JϕKlibp =
⋃
{JϕKlibθ | θ ∈ p},

if ∀θ ∈ p. JϕKlibθ 6= >; otherwise, JϕKlibp = >. We then define the evaluation JξKlib :
2Σ → (2Σ ∪ {>}) of a library trace ξ as follows:

JεKlibp = p; JξϕKlibp = if (JξKlibp 6= >) then JϕKlib(JξKlibp) else >.

In the following, we write JξKlibθ for JξKlib({θ}). Using trace evaluation, we can
define when a particular trace can be safely executed.

Definition 10. A library trace ξ is executable from θ when JξKlibθ 6∈ {∅,>}.
Proposition 11. If ξ is a library trace executable from θ, then history(ξ) is balanced
from δ(θ).

Definition 12. Library traces ξ and ξ′ are equivalent, written ξ ∼ ξ′, if ξ|t = ξ′|t for
all t ∈ ThreadID, and the projections of ξ and ξ′ to non-interface actions are identical.

Lemma 13 (Rearrangement). Assume (δ(θ), H) v (δ(θ′), H ′). If a trace ξ′ is exe-
cutable from θ′ and history(ξ′) = H ′, then there exists a trace ξ executable from θ′

such that history(ξ) = H and ξ ∼ ξ′.

The proof transforms ξ′ into ξ by repeatedly swapping adjacent actions according to
a certain strategy to make the history of the trace equal to H . The most subtle place
in the proof is swapping (t1, ret m1(θ1)) and (t2, call m2(θ2)), where t1 6= t2. The
justification of this transformation relies on the fact that the target historyH is balanced.
Consider the case when θ1 = θ2 = θ. Then the two actions correspond to the library
first transferring θ to the client and then getting it back. It is impossible for the client
to transfer θ to the library earlier, unless it already owned θ before the return in the
original trace (this may happen when θ describes only partial permissions for a piece
of memory, and thus, its instances can be owned by the client and the library at the

same time). Fortunately, using the fact that H is balanced, we can prove that the latter
is indeed the case, and hence, the actions commute.

So far we have used the notion of linearizability on histories, without taking into
account library implementations that generate them. In the rest of the paper, we lift
this notion to libraries, written in a particular programming language, and prove an
Abstraction Theorem, which guarantees that a library can be replaced by another library
linearizing it when we reason about its client program.

5 Programming Language
We consider a simple concurrent programming language:

C ::= c |m |C;C |C +C |C∗ L ::= {m=C; . . . ; m=C} S ::= letL inC ‖ . . . ‖C

A program consists of a library L implementing methods m ∈ Method and its client
C1 ‖ . . . ‖Cn, given by a parallel composition of threads. The commands include prim-
itive commands c ∈ PComm, method calls m ∈ Method, sequential composition
C;C ′, nondeterministic choice C + C ′ and iteration C∗. We use + and ∗ instead of
conditionals and while loops for theoretical simplicity: the latter can be defined in the
language as syntactic sugar. Methods do not take arguments and do not return values:
these can be passed via special locations on the heap associated with the identifier of
the thread calling the method. We assume that every method called in the program is
defined by the library, and that there are no nested method calls.

An open program is one without a library (denoted C) or a client (denoted L):

C ::= let [−] in C ‖ . . . ‖ C L ::= let L in [−] P ::= S | C | L

In C, we allow the client to call methods that are not defined in the program (but belong
to the missing library). We call S a complete program. Open programs represent a
library or a client considered in isolation. The novelty of the kind of open programs
we consider here is that we allow them to communicate with their environment via
ownership transfers. We now define a way to specify a contract this communication
follows.

A predicate is a set of states from Σ, and a parameterised predicate is a map-
ping from thread identifiers to predicates. We use the same symbols p, q, r for ordinary
and parameterised predicates. When p is a parameterised predicate, we write pt for the
predicate obtained by applying p to a thread t. Both kinds of predicates can be described
syntactically, e.g., using separation logic assertions ([14] and Appendix C).

We describe possible ownership transfers between components with the aid of
method specifications Γ , which are sets of Hoare triples {p}m {q}, at most one for
each method. Here p and q are parameterised predicates such that pt describes pieces of
state transferred when thread t calls the methodm, and qt, those transferred at its return.
Note that the pre- and postconditions in method specifications only identify the areas of
memory transferred; in other words, they describe the “type” of the returned data struc-
ture, but not its “value”. As usual for concurrent algorithms, a complete specification of
a library is given by its abstract implementation (Section 7).

For example, as we discussed in Section 1, clients of a memory allocator transfer the
ownership of memory cells at calls to and returns from it. In particular, the specifications
of the allocator methods look approximately as follows:

{emp}alloc{(r=0∧ emp)∨ (r 6=0∧Block(r))} {Block(blk)}free(blk){emp}

Here r denotes the return value of alloc; blk, the actual parameter of free; emp, the
empty heap ε; and Block(r), a block of memory at address r managed by the allocator.

To define the semantics of ownership transfers unambiguously, we require pre- and
postconditions to be precise.

Definition 14. A predicate r ∈ 2Σ is precise [13] if for every state θ there exists at
most one substate θ1 satisfying r, i.e., such that θ1 ∈ r and θ = θ1 ∗ θ2 for some θ2.

Note that, since the ∗ operation is cancellative, when such a substate θ1 exists, the cor-
responding substate θ2 is unique and is denoted by θ \ r. Informally, a precise predicate
carves out a unique piece of the heap. A parameterised predicate r is precise if so is rt
for every t.

A specified open program is of the form Γ ` C or L : Γ . In the former, the
specification Γ describes all the methods without implementations that C may call. In
the latter, Γ provides specifications for the methods in the open program that can be
called by its external environment. In both cases, Γ specifies the type of another open
program that can fill in the hole in C or L. When we are not sure which form a program
has, we write Γ ` P : Γ ′, where Γ is empty if P does not have a client, Γ ′ is empty if
it does not have a library, and both of them are empty if the program is complete.

For open programs Γ ` C = let [−] in C1 ‖ . . . ‖ Cn and L : Γ = let L in [−], we
denote by C(L) the complete program let L in C1 ‖ . . . ‖ Cn.

6 Client-Local and Library-Local Semantics
We now give the semantics to complete and open programs. In the latter case, we define
component-local semantics that include all behaviours of an open program under any
environment satisfying the specification associated with it. In Section 7, we use these
to lift linearizability to libraries and formulate the Abstraction Theorem.

We define program semantics in two stages. First, given a program, we generate
the set of all its traces possible. This is done solely based on the structure of its state-
ments, without taking into account restrictions arising from the semantics of primitive
commands or ownership transfers. The next step filters out traces that are not consistent
with these restrictions using a trace evaluation process similar to that in Section 4.

Trace sets. Consider a program Γ ` P : Γ ′ and letM ⊆ Method be the set of methods
implemented by its library or called by its client. We define the trace set LΓ ` P :
Γ ′ M ∈ 2Trace of P in Figure 1. We first define the trace set LC MΓt S of a command
C, parameterised by the identifier t of the thread executing it, a method specification
Γ , and a mapping S ∈ M × ThreadID → 2Trace giving the trace set of the body of
every method that C can call when executed by a given thread. The trace set of a client
LC1 ‖ . . . ‖ Cn MΓS is obtained by interleaving traces of its threads.

The trace set LC(L)M of a complete program is that of its client computed with
respect to a mapping λm, t. LCm Mt() associating every method m with the trace set
of its body Cm. Since we prohibit nested method calls, LCm M does not depend on the
Γ and S parameters. Since the program is complete, we use a method specification Γε
with empty pre- and postconditions for computing LC1 ‖ . . . ‖Cn M. We prefix-close
the resulting trace set to take into account incomplete executions. A program Γ ` C
generates client traces LΓ ` C M, which do not include internal library actions. This is
enforced by associating an empty trace with every library method. Finally, a program
L : Γ ′ generates all possible library traces LL : Γ ′ M. This is achieved by running

LcMΓt S = {(t, c)}; LC1 +C2 MΓt S = LC1 MΓt S ∪ LC2 MΓt S; LC∗ MΓt S = ((LC MΓt)S)∗;
LmMΓt S = {(t, call m(θp)) τ (t, ret m(θq)) | τ ∈ S(m, t) ∧ θp ∈ pmt ∧ θq ∈ qmt };
LC1;C2 MΓt S = {τ1τ2 | τ1 ∈ LC1 MΓt S ∧ τ2 ∈ LC2 MΓt S};
LC1 ‖ . . . ‖ Cn MΓS =

⋃
{τ1 ‖ . . . ‖ τn | ∀t = 1..n. τt ∈ LCt MΓt S};

L let {m = Cm | m ∈M} in C1 ‖ . . . ‖Cn M = prefix(LC1 ‖ . . . ‖Cn MΓε(λm, t. LCm Mt()));

LΓ ` let [−] in C1 ‖ . . . ‖ Cn M = prefix(LC1 ‖ . . . ‖ Cn MΓ (λm, t. {ε}));
L let {m = Cm | m ∈M} in [−] : Γ M =

prefix
(⋃

k≥1LCmgc ‖ . . . (k times) . . . ‖ Cmgc MΓ (λm, t. LCm Mt())
)
.

Fig. 1. Trace sets of commands and programs. Here Γε =
{{
{ε}
}
m
{
{ε}
}
| m ∈M

}
, Γ =

{{pm}m {qm} | m ∈ M}, M = {m1, . . . ,mj}, Cmgc = (m1 + . . . +mj)
∗, and prefix(T)

is the prefix closure of T . Also, τ ∈ τ1 ‖ . . . ‖ τn if and only if every action in τ is done by a
thread t ∈ {1, . . . , n} and for all such t, we have τ |t = τt.

the library under its most general client, where every thread executes an infinite loop,
repeatedly invoking arbitrary library methods.

Evaluation. The set of traces generated using L ·M may include those not consistent with
the semantics of primitive commands or expected ownership transfers. We therefore
define the meaning of a program JΓ ` P : Γ ′K ∈ Σ → (2Trace ∪ {>}) by evaluating
every trace in LΓ ` P : Γ ′ M to determine whether it is executable.

First, consider a library L : Γ ′. In this case we use the evaluation function J·Klib
defined in Section 4. We let JL : Γ ′Kθ = >, if

∃ξ, t. (∃c. JξKlibθ 6= > ∧ ξ (t, c) ∈ LL : Γ ′ M ∧ f tc(θ) = >) ∨
(∃m, θq. JξKlibθ 6= > ∧ ξ (t, ret m(θq)) ∈ LL : Γ ′ M

∧ ∀θ′q. ξ (t, ret m(θ′q)) ∈ LL : Γ ′ M⇒ Jξ (t, ret m(θ′q))Klibθ = >).

Thus, the library has no semantics if a primitive command in one of its executions
faults, or the required piece of state is not available for transferring to the client at a
method return. Otherwise, JL : Γ ′Kθ = {ξ | ξ ∈ LL : Γ ′ M ∧ JξKlibθ 6∈ {∅,>}}. This
gives a library-local semantics to L, in the sense that it takes into account only the
part of the program state owned by the library and considers its behaviour under any
client respecting Γ ′. This generalises the standard notion of the most general client to
situations where the library performs ownership transfers. Lemma 16 below confirms
that the client defined by LL : Γ ′ M and J·Klib is indeed most general, as it reproduces
library behaviours under any possible clients.

To give a semantics to Γ ` C, we define an evaluation function JηKclient : 2Σ →
(2Σ ∪ {>}) for client traces η. To this end, we define the evaluation of a single action
ϕ by JϕKclient : Σ → (2Σ ∪ {>}) and then lift it to client traces as in Section 4:

J(t, c)Kclientθ = f tc(θ); J(t, call m(θ0))Kclientθ = if (θ \ θ0)↓ then {θ \ θ0} else >;
J(t, ret m(θ0))Kclientθ = if (θ ∗ θ0)↓ then {θ ∗ θ0} else ∅.

When a thread t calls a method m in Γ , it transfers the ownership of the specified piece
of state to the library being called. The evaluation faults if the state to be transferred
is not available, which ensures that the client respects the specifications of the library.

When the method returns, the client receives the ownership of the specified piece of
state, which has to be compatible with the state of the client. We let JΓ ` CKθ = >, if

∃η, t. (∃c. JηKclientθ 6= > ∧ η (t, c) ∈ LΓ ` C M ∧ f tc(θ) = >) ∨
(∃m, θp. JηKclientθ 6= > ∧ η (t, call m(θp)) ∈ LΓ ` C M

∧ ∀θ′p. η (t, call m(θ′p)) ∈ LΓ ` C M⇒ Jη (t, ret m(θ′p))Kclientθ = >).

Otherwise, JΓ ` CKθ = {η | η ∈ LΓ ` C M ∧ JηKclientθ 6∈ {∅,>}}. This gives a client-
local semantics to C, in the sense that it takes into account only the part of the state
owned by the client and considers its behaviour when using any library respecting Γ .

Finally, for a complete program C(L), we let JC(L)Kθ = >, if ∃τ. τ ∈ LC(L)M ∧
JτKlibθ = >; otherwise, JC(L)Kθ = {τ | τ ∈ LC(L)M ∧ JτKlibθ 6= ∅} (note that using
J·Kclient here would yield the same result). For a set of initial states I ⊆ Σ, let

J(Γ ` P : Γ ′), IK = {(θ, τ) | θ ∈ I ∧ τ ∈ JΓ ` P : Γ ′Kθ}.

Definition 15. A program Γ ` P : Γ ′ is safe at θ, if JΓ ` P : Γ ′Kθ 6= >; P is safe for
I ⊆ Σ, if it is safe at θ for all θ ∈ I .

Commands fault when accessing memory cells that are not present in the state they are
run from. Thus, the safety of a program guarantees that it does not touch the part of
the heap belonging to its environment. Besides, calls to methods in Γ and returns from
methods in Γ ′ fault when the piece of state they have to transfer is not available. Thus,
the safety of the program also ensures that it respects the contract with its environment
given by Γ or Γ ′.

While decomposing the verification of a closed program into the verification of
its components, we rely on the above properties to ensure that we can indeed reason
about the components in isolation, without worrying about the interference from their
environment. In particular, our definition of linearizability on libraries considers only
safe libraries (Section 7).

Soundness and adequacy. The client-local and library-local semantics are sound and
adequate with respect to the global semantics of the complete program. These properties
are used in the proof of the Abstraction Theorem.

Let ground be a function on traces that replaces the state annotations θ of all inter-
face actions with ε. For a trace τ , we define its projection client(τ) to actions executed
by the client code: we include ϕ = (t,) with τ = τ ′ϕτ ′′ into the projection, if (i) ϕ is
an interface action; or (ii) ϕ is outside an invocation of a method, i.e., it is not the case
that τ |t = τ1 (t, call) τ2ϕτ3, where τ2 does not contain a (t, ret) action. We also use
a similar projection lib(τ) to library actions.

The following lemma shows that a trace of C(L) generates two traces in the client-
local and library-local semantics with the same history. The lemma thus carries over
properties of the local semantics, such as safety, to the global one, and in this sense is
the statement of the soundness of the former with respect to the latter.

Lemma 16 (Soundness). Assume Γ ` C and L : Γ safe for I1 and I2, respectively.
Then so is C(L) for I1 ∗ I2 and

∀(θ, τ) ∈ JC(L), I1 ∗ I2K.∃(θ1, η) ∈ JC, I1K.∃(θ2, ξ) ∈ JL, I2K. θ = θ1 ∗ θ2 ∧
history(η) = history(ξ) ∧ client(τ) = ground(η) ∧ lib(τ) = ground(ξ).

The following lemma states that any pair of client-local and library-local traces agreeing
on the history can be combined into a trace of C(L). It thus carries over properties of
the global semantics to the local ones, stating the adequacy of the latter.

Lemma 17 (Adequacy). If L : Γ and Γ ` C are safe for I1 and I2, respectively, then

∀(θ1, η) ∈ JC, I1K.∀(θ2, ξ) ∈ JL, I2K. ((θ1 ∗ θ2)↓ ∧ history(η) = history(ξ))⇒
∃τ. (θ1 ∗ θ2, τ) ∈ JC(L), I1 ∗ I2K ∧ client(τ) = ground(η) ∧ lib(τ) = ground(ξ).

7 Abstraction Theorem
We are now in a position to lift the notion of linearizability on histories to libraries and
prove the central technical result of this paper—the Abstraction Theorem. We define
linearizability between specified libraries L : Γ , together with their sets of initial states
I . First, using the library-local semantics, we define the set of histories of a library L
with the set of initial states I: history(L, I) = {(δ(θ0), history(τ)) | (θ0, τ) ∈ JL, IK}.
Definition 18. Consider L1 : Γ and L2 : Γ safe for I1 and I2, respectively. We say
that (L2, I2) linearizes (L1, I1), written (L1, I1) v (L2, I2), if

∀(l1, H1) ∈ history(L1, I1).∃(l2, H2) ∈ history(L2, I2). (l1, H1) v (l2, H2).

Thus, (L2, I2) linearizes (L1, I1) if every behaviour of the latter may be reproduced in
a linearized form by the former without requiring more memory.

Theorem 19 (Abstraction). If L1 : Γ , L2 : Γ , Γ ` C are safe for I1, I2, I , respec-
tively, and (L1, I1)v (L2, I2), then C(L1) and C(L2) are safe for I ∗ I1 and I ∗ I2,
respectively, and

∀(θ1, τ1) ∈ JC(L1), I ∗ I1K.∃(θ2, τ2) ∈ JC(L2), I ∗ I2K. client(τ1) = client(τ2).

Thus, when reasoning about a client C(L1) of a library L1, we can soundly replace
L1 with a library L2 linearizing it: if a linear-time safety property over client actions
holds of C(L2), it will also hold of C(L1). In practice, we are usually interested in
atomicity abstraction, a special case of this transformation when methods in L2 are
atomic. The theorem is restricted to safety properties as, for simplicity, in this paper we
consider only finite histories and traces. Our results can be generalised to the infinite
case as in [10]. The requirement that C be safe in the theorem restricts its applicability
to healthy clients that do not access library internals.

To prove Theorem 19, we first lift Lemma 13 to traces in the library-local semantics.

Corollary 20. If (δ(θ), H) v (δ(θ′), H ′) and L is safe at θ′, then

∀ξ′ ∈ JLKθ′. history(ξ′) = H ′ ⇒ ∃ξ ∈ JLKθ′. history(ξ) = H.

Thus, if (L1, I1) v (L2, I2), then the set of histories of L1 is a subset of those of L2:
linearizability is a sound criterion for proving that one library simulates another.

Proof of Theorem 19. The safety of C(L1) and C(L2) follows from Lemma 16. Take
(θ, τ1) ∈ JC(L1), I ∗ I1K. We transform the trace τ1 of C(L1) into a trace τ2 of C(L2)
with the same client projection using the local semantics of L1, L2 and C. Namely,
we first apply Lemma 16 to generate a pair of a library-local initial state and a trace

(θ1l , ξ1) ∈ JL1, I1K and a client-local pair (θc, η) ∈ JC, IK, such that θ = θc ∗ θ1l ,
client(τ1) = ground(η) and history(η) = history(ξ1). Since (L1, I1) v (L2, I2),
for some (θ2l , ξ2) ∈ JL2, I2K, we have δ(θ2l) � δ(θ1l) and (δ(θ1l), history(ξ1)) v
(δ(θ2l), history(ξ2)). By Corollary 20, ξ2 can be transformed into a trace ξ′2 such that
(θ2l , ξ

′
2) ∈ JL2, I2K and history(ξ′2) = history(ξ1) = history(η). Since δ(θ2l) � δ(θ1l)

and (θc ∗ θ1l)↓, we have (θc ∗ θ2l)↓. We then use Lemma 17 to compose the library-local
trace ξ′2 with the client-local one η into a trace τ2 such that (θc∗θ2l , τ2) ∈ JC(L2), I∗I2K
and client(τ2) = ground(η) = client(τ1). ut

Establishing linearizability with ownership transfer and its applications. We have
developed a logic for proving linearizability in the sense of Definition 18, which gen-
eralises an existing proof system [16] based on separation logic [14] to the setting with
ownership transfer. The logic uses the usual method of proving linearizability based on
linearization points [1, 12, 16] and treats ownership transfers between a library and its
environment in the same way as transfers between procedures and their callers in sep-
aration logic. Due to space constraints, the details of the logic are beyond the scope of
this paper and are described in Appendix D. We mention the logic here to emphasise
that our notion of linearizability can indeed be established effectively.

The Abstraction Theorem is not just a theoretical result: it enables compositional
reasoning about complex concurrent algorithms that are challenging for existing veri-
fication methods. For example, the theorem can be used to justify Vafeiadis’s compo-
sitional proof [16, Section 5.3] of the multiple-word compare-and-swap (MCAS) algo-
rithm implemented using an auxiliary operation called RDCSS [11] (the proof used an
abstraction of the kind enabled by Theorem 19 without justifying its correctness). If
the MCAS algorithm were verified together with RDCSS, its proof would be extremely
compicated. Fortunately, we can consider MCAS as a client of RDCSS, with the two
components performing ownership transfers between them. The Abstraction Theorem
then makes the proof tractable by allowing us to verify the linearizability of MCAS
assuming an atomic specification of the inner RDCSS algorithm.

8 Frame Rule for Linearizability
Libraries such as concurrent containers are used by clients to transfer the ownership of
data structures, but do not actually access their contents. We show that for such libraries,
the classical linearizability implies linearizability with ownership transfer.

Definition 21. A method specification Γ ′ = {{rm}m {sm} | m ∈ M} extends a
specification Γ = {{pm}m {qm} | m ∈M}, if ∀t. rmt ⊆ pmt ∗Σ ∧ smt ⊆ qmt ∗Σ.

For example, Γ might say that a method m receives a pointer x as a parameter:
{∃x. param[t] 7→ x}m {param[t] 7→ }, where t is the identifier of the thread call-
ing m. Then Γ ′ may mandate that the cell the pointer identifies be transferred to the
method: {∃x. param[t] 7→ x ∗ x 7→ }m {param[t] 7→ }. For a history H , let THUΓ
be the result of replacing every action ϕ in H by the action TϕUΓ defined as follows:

T(t, call m(θ))UΓ = (t, call m(θ \ pmt)); T(t, ret m(θ))UΓ = (t, ret m(θ \ qmt)).

THUΓ is undefined if so is the result of any of the \ operations above. The operation
selects the extra pieces of state not required by Γ .

Theorem 22 (Frame rule). Assume (i) for all i ∈ {1, 2}, Li : Γ and Li : Γ ′ are safe
for Ii and Ii ∗ I , respectively; (ii) (L1 : Γ, I1) v (L2 : Γ, I2); (iii) Γ ′ extends Γ ; and
(iv) for every (θ0, θ

′
0) ∈ I1 × I and ξ ∈ JL1 : Γ ′K(θ0 ∗ θ′0), the trace Thistory(ξ)UΓ is

executable from θ′0. Then (L1 : Γ ′, I1 ∗ I) v (L2 : Γ ′, I2 ∗ I).
The proof of the theorem relies on Corollary 20. The linearizability relation established
in the theorem enables the use of the Abstraction Theorem for clients performing owner-
ship transfer. The safety requirement on L1 and L2 with respect to Γ ′ is needed because
Γ ′ not only transfers extra memory to the library in its preconditions, but also takes it
back in its postconditions. The requirement (iv) ensures that the extra memory required
by postconditions in Γ ′ comes from the extra memory provided in its preconditions and
the extension of the initial state, not from the memory transferred according to Γ .

9 Related Work
In our previous work, we proved Abstraction Theorems for definitions of linearizabil-
ity supporting reasoning about liveness properties [10] and weak memory models [4].
These definitions assumed that the library and its client operate in disjoint address
spaces and, hence, are guaranteed not to interfere with each other and cannot com-
municate via the heap. Lifting this restriction is the goal of the present paper. Although
we borrow the basic proof structure of Theorem 19 from [4], including the split into
Lemmas 13, 16 and 17, the formulations and proofs of the Abstraction Theorem and
the lemmas here have to deal with technical challenges posed by ownership transfer
that did not arise in previous work. First, their formulations rely on the novel forms of
client-local and library-local semantics, and in particular, the notion of the most gen-
eral client (Section 6), that allow a component to communicate with its environment
via ownership transfers. Proving Lemmas 16 and 17 then involves a delicate tracking
of a splitting between the parts of the state owned by the library and the client, and how
ownership transfers affect it. Second, the key result needed to establish the Abstrac-
tion Theorem is the Rearrangement Lemma (Lemma 13). What makes the proof of this
lemma difficult in our case is the need to deal with subtle interactions between concur-
rency and ownership transfer that have not been considered in previous work. Namely,
changing the history of a sequential library specification for one of its concurrent im-
plementation in the lemma requires commuting ownership transfer actions; justifying
the correctness of these transformations is non-trivial and relies on the notion of history
balancedness that we propose.

Recently, there has been a lot of work on verifying linearizability of common al-
gorithms; representative papers include [1, 7, 16]. All of them proved classical lineariz-
ability, where libraries and their clients exchange values of a given data type and do not
perform ownership transfers. This includes even libraries such as concurrent containers
discussed in Section 1, that are actually used by client threads to transfer the ownership
of data structures. The frame rule for linearizability we propose (Theorem 22) justifies
that classical linearizability established for concurrent containers entails linearizabil-
ity with ownership transfer. This makes our Abstraction Theorem applicable, enabling
compositional reasoning about their clients.

Turon and Wand [15] have proposed a logic for establishing refinements between
concurrent modules, likely equivalent to linearizability. Their logic considers libraries
and clients residing in a shared address space, but not ownership transfer. It assumes
that the client does not access the internal library state; however, their paper does not

provide a way of checking this condition. As a consequence, Turon and Wand do not
propose an Abstraction Theorem strong enough to support separate reasoning about a
library and its client in realistic situations of the kind we consider.

Elmas et al. [7,8] have developed a system for verifying concurrent programs based
on repeated applications of atomicity abstraction. They do not use linearizability to
perform the abstraction. Instead, they check the commutativity of an action to be incor-
porated into an atomic block with all actions of other threads. In particular, to abstract
a library implementation in a program by its atomic specification, their method would
have to check the commutativity of every internal action of the library with all actions
executed by the client code of other threads. Thus, the method of Elmas et al. does not
allow decomposing the verification of a program into verifying libraries and their clients
separately. In contrast, our Abstraction Theorem ensures the atomicity of a library under
any healthy client.

Ways of establishing relationships between different sequential implementations of
the same library have been studied in data refinement, including cases of interactions
via ownership transfer [2, 9]. Our results can be viewed as generalising data refinement
to the concurrent setting.

Acknowledgements. We would like to thank Anindya Banerjee, Josh Berdine, Xinyu
Feng, Hongjin Liang, David Naumann, Peter O’Hearn, Matthew Parkinson, Noam
Rinetzky and Julles Villard for helpful comments. Yang was supported by EPSRC.

References
1. D. Amit, N. Rinetzky, T. W. Reps, M. Sagiv, and E. Yahav. Comparison under abstraction

for verifying linearizability. In CAV, 2007.
2. A. Banerjee and D. A. Naumann. Ownership confinement ensures representation indepen-

dence in object-oriented programs. JACM, 52(6), 2005.
3. R. Bornat, C. Calcagno, P. O’Hearn, and M. Parkinson. Permission accounting in separation

logic. In POPL, 2005.
4. S. Burckhardt, A. Gotsman, M. Musuvathi, and H. Yang. Concurrent library correctness on

the TSO memory model. In ESOP, 2012.
5. C. Calcagno, P. O’Hearn, and H. Yang. Local action and abstract separation logic. In LICS,

2007.
6. D. G. Clarke, J. Noble, and J. M. Potter. Simple ownership types for object containment. In

ECOOP, 2001.
7. T. Elmas, S. Qadeer, A. Sezgin, O. Subasi, and S. Tasiran. Simplifying linearizability proofs

with reduction and abstraction. In TACAS, 2010.
8. T. Elmas, S. Qadeer, and S. Tasiran. A calculus of atomic actions. In POPL, 2009.
9. I. Filipović, P. O’Hearn, N. Torp-Smith, and H. Yang. Blaiming the client: On data refinement

in the presence of pointers. FAC, 22(5), 2010.
10. A. Gotsman and H. Yang. Liveness-preserving atomicity abstraction. In ICALP, 2011.
11. T. Harris, K. Fraser, and I. Pratt. A practical multi-word compare-and-swap operation. In

DISC, 2002.
12. M. Herlihy and J. M. Wing. Linearizability: a correctness condition for concurrent objects.

TOPLAS, 12(3), 1990.
13. P. O’Hearn. Resources, concurrency and local reasoning. TCS, 375(1-3), 2007.
14. J. C. Reynolds. Separation logic: A logic for shared mutable data structures. In LICS, 2002.
15. A. Turon and M. Wand. A separation logic for refining concurrent objects. In POPL, 2011.
16. V. Vafeiadis. Modular fine-grained concurrency verification. PhD Thesis. University of

Cambridge, 2008.
17. V. Vafeiadis. Automatically proving linearizability. In CAV, 2010.

A Additional Definitions
Conditions on the transformers for primitive commands. We place the following
restrictions on f tc for every primitive command c ∈ PComm and thread t ∈ ThreadID:
– Footprint Preservation: for all θ, θ′ ∈ Σ, if θ′ ∈ f tc(θ), then δ(θ′) = δ(θ).
– Strong Locality: for all θ1, θ2, if (θ1 ∗ θ2)↓ and f tc(θ1) 6= >, then f tc(θ1 ∗ θ2) =
f tc(θ1) ∗ {θ2}.

Footprint preservation prohibits primitive commands from allocating or deallocating
memory. This does not pose a problem, since in the context of linearizability, an alloca-
tor is just another library and should be treated as such. The strong locality of f tc says
that, if a command c can be safely executed from a state θ1, then when executed from a
bigger state θ1 ∗θ2, it does not change the additional state θ2 and its effect depends only
on the state θ1 and not on the additional state θ2. The strong locality is a strengthening
of the locality property in separation logic [5]. While the usual locality prohibits the
command from changing the additional state, it permits the effect of the command to
depend on this state [9]. On the other hand, such dependency is forbiden by the strong
locality.

The transformers for standard commands, except memory (de)allocation, satisfy the
above conditions.

In the following, we sometimes use the pointwise lifting f tc : 2Σ → 2Σ ∪ {>} of
the transformers to sets of states:

f tc(p) =

{
>, if ∃θ ∈ p. f tc(θ) = >;⋃
θ∈p f

t
c(θ), otherwise.

Semantics of typical primitive commands. When our state model Σ is RAM, we

typically consider following primitive commands:

skip, [E] = E′, assume(E),

where expressions E are defined as follows:

E ::= Z | tid | [E] | E + E | −E | !E | . . .

Here tid refers to the identifier of the thread executing the command, [E] returns the
contents of the address E in memory, and !E is the C-style negation of an expression
E—it returns 1 when E evaluates to 0, and 0 otherwise. We denote by JEKθ,t ∈ Val ∪
{>} the result of evaluating the expression E in the state θ with the current thread
identifier t. When this evaluation dereferences illegal memory addresses, it results in
the error value >.

For the above commands and t ∈ ThreadID, we define corresponding transition
relation ;t: RAM× (RAM ∪ {>}) in Figure 2. Using this transition relation, we then
define f tc : RAM→ 2RAM ∪ {>} for the primitive commands c as follows:

f tc(θ) =

{
>, if θ, c;t >;⋃{

θ′ | θ, c;t θ
′}, otherwise.

Example of a separation algebra with permissions. We now present an extension
RAMp of the separation algebra RAM in Section 2, where states carry additional infor-
mation regarding permissions to access memory cells. Here we consider simple permis-
sions to read from and write to memory cells, often used to model read sharing among

multiple threads or program components.
Formally, the example algebra RAMp is defined as follows:

Loc = {1, 2, . . .}; Val = Z; Perm = (0, 1];
RAMp = Loc ⇀fin (Val× Perm).

A state in this model consists of a finite partial function from allocated memory lo-
cations to values they store and so-called permissions—numbers from (0, 1] that show
“how much” of the memory cell belongs to the partial state [3]. The latter allow a library
and its client to share access to some of memory cells. Permissions in RAMp allow only
read sharing: when defining the semantics of commands over states in RAMp, the per-
missions strictly less than 1 are interpreted as permissions to read; the full permission
1 additionally allows writing. This can be generalised to sharing permissions to access
memory in an arbitrary way consistent with a given specification1.

We remind the reader that for a partial function g, g(x)↓ means that the function g
is defined on x. We also write g(x)↑ when it is undefined on x.

The ∗ operation on RAMp adds up permissions for memory cells. Formally, for
θ1, θ2 ∈ RAMp, we write θ1] θ2 when:

∀x ∈ Loc. θ1(x)↓ ∧ θ2(x)↓ ⇒
(∃u, π1, π2. θ1(x) = (u, π1) ∧ θ2(x) = (u, π2) ∧ π1 + π2 ≤ 1).

If θ1] θ2, then we define

θ1 ∗ θ2 = {(x, (u, π)) | (θ1(x) = (u, π) ∧ θ2(x)↑) ∨ (θ2(x) = (u, π) ∧ θ1(x)↑) ∨
(θ1(x) = (u, π1) ∧ θ2(x) = (u, π2) ∧ π = π1 + π2)}.

Otherwise, θ1 ∗ θ2 is undefined. The unit for ∗ is the empty heap []. This definition of
∗ allows us, e.g., to split a memory area into two disjoint parts. It also allows splitting
a cell with a full permission 1 into two parts, carrying read-only permissions 1/2 and
agreeing on the value stored in the cell. These permissions can later be recombined to
obtain the full permission, which allows both reading from and writing to the cell.

In the case of the algebra RAMp, for θ ∈ RAMp we have

δ(θ) = {θ′ | ∀x. (θ(x)↓ ⇔ θ′(x)↓) ∧ ∀u, π. (θ(x) = (u, π) ∧ π < 1⇒
θ(x) = θ′(x)) ∧ (θ(x) = (u, 1)⇒ θ′(x) = (, 1))}.

In other words, states with the same footprint contain the same memory cells with the
identical permissions; in the case of memory cells on read permissions, the states also
have to agree on their values. It is easy to check that the condition in Definition 3 is
satisfied.

Finally, we define f tc : RAMp → 2RAMp∪{>} for primitive commands c, following
the same recipe as in the RAM case. In this case, we use the transition relation described
in Figure 3.

1 M. Dodds, X. Feng, M. Parkinson, and V. Vafeiadis. Deny-guarantee reasoning. In ESOP,
2009.

θ, skip ;t θ
θ, [E] = E′ ;t θ[JEKθ,t : JE′Kθ,t], if JEKθ,t ∈ dom(θ), JE′Kθ,t ∈ Val
θ, [E] = E′ ;t >, if JEKθ,t 6∈ dom(θ) or JE′Kθ,t = >
θ, assume(E) ;t θ, if JEKθ,t ∈ Val− {0}
θ, assume(E) ;t >, if JEKθ,t = >

Fig. 2. Transition relation for sample primitive commands in the RAM model. The result > indi-
cates that the command faults.

θ, skip ;t θ
θ, [E] = E′ ;t θ[JEKθ,t : (JE′Kθ,t, 1)], if θ(JEKθ,t) = (, 1), JE′Kθ,t ∈ Val
θ, [E] = E′ ;t >, if the above condition does not hold
θ, assume(E) ;t θ, if JEKθ,t ∈ Val− {0}
θ, assume(E) ;t >, if JEKθ,t = >

Fig. 3. Transition relation for sample primitive commands in the RAMp model. The evaluation of
expressions JEKθ,t ignores permissions in θ.

B Proofs
B.1 Operational Semantics
It is more convenient for us to do the proofs using an operational semantics of the
language of Section 5, rather than its denotational-style semantics given in Section 6.

Control-flow graphs. In the definition of program semantics, it is technically conve-
nient for us to abstract from a particular syntax of programming language and repre-
sent commands by their control-flow graphs. A control-flow graph (CFG) is a tuple
(N,T, start, end), consisting of the set of program points N , the control-flow relation
T ⊆ N × Comm × N , and the initial and final positions start, end ∈ N . The edges
are annotated with commands from Comm, which are primitive commands or method
calls m. Every command C in our language can be translated to a CFG in the standard
manner.

We represent a specified program Γ ` P : Γ ′ by a collection of CFGs. IfP contains
a client with n threads running Ct, t = 1..n, each thread t is represented by the CFG
(Nt, Tt, startt, endt) of Ct. Let Method(P) be the set of all methods declared in P . For
each method m ∈ Method(P) let Cm be the body of its implementation. Every such
method is then represented by the CFG (Nm, Tm, startm, endm) of Cm. We also rep-
resent every method m ∈ dom(Γ) by the CFG ({vm}, ∅, vm, vm), which corresponds
to a method body that returns immediately after having been called. This CFG does not
have any edges, because in the client-local semantics, we do not execute the implemen-
tation of such a method, but use its specification to incorporate the effect a call to the
method has on the program state. Finally, if P does not have a client (so n = 0), we
define a CFG of the form ({vtmgc}, ∅, vtmgc, v

t
mgc) for each thread t ∈ ThreadID, and

let N0 = {vtmgc | t ∈ ThreadID}. These CFGs are used to represent the most general
client of the methods appearing in Γ ′; see below. If P contains a client, we let N0 = ∅.

We often view the above collection of CFGs as a single graph with the node set
Node = N0]

⊎n
t=1Nt]

⊎
m∈Method(P)]dom(Γ)Nm and the edge set T =

⊎n
t=1 Tt]⊎

m∈Method(P)]dom(Γ) Tm.

Operational semantics with ownership transfer. Consider a program Γ ` P : Γ ′

represented by its CFG. Let Pos be the set of thread positions:

Pos = Node] (Node× Node).

A thread position describes the call-stack of a thread: its last component describes the
program point of the current command, and the other component, when it exists, the
return point for the method called.

We define the set of program configurations as

Config = (ThreadID ⇀fin Pos)×Σ ∪ {>}.

The special configuration > indicates an error. The first component of a non-erroneous
configuration is a program counter, which defines the position of each thread in the
program, and the second defines the state of the program memory.

The operational semantics of Γ ` P : Γ ′ is given by the transition relation
−→Γ,P,Γ ′ : Config × Act × Config in Figure 4. The rules package a semantics for
complete and open programs into a single transition relation.

Equivalence of the semantics. Our operational semantics induces the trace interpre-
tation of programs Γ ` P : Γ ′. For a finite trace τ and σ, σ′ ∈ Config we write
σ

τ−→∗Γ,P,Γ ′ σ′ if there exists a corresponding derivation of τ using −→Γ,P,Γ ′ . We de-
note by PC0 the set of initial program counters of P , which is {[1 : start1, . . . , n :
startn]} when P contains a client and {[1 : v1mgc, . . . , n : vnmgc] | n ≥ 1} when it
does not. The trace interpretation of P is defined as follows: JΓ ` P : Γ ′Kopθ = >, if
∃τ, pc0 ∈ PC0. (pc0, θ)

τ−→∗Γ,P,Γ ′ >; otherwise,

JΓ ` P : Γ ′Kopθ = {τ | ∃pc0 ∈ PC0.∃σ ∈ Config − {>}. (pc0, θ)
τ−→∗Γ,P,Γ ′ σ}.

The following is a variation on the standard result about the equivalence of the
operational and the denotation semantics of a while-language.

Lemma 23. JΓ ` P : Γ ′Kopθ = JΓ ` P : Γ ′Kθ.

Auxiliary definitions. We define several operations that relate configurations in the
semantics of C(L), C and L. A partial operation ∗ : Pos × Pos ⇀ Pos combines
thread positions in the semantics of C and L to obtain a position of C(L) as follows:
v ∗ vtmgc = v and (v, vm) ∗ (vtmgc, v

′) = (v, v′) for t ∈ ThreadID. For all the other
combinations, the ∗ operator is undefined. We lift ∗ to program counters pointwise and
define ∗ on non-erroneous configurations from Config:

(pc1, θ1) ∗ (pc2, θ2) = (pc1 ∗ pc2, θ1 ∗ θ2).

For a set of methods M we define functions client : Pos → Pos and libt :
Pos → Pos, t ∈ ThreadID that compute thread positions in the semantics of C
and L corresponding to a position in C(L). We let client(v) = v, lib(v) = vtmgc,
client(v, v′) = (v, vm), lib(v, v′) = (vtmgc, v

′). We then lift these operations to program
counters as follows: (client(pc))(t) = client(pc(t)) and (lib(pc))(t) = lib(pc(t)).

In the following, we denote the set of all call actions by CallAct, return actions with
RetAct, and the actions of both kinds by CallRetAct.

(ρ, c, ρ′) ∈ T ∪ {((v0, v), c, (v0, v′)) | (v, c, v′) ∈ T} f tc(θ) 6= > θ′ ∈ f tc(θ)

pc[t : ρ], θ
(t,c)−−−→ pc[t : ρ′], θ′ (1)

(ρ, c, ρ′) ∈ T ∪ {((v0, v), c, (v0, v′)) | (v, c, v′) ∈ T} f tc(θ) = >

pc[t : ρ], θ
(t,c)−−−→ > (2)

Complete programs:

(v,m, v′) ∈ T

pc[t : v], θ
(t,call m)−−−−−→ pc[t : (v′, startm)], θ (3)

pc[t : (v, endm)], θ
(t,ret m)−−−−−→ pc[t : v], θ (4)

Client programs:

(v,m, v′) ∈ T {p}m {q} ∈ Γ (θ \ pt)↓

pc[t : v], θ
(t,call m(θp))−−−−−−−−→ pc[t : (v, vm)], θ \ pt (5)

(v,m, v′) ∈ T {p}m {q} ∈ Γ (θ \ pt)↑

pc[t : v], θ
(t,call m(ε))−−−−−−−→ > (6)

{p}m {q} ∈ Γ θq ∈ qt (θ ∗ θq)↓

pc[t : (v, vm)], θ
(t,ret m(θq))−−−−−−−−→ pc[t : v], θ ∗ θq (7)

Library programs:

{p}m {q} ∈ Γ ′ θp ∈ pt (θ ∗ θp)↓

pc[t : vtmgc], θ
(t,call m(θp))−−−−−−−−→ pc[t : (vtmgc, startm)], θ ∗ θp (8)

{p}m {q} ∈ Γ ′ (θ \ qt)↓

pc[t : (vtmgc, endm)], θ
(t,ret m(θq))−−−−−−−−→ pc[t : vtmgc], θ \ qt (9)

{p}m {q} ∈ Γ ′ (θ \ qt)↑

pc[t : (vtmgc, endm)], θ
(t,ret m(ε))−−−−−−−→ > (10)

Fig. 4. Transition relation−→Γ,P,Γ ′ for a specified program Γ ` P : Γ ′. We omit the subscripts
Γ,P, Γ ′ to avoid clutter.

B.2 Properties of the ◦ and \ Operations on Footprints
Proposition 24. The ◦ operation is well-defined.

Proof. Consider l1, l2 ∈ F(Σ) and θ1, θ2 ∈ Σ such that l1 = δ(θ1) and l2 = δ(θ2).
Take another pair of states θ′1, θ

′
2 ∈ Σ such that l1 = δ(θ′1) and l2 = δ(θ′2).

Thus, θ′1 ∈ δ(θ1) and θ′2 ∈ δ(θ2), which implies:

(θ′1 ∗ θ′2)↓ ⇐⇒ (θ1 ∗ θ′2)↓ ⇐⇒ (θ1 ∗ θ2)↓.

Furthermore, if θ′1 ∗ θ′2 and θ1 ∗ θ2 are defined, then for all θ′ ∈ Σ,

(θ′1 ∗ θ′2 ∗ θ′)↓ ⇐⇒ (θ1 ∗ θ′2 ∗ θ′)↓ ⇐⇒ (θ1 ∗ θ2 ∗ θ′)↓.

Hence, δ(θ1 ∗ θ2) = δ(θ′1 ∗ θ′2), so that ◦ is well-defined. ut
Proposition 25. The \ operation is well-defined.

Proof. Consider l1, l2 ∈ F(Σ) and θ1, θ2, θ
′
1, θ
′
2, θ, θ

′ ∈ Σ such that θ1, θ′1 ∈ l1,
θ2, θ

′
2 ∈ l2, θ1 = θ2 ∗ θ and θ′1 = θ′2 ∗ θ′. We have:

δ(θ2 ∗ θ) = δ(θ1) = l1 = δ(θ′1) = δ(θ′2 ∗ θ′).

Since δ(θ2) = δ(θ′2), by Definition 3 this implies δ(θ) = δ(θ′), so that \ is well-defined.
ut

We now list some the useful properties of \. In the following, we use the equality
that means both sides are defined and equal, or both are undefined.

Proposition 26. For all l1, l2, l3 ∈ F(Σ), we have:

1. (l1 \ l2) ◦ l2 = l1, if l1 \ l2 is defined;
2. (l1 ◦ l2) \ l2 = l1, if l1 ◦ l2 is defined;
3. (l1 ◦ l2) \ l3 = (l1 \ l3) ◦ l2, if l1 ◦ l2 and l1 \ l3 are defined.

Proof. 1. Consider θ ∈ l1 \ l2. Then there exist θ1 ∈ l1 and θ2 ∈ l2 such that θ∗θ2 = θ1.
Hence,

(l1 \ l2) ◦ l2 = δ(θ ∗ θ2) = δ(θ1) = l1.

2. Since l1 ◦ l2 is defined, so is θ1 ∗ θ2 for some θ1 ∈ l1 and θ2 ∈ l2. But then
θ1 ∈ (l1 ◦ l2) \ l2.

3. By item 1, we get

l1 ◦ l2 = ((l1 \ l3) ◦ l3) ◦ l2 = ((l1 \ l3) ◦ l2) ◦ l3.

Hence, (l1 ◦ l2) \ l3 = (l1 \ l3) ◦ l2. ut

B.3 Proof of Lemma 13
Below we sometimes write vπ instead of v to make the bijection π used to establish
the relation between histories explicit.

Take θ, θ′ ∈ Σ and consider a trace ξ′ executable from θ′. Assume histories H,H ′

such that history(ξ′) = H ′, H v H ′ and H is balanced from l1 = δ(θ). By Proposi-
tion 11, H ′ is balanced from l2 = δ(θ′). We prove that there exists a trace ξ executable
from θ′ such that history(ξ) = H .

To this end, we define a finite sequence of steps that transforms ξ′ into ξ. In more
detail, ξ is constructed using a sequence of traces αk executable from θ′, defined for
every prefix Hk of H of length k as described below. Every trace αk is such that for
some prefix βk of αk we have history(βk) = Hk and H vπ history(αk), where π is
an identity on actions in Hk. Additionally, for all i, j with i < j, βi is a prefix of βj .
Hence, the sequence of traces βk has a limit ξ such that for every k, βk is a prefix of ξ
and history(ξ) = H . Then, as we show, ξ is executable from θ′ and history(ξ) = H .

The transformation constructing αk+1 from αk has one delicate case, whose proof
relies on the rest of transformation. We now formulate an auxiliary notion used in this
case, motivated by the proof of Lemma 28 below.

Definition 27. Two histories

H1 = H(t1, call m1(θ1))H1(t2, ret m2(θ2))H2,
H2 = HH ′1(t2, ret m2(θ2))(t1, call m1(θ1))H

′
2

are conflicting if

– H1 and H2 are balanced from some l1 and l2, respectively, such that l2 � l1;
– t1 6= t2;
– H1 vπ H2;
– π is an identity on actions in H and maps the (t1, ret m1(θ1)) and (t2, call m2(θ2))

actions in H1 to the corresponding actions shown in H2;
– the history

HH ′1(t1, call m1(θ1))(t2, ret m2(θ2))H
′
2 (11)

is not balanced from l2.

To construct the sequence of traces, we let α0 = ξ and let the prefix β0 contain
all the client actions preceding the first call or return action in α0. The trace αk+1 is
constructed from the trace αk by applying the following lemma for ξ1 = βk, ξ1ξ2 = αk,
H ′1 = Hk and H ′1ψH

′
2 = H . The lemma either successfully constructs αk+1, or yields

a pair of conflicting histories. In the following, we use techniques developed in the proof
of the lemma to show that no two conflicting histories can exist, which means that the
transformation succeeds in all cases, thus establishing the required.

Lemma 28. Consider a history H ′1ψH
′
2, and a library trace ξ1ξ2 executable from θ′

such that

history(ξ1) = H ′1, (12)
H ′1ψH

′
2 vπ history(ξ1ξ2), (13)

where π is an identity on actions in H ′1. Then either H ′1ψH
′
2 and another history com-

posed of actions from history(ξ1ξ2) are conflicting, or there exist traces ξ′2 and ξ′′2 such
that ξ1ξ′2ξ

′′
2 is executable from θ′ and

history(ξ1ξ
′
2) = H ′1ψ, (14)

H ′1ψH
′
2 vπ′ history(ξ1ξ

′
2ξ
′′
2), (15)

where π′ is an identity on actions in H ′1ψ in history(ξ1ξ
′
2ξ
′′
2).

To prove Lemma 28, we transform ξ1ξ2 into ξ1ξ′2ξ
′′
2 by applying a finite number of

transformations that preserve their properties of interest, described in Propositions 29–
31 below.

Proposition 29. Let ξ be a library trace and H a history such that H vπ history(ξ).
Then swapping any two adjacent actions ϕ1ϕ2 in ξ executed by different threads such
that

1. ϕ2 ∈ CallAct and if ϕ1 ∈ RetAct, then ϕ2 precedes ϕ1 in H; or
2. ϕ1 ∈ RetAct and ϕ2 ∈ Act− CallAct,

yields a trace ξ′ such that H vπ′ history(ξ′).
The bijection π′ is defined as follows. If ϕ1 6∈ CallRetAct or ϕ2 6∈ CallRetAct,

then π′ = π. Otherwise, let i be the index of ϕ1 in history(ξ). Then π′(i + 1) = π(i),
π′(i) = π(i+ 1) and π′(k) = π(k) for k 6∈ {i, i+ 1}.
Proposition 30. Swapping any two adjacent actions ϕ1ϕ2 in a library trace ξ such that

– ϕ1 ∈ Act− RetAct, ϕ2 ∈ CallAct; or
– ϕ1 ∈ RetAct, ϕ2 ∈ Act− CallAct,

preserves the executability of ξ from a given state.

Proof. Consider ξ = ξ1ϕ1ϕ2ξ2 and a state θ0 such that ξ is executable from θ0. The
proof proceeds by case analysis on the kind of actions ϕ1 and ϕ2. We consider only
one illustrative case, where ϕ1 = (t1, c) and ϕ2 = (t2, call m2(θ)). In this case,
f t2c (Jξ1Klibθ0) 6= > and

Jξ1ϕ1ϕ2Klibθ0 = f t2c (Jξ1Klibθ0) ∗ {θ} 6= ∅.

By the Footprint Preservation property, we get ((Jξ1Klibθ0) ∗ θ)↓. Then by the Strong
Locality property we get

Jξ1ϕ1ϕ2Klibθ0 = f t2c (Jξ1Klibθ0) ∗ {θ} = f t2c (Jξ1Klibθ0 ∗ {θ}) = Jξ1ϕ2ϕ1Klibθ0.

ut

Note that the above proposition does not allow swapping a return followed by a call.
This case is very subtle and relies crucially on the balancedness property of histories
under consideration. The swapping can be done under a certain condition, which is in
fact fulfilled in the context where we apply it in the proof of Lemma 28.

Proposition 31. Consider a library trace

ξ = ξ1(t2, ret m2(θ2))(t1, call m1(θ1))ξ2

executable from θ and a trace

ξ′ = ξ1(t1, call m1(θ1))(t2, ret m2(θ2))ξ2.

If history(ξ′) is balanced from δ(θ), then ξ′ is also executable from θ.

Proof of Lemma 28. From (12) and (13) it follows that ξ2 = ξ′3ψξ
′
4 for some traces ξ′3

and ξ′4. We have two cases.
1. ψ ∈ CallAct. Let t be the thread executing ψ. From (12) and (13), any return

action by t preceding ψ in history(ξ1ξ2) is in H ′1, and thus not in ξ′3. Furthermore, the
thread that executed ψ does not execute any actions in the subtrace ξ′3. Thus, we can
try to move the action ψ to the beginning of ξ′3 by swapping adjacent actions in ξ1ξ2 a

finite number of times as described in Propositions 29(1), 30 and 31. If we succeed, we
obtain the trace ξ1ψξ′3ξ

′
4. Conditions (14)–(15) then follow from Proposition 29(1) for

ξ′2 = ψ and ξ′′2 = ξ′3ξ
′
4. We can only fail when Proposition 31 is not applicable due to

the history of the target trace ξ′ not being balanced. In this case,H ′1ψH
′
2 and the history

of the source trace ξ in Proposition 31 are conflicting.
2. ψ ∈ RetAct. Then ξ′3 cannot contain an action ϕ ∈ CallAct, because in this case

ϕ would precede ψ in history(ξ1ξ2). However, ϕ is in H ′2 and, thus, ψ precedess ϕ in
H ′1ψH

′
2, so this would contradict (13). Hence, there are no call actions in ξ′3. Moreover,

for any action ϕ = (t, ret) in ξ′3 there are no actions by the thread t in ξ′3 following
ϕ. Thus, we can move all actions from RetAct in the subtrace ξ′3 of ξ1ξ2 to the position
right after ψ by swapping adjacent actions in ξ1ξ2 a finite number of times as described
in Propositions 29(2) and 30. We thus obtain the trace ξ1ξ′′3ψξ

′′
4 ξ
′
4, where ξ′′4 consists of

return actions in ξ′3 and ξ′′3 of the rest of actions in the subtrace. Conditions (14)–(15)
then follow from Proposition 29(2) for ξ′2 = ξ′′3ψ and ξ′′2 = ξ′′4 ξ

′
4. ut

All that remains is to show that there are no conflicting histories, hence guaranteeing
that the transformation in Proposition 31 is always applicable in the proof of Lemma 28.
To this end, we use the following auxiliary proposition.

Proposition 32. Assume H is identical to H ′, except it has extra calls, and H and H ′

are balanced from l1 and l2, respectively, such that l2 � l1. Then the ◦-combination
lc of footprints of states transferred at the extra call actions in H is defined, H ′ is
balanced from l1 and

JHK]l1 = (JH ′K]l1) ◦ lc ∧ JH ′K]l2 � JH ′K]l1.

Proof. We prove the required by induction on the length of H . If H is empty, then so is
H ′ and lc = δ(ε). Assume the statement of the proposition is valid for all historiesH of
length less than n > 0. Consider a history H = H0ϕ of length n and a corresponding
history H ′ satisfying the conditions in the proposition. We now make a case split on the
type of the action ϕ.

– ϕ is a call transferring θ0 that is not in H ′. Then H0 and H ′ are identical except H0

has extra calls. Hence, by the induction hypothesis for H0 and H ′, H ′ is balanced
from l1, JH ′K]l2 � JH ′K]l1 and

JHK]l1 = JH0ϕK]l1 = (JH0K]l1) ◦ δ(θ0) = (JH ′]Kl1) ◦ (lc ◦ δ(θ0)).

– ϕ is a call transferring θ0 also present in H ′. Then H ′ = H ′0ϕ, where H ′0 and H0 are
identical except H0 has extra calls. Hence, by the induction hypothesis for H0 and
H ′0, we have

JHK]l1 = JH0ϕK]l1 = (JH0K]l1) ◦ δ(θ0) =
(JH ′0K

]l1) ◦ lc ◦ δ(θ0) = (JH ′0ϕK]l1) ◦ δ(θ0) = (JH ′K]l1) ◦ δ(θ0).

In particular, H ′ is balanced from l1. By the induction hypothesis for H0 and H ′0, we
also have JH ′0K]l2 � JH ′0K]l1. From this we get

JH ′K]l2 = JH ′0ϕK]l2 = (JH ′0K
]l2) ◦ δ(θ0) �

(JH ′0K
]l1) ◦ δ(θ0) = JH ′0ϕK]l1 = JH ′K]l1.

– ϕ is a return transferring θ0. Then it is also present in H ′, so that H ′ = H ′0ϕ, where
H0 and H ′0 are identical except H0 has extra calls. Then by the induction hypothesis
for H0 and H ′0, we have:

JHK]l = JH0ϕK]l1 = (JH0K]l1) \ δ(θ0) = ((JH ′0K
]l1) ◦ lc) \ δ(θ0).

Since H ′ = H ′0ϕ is balanced from l2, (JH ′0K]l2) \ θ0 is defined. Furthermore, by
the induction hypothesis for H0 and H ′0, we also have JH ′0K]l2 � JH ′0K]l1. Hence,
(JH ′0K]l1) \ θ0 is defined as well. By Proposition 26(3), we then have:

JHK]l1 = ((JH ′0K
]l1) ◦ lc) \ δ(θ0) =

((JH ′0K
]l1) \ δ(θ0)) ◦ lc = (JH ′0ϕK]l1) ◦ lc = (JH ′K]l1) ◦ lc.

In particular, H ′ is balanced from l1. From JH ′0K]l2 � JH ′0K]l1, it also follows that

JH ′K]l2 = JH ′0ϕK]l2 = (JH ′0K
]l2) \ δ(θ0) �

(JH ′0K
]l1) \ δ(θ0) = JH ′0ϕK]l1 = JH ′K]l1.

ut
Lemma 33. There are no conflicting pairs of histories.

Proof. Consider histories H1 and H2 satisfying the conditions in Definition 27. We
recall the form of the histories:

H1 = H(t1, call m1(θ1))H1(t2, ret m2(θ2))H2,
H2 = HH ′1(t2, ret m2(θ2))(t1, call m1(θ1))H

′
2.

Since H2 is balanced from l2,

JHH ′1(t2, ret m2(θ2))K]l2 = (JHH ′1K
]l2) \ δ(θ2)

is defined. Assume

JHH ′1(t1, call m1(θ1))K]l2 = (JHH ′1K
]l2) ◦ δ(θ1)

is defined. Since (JHH ′1K]l2) \ δ(θ2) is defined, by Proposition 26(3), we have:

JHH ′1(t1, call m1(θ1))(t2, ret m2(θ2))K]l2
= ((JHH ′1K]l2) ◦ δ(θ1)) \ δ(θ2)
= ((JHH ′1K]l2) \ δ(θ2)) ◦ δ(θ1)
= JHH ′1(t2, ret m2(θ2))(t1, call m1(θ1))K]l2.

But then (11) is balanced from l2, contradicting our assumptions. Hence,
((JHH ′1K]l2) ◦ δ(θ1))↑.

A call action in H ′1 cannot be in H2: in this case it would follow (t2, ret m2(θ2)) in
H1, but precede it in H2, contradicting H1 v H2. Hence, all call actions in H ′1 are in
H1. Let H1 = H3H4, where H3 is the minimal prefix of H1 containing all call actions
from H ′1. Then

H1 = H(t1, call m1(θ1))H3H4(t2, ret m2(θ2))H2.

If H3 is non-empty, any return action in it precedes its last call action, which is also in
H ′1. SinceH1 vπ H2, such a return action also has to be inH ′1. Thus, all return actions
inH3 are inH ′1. Furthermore, any action by thread t1 inH1 preceding (t1, callm1(θ1))
has to be in H . Since linearizability preserves the order of actions by the same thread,
this means that t1 does not execute any actions in H ′1.

The traces H1 and H2 are of the following more general form, which we denote
(F):

H1 = H0H3H4(t2, ret m2(θ2))H2,
H2 = H ′0H

′
1(t2, ret m2(θ2))(t1, call m1(θ1))H

′
2,

where

– H1 and H2 are balanced from some l1 and l2, respectively, such that l2 � l1;
– H0 and H ′0 are identical, except H0 has some extra call actions;
– all call actions in H ′1 are in H3;
– all return actions in H3 are in H ′1;
– H1 vπ H2;
– (t1, call m1(θ1)) is in H0;
– π maps actions in H ′0 to those in H0, (t1, call m1(θ1)) to the corresponding acton in
H0, and (t2, ret m2(θ2)) to the same action shown in H1;

– for all actions (t, call) in H3 that are not in H ′1, t does not execute any actions in
H ′1; and

– ((JH ′0H ′1K]l2) ◦ δ(θ1))↑.
This is obtained by letting H0 = H(t1, call m1(θ1)) and H ′0 = H ′.

In the following, we describe a process that transforms the histories H1 and H2

into another pair of histories satisfying the conditions above, but such that H3 is strictly
smaller. Repeatedly applying this process, we can make H3 empty, obtaining histories
satisfying (F):

H0H4(t2, ret m2(θ2))H2,
H ′0H

′
1(t2, ret m2(θ2))(t1, call m1(θ1))H

′
2.

In particular, ((JH ′0H ′1K]l2) ◦ δ(θ1))↑.
Since all calls from H ′1 are in H3 = ε, H ′1 contains only returns. Since the histories

are balanced from l1 and l2, respectively, JH0K]l1 and JH ′0K]l2 are defined. The history
H0 is identical to H ′0, except it has extra calls. By Proposition 32, the ◦-combination
of footprints of states transferred at the extra call actions in H0 is defined. Since the
(t1, call m1(θ1)) action is in H0, but not in H ′0, this combination is thus of the form
δ(θ1) ◦ lc for some lc and

JH0K]l1 = (JH ′0K
]l1) ◦ δ(θ1) ◦ lc ∧ JH ′0K

]l2 � JH ′0K
]l1.

Hence, (JH ′0K]l2) ◦ δ(θ1) is defined. Since H ′1 contains only return actions,

JH ′0H
′
1K
]l2 = (JH ′0K

]l2) \ l′,

where l′ is the ◦-combination of the footprints of states transferred at these actions. This
implies

JH ′0K
]l2 = (JH ′0H

′
1K
]l2) ◦ l′,

where both expressions are defined. But then so is

(JH ′0Kl2)
] ◦ δ(θ1) = (JH ′0H

′
1K
]l2) ◦ l′ ◦ δ(θ1).

Hence, (JH ′0H ′1K]l2) ◦ δ(θ1) is defined, contradicting the opposite fact established
above. This contradiction implies that a conflicting pair of histories does not exist.

Assume histories H1 and H2 satisfying (F):

H1 = H0H3H4(t2, ret m2(θ2))H2,
H2 = H ′0H

′
1(t2, ret m2(θ2))(t2, call m1(θ1))H

′
2,

We now show that from these we can construct another pair of histories satisfying (F),
but with H3 strictly smaller. We make a case split on the next action in H3.

– H3 = (t, call m(θ))H5, such that the call action is not in H ′1. Since linearizability
preserves the order of actions by the same thread, t does not execute any actions in
H ′1. Then we can let H0 := H0(t, call m(θ)) and H3 := H5.

– H3 = (t, call m(θ))H5, such that the call action is in H ′1. Let H ′1 =
H ′3(t, call m(θ))H ′4, then

H1 = H0(t, call m(θ))H5H4(t2, ret m2(θ2))H2,
H2 = H ′0H

′
3(t, call m(θ))H ′4(t2, ret m2(θ2))(t2, call m1(θ1))H

′
2.

Using the transformations from item 1 in the proof of Lemma 28, we can try to
move the action (t, call m(θ)) to the beginning of H ′3. If this succeeds, we can let
H0 := H0(t, call m(θ)), H3 := H5, H ′0 := H ′0(t, call m(θ)) and H ′1 := H ′3H

′
4.

Otherwise, we get a pair of conflicting histories, which are of the form (F) but with a
smaller H3.

– H3 = (t, ret m(θ))H5. Then the return action is also in H ′1, so that H ′1 =
H ′3(t, ret m(θ))H ′4:

H1 = H0(t, ret m(θ))H5H4(t2, ret m2(θ2))H2,
H2 = H ′0H

′
3(t, ret m(θ))H ′4(t2, ret m2(θ2))(t2, call m1(θ1))H

′
2.

Using the transformations from item 2 in the proof of Lemma 28, we can move the
return action to the beginning of H ′3, obtaining a pair of histories:

H1 = H0(t, ret m(θ))H5H4(t2, ret m2(θ2))H2,
H2 = H ′0(t, ret m(θ))H ′3H

′
4(t2, ret m2(θ2))(t2, call m1(θ1))H

′
2.

Then we can let H0 := H0(t, ret m(θ)), H3 := H5, H ′0 := H ′0(t, ret m(θ)) and
H ′1 := H ′3H

′
4.

ut

B.4 Proof of Lemma 16
Consider θ01 ∈ I1 and θ02 ∈ I2 and let

σ0 = (pc0, θ
0
1 ∗ θ02) ∧ σ0

1 = (client(pc0), θ
0
1) ∧ σ0

2 = (lib(pc0), θ
0
2),

where PC0 = {pc0}. Then σ0 = σ0
1 ∗ σ0

2 .
Take a τ -labelled derivation using −→C(L) that starts from σ0 ∈ Config. From this,

we now construct traces η and ξ, together with their derivations using −→C and −→L,
such that if τ leads to >, then so does η or ξ, and, otherwise,

η ∈ JCKθ01 ∧ ξ ∈ JLKθ02 ∧ history(η) = history(ξ) ∧
client(τ) = ground(η) ∧ lib(τ) = ground(ξ).

Our construction first considers every prefix τi of τ and builds traces ηi and ξi in
the semantics of C and L and their derivations for τi. The two resulting series are such
that for i < j, the derivation of ηi or ξi is a prefix of that of ηj or ξj , which also implies
that the trace ηi or ξi is a prefix of ηj or ξj . Because of this, the series have the limit
derivations and the limit traces, which are the desired ones.

The following claim lies at the core of our construction:

Consider a prefix τi of τ , traces ηi and ξi and configurations σ, σ1, σ2 ∈ Config
such that σ = σ1 ∗ σ2 6= >,

σ0 τi−→∗C(L) σ ∧ σ0
1

ηi−→∗C σ1 ∧ σ0
2

ξi−→∗L σ2

and

history(η) = history(ξ) ∧ client(τi) = ground(ηi) ∧ lib(τi) = ground(ξi).

Assume τ = τiϕτ
′ for some action ϕ and trace τ ′. If σ

ϕ−→C(L) σ′ for some
σ′ 6= >, then there exist σ′1, σ

′
2 ∈ Config − {>} and extensions ηi+1 and ξi+1 of

ηi and ξi with the corresponding derivations such that σ′ = σ′1 ∗ σ′2,

σ0
1

ηi+1−−−→∗C σ′1 ∧ σ0
2

ξi+1−−−→∗L σ′2

and

history(ηi+1) = history(ξi+1) ∧
client(τi+1) = ground(ηi+1) ∧ lib(τi+1) = ground(ξi+1).

Also, if σ
ϕ−→C(L) >, then there exist extensions ηi+1 and ξi+1 of ηi and ξi such

that
σ0
1

ηi+1−−−→∗C > ∨ σ0
2

ξi+1−−−→∗L>.
To prove the claim, we assume τi, ϕ, τ ′, σ, σ1, σ2, σ′, ηi, ξi satisfying the assump-

tions in it. We now make a case-split on which of the rules (1)–(10) is used to derive
ϕ.

– Rule (1) such that ϕ = (t, c) ∈ PAct is a client action in τ . Then, there exist pc, v, v′,
θ, θ′, θ1, θ2, such that (v, c, v′) is in the control-flow relation of C, pc(t)↑ and

σ1 = (client(pc)[t : v], θ1) ∧ σ2 = (lib(pc)[t : vtmgc], θ2)

∧ σ = (pc[t : v], θ) ∧ θ = θ1 ∗ θ2 (16)

and
σ′ = (pc[t : v′], θ′) ∧ θ′ ∈ f tc(θ).

Then by the Strong Locality property, we have

θ′ ∈ f tc(θ) = f tc(θ1 ∗ θ2) = f tc(θ1) ∗ {θ2}.

Thus, θ′ = θ′1 ∗ θ2, for some θ′1 ∈ f tc(θ1). Let

σ′1 = (client(pc)[t : v′], θ′1),

σ′2 = σ2, ηi+1 = ηiϕ and ξi+1 = ξi. Then σ′ = σ′1 ∗ σ′2 and

σ1
ϕ−→C σ′1.

We also have

client(τiϕ) = client(τi)ϕ = ground(ηi)ϕ = ground(ηiϕ) = ground(ηi+1),

lib(τiϕ) = lib(τi) = ground(ξi) = ground(ξi+1)

and
history(ηi+1) = history(ηi) = history(ξi) = history(ηi+1),

from which the required follows.
– Rule (2) such that ϕ = (t, c) ∈ PAct is a client action in τ . Then there exist pc, v, v′,
θ, θ1, θ2, such that (v,m, v′) is in the control-flow relation of C, (16) is fulfilled,
pc(t)↑ and f tc(θ) = >. By the Strong Locality property, this implies f tc(θ1) = >.
But then

σ1
ϕ−→C >,

as required.
– Rules (1) or (2) such that ϕ ∈ PAct is a library action in τ . This case is handled

similarly to the previous two.
– Rule (3) such that ϕ = (t, call m). Then there exist pc, v, v′, θ, θ1, θ2, such that
(v,m, v′) is in the control-flow relation of C, (16) is fulfilled, pc(t)↑ and

σ′ = (pc[t : (v′, startm)], θ).

Since C is safe, we have θ1 = θ′1 ∗ θp for some θp ∈ pt, where Γ (m) = (p,). Let

σ′1 = (client(pc)[t : (v′, vm)]) ∧ σ′2 = (lib(pc)[t : (vtmgc, startm)]),

so that σ′1 ∗ σ′2 = σ′ and

σ1
(t,call m(θp))−−−−−−−−→C σ′1 ∧ σ2

(t,call m(θp))−−−−−−−−→L σ′2.

Now let ηi+1 = ηi(t, call m(θp)) and ξi+1 = ξi(t, call m(θp)), then history(ηi+1) =
history(ξi+1),

client(τiϕ) = client(τi)ϕ = ground(ηi)ϕ =
ground(ηi(t, call m(θp))) = ground(ηi+1),

lib(τiϕ) = lib(τi)ϕ = ground(ξi)ϕ = ground(ξi(t, call m(θp))) = ground(ξi+1)

and

history(ηi+1) = history(ηiϕ) = history(ηi)ϕ =
history(ξi)ϕ = history(ξiϕ) = history(ηi+1).

Hence, the required follows.

– Rule (4) such that ϕ = (t, ret m). Then there exist pc, v′, θ, θ1, θ2, such that pc(t)↑
and

σ = (pc[t : (v′, endm)], θ) ∧ σ′ = (pc[t : v′], θ) ∧ θ = θ1 ∗ θ2
∧ σ1 = (client(pc)[t : (v′, vm)], θ1)

∧ σ2 = (lib(pc)[t : vtmgcendm], θ2).

Since L is safe, we have θ2 = θ′2 ∗θq for some θq ∈ qt, where Γ (m) = (, q). Hence,
for

σ′1 = (client(pc)[t : v′], θ1 ∗ θq) ∧ σ′2 = (lib(pc)[t : vtmgc], θ
′
2),

we have σ′1 ∗ σ′2 = σ′ and

σ1
(t,ret m(θq))−−−−−−−−→C σ′1 ∧ σ2

(t,ret m(θq))−−−−−−−−→L σ′2.

Let ηi+1 = ηi(t, ret m(θq)) and ξi+1 = ξi(t, ret m(θq)), then the proof is finished
like in the previous case.

We have thus shown that the claim holds for all ϕ. ut

B.5 Proof of Lemma 17
Assume η ∈ JCKθ1 and ξ ∈ JLKθ2 such that history(η) = history(ξ) and (θ1 ∗ θ2)↓.
Then there exist an η-labelled derivation using −→C and a ξ-labelled derivation using
−→L, starting from initial configurations σ1

0 ∈ Config and σ2
0 ∈ Config, respectively.

Without loss of generality, we can assume that σ1
0 and σ2

0 have the same number of
threads.

From the above two derivations, we now construct the required trace τ ∈
JC(L)K(θ1 ∗ θ2) together with its derivation using −→C(L). We first build a series of
traces

τ0, τ1, τ2, . . .

and their derivations. This series is such that for i < j, the derivation of τi is a prefix of
that of τj , which also implies that τi is a prefix of τj . Because of this, the series has the
limit derivation and the limit trace, which are the desired ones.

The first element in the series is the empty trace ε and the empty derivation consist-
ing of the initial configuration σ1

0 ∗ σ2
0 only. For the (i+1)-st element with i > 0, we

assume that the i-th element τi and its computation have been constructed and satisfy
the following property:

For some prefixes η1 and ξ1 of η and ξ such that

history(η1) = history(ξ1) ∧ client(τi) = ground(η1) ∧ lib(τi) = ground(ξ1)

and configurations σ1
i , σ

2
i ∈ Config we have:

σ1
0 ∗ σ2

0
τi−→∗C(L) σ

1
i ∗ σ2

i ∧ σ1
0
η1−→∗C σ1

i ∧ σ2
0

ξ1−→∗L σ2
i .

Now we define the (i+ 1)-st element τi+1 and its derivation that maintain the property
above. As we explained above, the derivation for τi+1 will be an extension of that for
τi by one or more steps.

Assume η = η1ϕ1η
′ and ξ = ξ1ϕ2ξ

′ for some actions ϕ1 and ϕ2 and traces η′

and ξ′ (the case of η = η1 or ξ = ξ1 is handled analogously). Let the following be the
transitions by ϕ1 and ϕ2 in the derivations for η and ξ:

σ1
i

ϕ1−→C σ1 ∧ σ2
i

ϕ2−→L σ2,

where σ1, σ2 ∈ Config − {>}. We now make a case-split on types of actions ϕ1 and
ϕ2 and which of the rules (1)–(10) are used to derive them.

– ϕ1, ϕ2 ∈ CallRetAct derived using rules (5) and (8) or (7) and (9). In this case
ϕ1 = ϕ2, because history(η1) and history(ξ1) are the same by our assumption, so
that their same-length prefixes history(τi)ϕ1 and history(τi)ϕ2 have to be identical.
We only consider the case of ϕ1, ϕ2 ∈ CallAct; the case of ϕ1, ϕ2 ∈ RetAct is
handled similarly. Assume ϕ1 = (t, call m(θp)) for Γ (m) = (p,) and θp ∈ pt.
Then, there exist pc1, pc2, v, v′, θ1, θ2, such that (v,m, v′) is in the control-flow
relation of C, pc1(t)↑, pc2(t)↑ and

σ1
i = (pc1[t : v], θ1)

∧ σ1 = (pc1[t : (v
′, vm)], θ′1)

∧ σ2
i = (pc2[t : v

t
mgc], θ2)

∧ σ2 = (pc2[t : (v
t
mgc, startm)], θ2 ∗ θp)

∧ σ1
i ∗ σ2

i = ((pc1 ∗ pc2)[t : v], θ1 ∗ θ2) ∧ θ1 = θ′1 ∗ θp.

In this case
σ1 ∗ σ2 = ((pc1 ∗ pc2)[t : (v

′, startm)], θ1 ∗ θ2),
is defined. Then σ1 ∗ σ2 is defined as well and

σ1
i ∗ σ2

i

(t,call m)−−−−−−→C(L) σ1 ∗ σ2.

Hence, the desired τi+1 is τiϕ1, and its derivation is

σ1
0 ∗ σ2

0
τi−→∗C(L) σ

1
i ∗ σ2

i

(t,call m)−−−−−−→C(L) σ1 ∗ σ2.

– ϕ2 = (t, c) ∈ PAct, derived using (1). In this case for some pc1, pc2, θ1, θ2, θ′2, v, v′,
we have that (v, c, v′) is in the control-flow relation of L, pc1(t)↑, pc2(t)↑ and

σ1
i = (pc1[t : (v0, vm)], θ1) ∧
σ2
i = (pc2[t : (v

t
mgc, v)], θ2) ∧

σ2 = (pc2[t : (v
t
mgc, v

′)], θ′2) ∧ θ′2 ∈ f tc(θ2) ∧
σ1
i ∗ σ2

i = ((pc1 ∗ pc2)[t : (v0, v)], θ1 ∗ θ2).

Since θ1 ∗ θ2 is defined, by the Footprint Preservation property, θ′2 ∈ f tc(θ2) implies
that θ1 ∗ θ′2 is defined as well. Then

σ1
i ∗ σ2 = ((pc1 ∗ pc2)[t : (v0, v

′)], θ1 ∗ θ′2).

is defined. From the Strong Locality property, we have

θ1 ∗ θ′2 ∈ {θ1} ∗ f tc(θ2) = f tc(θ1 ∗ θ2).

Hence, σ1
i ∗ σ2

i
ϕ2−→C(L) σ1

i ∗ σ2. The desired τi+1 is τiϕ2, and its derivation is:

σ1
0 ∗ σ2

0
τi−→∗C(L) σ

1
i ∗ σ2

i
ϕ2−→C(L) σ1

i ∗ σ2.

– ϕ1 ∈ PAct. This case is handled similarly to previous one.

We have just shown how to construct τi for all the cases. The desired derivation is
constructed as the limit of the sequence for τi. It is easy to show that the resulting trace
τ satisfies client(τ) = ground(η) and lib(τ) = ground(ξ). ut

B.6 Proof of Corollary 20
For a configuration σ = (pc,), let σ(t) = pc(t).

Consider states θ, θ′ ∈ I and histories H,H ′ such that (δ(θ), H) v (δ(θ′), H ′) and
L is safe at θ′. Take a trace ξ′ ∈ JLKθ′ such that history(ξ′) = H ′. By Lemma 13, there
exists a trace ξ executable from θ′ such that history(ξ) = H and ξ ∼ ξ′. We now show
that ξ ∈ JLKθ′.

Let ξ′ = ϕ1ϕ2ϕ3 . . . and ξ = λ1λ2λ3 Let the following be a derivation of ξ′ in
the operational semantics of L:

σ0
ϕ1−→L σ1

ϕ2−→L σ2
ϕ3−→L σ3

ϕ4−→L . . .
Using this derivation, we construct a series of finite derivations and define the desired
derivation for ξ as the limit of this series.

The starting point of the series is the empty sequence σ0. To construct the (i+1)-st
element of the series, we make the following assumptions about the i-th one:
1. The i-th computation sequence has the form

σ′0
λ1−→L σ′1

λ2−→L σ′2
λ3−→L . . .

λi−→L σ′i,
where σ′0 = σ0.

2. For all t and j ≤ i, if ξ′1 is the minimal prefix of ξ′ such that ξ′1|t = (λ1 . . . λj)|t,
then

σ|ξ′1|(t) = σ′j(t).

Under these assumptions, we extend the given i-th computation sequence by the (i+1)-
st action of η. The result of this extension becomes the (i + 1)-st sequence, which as
we show, meets the three assumptions described above.

Let λi+1 be the (i + 1)-st action of ξ. To find a desired computation sequence, we
only need to find a client configuration σ′i+1 such that

σ′i
λi+1−−−→L σ′i+1, (17)

and σ′i+1 satisfies condition 2 above.
Assume λi+1 = (t′,). Let ξ′1 be the minimal prefix of ξ′ such that ξ′1|t′ =

(λ1 . . . λi)|t′ , ξ′2, its maximal prefix such that ξ′2|t′ = (λ1 . . . λi)|t′ , and ξ′3, its mini-
mal prefix such that ξ′3|t′ = (λ1 . . . λiλi+1)|t′ . By the induction hypothesis, σ|ξ′1|(t

′) =
σ′i(t

′). Then σ|ξ′1|(t
′) = σ|ξ′2|(t

′). Thus, σ′i(t
′) = σ|ξ′2|(t

′). Since λi+1 is executable
from σ|ξ′2|, and ξ is executable, from this we can easily show that (17) holds for some
σ′i+1 6= > such that σ′i+1(t

′) = σ|ξ′3|(t
′). We let the derivation for λ1 . . . λi extended

with this transition be the desired new derivation. Since σ′i+1(t
′) = σ|ξ′3|(t

′), this deriva-
tion satisfies condition 2 for t = t′. For t 6= t′, we have σ′i+1(t) = σ′i(t). Hence, it also
satisfies condition 2 for all t 6= t′. ut

B.7 Proof of Theorem 22
Consider Γ and Γ ′ satisfying the conditions of the theorem. For a trace ξ obtained from
a library satisfying Γ ′, we let VξWΓ be the trace ξ with every interface action ϕ replaced
by the action VϕWΓ defined as follows:

V(t, call m(θ ∗ θ′))WΓ = (t, call m(θ)), if θ ∈ pmt ;
V(t, ret m(θ ∗ θ′))WΓ = (t, ret m(θ)), if θ ∈ qmt .

Since pre- and postconditions in method specifications are precise, this operation is
well-defined.

The proof of the theorem relies on the following lemmas, proved at the end of this
section.

Lemma 34. If ξ ∈ JL : Γ ′K(θ0 ∗ θ′0), L : Γ is safe at θ0, and the trace Thistory(ξ)UΓ
is executable from θ′0, then VξWΓ ∈ JL : Γ Kθ0.

Lemma 35. Assume ξ ∈ JL : Γ Kθ0, (θ0∗θ′0)↓,L : Γ ′ is safe at θ0∗θ′0, ξ is such that ξ =
Vξ′WΓ and Tξ′UΓ is executable from θ′0, and ξ′′ is such that history(ξ′′) = history(ξ′)
and ξ′′ is executable from θ′′0 ∗ θ′0, where δ(θ0) � δ(θ′′0). Then ξ′ ∈ JL : Γ ′K(θ0 ∗ θ′0).

Proof of Theorem 22. Consider a trace ξ1 ∈ JL1 : Γ ′K(θ1 ∗ θ), where θ1 ∈ I1 and
θ ∈ I . By the assumption (iv) of the theorem, Thistory(ξ1)UΓ is executable from θ.
Then by Lemma 34, Vξ1WΓ ∈ JL1 : Γ Kθ1. Since (L1 : Γ, I1) v (L2 : Γ, I2), for some
θ2 ∈ I2 and ξ2 ∈ JL2 : Γ Kθ2 we have (δ(θ1), history(Vξ1WΓ)) v (δ(θ2), history(ξ2)).
By Corollary 20, there exists ξ′2 ∈ JL2 : Γ Kθ2 such that history(ξ′2) = history(Vξ1WΓ).
Let ξ′′2 be the trace ξ′2 with its interface actions replaced so that they form the history
history(ξ1). Then Vξ′′2WΓ = ξ′2 and Thistory(ξ′′2)UΓ = Thistory(ξ1)UΓ . Since δ(θ2) �
δ(θ1), we have (θ2 ∗ θ)↓. Hence, by Lemma 35, ξ′′2 ∈ JL2 : Γ ′K(θ2 ∗ θ), from which the
required follows. ut

Proof of Lemma 34. Consider ξ ∈ JL : Γ ′K(θ0 ∗ θ′0) and assume that L : Γ is safe
at θ0. Then there exists a derivation of ξ in the semantics of L : Γ ′ starting from a
configuration σ0

1 = (pc0, θ0 ∗ θ′0). Let σ0
2 = (pc0, θ0). Using the derivation of ξ, we

construct a series of finite derivations and define the desired derivation for VξWΓ as the
limit of this series.

The starting point of the series is the empty sequence σ0
2 . The following claim shows

how to construct the (i+ 1)-st element of the series from the i-th one:
Assume that ξi is a finite prefix of ξ, and for some pc, θ1, θ2, we have

σ0
1

ξi−→∗L:Γ ′ (pc, θ1) ∧ σ0
2

VξiWΓ−−−−→∗L:Γ (pc, θ2)

and θ1 = θ2 ∗ θ for some θ ∈ JThistory(ξi)UΓ Klibθ′0. Let ξ = ξiϕζ for some action
ϕ and trace ζ. If for some pc′, θ′1,

(pc, θ1)
ϕ−→L:Γ ′ (pc′, θ′1),

then there exists θ′2 such that

(pc, θ2)
VϕWΓ−−−→L:Γ (pc′, θ′2)

and θ′1 = θ′2 ∗ θ′ for some θ′ ∈ JThistory(ξiϕ)UΓ Klibθ′0.

To show the claim, we consider three cases, depending on the type of the action ϕ.

– ϕ = (t, c). Since L : Γ is safe at θ0, f tc(θ2) 6= >. Hence, by the Strong Locality
property, we have

θ′1 ∈ f tc(θ1) = f tc(θ2 ∗ θ) = f tc(θ2) ∗ {θ},

so that θ′1 = θ′2 ∗ θ for some θ′2 ∈ f tc(θ2). Besides,

θ ∈ JThistory(ξi)UΓ Klibθ′0 = JThistory(ξiϕ)UΓ Klibθ′0.

Thus, the required holds for θ′ = θ.
– ϕ = (t, call m(θp ∗ θ′p)), where θp ∈ pmt and θp ∗ θ′p ∈ rmt . Then θ′1 = θ1 ∗ θp ∗ θ′p =
(θ2 ∗ θp) ∗ (θ ∗ θ′p). Besides,

θ ∗ θ′p ∈ (JThistory(ξi)UΓ Klibθ′0) ∗ {θ′p} = JThistory(ξiϕ)UΓ Klibθ′0.

Hence, the required holds for θ′2 = θ2 ∗ θp and θ′ = θ ∗ θ′p.
– ϕ = (t, retm(θq∗θ′q)), where θq ∈ qmt and θq∗θ′q ∈ smt . Then θ2∗θ = θ1 = θ′1∗θq∗
θ′q . Since L : Γ is safe at θ0, θ2 = θ′2 ∗θq for some θ′2, so that θ′2 ∗θq ∗θ = θ′1∗θq ∗θ′q .
Since ∗ is cancellative, this entails θ′2 ∗ θ = θ′1 ∗ θ′q . The trace Thistory(ξiϕ)UΓ
is executable from θ′0 and θ ∈ JThistory(ξi)UΓ Klibθ′0. Hence, θ \ θ′q is defined and
θ′1 = θ′2 ∗ (θ \ θ′q). Thus, the required holds for θ′ = θ \ θ′q .

ut

Proof of Lemma 35. Consider ξ ∈ JL : Γ Kθ0 and ξ′ such that ξ = Vξ′WΓ and
Thistory(ξ′)UΓ is executable from θ′0. Further, assume ξ′′ such that history(ξ′′) =
history(ξ′) and ξ′′ is executable from θ′′0 ∗ θ′0 for δ(θ0) � δ(θ′′0). There exists a deriva-
tion of ξ in the semantics of L : Γ starting from a configuration σ0

1 = (pc0, θ0). Let
σ0
2 = (pc0, θ0 ∗ θ′0). Using the derivation of ξ, we construct a series of finite derivations

and define the desired derivation for ξ′ as the limit of this series.
The starting point of the series is the empty sequence σ0

2 . The following claim shows
how to construct the (i+ 1)-st element of the series from the i-th one:

Assume that ξi is a finite prefix of ξ, and ξ′i is the corresponding prefix of ξ′.
Furthermore, for some pc, θ1, θ2, we have

σ0
1

ξi−→∗L:Γ (pc, θ1) ∧ σ0
2

ξ′i−→∗L:Γ ′ (pc, θ2)

and θ2 = θ1 ∗ θ for some θ ∈ JThistory(ξ′i)UΓ Klibθ′0. Let ξ = ξiϕζ and ξ′ = ξ′iϕ
′ζ ′

for some actions ϕ,ϕ′ and traces ζ, ζ ′. If for some pc′, θ′1,

(pc, θ1)
ϕ−→L:Γ ′ (pc′, θ′1),

then there exists θ′2 such that

(pc, θ2)
ϕ′

−→L:Γ (pc′, θ′2)

and θ′2 = θ′1 ∗ θ′ for some θ′ ∈ JThistory(ξ′iϕ
′)UΓ Klibθ′0.

To show the claim, we consider three cases, depending on the type of the action ϕ.

– ϕ = (t, c). Then θ′1 ∈ f tc(θ1). Since (θ1 ∗θ)↓, by the Footprint Preservation property,
(θ′1 ∗ θ)↓. Then by the Strong Locality property,

θ′1 ∗ θ ∈ f tc(θ1) ∗ {θ} = f tc(θ1 ∗ θ) = f tc(θ2).

Besides,
θ ∈ JThistory(ξi)UΓ Klibθ′0 = JThistory(ξiϕ)UΓ Klibθ′0.

Hence, the required holds for θ′ = θ and θ′2 = θ′1 ∗ θ.
– ϕ = (t, callm(θp)), where θp ∈ pmt . Then ϕ′ = (t, callm(θp ∗θ′p)) for some θ′p such

that θp∗θ′p ∈ rmt . In this case we have θ′1 = θ1∗θp. Let ξ′′i be the minimal prefix of ξ′′

such that history(ξ′′i) = history(ξ′i). Then there exists θ3 ∈ Jξ′′i Klib(θ′′0 ∗ θ′0) we have
(θ3 ∗ θp ∗ θ′p)↓. Since δ(θ0) � δ(θ′′0) and θ2 ∈ Jξ′iKlib(θ0 ∗ θ′0), from the Footprint
Preservation and Strong Locality properties, it easily follows that δ(θ2) � δ(θ3).
Hence, (θ2 ∗ θp ∗ θ′p)↓.
Then

θ2 ∗ θp ∗ θ′p = θ1 ∗ θ ∗ θp ∗ θ′p = θ′1 ∗ (θ ∗ θ′p).

Besides,

θ ∗ θ′p ∈ (JThistory(ξ′i)UΓ Klibθ′0) ∗ {θ′p} = JThistory(ξ′iϕ
′)UΓ Klibθ′0.

Hence, the required holds for θ′ = θ ∗ θ′p and θ′2 = θ2 ∗ θp ∗ θ′p.
– ϕ = (t, ret m(θq)), where θq ∈ qmt . Then ϕ′ = (t, ret m(θq ∗ θ′q)) for some θ′q

such that θq ∗ θ′q ∈ smt . In this case we have θ′1 = θ1 \ θq . Since Thistory(ξ′)UΓ is
executable from θ′0 and θ ∈ JThistory(ξ′i)UΓ Klibθ′0, we have (θ \ θ′q)↓. Since, θ1 ∗ θ is
defined, so is

θ′1 ∗ (θ \ θ′q) = (θ1 \ θq) ∗ (θ \ θ′q) = (θ1 ∗ θ) \(θq ∗ θ′q) = θ2 \(θq ∗ θ′q).

Hence, the required holds for θ′ = θ \ θ′q and θ′2 = θ′1 ∗ (θ \ θ′q).
ut

C Logic for Safety
In this section we review an existing program logic that can be used to reason about
open programs of Section 6. In Appendix D we extend the logic presented here for
establishing the notion of linearizability proposed in Section 3.

Proving the safety of open programs is convenient in separation logics [14], because
of their ability to reason naturally about ownership transfer. To deal with algorithms of
the kind present in modern concurrent libraries, we need a logic that can handle pro-
grams with a high degree of interference between concurrent threads. For this reason,
we use RGSep [16], which combines rely-guarantee (aka assume-guarantee) reasoning2

with separation logic [14].
The main idea of the logic is to partition the program memory into several thread-

local parts (each of which can only be accessed by a given thread) and the shared part
(which can be accessed by all threads). The partitioning is defined by proofs in the

2 A. Pnueli. In transition from global to modular temporal reasoning about programs. In Logics
and Models of Concurrent Systems, 1985.

C. B. Jones. Specification and Design of (Parallel) Programs. In IFIP Congress, 1983.

logic: an assertion in the code of a thread restricts its local state and the shared state.
Additionally, the partitioning is dynamic, meaning that we can use ownership transfer to
move some part of the local state into the shared state and vice versa. Rely and guarantee
conditions are then specified with sets of actions, which are relations on the shared
state determining how threads can change it. This is in contrast with the original rely-
guarantee method, in which rely and guarantee conditions are relations on the whole
program state. Thus, while reasoning about a thread, we do not have to consider local
states of other threads.

We present the logic in an abstract form [5], i.e., without fixing the underlying
separation algebra Σ of memory states. Also, the variant of the logic we present here
includes logical variables from a set LVar = LIVar] LSVar, where variables from
LIVar = {x, y, . . .} range over integers, and those from LSVar = {X,Y, . . .}, over
memory states. Let LVal = Σ ∪Z be the set of values of logical variables, and LInt, the
set of their interpretations from LVar→ LVal respecting the types.

We assume an assertion language for denoting subsets of Σ × LInt, including at
least the following connectives:

p, q ::= true | X | ∃X. p | ¬p | p ∧ q | p ∨ q | p⇒ q | emp | p ∗ q | p −−∗ q

The interpretation of most of them is standard. Therefore, we only give the most inter-
esting cases:

θ, i |= X ⇐⇒ θ = i(X)
θ, i |= ∃X. p ⇐⇒ ∃θ′ ∈ Σ. (θ, i[X : θ′] |= p)
θ, i |= ∃x. p ⇐⇒ ∃u ∈ Z. (θ, i[x : u] |= p)
θ, i |= emp ⇐⇒ θ = ε
θ, i |= p ∗ q ⇐⇒ ∃θ1, θ2. (θ1 ∗ θ2)↓∧ θ1 ∗ θ2 = θ ∧ (θ1, i |= p) ∧ (θ2, i |= q)
θ, i |= p −−∗ q ⇐⇒ ∀θ′. ((θ ∗ θ′)↓∧ (θ′, i |= p))⇒ (θ ∗ θ′, i |= q)

With the aid of−−∗, called separating implication, we can define p(X) for an assertion p
as syntactic sugar for

true ∗ (emp ∧ (X −−∗ p)).

Informally, p(X) does not restrict the current state, but requires that X be bound to
some state satisfying p. We use it in our extension of the logic for reasoning about lin-
earizability (Appendix D). The above assertion language can be extended as needed
when we consider particular instantiations of Σ. For all assertion languages we intro-
duce in this paper, we use the usual operator J·K for computing assertion denotations.
For instance, for the language above, JpK = {(θ, i) | (θ, i |= p)}.

We also assume a language for denoting parameterised predicates. For an assertion
p denoting a parameterised predicate and t ∈ ThreadID, the assertion pt denotes the
predicate JpKt.

Since RGSep partitions the program state into thread-local and shared parts, it has to
extend the above assertion language so that assertions denote subsets of Σ ×Σ × LInt.
Here the first component represents the state local to the thread in whose code the
assertion is located, and the second, the shared state. The assertion language of RGSep
is as follows:

P,Q ::= p | p | true | false | ∃X.P | ∀X.P | P ∗Q | P ∧Q | P ∨Q

with the following semantics:

θ, θ′, i |= p ⇐⇒ θ, i |= p
θ, θ′, i |= p ⇐⇒ θ = ε ∧ (θ′, i |= p)
θ, θ′, i |= P ∗Q ⇐⇒ ∃θ1, θ2. θ = θ1 ∗ θ2 ∧ (θ1, θ

′, i |= P) ∧ (θ2, θ
′, i |= Q)

An assertion p denotes the local-shared state pairs with the local state satisfying p; p
the pairs with the empty local state and the shared state satisfying p; P ∗Q the pairs in
which the local state can be divided into two substates such that one of them together
with the shared state satisfies P and the other together with the shared state satisfies Q.
The semantics of ∧ and ∨ is standard.

The judgements of our logic include rely and guarantee conditions determining how
a command or its environment changes the shared state. To this end, we assume a lan-
guage for expressing such conditions R,G, . . ., denoting relations over Σ × Σ. The
conditions are often expressed using actions of the form p ; q. Informally, this action
changes the part of the shared state that satisfies p into one that satisfies q, while leaving
the rest of the shared state unchanged. Formally, its meaning is the following relation
on shared states:

Jp; qK = {(θ1 ∗ θ0, θ2 ∗ θ0) | ∃i. (θ1, i) ∈ JpK ∧ (θ2, i) ∈ JqK}.

It relates some initial state θ1 satisfying the precondition p to a final state θ2 satisfying
the postcondition q. In addition, there may be some disjoint state θ0 that is not affected
by the action.

In the following we denote by atomic {C } a block of code C considered as one
atomic primitive command. We allow nested atomic blocks.

The judgements of the logic have the form

Γ | R,G `wt {P}C {Q}.

Here R and G are rely and guarantee conditions, and w ∈ {in, out} indicates whether
the command C is inside an atomic block or not. The symbol t ∈ ThreadID is a thread
identifier, C is a command in the code of thread t, and P and Q are assertions describ-
ing the local state of the thread and the shared state. The context Γ is a syntactic version
of a method specification for libraries with unspecified implementation, which we in-
troduced in Section 6, where pre- and postconditions are syntactic assertions denoting
parameterised predicates. We require that these assertions p be insensitive to logical
variables in the following sense:

∀t ∈ ThreadID.∀(θ, i) ∈ JptK.∀i′. (θ, i′) ∈ JptK.

We also require that they be precise, i.e., that for any i ∈ LInt and t ∈ ThreadID the
predicate {θ | (θ, i) ∈ JptK} be precise (Section 6).

Informally, our judgement Γ | R,G `wt {P}C {Q} assumes that the command C
is run by thread t, its environment changes the shared state according to R, its initial
state satisfies P , and the methods it calls satisfy the contracts in Γ . Given this, the
judgement guarantees that the command is safe, changes the shared state according to
G, and its final state (if it terminates) satisfies Q. We have a similar judgement

Γ ` {P} C {Q}

for a client C, which may call library methods specified in Γ .
We partition all the atomic commands in the program into those that access only

the local state of the thread executing them and those that can additionally access the
shared state. By convention, the latter commands are atomic blocks.

The proof rules of RGSep are summarised in Figure 5. Most of the rules are standard
ones from Hoare logic. We have a single axiom for primitive commands executing on
the thread-local state (PRIM), which allows any pre- and postconditions consistent with
the semantics of the command. The axiom uses the following lifting of the denotations
of primitive commands c ∈ PComm (Section 2) to Σ × LInt:

f tc(θ, i) = f tc(θ)× {i}, (18)

if f tc(θ) 6= >; f tc(θ, i) = >, otherwise. When particular Σ and f tc are chosen, the
axiom can be specialised to several syntactic versions, obtaining a concrete instance of
the abstract logic presented here.

Commands accessing the shared state are handled by three rules—ATOMICOUT,
ATOMICOUT-R and ATOMICIN. The ATOMICOUT rule assumes the environment does
not interfere, i.e., the rely is empty. It combines the local state p of the current thread
with the part of the shared state satisfying p0, and runs C as if this combination were
in the thread’s local state. The rule then splits the resulting state into local and shared
parts, determining the shared part as the one that satisfies the annotation q0. The rule
requires that the change C makes to the shared state be allowed by its guarantee G.

In reasoning about how a command changes the shared state, we need to make sure
that its views of the state is up-to-date with whatever changes its environment could
make. For this reason, the rule ATOMICOUT-R requires pre- and postconditions to be
stable under the rely R, i.e., insensitive to changes allowed by the relation. Formally,
an assertion P is stable under a rely R when

∀(θ, θ1, i) ∈ JP K.∀θ2. (θ1, θ2) ∈ JRK⇒ (θ, θ2, i) ∈ JP K.

After checking stability, ATOMICOUT-R replaces the rely with the empty set, thus en-
abling the application of ATOMICOUT.

Finally, the ATOMICIN rule just ignores nested atomic blocks.
The consequence rule (CONSEQ) allows strengthening the precondition and the rely

and weakening the postcondition and the guarantee. The disjunction rule (DISJ) is use-
ful for proof by cases. EXISTS1 rule is a usual rule from Hoare logic, and EXISTS2, its
generalisation to logical variables ranging over states. The frame rule (FRAME) ensures
that if a command C is safe when run from states in P , it does not touch an extra piece
of state described by F . We have to require that the frame F be stable under both the
rely R and the guarantee G, in case C contains commands changing the shared state.

The CALL axiom is a variation on the procedure call axiom from Hoare logic,
handling calls to methods in Γ with unspecified implementations. To prove a call to
a method m with a specification {p}m {q}, we instantiate p and q with the current
thread identifier t, dispose the method precondition pt from the pre-state, and allocate
the method postcondition qt to the post-state. The disposal and allocation here model
the ownership transfer between the library of m and its client. Note that p and q restrict
only the thread-local state of thread t.

The PAR rule combines judgements about several threads. Note that every thread
in the rule assumes that the others satisfy their respective guarantees. Pre- and post-
conditions of threads in the premisses of the rule are ∗-conjoined in the conclusion.

f tc(JpK) v JqK
Γ | R,G `wt {p} c {q}

PRIM

Γ | ∅, ∅ `int {p ∗ p0}C {q ∗ q0} Jp0 ; q0K ⊆ G
Γ | ∅, G `outt {p ∗ p0 ∗ r } atomic {C } {q ∗ q0 ∗ r}

ATOMICOUT

Γ | ∅, G `outt {P}C {Q} P,Q stable under R

Γ | R,G `outt {P} atomic {C } {Q}
ATOMICOUT-R

Γ | R,G `int {p}C {q}
Γ | R,G `int {p} atomic {C } {q}

ATOMICIN

Γ | R,G `wt {P1}C1 {P2} Γ | R,G `wt {P2}C2 {P3}
Γ | R,G `wt {P1}C1;C2 {P3}

SEQ

Γ | R,G `wt {P}C1 {Q} Γ | R,G `wt {P}C2 {Q}
Γ | R,G `wt {P}C1 + C2 {Q}

CHOICE

Γ | R,G `wt {P}C {P}
Γ | R,G `wt {P}C∗ {P}

LOOP

P1 ⇒ P2 R1 ⇒ R2 Γ | R2, G2 `wt {P2}C {Q2} G2 ⇒ G1 Q2 ⇒ Q1

Γ | R1, G1 `wt {P1}C {Q1}
CONSEQ

Γ | R,G `wt {P1}C {Q1} Γ | R,G `wt {P2}C {Q2}
Γ | R,G `wt {P1 ∨ P2}C {Q1 ∨Q2}

DISJ

Γ | R,G `wt {P}C {Q}
Γ | R,G `wt {∃x. P}C {∃x.Q}

EXISTS1

Γ | R,G `wt {P}C {Q}
Γ | R,G `wt {∃X.P}C {∃X.Q}

EXISTS2

Γ | R,G `wt {P}C {Q} F is stable under R ∪G
Γ | R,G `wt {P ∗ F}C {Q ∗ F}

FRAME

Γ, {p}m {q} | R,G `wt {P ∗ pt}m {P ∗ qt}
CALL

Γ | R1, G1 `w1 {P1}C1 {Q1} . . . Γ | Rn, Gn `wn {Pn}Cn {Qn}
Γ ` {P1 ∗ . . . ∗ Pn}C1 ‖ . . . ‖ Cn {Q1 ∗ . . . ∗Qn}

PAR

(where Rt =
⋃
{Gk | 1 ≤ k ≤ n ∧ k 6= t})

Fig. 5. Proof rules of RGSep

According to the semantics of the assertion language, this takes the disjoint composi-
tion of the local states of the threads and enforces that the threads have the same view
of the shared state.

The following theorems show how the logic can be used to establish the safety of
open programs with and without a ground client.

Theorem 36 (Soundness—client). Consider a program Γ ` C with a set of initial
states I . Assume an assertion P is such that

∀θ ∈ I. ∃(θ1, θ2, i) ∈ JP K. θ = θ1 ∗ θ2.

If Γ ` {P} C {Q}, then C is safe for I .

Theorem 37 (Soundness—library). Consider a program L : Γ with a set of initial
states I . Assume a guarantee G and an assertion inv insensitive to logical variables
such that

– ∀θ ∈ I. ∃(θ, i) ∈ JinvK;
– inv is stable under G;
– for all {pm}m {qm} ∈ Γ and t ∈ ThreadID

∅ | G,G `wt {inv ∗ pmt } Cm {inv ∗ qmt }.

Then L is safe for I .

The proofs are identical to the soundness proof of RGSep [16].

D Logic for Linearizability with Ownership Transfer
We now extend the logic presented in Appendix C to reason about our notion of lin-
earizability (Section 3). The logic we present here generalises the method of proving
linearizability using linearization points [1,12,16] to the setting with ownership transfer.

Consider the following program ` L : Γ with a set of initial states I:

L = let {m = Cm | m ∈M} in [−];
Γ = {{pm}m {qm} | m ∈M}.

The method of linearization points is restricted to proving the linearization of L by a
library L′ with all methods implemented atomically. Our goal is thus to establish that
(L, I) v (L′, I ′), where

L′ = let {m=(skip∗; atomic {Cam }; skip∗) |m ∈M} in [−].

Proof systems for linearizability typically do not allow library specification to make
any statements about liveness properties of the library. Thus, the skip∗ statements in the
abstract library implementation L′ allow for any termination behaviour of its methods:
the first one models the divergence before the method makes a change to the library
state using Cam, and the second, the divergence after this. Here we restrict ourselves to
verifying linearizability with respect to abstract implementations capturing only safety
properties of a library; liveness properties can be handled following [10].

The method of linearization points considers the concrete and the abstract imple-
mentations of the library running alongside each other. Both are run under their most

general clients; however, while we consider all possible executions of the client of the
concrete library, the client of the abstract one is allowed to call a method only when
the corresponding concrete method implementation is at a certain linearization point.
The linearization point thus determines the place where the concrete implementation of
the method ‘takes effect’. Proving linearizability then boils down to checking that, if
the abstract method invocation receives the ownership of the same piece of state upon
its call as the corresponding concrete one, then they will both return the same state at
their returns. The sequence of abstract method invocations at linearization points in an
execution of the concrete implementation yields the desired linearizing history of the
abstract implementation. The conditions restricting possible rearrangements of method
invocations in the definition of linearizability are trivially satisfied, since a linearization
point is inside the code of the corresponding concrete method.

The above method typically requires relating the states of the two library imple-
mentations. For this reason, we adjust the assertion language of Appendix C to describe
such relations. Namely, we define a new syntactic category

pr, qr ::= true | false | X | ∃X. pr | ∀X. pr | pr ∧ qr |
pr ∨ qr | emp | pr ∗ qr | p | bpc

of relational assertions, where p, q, . . . range over assertions denoting subsets of Σ ×
LInt. The assertion bpc denotes a state of the abstract implementation satisfying p. Note
that we disallow nested b·c operators.

The assertions pr, qr denote subsets of Σ × Σ × LInt according to the following
semantics:

θc, θa, i |= p ⇐⇒ (θc, i |= p) ∧ θa = ε
θc, θa, i |= bpc ⇐⇒ (θa, i |= p) ∧ θc = ε

We then modify the assertion language of RGSep as follows:

Pr ::= . . . | pr | pr | Pre(p) | Post(p)

This allows pieces of abstract state to be local or shared. The Pre and Post assertions
are used to reason about the correspondence between pre- and postconditions of the
concrete and the abstract library implementations (see below). The resulting assertions
denote subsets of

Σ2 ×Σ2 ×Σ × {Pre,Post,None} × LInt.

Here the first component represents a pair of thread-local states of the concrete and ab-
stract implementations, and the second, a pair of shared states of these two implemen-
tations. The next two components record the state given in a Pre or a Post assertion.
The semantics of the new assertion language is given in Figure 6. The definitions for
assertions not in the figure are obtained from the corresponding cases in the logic of
Appendix C either by ignoring the components corresponding to Pre and Post, like in
the case of pr, or by propagating them to sub-assertions, like in the case of Pr ∧Qr.

Finally, we assume a language for expressing rely-guarantee conditions Rr, Gr, . . .
over pairs of concrete and abstract shared states; thus, Rr denotes a subset of Σ2×Σ2.

The judgements of the new proof system have the form

Γ | Rr, Gr `w,jt {Pr} C {Qr},

(θc, θa), (θ
′
c, θ
′
a), θ, ν, i |= Pre(p) ⇐⇒ θ, i |= p ∧ ν = Pre

(θc, θa), (θ
′
c, θ
′
a), θ, ν, i |= Post(p) ⇐⇒ θ, i |= p ∧ ν = Post

(θc, θa), (θ
′
c, θ
′
a), θ, ν, i |= Pr ∗Qr ⇐⇒

∃θ1c , θ2c , θ1a, θ2a, θ1, θ2, ν1, ν2. θc = θ1c ∗ θ2c ∧ θa = θ1a ∗ θ2a ∧
((θ1c , θ

1
a), (θ

′
c, θ
′
a), θ1, ν1, i |= Pr) ∧ ((θ2c , θ

2
a), (θ

′
c, θ
′
a), θ2, ν2, i |= Qr) ∧

((ν1 = None ∧ ν2 = None ∧ ν = None) ∨
(ν1 = None ∧ ν2 ∈ {Pre,Post} ∧ ν = ν2 ∧ θ2 = θ) ∨
(ν1 ∈ {Pre,Post} ∧ ν2 = None ∧ ν = ν1 ∧ θ = θ1))

(θc, θa), (θ
′
c, θ
′
a), θ, ν, i |= pr ⇐⇒ θc, θa, i |= pr

(θc, θa), (θ
′
c, θ
′
a), θ, ν, i |= pr ⇐⇒ θ′c, θ

′
a, i |= pr ∧ θc = θa = ε

(θc, θa), (θ
′
c, θ
′
a), θ, ν, i |= Pr ∧Qr ⇐⇒

((θc, θa), (θ
′
c, θ
′
a), θ, ν, i |= Pr) ∧ ((θc, θa), (θ

′
c, θ
′
a), θ, ν, i |= Qr)

Fig. 6. Semantics of the assertion language of the logic for linearizability

where j is conc or abs, depending on whetherC is a command belonging to the concrete
or the abstract implementation.

Having changed the assertion language, we now have to adjust some of the proof
rules in Figure 5. First, we lift the transformers f tc defining the semantics of primitive
commands c to Σ ×Σ in the following two ways: for all θ, θ′ ∈ Σ

f tconc(c)(θ, θ
′) = f tc(θ)× {θ′};

f tabs(c)(θ, θ
′) = {θ} × f tc(θ′),

if the value of f tc on the corresponding single state is not >; and >, otherwise. The
transformers define the effect of c executing on the concrete, respectively, the abstract
state. We then lift f tj(c) to Σ × Σ × LInt similarly to (18). We now replace the PRIM

axiom with two corresponding variants:

f tj(c)(JprK) v JqrK

Γ | R,G `w,jt {pr} c {qr}
PRIM-j

for j ∈ {conc, abs}. The rest of the rules of the new logic are obtained from the rules
in Figure 5 by replacing `t with `jt . We only need to change the notion of stability: Pr
is stable under Rr when

∀((θc, θa), (θc1, θa1), θ, ν, i) ∈ JPrK.∀θc2, θa2 ∈ Σ.
((θc1, θ

a
1), (θ

c
2, θ

a
2)) ∈ JRrK⇒ ((θc, θa), (θ

c
2, θ

a
2), θ, ν, i) ∈ JPrK.

The definition of pr ; qr is adjusted similarly.
For an implementation Cm of a method m in the domain of Γ , let C̃m be Cm with

some of commands C inside atomic blocks replaced by C; LCam M. Here we mark with
L ·M the code of the abstract implementation, which is treated specially by our proof
system. The placement of LCam M thus fixes linearization points inside the code of Cm.

The proof method for linearizability builds on the technique for proving the safety
of library implementations described in Theorem 37. To prove (L, I) v (L′, I ′), we
require a guarantee Gr and an assertion invr insensitive to logical variables such that

– ∀θ ∈ I. ∃θ′ ∈ I ′.∃i. (θ, θ′, i) ∈ JinvrK; and

– invr is stable under Gr.

For every thread t and {pm}m {qm} ∈ Γ , we require a derivation of the following
judgement:

∅ |Gr, Gr `conct {∃X.Pre(X)∧pmt (X)∧X∗ inv} C̃m {∃Y.Post(Y)∧qmt (Y)∧Y ∗ inv}
(19)

with abstract method implementations LCam M inside Cm handled using the following
proof rule:

∅ | R′r, G′r `
in,abs
t {∃X. pmt (X) ∧ bXc ∗ Pr)} Cam {∃Y. qmt (Y) ∧ bY c ∗Qr}

∅ | R′r, G′r `
in,conc
t {∃X.Pre(X) ∧ Pr} LCam M {∃Y.Post(Y) ∧Qr}

LINPOINT

The rationale behind (19) and LINPOINT is as follows. As noted above, in our proof
method we assume that the abstract implementation, when executed at a linearization
point, receives the ownership of the same piece of state as the concrete one called ear-
lier. We then have to establish that the piece of state the abstract implementation returns
to the client at the linearization point is the same as what the concrete one returns at the
method return. Pre and Post predicates are used to reason about such relationships. In
the precondition of (19), Pre(X) records the state X received by the concrete imple-
mentation when it was called, which is assumed to satisfy the precondition pmt . Accord-
ing to the precondition of the premiss of LINPOINT, the abstract implementation then
receives the abstract copy bXc of the state passed to the concrete implementation at its
invocation, as recorded by the Pre(X) predicate. Here we can also assume that the state
X satisfies the precondition pmt . LINPOINT requires the abstract implementation Cam
to be verified in the abstract proof system, where primitive commands can only act on
the abstract state. In the postcondition of the premiss of LINPOINT, we require the ab-
stract implementation to produce a piece of abstract state bY c such that Y satisfies qmt .
The postcondition of the conclusion of LINPOINT then records this state in Post(Y).
Finally, Post(Y) is used in the postcondition of (19) to check that the concrete imple-
mentation returns the same state as the abstract one. All proof rules except LINPOINT
do not change Pre and Post, treating them as ghost state.

The proof method also requires the abstract implementation to be executed at most
once during the execution of a concrete one. To this end, LINPOINT rule exchanges a
Pre assertion for a Post one, and the semantics of ∗ prohibits duplicating the assertions.
This ensures that only one linearization point can be present in any execution of the
method. Note that, in LINPOINT, Pr can contain free occurrences of X and Qr of
Y , thus correlating the current state with the auxiliary information in Pre and Post
predicates.

Theorem 38 (Soundness). Under the above conditions, L and L′ are safe for I and
I ′, respectively, and (L, I) v (L′, I ′).

Despite the presented logic being based on an existing method of linearization points,
our extension to ownership transfer is new, with the main technical novelty being our
use of logical variables ranging over states to track correlations between concrete and
abstract pre- and postconditions.

