
Show No Weakness:
Sequentially Consistent Specifications of TSO Libraries

Alexey Gotsman1, Madanlal Musuvathi2, and Hongseok Yang3

1 IMDEA Software Institute
2 Microsoft Research
3 University of Oxford

Abstract. Modern programming languages, such as C++ and Java, provide a se-
quentially consistent (SC) memory model for well-behaved programs that follow
a certain synchronisation discipline, e.g., for those that are data-race free (DRF).
However, performance-critical libraries often violate the discipline by using low-
level hardware primitives, which have a weaker semantics. In such scenarios, it is
important for these libraries to protect their otherwise well-behaved clients from
the weaker memory model.
In this paper, we demonstrate that a variant of linearizability can be used to rea-
son formally about the interoperability between a high-level DRF client and a
low-level library written for the Total Store Order (TSO) memory model, which
is implemented by x86 processors. Namely, we present a notion of linearizability
that relates a concrete library implementation running on TSO to an abstract spec-
ification running on an SC machine. A client of this library is said to be DRF if its
SC executions calling the abstract library specification do not contain data races.
We then show how to compile a DRF client to TSO such that it only exhibits SC
behaviours, despite calling into a racy library.

1 Introduction

Modern programming languages, such as C++ [4, 3] and Java [11], provide memory
consistency models that are weaker than the classical sequential consistency (SC) [10].
Doing so enables these languages to support common compiler optimisations and to
compile efficiently to modern architectures, which themselves do not guarantee SC.
However, programming on such weak memory models can be subtle and error-prone.
As a compromise between programmability and performance, C++ and Java provide
data-race free (DRF) memory models, which guarantee SC for programs without data
races, i.e., those that protect data accesses with an appropriate use of high-level syn-
chronisation primitives defined in the language, such as locks and semaphores4.

While DRF memory models protect most programmers from the counter-intuitive
effects of weak memory models, performance-minded programmers often violate the
DRF discipline by using low-level hardware primitives. For instance, it is common for

4 C++ [4, 3] also includes special weak atomic operations that have a weak semantics. Thus,
more precisely, a C++ program is guaranteed to have an SC semantics only if it is data-race
free and avoids the use of weak atomics.

a systems-level C++ program, such as an operating system kernel, to call into highly-
optimised libraries written in assembly code. Moreover, the very synchronisation prim-
itives of the high-level language that programmers use to ensure DRF are usually im-
plemented in its run-time system in an architecture-specific way. Thus, it becomes nec-
essary to reason about the interoperability between low-level libraries native to a par-
ticular hardware architecture and their clients written in a high-level language. While it
is acceptable for expert library designers to deal with weak memory models, high-level
language programmers need to be protected from the weak semantics.

In this paper, we consider this problem for libraries written for the Total Store Order
(TSO) memory model, used by x86 processors (and described in Section 2). TSO allows
for the store buffer optimisation implemented by most modern processors: writes per-
formed by a processor are buffered in a processor-local store buffer and are flushed into
the memory at some later time. This complicates the interoperability between a client
and a TSO library. For instance, the client cannot assume that the effects of a library
call have taken place by the time the call returns. Our main contributions are:

– a notion of specification of native TSO libraries in terms of the concepts of a high-
level DRF model, allowing the model to be extended to accommodate such libraries,
while preserving the SC semantics; and

– conditions that a compiler has to satisfy in order to implement the extended memory
model correctly.

Our notion of library specification is based on linearizability [9], which fixes a cor-
respondence between a concrete library and an abstract one, the latter usually imple-
mented atomically and serving as a specification for the former. To reason formally
about the interoperability between a high-level DRF client and a low-level TSO library,
we propose a variant of linearizability called TSO-to-SC linearizability (Section 3). It
relates a concrete library implementation running on the TSO memory model to its
abstract specification running on SC. As such, the abstract specification describes the
behaviour of the library in a way compatible with a DRF memory model. Instead of re-
ferring to hardware concepts, it fakes the effects of the concrete library implementation
executing on TSO by adding extra non-determinism into SC executions. TSO-to-SC
linearizability is compositional and allows soundly replacing a library by its SC speci-
fication in reasoning about its clients.

TSO-to-SC linearizability allows extending DRF models of high-level languages
to programs using TSO libraries by defining the semantics of library calls using their
SC specifications. In particular, this allows generalising the notion of data-race free-
dom to such programs: a client using a TSO library is DRF if so is every SC execution
of the same client using the SC library specification. Building on this, we propose re-
quirements that a compiler should satisfy in order to compile such a client onto a TSO
machine correctly (Section 5), and establish the Simulation Theorem (Theorem 13, Sec-
tion 5), which guarantees that a correctly compiled DRF client produces only SC be-
haviours, despite calling into a native TSO library. The key benefit of our framework is
that both checking the DRF property of the client and checking the compiler correct-
ness does not require TSO reasoning. Reasoning about weak memory is only needed
to establish the TSO-to-SC linearizability of the library implementation. However, this
also makes the proof of the Simulation Theorem challenging.

Our results make no difference between custom-made TSO libraries and TSO im-
plementations of synchronisation primitives built into the run-time system of the high-
level language. Hence, TSO-to-SC linearizability and the Simulation Theorem provide
conditions ensuring that a given TSO implementation of the run-time system for a DRF
language has the desired semantics and interacts correctly with its compilation.

Recently, a lot of attention has been devoted to criteria for checking whether a TSO
program produces only sequentially consistent behaviours [12, 5, 1]. Such criteria are
less flexible than TSO-to-SC linearizability, as they do not allow a program to have
internal non-SC behaviours; however, they are easier to check. We therefore also anal-
yse which of the criteria can be used for establishing the conditions required by our
framework (Sections 4 and 6).

Proofs of all the theorems stated in the paper are given in Appendix C.

2 TSO Semantics
Due to space constraints, we present the TSO memory model only informally; a formal
semantics is given in Appendix A. The most intuitive way to explain TSO is using
an abstract machine [13]. Namely, consider a multiprocessor with n CPUs, indexed by
CPUid = {1, . . . ,NCPUs}, and a shared memory. The state of the memory is described
by an element of Heap = Loc → Val, where Loc and Val are unspecified sets of
locations and values, such that Loc ⊆ Val. Each CPU has a set of general-purpose
registers Reg = {r1, . . . , rm} storing values from Val. In TSO, processors do not write
to memory directly. Instead, every CPU has a store buffer, which holds write requests
that were issued by the CPU, but have not yet been flushed into the shared memory.
The state of a buffer is described by a sequence of location-value pairs.

The machine executes programs of the following form:

L ::= {m = Cm | m ∈M} C(L) ::= let L in C1 ‖ . . . ‖ CNCPUs

A program C(L) consists of a declaration of a library L, implementing methods m ∈
M ⊆ Method by commands Cm, and its client, specifying a command Ct to be run by
the (hardware) thread in each CPU t. For the above program we let sig(L) = M . We
assume that the program is stored separately from the memory. The particular syntax
of commands Ct and Cm is of no concern for understanding the main results of this
paper and is deferred to Appendix A. We consider programs using a single library for
simplicity only; we discuss the treatment of multiple libraries in Section 3.

The abstract machine can perform the following transitions:
– A CPU wishing to write a value to a memory location adds an appropriate entry to

the tail of its store buffer.
– The entry at the head of the store buffer of a CPU is flushed into the memory at a

non-deterministically chosen time. Store buffers thus have the FIFO ordering.
– A CPU wishing to read from a memory location first looks at the pending writes in

its store buffer. If there are entries for this location, it reads the value from the newest
one; otherwise, it reads the value directly from the memory.

– Modern multiprocessors provide commands that can access several memory loca-
tions atomically, such as compare-and-swap (CAS). To model this in our machine,

a CPU can execute a special lock command, which makes it the only CPU able to
execute commands until it executes an unlock command. The unlock command has a
built-in memory barrier, forcing the store buffer of the CPU executing it to be flushed
completely. This can be used by the programmer to recover SC when needed.

– Finally, a CPU can execute a command affecting only its registers. In particular, it
can call a library method or return from it (we disallow nested method calls).

The behaviour of programs running on TSO can sometimes be counter-intuitive. For
example, consider two memory locations x and y initially holding 0. On TSO, if two
CPUs respectively write 1 to x and y and then read from y and x, as in the following
program, it is possible for both to read 0 in the same execution:

x = y = 0;

x = 1; b = y; ‖ y = 1; a = x;

{a = b = 0}

Here a and b are local variables of the corresponding threads, stored in CPU registers.
The outcome shown cannot happen on an SC machine, where both reads and writes ac-
cess the memory directly. On TSO, it happens when the reads from y and x occur before
the writes to them have propagated from the store buffers of the corresponding CPUs
to the main memory. Note that executing the writes to x and y in the above program
within lock..unlock blocks (which on x86 corresponds to adding memory barriers after
them) would make it produce only SC behaviours.

We describe computations of the machine using traces, which are finite sequences
of actions of the form

ϕ ::= (t, read(x, u)) | (t,write(x, u)) | (t, flush(x, u)) |
(t, lock) | (t, unlock) | (t, call m(r)) | (t, ret m(r))

where t ∈ CPUid, x ∈ Loc, u ∈ Val, m ∈ Method and r ∈ Reg → Val. Here
(t,write(x, u)) corresponds to enqueuing a pending write of u to the location x into the
store buffer of CPU t, (t, flush(x, u)) to flushing a pending write of u to the location
x from the store buffer of t into the shared memory. The rest of the actions have the
expected meaning. Of transitions by a CPU affecting solely its registers, only calls and
returns are recorded in traces. We assume that parameters and return values of library
methods are passed via CPU registers, and thus record their values in call and return
actions. We use the standard notation for traces: τ(i) is the i-th action in the trace τ , |τ |
is its length, and τ |t its projection to actions by CPU t. We denote the concatenation of
two traces τ1 and τ2 with τ1τ2.

Given a suitable formalisation of the abstract machine transitions, we can define
the set of traces JC(L)KTSO generated by executions of the program C(L) on TSO
(Appendix A). For simplicity, we do not consider traces that have a (t, lock) action
without a matching (t, unlock) action.

To give the semantics of a program on the SC memory model, we do not define
another abstract machine; instead, we identify the SC executions of a program with
those of the TSO machine that flush all writes immediately. Namely, we let JC(L)KSC

be the set of sequentially consistent traces from JC(L)KTSO, defined as follows.

DEFINITION 1. A trace is sequentially consistent (SC), if every action (t,write(x, u))
in it is immediately followed by (t, flush(x, u)).

We assume that the set of memory locations Loc is partitioned into those owned by
the client (CLoc) and the library (LLoc): Loc = CLoc] LLoc. The client C and the
library L are non-interfering in C(L), if in every computation from JC(L)KTSO, com-
mands performed by the client (library) code access only locations from CLoc (LLoc).
In the following, we consider only programs where the client and the library are non-
interfering. We provide pointers to lifting this restriction in Section 7.

3 Linearizability of TSO Libraries with Respect to SC Specifica-
tions

We start by presenting our notion of library specification, discussing its properties and
giving example specifications. The notion of specification forms the basis for interop-
erability conditions presented in Section 5.

TSO-to-SC Linearizability. When defining library specifications, we are not interested
in internal library actions recorded in traces, but only in interactions of the library with
its client. We record such interactions using histories, which are traces including only
interface actions of the form (t, call m(r)) or (t, ret m(r)), where t ∈ CPUid, m ∈
Method, r ∈ Reg → Val. Recall that r records the values of registers of the CPU that
calls the library method or returns from it, which serve as parameters or return values.
We define the history history(τ) of a trace τ as its projection to interface actions and
lift history to sets T of traces pointwise: history(T) = {history(τ) | τ ∈ T}. In the
following, we write for an expression whose value is irrelevant.

DEFINITION 2. The linearizability relation is a binary relation v on histories de-
fined as follows: H v H ′ if ∀t ∈ CPUid. H|t = H ′|t and there is a bijection
π : {1, . . . , |H|} → {1, . . . , |H ′|} such that ∀i.H(i) = H ′(π(i)) and ∀i, j. i < j ∧
H(i) = (, ret) ∧H(j) = (, call)⇒ π(i) < π(j).

That is, H ′ linearizes H when it is a permutation of the latter preserving the order of
actions within threads and non-overlapping method invocations.

To generate the set of all histories of a given library L, we consider its most general
client, whose hardware threads on every CPU repeatedly invoke library methods in any
order and with any parameters possible. Its formal definition is given in Appendix B.
Informally, assume sig(L) = {m1, . . . ,ml}. Then MGC(L) = (let L in Cmgc

1 ‖ . . . ‖
Cmgc

NCPUs), where for all t, the command Cmgc
t behaves as

while (true) { havoc; if (*) m1; else if (*) m2; ... else ml; }

Here * denotes non-deterministic choice, and havoc sets all registers storing method
parameters to arbitrary values. The set of traces JMGC(L)KTSO includes all library be-
haviours under any possible client. We write JLKTSO for JMGC(L)KTSO and JLKSC for
JMGC(L)KSC. We can now define what it means for a library executing on SC to be a
specification for another library executing on TSO.

word x=1;

void acquire()

{

while(1) {

lock;

if (x==1) {

x=0;

unlock;

return;

}

unlock;

while(x==0);

}

}

void release()

{

x=1;

}

int tryacquire()

{

lock;

if (x==1) {

x=0; unlock;

return 1;

}

unlock;

return 0;

}

word x=1;

void acquire()

{

lock;

assume(x==1);

x=0;

unlock;

}

void release()

{

x=1;

}

int tryacquire()

{

lock;

if (x==1 && *)

{

x=0;

unlock;

return 1;

}

unlock;

return 0;

}

(a) (b)

Fig. 1. (a) Lspinlock: a test-and-test-and-set spinlock implementation on TSO; (b) L]
spinlock: its SC

specification. Here * denotes non-deterministic choice. The assume(E) command acts as a filter
on states, choosing only those where E evaluates to non-zero values (see Appendix A).

DEFINITION 3. For libraries L1 and L2 such that sig(L1) = sig(L2), we say that
L2 TSO-to-SC linearizes L1, written L1 vTSO→SC L2, if ∀H1 ∈ history(JL1KTSO).
∃H2 ∈ history(JL2KSC). H1 v H2.

Thus, L2 linearizes L1 if every history of the latter on TSO may be reproduced in a
linearized form by the former on SC. When the library L2 is implemented atomically,
and so histories in history(JL2KSC) are sequential, Definition 3 becomes identical to the
standard linearizability [9], except the libraries run on different memory models.

Example: Spinlock. Figure 1a shows a simple implementation Lspinlock of a spinlock
on TSO. We consider only well-behaved clients of the spinlock, which, e.g., do not
call release without having previously called acquire (this can be easily taken into
account by restricting the most general client appropriately). The tryacquire method
tries to acquire the lock, but, unlike acquire, does not wait for it to be released if it is
busy; it just returns 0 in this case. For efficiency, release writes 1 to x without execut-
ing a memory barrier. This optimisation is used, e.g., by implementations of spinlocks
in the Linux kernel [6]. On TSO this can result in an additional delay before the write re-
leasing the lock becomes visible to another CPU trying to acquire it. As a consequence,
tryacquire can return 0 even after the lock has actually been released. For example,
the following is a valid history of the spinlock implementation on TSO, which cannot
be produced on an SC memory model:

(1, call acquire) (1, ret acquire) (1, call release) (1, ret release)

(2, call tryacquire) (2, ret tryacquire(0)). (1)

Figure 1b shows an abstract SC implementation L]spinlock of the spinlock capturing
the behaviours of its concrete TSO implementation, such as the one given by the above

history. Here release writes 1 to x immediately. To capture the effects of the concrete
library implementation running on TSO, the SC specification is weaker than might be
expected: tryacquire in Figure 1b can spuriously return 0 even when x contains 1.

PROPOSITION 4. Lspinlock vTSO→SC L
]
spinlock.

The same specification is also suitable for more complicated spinlock implementations
(Appendix B). We note that the weak specification of tryacquire has been adopted
by the C++ memory model [4] to allow certain compiler optimisations. As we show in
Section 5, linearizability with respect to an SC specification ensures the correctness of
implementations of tryacquire and other synchronisation primitives comprising the
run-time system of a DRF language. Our example thus shows that the specification used
in C++ is also needed to capture the behaviour of common spinlock implementations.

Correctness of TSO-to-SC Linearizability. A good notion of library specification has
to allow replacing a library implementation with its specification in reasoning about a
client. We now show that the notion of TSO-to-SC linearizability proposed above sat-
isfies a variant of this property. To reason about clients of TSO libraries with respect
to SC specifications of the latter, we consider a mixed TSO/SC semantics of programs,
which executes the client on TSO and the library on SC. That is, read and write com-
mands by the library code bypass the store buffer and access the memory directly (the
formal semantics is given in Appendix B). We denote the set of traces of a program
C(L) in this semantics with JC(L)KTSO/SC.

To express properties of a client preserved by replacing the implementation of the
library it uses with its specification, we introduce the following operation. For a trace τ
of C(L), let client(τ) be its projection to actions relevant to the client, i.e., executed by
the client code or corresponding to flushes of client entries in store buffers. Formally,
we include an action ϕ = (t,) such that τ = τ ′ϕτ ′′ into the projection if:
– ϕ is an interface action, i.e., a call or a return; or
– ϕ is not a flush or an interface action, and it is not the case that τ |t =
τ1 (t, call) τ2ϕτ3, where τ2 does not contain a (t, ret) action; or

– ϕ = (, flush(x,)) for some x ∈ CLoc.
We lift client to sets T of traces pointwise: client(T) = {client(τ) | τ ∈ T}.

THEOREM 5 (Abstraction to SC). IfL1 vTSO→SC L2, then client(JC(L1)KTSO) ⊆
client(JC(L2)KTSO/SC).

According to Theorem 5, while reasoning about a client C(L1) of a TSO library L1,
we can soundly replace L1 with its SC version L2 linearizing L1: if a trace property
over client actions holds of C(L2), it will also hold of C(L1). The theorem can thus be
used to simplify reasoning about TSO programs. Although Theorem 5 is not the main
contribution of this paper, it serves as a sanity check for our definition of linearizability,
and is useful for discussing our main technical result in Section 5.

Compositionality of TSO-to-SC Linearizability. The following corollary of Theo-
rem 5 states that, like the classical notion of linearizability [9], ours is compositional:
if several non-interacting libraries are linearizable, so is their composition. This allows

extending the results presented in the rest of the paper to programs with multiple li-
braries. Formally, consider libraries L1, . . . , Lk with disjoint sets of declared methods
and assume that the set of library locations LLoc is partitioned into locations belonging
to every library: LLoc = LLoc1] . . .] LLock. We assume that, in any program, a li-
brary Lj accesses only locations from LLocj . We let L, respectively, L] be the library
implementing all of the methods from L1, . . . , Lk, respectively, L]1, . . . , L

]
k.

COROLLARY 6 (Compositionality). If ∀j. Lj vTSO→SC L
]
j , then L vTSO→SC L

].

Comparison with TSO-to-TSO Linearizability. As the abstract library implementa-
tion in TSO-to-SC linearizability executes on SC, it does not describe how the concrete
library implementation uses store buffers. TSO libraries can also be specified by ab-
stract implementations running on TSO, which do describe this usage. In [7], we pro-
posed the notion of TSO-to-TSO linearizabilityvTSO→TSO between two TSO libraries,
which validates the following version of the Abstraction Theorem.

THEOREM 7 (Abstraction to TSO). If L1 vTSO→TSO L2, then client(JC(L1)KTSO) ⊆
client(JC(L2)KTSO).

The particularities of TSO-to-TSO linearizability are not relevant here; suffice it to
say that the definition requires that the two libraries use store buffers in similar ways,
and to this end, enriches histories with extra actions. The spinlock from Figure 1a has
the abstract TSO implementation with acquire and release implemented as in Fig-
ure 1b, and tryacquire, as in Figure 1a (the implementation and the specification of
tryacquire are identical in this case because the spinlock considered is very simple;
see Appendix B for more complicated cases). Since the specification executes on TSO,
the write to x in release can be delayed in the store buffer. In exchange, the specifica-
tion of tryacquire does not include spurious failures.

Both TSO-to-SC and TSO-to-TSO linearizability validate versions of the Abstrac-
tion Theorem (Theorems 5 and 7). The theorem validated by TSO-to-SC is weaker than
the one validated by TSO-to-TSO: a property of a client of a library may be provable
after replacing the latter with its TSO specification using Theorem 7, but not after re-
placing it with its SC specification using Theorem 5. Indeed, consider the following
client of the spinlock in Figure 1a, where a and b are local to the second thread:

u = 0;

acquire(); release(); u = 1; a = u; b = tryacquire();

{a = 1⇒ b = 1}

The postcondition shown holds of the program: since store buffers in TSO are FIFO, if
the write to u has been flushed, so has been the write to x in release, and tryacquire
has to succeed. However, the postcondition cannot be established after we apply The-
orem 5 with the spinlock specification in Figure 1b, as the abstract implementation of
tryacquire returns an arbitrary result when the lock is free. On the other hand, the
postcondition can still be established after we apply Theorem 7 with the TSO specifica-
tion of the spinlock given in Section 3, since the specification allows us to reason about
the correlations in the use of store buffers by the library and the client.

word x1 = 0, x2 = 0, c = 0;

write(in word d1, in word d2) {

c++;

x1 = d1; x2 = d2;

c++;

}

read(out word d1, out word d2) {

word c0;

do {

do { c0 = c; } while (c0 % 2);

d1 = x1; d2 = x2;

} while (c != c0);

}

Fig. 2. Lseqlock: a TSO seqlock implementation

To summarise, SC specifications of TSO libraries trade the weakness of the memory
model for the weakness of the specification. However, as we show in Section 5, TSO-
to-SC linearizability is strong enough for situations when the client C is compiled from
a language with a DRF memory model.

Example: Seqlock. We now consider an example of a TSO library whose SC specifica-
tion is more subtle than that of a spinlock. Figure 2 presents a simplified version Lseqlock

of a seqlock [6]—an efficient implementation of a readers-writer protocol based on ver-
sion counters used in the Linux kernel. Two memory addresses x1 and x2 make up a
conceptual register that a single hardware thread can write to, and any number of other
threads can read from. A version number is stored at c. The writing thread maintains
the invariant that the version number is odd during writing by incrementing it before
the start of and after the finish of writing. A reader checks that the version number is
even before attempting to read (otherwise it could see an inconsistent result by reading
while x1 and x2 are being written). After reading, the reader checks that the version has
not changed, thereby ensuring that no write has overlapped the read. Note that neither
write nor read includes a memory barrier, so that writes to x1, x2 and c may not be
visible to readers immediately.

An SC specification for the seqlock is better given not by the source code of an ab-
stract implementation, like in the case of a spinlock, but by explicitly describing the set
of its histories history(JL2KSC) to be used in Definition 2 (an operational specification
also exists, but is more complicated; see Appendix B). We now adjust the definition of
TSO-to-SC linearizability to accept a library specification defined in this way.

Specifying Libraries by Sets of Histories. For a TSO library L and a set of histories T ,
we let L vTSO→SC T , if ∀H1 ∈ history(JLKTSO).∃H2 ∈ T.H1 v H2. The formula-
tion of Theorem 5 can be easily adjusted to accommodate this notion of linearizability.

We now give a specification to the seqlock as a set of histories Tseqlock. First of all,
methods of a seqlock should appear to take effect atomically. Thus, in histories from
Tseqlock, if call action has a matching return, then the latter has to follow it immediately.
Consider a history H0 satisfying this property. Let writes(H0) be the sequence of pairs
(d1, d2) from actions of the form (, call write(d1, d2)) in H0, and reads(H0), the
sequence of (d1, d2) from actions of the form (, ret read(d1, d2)). For a sequence α,
let α† be its stutter-closure, i.e., the set of sequences obtained from α by repeating some
of its elements. We lift the stutter-closure operation to sets of sequences pointwise.
Given the above definitions, a history H belongs to Tseqlock if for every prefix H0 of
H , reads(H0) is a subsequence of a sequence from ((0, 0)writes(H0))

†. Recall that a

seqlock allows only a single thread to call write. This specification thus ensures that
readers see the writes in the order it issues them, but possibly with a delay.

PROPOSITION 8. Lseqlock vTSO→SC Tseqlock.

4 TSO-to-SC Linearizability and Robustness

One way to simplify reasoning about a TSO program is by checking that it is robust,
meaning that it produces only those externally visible behaviours that could also be ob-
tained by running it on an SC machine. Its properties can then be proved by considering
only its SC executions. Several criteria for checking robustness of TSO programs have
been proposed recently [12, 5, 1]. TSO-to-SC linearizability is more flexible than such
criteria: since an abstract library implementation can have different source code than
its concrete implementation, it allows the latter to have non-SC behaviours. However,
checking the requirements of a robustness criterion is usually easier than proving lin-
earizability. We therefore show how one such criterion, data-race freedom, can be used
to simplify establishing TSO-to-SC linearizability when it is applicable. On the way, we
introduce some of the technical ingredients necessary for our main result in Section 5.

We first define the notion of DRF for the low-level machine of Section 2. Our in-
tention is that the DRF of a program must ensure that it produces only SC behaviours
(see Theorem 10 below). All robustness criteria proposed so far have assumed a closed
program P consisting of a client that does not use a library. We define the robustness of
libraries using the most general client of Section 3. For a trace fragment τ with all ac-
tions by a thread t, we denote with block(τ) a trace of one of the following two forms:
τ or (t, lock) τ1 τ τ2 (t, unlock), where τ1, τ2 do not contain (t, unlock).

DEFINITION 9. A data race is a fragment of an SC trace of the form
block(τ) (t′,write(x,)) (t′, flush(x,)), where τ ∈ {(t,write(x,)) (t, flush(x,)),
(t, read(x,))} and t 6= t′. A program P is data-race free (DRF), if so are traces
in JP KSC; a library L is DRF, if so are traces in JLKSC.

Thus, a race is a memory access followed by a write to the same location, where the
former, but not the latter, can be in a lock..unlock block. This is a standard notion of
a data race with one difference: even though (t, read(x)) (t′,write(x)) (t′, flush(x)) is
a race, (t, read(x)) (t′, lock) (t′,write(x)) (t′, flush(x)) (t′, unlock) is not. We do not
consider conflicting accesses of the latter kind (e.g., with the write inside a CAS, which
includes a memory barrier) as a race, since they do not lead to a non-SC behaviour.

We adopt the following formalisation of externally visible program behaviours.
Assume a set VLoc ⊆ CLoc of client locations whose values in memory can be ob-
served during a program execution by its environment. Visible actions are those of
the form (t, read(x, u)) or (t, flush(x, u)), where x ∈ VLoc. We let visible(τ) be
the projection of τ to visible actions, and lift visible to sets T of traces pointwise:
visible(T) = {visible(τ) | τ ∈ T}. Visible locations are protected in C(L), if every
visible action in a trace from JC(L)KTSO occurs within a lock..unlock block. On x86,
this requires a memory barrier after every output action, thus ensuring that it becomes
visible immediately. The following is a folklore robustness result.

THEOREM 10 (Robustness via DRF). If P is DRF and visible locations are protected
in it, then visible(JP KTSO) ⊆ visible(JP KSC).

Note that here DRF is checked on the SC semantics and at the same time implies that
the program behaves SC. This circularity is crucial for using results such as Theorem 10
to simplify reasoning, as it allows not considering TSO executions at all.

THEOREM 11 (Linearizability via DRF). If L is DRF, then L vTSO→SC L.

This allows using classical linearizability [9] to establish TSO-to-SC one by linearizing
the library L running on SC to its SC specification L], thus yielding L vTSO→SC L].
This can then be used for modular reasoning by applying Theorem 5.

Many concurrent algorithms on TSO (e.g., the classical Treiber’s stack) are DRF,
as they modify the data structure using only CAS operations, which include a memory
barrier. Hence, their linearizability with respect to SC specifications can be established
using Theorem 11. However, the DRF criterion may sometimes be too strong: e.g., in
the spinlock implementation from Figure 1a, the read from x in acquire and the write
to it in release race. We consider more flexible robustness criteria in Section 6.

5 Correctly Compiling Data-Race Free Programs with TSO Li-
braries

Our goal in this section is to extend DRF memory models of high-level languages to the
case of programs using native TSO libraries, and to identify conditions under which the
compiler implements the models correctly. We start by presenting the main technical
result of the paper that enables this—the Simulation Theorem.

Simulation Theorem. Consider a program C, meant to be compiled from a high-level
language with a DRF model, which uses a native TSO library L. We wish to determine
the conditions under which the program produces only SC behaviours, despite possible
races inside L. To this end, we first generalise DRF on TSO (Definition 9) to such
programs. We define DRF with respect to an SC specification L] of L.

DEFINITION 12. A program C(L]) is data-race free (DRF) if so is any trace from
client(JC(L])KSC).

This allows races inside the library code, as its internal behaviour is of no concern to
the client. Note that checking DRF does not require reasoning about weak memory.

THEOREM 13 (Simulation). If L vTSO→SC L], C(L]) is DRF, and visible locations
are protected in C(L), then visible(JC(L)KTSO) ⊆ visible(JC(L])KSC).

Thus, the behaviour of a DRF client of a TSO library can be reproduced when the
client executes on the SC memory model and uses a TSO-to-SC linearization of the
library implementation. Note that the DRF of the client is defined with respect to the
SC specification L] of the TSO library L. Replacing L by L] allows hiding non-SC
behaviours internal to the library, which are of no concern to the client. Corollary 6
allows applying the theorem to clients using multiple libraries.

Extending Memory Models of High-Level Languages. We describe a method for
extending a high-level memory model to programs with native TSO libraries in general
terms, without tying ourselves to its formalisation. We give an instantiation for the case
of the C++ memory model (excluding weak atomics) in Appendix B. Consider a high-
level language with a DRF memory model. That is, we assume an SC semantics for the
language, and a notion of DRF on this semantics. For a program P in this language, let
JPK be the set of its externally visible behaviours resulting from its executions in the
semantics of the high-level language. At this point, we do not need to define what these
behaviours are; they might include, e.g., input/output information.

Let C(L) be a program in a high-level language using a TSO library L with an SC
specification L], i.e., L vTSO→SC L]. The specification L] allows us to extend the
semantics of the language to describe the intended behaviour of C(L). Informally, we
let the semantics of calling a method of L be the effect of the corresponding method
of L]. As both C and L] are meant to have an SC semantics, the effect of L] can be
described within the memory model of the high-level language.

To define this extension more formally, it is convenient for us to use the specifica-
tion of L] given by its set of histories history(JL]KSC), rather than by its source code, as
this sidesteps the issues arising when composing the sources of programs in a low-level
language and a high-level one. Namely, we define the semantics of C(L) in two stages.
First, we consider the set of executions of C(L) in the semantics of the high-level lan-
guage where a call to a method of L is interpreted in the same way as a call to a method
of the high-level language returning arbitrary values. Since the high-level language has
an SC semantics, every program execution in it is a trace obtained by interleaving ac-
tions of different threads, which has a single history of calls to and returns from L.
We then define the intended behaviour of C(L) by the set JC(L])K of externally visi-
ble behaviours resulting from the executions that have a history from history(JL]KSC)

5.
This semantics also generalises the notion of DRF to the extended language: programs
are DRF when the executions of C(L) selected above have no races between client ac-
tions as defined for high-level programs without TSO libraries. In particular, DRF is
defined with respect to SC specifications of libraries that the client uses, not their TSO
implementations.

From the point of view of the extended memory model, the run-time system of the
high-level language, implementing built-in synchronisation primitives, is no different
from external TSO libraries. The extension thus allows deriving a memory model con-
sistent with the implementation of synchronisation primitives on TSO (e.g., spinlocks
or seqlocks from Section 3) from the memory model of the base language excluding
the primitives. Below, we use this fact to separate the reasoning about the correctness
of a compiler for the high-level language from that about the correctness of its run-
time system. This approach to deriving the memory model does not result in imprecise
specifications: e.g., the SC specification of a TSO spinlock implementation in Section 3
corresponds to the one in the C++ standard.

5 Here we assume that language-level threads correspond directly to hardware-level ones.
This assumption is sound even when the actual language implementation multiplexes several
threads onto fewer CPUs using a scheduler, provided the latter executes a memory barrier at
every context switch; see Appendix B for discussion.

Conditions for Correct Compilation. Theorem 13 allows us to formulate conditions
under which a compiler from a high-level DRF language correctly implements the ex-
tended memory model defined above. Let 〈C〉(L) be the compilation of a program C in
the high-level language to the TSO machine from Section 2, linked with a native TSO
library L. Assume an SC specification L] of L:

(i) L vTSO→SC L
].

Then the extended memory model defines the intended semantics JC(L])K of the pro-
gram. Let us denote the compiled code linked with L], instead of L, as 〈C〉(L]). We
place the following constraints on the compiler:
(ii) C is correctly compiled to an SC machine: visible(J〈C〉(L])KSC) ⊆ JC(L])K.

(iii) 〈C〉(L]) is DRF, i.e., so are all traces from client(J〈C〉(L])KSC).
(iv) Visible locations are protected in 〈C〉(L).

From Theorem 13 and (i), (iii) and (iv), we obtain visible(J〈C〉(L)KTSO) ⊆
visible(J〈C〉(L])KSC), which, together with (ii), implies visible(J〈C〉(L)KTSO) ⊆
JC(L])K. Hence, any observable behaviour of the compiled code using the TSO library
implementation is included into the intended semantics of the program defined by the
extended memory model. Therefore, our conditions entail the compiler correctness.

The conditions allow for a separate consideration of the hardware memory model
and the run-time system implementation when reasoning about the correctness of a
compiler from a DRF language to a TSO machine. Namely, (ii) checks the correctness
of the compiler while ignoring the fact that the target machine has a weak memory
model and assuming that the run-time system is implemented correctly. Conditions (iii)
and (iv) then ensure the correctness of the compiled code on TSO, and condition (i), the
correctness of the run-time system.

Establishing (iii) requires ensuring the DRF of the compiled code given the DRF of
the source program in the high-level language. In practice, this might require the com-
piler to insert additional memory barriers. For example, the SC fragment of C++ [4,
3] includes so-called strong atomic operations, whose concurrent accesses to the same
location are not considered a race. The DRF of the high-level program thus ensures
that, in the compiled code, we cannot have a race in the sense of Definition 9, except
between instructions resulting from strong atomic operations. To prevent the latter, ex-
isting barrier placement schemes for C++ compilation on TSO [3] include a memory
barrier when translating a strong atomic write. As this prevents a race in the sense of
Definition 9, these compilation schemes satisfy our conditions.

Discussion. Theorem 13 is more subtle than might seem at first sight. The crux of the
matter is that, like Theorem 10, it allows checking DRF on the SC semantics of the
program. This makes the theorem powerful in practice, but requires its proof to show
that a trace from JC(L)KTSO with a visible non-SC behaviour can be converted into one
from JC(L])KSC exhibiting a race. Proving this is non-trivial.

In more detail, a naive attempt to prove the theorem might first replace L with its
linearization L] using Theorem 5 and then try to apply a variant of Theorem 10 to show
that the resulting program is SC:

visible(JC(L)KTSO) ⊆ visible(JC(L])KTSO/SC) ⊆ visible(JC(L])KSC).

However, the second inclusion does not hold even ifC(L]) is DRF, as Theorem 10 does
not generalise to the TSO/SC semantics. Indeed, take the spinlock implementation and
specification from Figure 1 as L and L] and consider the following client C (recall that
lock and unlock are the commands of our machine implementing a memory barrier):

x = y = 0;

acquire(); x = 1; release(); lock; y = 1; unlock;

b = y; acquire(); a = x; release();

{a = b = 0}

The outcome shown is allowed by JC(L])KTSO/SC, but disallowed by JC(L])KSC, even
though the latter is DRF. It is also disallowed by JC(L)KTSO: in this case, the first
thread can only read 0 from y if the second thread has not yet executed y = 1; but
when the second thread later acquires the lock, the write of 1 to x by the first thread
is guaranteed to have been flushed into the memory, and so the second thread has to
read 1 from x. The trouble is that JC(L])KTSO/SC loses such correlations between the
store buffer usage by the client and the library, which are important for mapping a non-
SC trace from JC(L)KTSO into a racy trace from JC(L])KSC. The need for maintaining
the correlations leads to a subtle proof that uses a non-standard variant of TSO to first
make the client part of the trace SC and only then replace the library L with its SC
specification L]. See Appendix C for a more detailed discussion.

6 Using Robustness Criteria More Flexible than DRF
We present a robustness criterion we developed that is more flexible than DRF and
that improves on a criterion by Owens [12]. Like Owens, we assume that code inside a
lock..unlock block accesses at most one memory location, which holds on x86.

DEFINITION 14. A quadrangular race is a fragment of an SC trace of the form:

(t,write(x,)) τ1 (t, read(y,)) block((t′,write(y,)) (t′, flush(y,))) τ2 block(ϕ),

where ϕ ∈ {(t′′,write(x,)) (t′′, flush(x,)), (t′′, read(x,))}, t 6= t′, t 6= t′′, x 6= y,
τ1 contains only actions by t, and τ1, τ2 do not contain (t, unlock). A program P is
quadrangular-race free (QRF), if so are traces in JP KSC.

The block predicate used in the definition was defined in Section 5. A quadrangular
race consists of two pairs of conflicting accesses to two different locations, arranged in
a particular way. Some of them may be protected by memory barriers. Owens’s crite-
rion [12] does not require the last access to x, and thus falsely signals a possible non-SC
behaviour in common situations when x is local to thread t.

THEOREM 15 (Robustness via QRF). If P is QRF and visible locations are protected
in it, then visible(JP KTSO) ⊆ visible(JP KSC).

It is easy to check that Lspinlock in Figure 1a is QRF. Unfortunately, QRF cannot
be used to simplify establishing TSO-to-SC linearizability for libraries, because The-
orem 11 does not hold if we assume only that L is QRF. Intuitively, this is because

transforming a TSO trace satisfying QRF into an SC one can rearrange calls and re-
turns in ways that break linearizability. Formally, the spinlock in Figure 1a is QRF, and
its history (1) has a single linearization—itself. However, the history cannot be repro-
duced when executing the code in Figure 1a on an SC memory model.

Furthermore, the QRF of a library does not imply Theorem 13 for L] = L: a DRF
client of a QRF library can have behaviours that cannot be reproduced when executing
both of them on SC. Indeed, consider the spinlock library in Figure 1a, which is QRF,
but not DRF. Take the following client:

u = 0;

acquire(); release(); a = u; lock; u = 1; unlock; b = tryacquire();

{a = 0 ∧ b = 0}

The client is DRF, as the write to u is protected by a memory barrier. On TSO, it is
possible to get the outcome shown above when the write to x representing the state of
the lock (Figure 1) is delayed in the store buffer of the first thread. This is not possible
on SC: if tryacquire returns 0, then it has to happen before release, but then the
write to u happens before the read from it, so this read has to return 1.

We now show that Theorem 13 can be recovered for QRF libraries under a stronger
assumption on the client.

DEFINITION 16. A program C(L) is strongly DRF if it is DRF and traces
in client(JC(L)KSC) do not contain fragments of the form (t, read(x,))
block((t′,write(x,)) (t′, flush(x,))), where t 6= t′.

THEOREM 17. If L is QRF, C(L) is strongly DRF, and visible locations are protected
in it, then visible(JC(L)KTSO) ⊆ visible(JC(L)KSC).

The theorem generalises a similar result proved by Owens for a particular spinlock im-
plementation [12] to an arbitrary library L. When C is compiled from a C++ program,
the requirement that C be strongly DRF prohibits the C++ program from using strong
atomic operations (Section 5), which is restrictive. The above conclusions are also true
of Owens’s original robustness criterion [12]. This situation is ironic, given that robust-
ness criteria are usually applied to libraries of concurrent algorithms.

To summarise, for DRF libraries, such as common concurrent containers, we can
establish the conditions for interoperability with high-level languages from their clas-
sical linearizability, i.e., without reasoning about their TSO executions (Section 4). For
more subtle libraries, such as optimised implementations of synchronisation primitives,
a direct proof of TSO-to-SC linearizability is required.

7 Related Work
To the best of our knowledge, there has been no research on modularly checking
the interoperability between components written for different language and hardware
memory models. For example, existing proofs of the correctness of C++ compilation
schemes [3, 2] do not consider the possibility of a C++ program using arbitrary na-
tive components and assume fixed implementations of C++ synchronisation primitives

in the run-time system. In particular, the correctness proofs would no longer be valid
if we changed the run-time system implementation. As we discuss in Section 5, this
paper provides conditions for an arbitrary run-time system implementation of a DRF
language ensuring the correctness of the compilation.

We have previously proposed a generalisation of linearizability to the TSO memory
model [7] (TSO-to-TSO linearizability in Section 3). Unlike TSO-to-SC linearizability,
it requires specifications to be formulated in terms of low-level hardware concepts,
and thus cannot be used for interfacing with high-level languages. Furthermore, the
technical focus of [7] was on establishing Theorem 7, not Theorem 13.

To concentrate on the core issues of handling interoperability between TSO and
DRF models, we assumed that the data structures of the client and its libraries are com-
pletely disjoint. Recently, we have proposed a generalisation of classical linearizability
that allows the client to communicate with the libraries via data structures [8]. We hope
that the results from the two papers can be combined to lift the above restriction.

Acknowledgements. We thank Matthew Parkinson and Serdar Tasiran for comments
that helped to improve the paper. Yang was supported by EPSRC.

References
1. J. Alglave and L. Maranget. Stability in weak memory models. In CAV, 2011.
2. M. Batty, K. Memarian, S. Owens, S. Sarkar, and P. Sewell. Clarifying and compiling C/C++

concurrency: from C++11 to POWER. In POPL, 2012.
3. M. Batty, S. Owens, S. Sarkar, P. Sewell, and T. Weber. Mathematizing C++ concurrency. In

POPL, 2011.
4. H.-J. Boehm and S. V. Adve. Foundations of the C++ concurrency memory model. In PLDI,

2008.
5. A. Bouajjani, R. Meyer, and E. Mohlmann. Deciding robustness against total store ordering.

In ICALP, 2011.
6. D. Bovet and M. Cesati. Understanding the Linux Kernel, 3rd ed. O’Reilly, 2005.
7. S. Burckhardt, A. Gotsman, M. Musuvathi, and H. Yang. Concurrent library correctness on

the TSO memory model. In ESOP, 2012.
8. A. Gotsman and H. Yang. Linearizability with ownership transfer. In CONCUR, 2012.
9. M. P. Herlihy and J. M. Wing. Linearizability: a correctness condition for concurrent objects.

TOPLAS, 1990.
10. L. Lamport. How to make a multiprocessor computer that correctly executes multiprocess

programs. IEEE Trans. Comp., 1979.
11. J. Manson, W. Pugh, and S. V. Adve. The Java memory model. In POPL, 2005.
12. S. Owens. Reasoning about the implementation of concurrency abstractions on x86-TSO. In

ECOOP, 2010.
13. S. Owens, S. Sarkar, and P. Sewell. A better x86 memory model: x86-TSO. In TPHOLs,

2009.

A Formal Definition of the TSO Semantics
In this section, we give a formal definition of the abstract TSO machine described in-
formally in Section 2.

Notation. We write A∗ for the sets of all (possibly empty) finite sequences of elements
of a set A. We denote the empty sequence with ε and the concatenation of sequences
α1 and α2 with α1α2. We write g[x : y] for the function that has the same value as g
everywhere, except for x, where it has the value y. We denote the powerset of a set X
with P(X), and the disjoint union of sets with].

Control-Flow Graphs. We represent thread and method bodies in the language of
Section 2 using control-flow graphs. Namely, assume a set of primitive commands
PComm (defined below). A control-flow graph (CFG) over the set PComm is a tuple
(N,F, start, end), consisting of the set of program positions N , the control-flow rela-
tion F ⊆ N × PComm × N , and the initial and final positions start, end ∈ N . The
edges of the CFG are annotated with primitive commands from PComm.

We represent a program C(L) by a collection of CFGs: the client command Ct
for a CPU t is represented by (Nt, Ft, startt, endt), and the body Cm of a method
m by (Nm, Fm, startm, endm). We often view this collection of CFGs for C(L) as a
single graph consisting of the node set N =

⊎n
t=1Nt]

⊎
m∈sig(L)Nm and the edge set

F =
⊎n
t=1 Ft]

⊎
m∈sig(L) Fm.

Machine Configurations. The set of configurations Config our machine can be in is
formally defined in Figure 3. An ordinary configuration (pc, θ, b, h,K) ∈ Config con-
sists of several components. The first one pc ∈ CPUid→ Pos gives the current instruc-
tion pointer of every CPU. When a CPU executes client code, its instruction pointer
defines the program position of the client command being executed. Otherwise, it is
given by a pair whose first component is the program position of the current library
command, and the second one is the client position to return to when the library method
finishes executing (one return position is sufficient, since we disallow nested method
calls). Each CPU in the machine has a set of registers Reg, whose values are defined
by θ ∈ CPUid → RegBank. The machine memory h ∈ Heap is represented as a func-
tion from memory locations to the values they store. The component K ∈ P(CPUid)
defines the set of active CPUs that can currently execute a command and is used to
implement lock and unlock. The component b ∈ CPUid → Buff describes the state of
all store buffers in the machine, each represented by a sequence of write requests with
the newest one coming first.

Primitive Commands. The set of primitive commands is defined as follows:

PComm = Local] Read]Write] {m | m ∈ Method}] {lock, unlock}.

Here Local, Read and Write are unspecified sets of commands such that:

– commands in Local access only CPU registers;
– commands in Read read a single location in memory and write its contents into the

register r1;

Heap = Loc→ Val Buff = (Loc× Val)∗ Pos = N] (N ×N)
Reg = {r1, . . . , rm} RegBank = Reg→ Val
Config=(CPUid→ Pos)× (CPUid→ RegBank)× (CPUid→ Buff)× Heap× P(CPUid)

Fig. 3. The set of machine configurations

– commands in Write write to a single location in memory.

We also have library method calls and the commands lock and unlock that lock the
machine, allowing several commands to be executed atomically, and unlock it. As we
noted in Section 2, unlock has a built-in memory barrier, flushing the store buffer of the
CPU executing it. We call a sequence of commands bracketed by lock and unlock an
atomic block.

For every command c ∈ Local] Read]Write, we assume a transformer:

– fc : RegBank → P(RegBank) for c ∈ Local defining how the command changes
the registers of the CPU executing it;

– fc : RegBank→ P(Loc) for c ∈ Read defining the location read;
– fc : RegBank → P(Loc × Val) for c ∈ Write defining the location and the value

written.

Note that we allow the execution of primitive commands to be non-deterministic. As in
this paper we are dealing with low-level programs, we do not assume a built-in allocator,
and thus do not consider commands for memory (de)allocation as primitive.

We place certain restrictions on CFGs over the above set PComm. Namely, we
assume that on any path in a CFG, lock and unlock commands alternate correctly. We
also assume that every method called in the program is defined, and disallow nested
method calls as well as method calls inside atomic blocks.

Let E,F denote expressions over the set of registers Reg, and JEKr the result of
evaluating the expression E in the register bank r. Then we can define sample primitive
commands

havoc ∈ Local, assume(E) ∈ Local, read(E) ∈ Read, write(E,F) ∈Write

with the following semantics:

fhavoc(r) = RegBank; fassume(E)(r) = {r}, if JEKr 6= 0;
fread(E)(r) = {JEKr}; fassume(E)(r) = ∅, if JEKr = 0;
fwrite(E,F)(r) = {(JEKr, JF Kr)}.

The read and write commands have the expected meaning. The havoc command as-
signs arbitrary values to all registers. The assume(E) command acts as a filter on
states, choosing only those where E evaluates to non-zero values. Using assume(E),
a conditional branch on the value of E can be implemented with the CFG edges
(v, assume(E), v1) and (v, assume(!E), v2), where !E denotes the C-style negation.

Operational Semantics. The operational semantics of a program C(L) is defined by
the transition relation −→C(L): Config × Act∗ × Config in Figure 4. We remind the

t ∈ K (ρ, c, ρ′) ∈ F̂ c ∈ Local r′ ∈ fc(r)
pc[t : ρ], θ[t : r], b, h,K

ε−→C(L) pc[t : ρ′], θ[t : r′], b, h,K
LOCAL

t ∈ K (ρ, c, ρ′) ∈ F̂ c ∈Write (x, u) ∈ fc(r)

pc[t : ρ], θ[t : r], b[t : α], h,K
(t,write(x,u))−−−−−−−−→C(L) pc[t : ρ′], θ[t : r], b[t : (x, u)α], h,K

WRITE

pc, θ, b[t : α (x, u)], h,K
(t,flush(x,u))−−−−−−−−→C(L) pc, θ, b[t : α], h[x : u],K

FLUSH

t ∈ K (ρ, c, ρ′) ∈ F̂ c ∈ Read x ∈ fc(r) u = lookup(α, h, x)

pc[t : ρ], θ[t : r], b[t : α], h,K
(t,read(x,u))−−−−−−−→C(L) pc[t : ρ′], θ[t : r[r1 : u]], b[t : α], h,K

READ

(ρ, lock, ρ′) ∈ F̂

pc[t : ρ], θ, b, h,CPUid
(t,lock)−−−−→C(L) pc[t : ρ′], θ, b, h, {t}

LOCK

(ρ, unlock, ρ′) ∈ F̂

pc[t : ρ], θ, b[t : ε], h, {t} (t,unlock)−−−−−→C(L) pc[t : ρ′], θ, b[t : ε], h,CPUid
UNLOCK

(v,m, v′) ∈ F

pc[t : v], θ[t : r], b, h,CPUid
(t,call m(r))−−−−−−−→C(L) pc[t : (startm, v′)], θ[t : r], b, h,CPUid

CALL

pc[t : (endm, v′)], θ[t : r], b, h,CPUid
(t,ret m(r))−−−−−−−→C(L) pc[t : v′], θ[t : r], b, h,CPUid

RET

Fig. 4. Operational TSO semantics

reader that F in the figure is the control-flow relation of C(L). To handle transitions
inside the library code, we lift it to program positions N] (N ×N) as follows:

F̂ = F ∪ {((v, v0), c, (v′, v0)) | (v, c, v′) ∈ F ∧ v0 ∈ N}.

The rules of the semantics formalise the transitions of the machine explained informally
in Section 2 as follows:

– The LOCAL rule handles the execution of commands that access registers only. These
and other commands can only be executed by a CPU t if it is included into the set of
active CPUs, represented by the last component of a configuration.

– A write by a CPU to a location in memory does not happen immediately; instead, a
pair of the location and the value to be written is added to the tail of the corresponding
store buffer (WRITE). Recall that the newest entry in the store buffer is the leftmost
one.

– A CPU may at any point decide to flush the entry at the head of the store buffer into
memory (FLUSH).

– The READ rule uses lookup(α, h, x) to find the value stored for the address x in the

store buffer α of the CPU executing the command or the memory h:

lookup(α, h, x) =

{
u, if α=α1 (x, u)α2 and α1 does not contain entries for x;
h(x), if α does not contain entries for x.

If there are entries for x in the store buffer, the read takes the value in the newest
one; otherwise, it looks up the value in memory. According to READ, the value read
is stored in the register r1.

– A CPU executing lock makes itself the only active CPU, preventing the others from
executing commands(LOCK). The commands executed within the corresponding
atomic block, i.e., until the CPU calls unlock (UNLOCK) are thus not interleaved
with commands of other CPUs. The unlock command can only be executed when
the store buffer is empty and thus forces the CPU to flush its store buffer beforehand
using FLUSH.

– The rules CALL and RET handle calls to and returns from methods. Upon a method
call, the return point is saved as a component in the new thread position, and the
method starts executing from the corresponding starting node of its CFG. Upon a
return, the return point is read from the current program position. Note that config-
urations in CALL and RET rules have CPUid as the set of active CPUs, since we
prohibit method calls inside atomic blocks.

A computation of C(L) is a finite sequence of transitions using −→C(L). For a
computation λ, we let trace(λ) be the trace obtained by concatenating all the annota-
tions of transitions in λ. We denote with τ−→∗C(L) the reflexive and transitive closure of
−→C(L), where τ is obtained by concatenating the transition annotations. Let the set of
initial configurations of C(L) be

Σ0 = {(pc0, θ0, b0, h0,CPUid) | ∀t ∈ CPUid. pc0(t) = startt ∧
b0(t) = ε ∧ h0 ∈ Heap}.

For simplicity, Σ0 allows the program to execute from an arbitrary heap. We define
the semantics JC(L)KTSO of C(L) as the set of traces of its computations with initial
configurations from Σ0 that do not have a LOCK transition unmatched by UNLOCK.

B Additional Definitions and Examples

Formal Definition of the Most General Client. The command Cmgc
t used in the

most general client has the CFG ({vtmgc}, {(vtmgc, havoc, vtmgc), (v
t
mgc,m, v

t
mgc) | m ∈

sig(L)}, vtmgc, v
t
mgc).

Formal Definition of the TSO/SC Semantics. The TSO/SC semantics is defined like
the semantics in Appendix A, but where the WRITE rule in the case of a command c
belonging to the library code (ρ, ρ′ ∈ N ×N) is replaced by the following one:

t ∈ K (ρ, c, ρ′) ∈ T ρ, ρ′ ∈ N ×N c ∈Write (x, u) ∈ fc(r)

pc[t : ρ], θ[t : r], b, h,K
(t,write(x,u)) (t,flush(x,u))−−−−−−−−−−−−−−−−→C(L) pc[t : ρ′], θ[t : r], b, h[x : u],K

WRITE-SC

word x = 1;

void acquire() {

while (1) {

lock;

x--;

if (x >= 0) {

unlock;

return;

}

unlock;

while (x <= 0) ;

}

}

void release() { x = 1; }

int tryacquire() {

lock;

x--;

unlock;

if (x >= 0) {

unlock;

return 1;

}

unlock;

return 0;

}

struct Spinlock {

short served = 1;

short next = 1;

};

Spinlock lk;

void acquire() {

short ticket;

lock;

ticket = lk.next++;

unlock;

while (lk.served != ticket) ;

}

release () { lk.served++; }

int tryacquire() {

Spinlock old, new;

new = old = lk;

if (old.served != old.next)

return 0;

new.next++;

lock;

if (lk == old) {

lk = new;

unlock;

return 1;

}

unlock;

return 0;

}

(a) (b)

Fig. 5. Two spinlock implementations used in different versions of the Linux kernel

Other Spinlock Implementations. Figure 5 gives two spinlock implementations used
in different versions of the Linux kernel, 2.6.24.7 and 3.2.4, respectively. The first one
(Figure 5a) implements acquire using an atomic decrement, instead of a CAS. The
second one (Figure 5b) ensures fairness using a variant of the Bakery algorithm. In
the algorithms, we assume that integers are unbounded (or, equivalently, consider only
executions where an overflow does not occur). In the second algorithm we also assume
that the structure storing the lock state can be read atomically. Both algorithms are
linearized by the abstract implementation in Figure 1b.

An Operational Seqlock Specification. In Section 3, we gave a specification to the se-
qlock library as a set of histories. Figure 6 gives an operational SC specification L]seqlock

of a seqlock, such that Lseqlock v L]seqlock. The specification ‘virtualises’ the TSO store

Queue<pair<word,word>> q = {(0, 0)};

write(in word d1, in word d2) {

q.enqueue(d1,d2);

}

read(out word d1, out word d2) {

while (*)

q.dequeue();

(d1,d2) = q.top();

}

Fig. 6. An operational SC specification L]
seqlock of a seqlock. Queue is an abstract data type of

a FIFO queue storing pairs of words, whose operations are executed atomically; dequeue does
nothing when the queue is empty; and * denotes non-deterministic choice.

buffer using an abstract queue data type.

Establishing the Correspondence between Language-Level and Hardware-Level
Threads. In Section 5, we defined the extension of a high-level language memory
model with a low-level library using histories of the latter: the set of executions in
the client-local semantics of the high-level program is projected to those with valid
library histories. This composition has a mismatch: actions in library histories are in-
dexed by physical CPU identifiers, whereas language-level memory models are defined
in terms of threads of the high-level language. In practice, a scheduler multiplexes sev-
eral threads over fewer physical CPUs. We now justify why our way of composing the
semantics of the client and the library is sound in this situation.

In the following, we do not consider dynamic thread creation so as not to obfuscate
discussion. Let NThreads be the number of threads. Assume that the scheduler executes
a memory barrier at every context-switch, which is true of schedulers in common op-
erating system kernels [6]. Let C(L) be a TSO program compiled from the high-level
language, which runs under the management of a scheduler. Consider a semantics of
this program, in which we do not have the scheduler, but instead the machine has the
number of CPUs equal to the number NThreads of threads. In particular, every thread
has its own store buffer. Such a semantics is a sound approximation of the TSO seman-
tics with the scheduler, in the sense that any visible behaviour thatC(L) can produce on
the latter can be reproduced on the former. Intuitively, this is because a correct scheduler
establishes the illusion that every thread owns a dedicated CPU, and flushing the store
buffer at every context switch does not let a thread notice that the actual store buffers it
uses change. This can be formalised using existing techniques6. Hence, we can restrict
ourselves to reasoning in the setting where the number of CPUs is equal to the number
of threads, for which the composition of client and library semantics we used is valid.

Extension of the C++ Memory Model with Native TSO Libraries. Assume a TSO
library L with an SC specification given by a set of histories T . We consider the C++
memory model as defined in [3], but excluding weak atomics, where every method of
L implemented by a C++ stub that has an empty body and returns an arbitrary value.
We then leave only those executions in this semantics, whose happens-before relations
hb are consistent with T :

∀H. (a hb−→ b⇒ (a precedes b in H))⇒ H ∈ T,

6 A. Gotsman and H. Yang. Modular verification of preemptive OS kernels. In ICFP, 2011.

word x1 = 0, x2 = 0;

word c = 0;

write(in word d1, in word d2) {

v0: c++;

v1: x1 = d1;

v2: x2 = d2;

v3: c++;

v4:

}

Fig. 7. The implementation of seqlock’s write method with code labels

where a, b range over call and return events. That is, for any history consistent with the
happens-before relation there exists a history from T linearizing it.

C Proofs
C.1 Proof Sketch for Proposition 4

We prove the linearizability relation Lspinlock vTSO→SC L]spinlock using the method of
linearization points. Consider a computation of MGC(Lspinlock) on TSO with a history
H . For every method invocation in this computation, we identify a single transition that
is the linearization point of this method—the point where the method, informally, ‘takes
effect’. Given this, the required computation of MGC(L]spinlock) on SC with a history
linearizing H is constructed as follows. We generate a call or a return transition by
MGC(L]spinlock) at every call or return transition in the computation of MGC(Lspinlock),
and we execute the body of the abstract method at every linearization point.

The linearization points of the spinlock methods are defined as follows:

– acquire: the UNLOCK transition before the return statement.
– release: the WRITE transition;
– trylock: the UNLOCK transition;

It is easy to check that methods in the resulting computation of the abstract library
implementation return the same values as in the original one. In particular, when a
tryacquire in the TSO computation returns 0 due to a write to x not flushed into the
memory, in the corresponding SC computation we already have x = 1. In this case,
tryacquire returns 0 in the SC computation using the non-deterministic branch in its
SC implementation. ut

C.2 Proof Sketch for Proposition 8

To ease the exposition, Figure 7 shows the implementation of the write method of a se-
qlock including code labels, which correspond to nodes in its CFG. In the following, we
assume that CPU 1 runs the code of the writer. Let vwc be the node of the corresponding
thread body of the most general client.

Consider a computation of MGC(Lseqlock) on TSO with a history H . We again con-
struct the history H ′ linearizing H using linearization points, associated with method
invocations as follows:

– read: the last read of x2 before returning;
– write: the second write to c.

If a method invocation terminates, then we associate a pair of the corresponding call
and return actions with its linearization point. If a write method does not terminate,
but executes the linearization point, then we associate the call action with the point.
Otherwise, we associate a call action for write with the final point in the computation.
If a read method does not terminate, we associate a call action with its call. We obtain
the desired history H ′ by concatenating these actions associated with every element
of the sequence of the code points. It is easy to see that H v H ′. We now show that
H ′ ∈ Tseqlock.

Consider an arbitrary prefix λ of the computation of MGC(Lseqlock) and the corre-
sponding prefix H ′0 of the linearizing history H ′. We prove that reads(H0) is a subse-
quence of a sequence from ((0, 0)writes(H0))

† by induction on the length of λ. The
induction hypothesis includes a supporting invariant relating reads(H ′0) and writes(H ′0)
with the final configuration of λ, which is formulated in Figure 8. The auxiliary func-
tion g converts the store buffers of the writer CPU in MGC(Lseqlock) to the sequences of
values to be written. Note that the last clause of the invariant implies that, at a lineariza-
tion point of read, the reader will read values correctly positioned in the sequence
of writes. The induction step amounts to a case analysis on all possible transition of
MGC(Lseqlock). ut

C.3 Proof of Theorem 5

In the following, we use the client-local semantics of a client C, which defines its set of
traces JCKTSO assuming any behaviour of the library methods it calls. The set JCKTSO

is defined as the set of traces of the program

C(·) = (let {m = Cstub
m | m ∈M} in C1 ‖ . . . ‖ CNCPUs),

where M is the set of methods C may call and the command Cstub
m has the CFG

({vmstart, v
m
end}, {(vmstart, havoc, vmend)}, vmstart, v

m
end).

The proof of the theorem relies on the following lemmas. The first one states that a
TSO trace of C(L) generates two traces in the client-local and library-local semantics
with the same history.

LEMMA 18 (Decomposition on TSO).

∀τ ∈ JC(L)KTSO.∃η ∈ JCKTSO.∃ξ ∈ JLKTSO.

history(η) = history(ξ) ∧ client(τ) = client(η) ∧ lib(τ) = lib(ξ).

The following lemma shows that an SC trace of a most general client of a library can be
transformed into another one of its traces with a given history linearized by the history
of the original one.

g : RegBank× Pos× Heap× Buff ⇀ (Val× Val)∗

g(r, ρ, h, ε) = ε,
g(r, ρ, h, (c, c)α) = g(r, ρ, h, α), c is odd, ρ = (v1, vwc)

g(r, ρ, h, (x1, r(d1))(c, c)α) = g(r, ρ, h, α), c is odd, ρ = (v2, vwc)
g(r, ρ, h, (x2, r(d2))(x1, r(d1))(c, c)α) = g(r, ρ, h, α), c is odd, ρ = (v3, vwc)

g(r, ρ, h, (c, c+ 1)(x2, x2)(x1, x1)(c, c)α) = (x1, x2) g(r, ρ, h, α), c is odd
g(r, ρ, h, (c, c′)(x2, x2)(x1, x1)) = (x1, x2), c′ is even

g(r, ρ, h, (c, c′)(x2, x2)) = (h(x1), x2), c′ is even
g(r, ρ, h, (x2, r(d2))(x1, r(d1))) = ε,

h(c) is odd, ρ = (v3, vwc)
g(r, ρ, h, (c, c′)) = (h(x1), h(x2)), c′ is even

g(r, ρ, h, (x2, r(d2))) = ε,
h(c) is odd, h(x1) = r(d1), ρ = (v3, vwc)

g(r, ρ, h, (x1, r(d1))) = ε,
h(c) is odd, ρ = (v2, vwc)

Let (pc[1 : ρ], θ[1 : r], b[1 : α], h,K) be the final configuration of λ. The invariant is as follows:

(α = ε⇒ ((h(c) is even) ∧ ρ ∈ {(v4, vwc), (v0, vwc), vwc}) ∨
((h(c) is odd) ∧ ρ ∈ {(v1, vwc), (v2, vwc), (v3, vwc)} ∧
(ρ ∈ {(v2, vwc), (v3, vwc)} ⇒ h(x1) = r(d1)) ∧ (ρ = (v3, vwc)⇒ h(x2) = r(d2)))) ∧

((∃β, c′. α = (c, c′)β ∧ (c′ is even))⇒ ρ ∈ {vwc, (v4, vwc), (v0, vwc)}) ∧
(∃β, γ, c. α = β (c, c) γ ∧ (γ does not contain entries for c)⇒ h(c) = c− 1) ∧
(∃β.writes(H ′0)=β g(r, ρ, h, α)∧ (reads(H ′0) is a subsequence of a sequence in ((0, 0)β)†)∧

(h(c) is even ⇒ ((h(x1), h(x2)) is the last element of (0, 0)β))).

Fig. 8. The supporting invariant for the proof of the linearizability of a seqlock

LEMMA 19 (Rearrangement on SC).

∀H,H ′. H v H ′ ⇒ (∀τ ′ ∈ JLKSC. history(τ ′) = H ′ ⇒
∃τ ∈ JLKSC. history(τ) = H).

Finally, the following lemma states that any pair of a client-local TSO trace and an SC
library-local trace agreeing on the history can be combined into a trace of C(L) on the
mixed TSO/SC semantics.

LEMMA 20 (Composition on TSO/SC).

∀η ∈ JCKTSO.∀ξ ∈ JLKSC. history(η) = history(ξ)⇒
∃τ ∈ JC(L)KTSO/SC. client(τ) = client(η).

Lemmas 18 and 19 are variants of theorems proved in [7]. Lemma 20 is proved below.

Proof of Theorem 5. Consider τ1 ∈ JC(L1)KTSO. By Lemma 18, τ1 generates two
traces—a library-local trace ξ1 ∈ JL1KTSO and a client-local one η ∈ JCKTSO—such
that client(τ1) = client(η) and history(η) = history(ξ1). Since L1 vTSO→SC L2, for
some trace ξ2 ∈ JL2KSC, we have history(ξ1) v history(ξ2). By Lemma 19, ξ2 can be

transformed into a trace ξ′2 ∈ JL2KSC such that history(ξ′2) = history(ξ1) = history(η).
We then use Lemma 20 to compose the library-local SC trace ξ′2 with the client-local
TSO trace η into a trace τ2 ∈ JC(L2)KTSO/SC such that client(τ2) = client(η) =
client(τ1). ut

We now proceed to prove Lemma 20. We first define an auxiliary partial operation
◦ : Config × Config ⇀ Config that combines configurations in the local semantics of
C and L to yield a configuration of C(L). We first define ◦ on the components of a
configuration:

– We define ◦ on CPU positions as follows: v ◦ vtmgc = v for v ∈
⊎n
t=1Nt; (v

m
k , v) ◦

(v′, vtmgc) = (v′, v) for k ∈ {start, end}, v ∈
⊎n
t=1Nt and v′ ∈ Nm; undefined in

all other cases. We lift ◦ to program counters pointwise.
– For r1, r2 ∈ RegBank and ρ ∈ Pos we let

r1 ◦ρ r2 =

{
r1, if ρ ∈ N ;

r2, if ρ ∈ N ×N.

For θ1, θ2 ∈ CPUid→ RegBank and pc ∈ CPUid→ Pos we then let

∀t ∈ CPUid. (θ1 ◦pc θ2)(t) = θ1(t) ◦pc(t) θ2(t).

– We define ◦ on store buffers as follows: α ◦ ε = α for all α ∈ Buff; undefined in all
other cases. We lift ◦ to vectors of store buffers pointwise.

– For h1, h2 ∈ Heap we define h1 ◦ h2 as follows:

∀x ∈ Loc. (h1 ◦ h2)(x) =

{
h1(x), if x ∈ CLoc;

h2(x), if x ∈ LLoc.

– We define ◦ on sets of active CPUs as follows: CPUid ◦ CPUid = CPUid, {t} ◦
CPUid = CPUid ◦ {t} = {t}; undefined in all other cases.

Finally, we lift ◦ to configurations:

(pc1, θ1, b1, h1,K1) ◦ (pc2, θ2, b2, h2,K2) =

(pc1 ◦ pc2, θ1 ◦(pc1◦pc2)
θ2, b1 ◦ b2, h1 ◦ h2,K1 ◦K2).

Proof of Lemma 20. Assume η′ ∈ JCKTSO and ξ′ ∈ JLKSC such that history(η′) =
history(ξ′). Let η be the shortest prefix of η′ such that client(η) = client(η′), and ξ,
the shortest prefix of ξ′ such that history(ξ) = history(ξ′); let λc and λl be the shortest
prefixes of the computations corresponding to η′ and ξ′ that produce η and ξ. Then λc

does not end with a havoc transition in a method stub, and the last transition of λl,
when it exists, is a call or a return. Without loss of generality we can assume that λl is
generated by the TSO/SC semantics. We now construct a computation λ of C(L) with
the desired trace τ from these preprocessed computations λc and λl. The properties of
λc and λl noted above are used during the construction.

Let σ1
0 and σ2

0 be the initial configurations of the computations λc and λl; then
σ1
0 ◦ σ2

0 is defined. We first build a series of finite computations λ0, λ1, λ2, . . ., such
that for i < j, λi is a prefix of λj . Thus, the series has the limit, which is the desired
computation λ. In the following, we consider prefixes λci and λli of computations λc and
λl. We let τi = trace(λi), ηi = trace(λci) and ξi = trace(λli).

The first element in the series is the empty computation consisting of the initial
configuration σ1

0 ◦ σ2
0 only. For the (i + 1)-st element with i ≥ 0, we assume that the

i-th element λi has been constructed and satisfies the following property:

For some finite prefixes λci of λc and λli of λl of the form

σ1
0

client(τi)−−−−−→∗C(·) σ
1
i ∧ σ2

0

lib(τi)−−−−→∗MGC(L) σ
2
i ,

we have

history(ηi) = history(ξi) ∧ client(τi) = client(ηi) ∧ lib(τi) = lib(ξi).

Furthermore, σ1
i ◦ σ2

i is defined and λi is:

σ1
0 ◦ σ2

0
τi−→∗C(L) σ

1
i ◦ σ2

i .

We now define the (i+1)-th element λi+1 that maintains this property. As we explained
above, the computation λi+1 is an extension of λi by one or more steps.

Let the following be the next transitions in the computations λc and λl (we consider
the case when one of the computations has no next transition later):

σ1
i

ε−→∗C(·) σ1
τ ′

−→C(·) σ
′
1 ∧ σ2

i
ε−→∗MGC(L) σ2

τ ′′

−→MGC(L) σ
′
2, (2)

where the computation transforming σ1
i into σ1 is the maximal prefix of the first compu-

tation consisting only of havoc transitions in method stubs, and the computation trans-
forming σ2

i into σ2 is the maximal prefix of the second computation consisting only
of havoc transitions in the client code of MGC(L). The non-havoc transitions exist in
both cases, because of the preprocessing step described above. It is easy to show that
σ1
i ◦ σ2

i = σ1 ◦ σ2, so that

σ1
0 ◦ σ2

0
τi−→∗C(L) σ1 ◦ σ2.

To construct λi+1, we make a case-split on the rules of the operational semantics used
to obtain the non-havoc transitions τ ′ and τ ′′. We use one of these two transitions to
extend λi to λi+1. The construction described below defines λi+1 with a degree of
non-determinism: the computation of C(L) can sometimes be extended either using
the transition from C(·) or the one from MGC(L). All possible results produce a valid
computation of C(L), and, as we show below, client(τ) = client(η).

Below we use symbols K1 and K2 to denote the last components of σ1 and σ2,
respectively.

– CALL in λc and CALL in λl such that τ ′ = τ ′′ = (t, call m(r)). Then for some v,
v′, pc1, pc2, θ1, θ2, b1, b2, h1 and h2, we have (v,m, v′) ∈ F , pc1(t), pc2(t), θ1(t),
θ2(t) are undefined and

σ1 = (pc1[t : v], θ1[t : r], b1, h1,CPUid) ∧
σ2 = (pc2[t : v

t
mgc], θ2[t : r], b2, h2,CPUid) ∧

σ′1 = (pc1[t : (v
m
start, v

′)], θ1[t : r], b1, h1,CPUid) ∧
σ′2 = (pc2[t : (startm, v

t
mgc)], θ2[t : r], b2, h2,CPUid) ∧

σ1 ◦ σ2 = ((pc1 ◦ pc2)[t : v], (θ1 ◦(pc1◦pc2)
θ2)[t : r], b1 ◦ b2, h1 ◦ h2,CPUid).

Hence,

σ′1◦σ′2 = ((pc1◦pc2)[t : (startm, v
′)], (θ1◦(pc1◦pc2)

θ2)[t : r], b1◦b2, h1◦h2,CPUid).

Then, σ1 ◦ σ2
τ ′

−→C(L) σ
′
1 ◦ σ′2. Thus, in this case the desired λi+1 is obtained by

extending λi with this transition.
– RET in λc and RET in λl such that τ ′ = τ ′′. This case is handled similarly to the

previous one.
– The transition in λl is generated by LOCAL, WRITE-SC, READ, LOCK or UNLOCK,

and we have K2 ⊆ K1. Note that by the definition of ◦ on K, at least one of K1

and K2 is CPUid. Our condition thus ensures that K1 = CPUid. We consider only
the case of the WRITE-SC rule; the others are analogous. In this case, for some t,
x, u, k ∈ {start, end}, v, v′, v1, θ1, θ2, r, r′, pc1, pc2, b1, b2, h1 and h2, we have
(v, c, v′) ∈ F , c ∈ Write, (x, u) ∈ fc(r), pc1(t), pc2(t), θ1(t), θ2(t) are undefined
and

σ1 = (pc1[t : (v
m
k , v1)], θ1[t : r

′], b1, h1,CPUid) ∧
σ2 = (pc2[t : (v, v

t
mgc)], θ2[t : r], b2, h2,K2) ∧

σ′2 = (pc2[t : (v
′, vtmgc)], θ2[t : r], b2, h2[x : u],K2) ∧

σ1 ◦ σ2 = ((pc1 ◦ pc2)[t : (v, v1)], (θ1 ◦(pc1◦pc2)
θ2)[t : r], b1 ◦ b2, h1 ◦ h2,K2).

Since we only consider non-interfering programs, x ∈ LLoc. Hence, h1 ◦ (h2[x :
u]) = (h1 ◦ h2)[x : u] and

σ1◦σ′2 = ((pc1◦pc2)[t : (v
′, v1)], (θ1◦(pc1◦pc2)

θ2)[t : r], b1◦b2, (h1◦h2)[x : u],K2).

Then, σ1 ◦ σ2
τ ′′

−→C(L) σ1 ◦ σ′2. The desired λi+1 is obtained by extending λi with
this transition.

– The transition in λc is generated by LOCAL, WRITE, FLUSH, READ, LOCK, UN-
LOCK, and we have K1 ⊆ K2. This case is similar to the previous one.

One of the above cases is always applicable. When both K1 and K2 are CPUid, the
uncovered cases are those when both transitions in λc and λl are obtained using CALL
or RET and the actions produced are different. However, this case is impossible, since
history(η) = history(ξ) and history(ηi) = history(ξi). When one of K1 and K2 is not
CPUid, our construction covers all the cases: the transition of the local computation
whose current configuration has the machine locked is always enabled in the corre-
sponding configuration of the global computation.

Consider now the case when only one transition in (2) exists. Due to our prepro-
cessing step, λl is either empty or ends with a transition producing an interface action.
Besides, the above construction consumes the latter together with the corresponding
transition in λc. Hence, the only transition in (2) has to be one from λc, and the last
configuration in λl does not have the machine locked. This implies that the transition in
λc is enabled in the global configuration, and we can obtain λci+1 and λi+1 by extending
λci and λi with this transition.

Thus, we have shown how to construct λi for all possible cases, sometimes non-
deterministically. Besides, our construction consumes both computations completely,
so that client(τ) = client(η). ut

C.4 Proof of Corollary 6

To simplify presentation, in our development we have assumed that any method called
in a program by the client belongs to the library. The proof of Theorem 5 can be simply
generalised to omit this requirement. Namely, we assume a setting where the client is
allowed to have its private methods (as before, nested method calls are disallowed). We
correspondingly generalise the client operation on traces to clientM : the new operation
interprets the given set of methods M as constituting a library. Theorem 5 still holds
in this setting. It also generalises to the case when some of the client-private libraries
L execute on the SC semantics. We denote by TSO/SC(L) the semantics where the
methods from L access the memory directly. We now prove Corollary 6 using this
generalisation.

The idea of the proof is simple: to show L v L] we linearize libraries L1, . . . , Lk
one by one using Theorem 5. The program MGC(L) = MGC(L1, . . . , Lk) can be
viewed as consisting of the library L1 and its client including the implementations of
methods in L2, . . . , Lk, with LLoc1 and LLoc2] . . .] LLock] CLoc as the address
spaces of the library and the client, respectively. Since L1 v L]1, by Theorem 5, we can
linearize L1, obtaining

clientsig(L1)(JMGC(L1, L2, L3, . . . , Lk)KTSO) ⊆

clientsig(L1)(JMGC(L]1, L2, L3, . . . , Lk)KTSO/SC(L]
1)
). (3)

The resulting program MGC(L]1, L2, L3, . . . , Lk) can be viewed as consisting of the
library implementing the methods from L2 and the client including the methods from
L]1, L3, . . . , Lk. Since L2 v L]2, by Theorem 5, we get

clientsig(L2)(JMGC(L]1, L2, L3, . . . , Lk)KTSO/SC(L]
1)
) ⊆

clientsig(L2)(JMGC(L]1, L
]
2, L3, . . . , Lk)KTSO/SC(L]

1,L
]
2)
). (4)

From (3), we get

clientsig(L1,L2)(JMGC(L1, L2, L3, . . . , Lk)KTSO) ⊆

clientsig(L1,L2)(JMGC(L]1, L2, L3, . . . , Lk)KTSO/SC(L]
1)
).

From (4), we get

clientsig(L1,L2)(JMGC(L]1, L2, L3, . . . , Lk)KTSO/SC(L]
1)
) ⊆

clientsig(L1,L2)(JMGC(L]1, L
]
2, L3, . . . , Lk)KTSO/SC(L]

1,L
]
2)
).

The last two inclusions entail

clientsig(L1,L2)(JMGC(L1, L2, L3, . . . , Lk)KTSO) ⊆

clientsig(L1,L2)(JMGC(L]1, L
]
2, L3, . . . , Lk)KTSO/SC(L]

1,L
]
2)
).

Repeatedly applying Theorem 5 as above to linearize L3, . . . , Lk, we get

clientsig(L1,L2,L3,...,Lk)(JMGC(L1, L2, L3, . . . , Lk)KTSO) ⊆

clientsig(L1,L2,L3,...,Lk)(JMGC(L]1, L
]
2, L

]
3, . . . , L

]
k)KSC),

which implies L v L].

C.5 Proof of Theorem 10

In the following, we omit values from write, read and flush actions when they are not rel-
evant. We write access to mean either read or flush. Consider the k-th write (t,write(x))
to x by thread t in a trace τ . We call the k-th action (t, flush(x)) in τ the flush action
corresponding to the write action (t,write(x)). We also use the easy generalisation of
this notion to fragments of computations, which takes into account the initial contents
of store buffers. We call a write action in a trace immediate, if it is immediately fol-
lowed by the corresponding flush. A write action is pending in a trace, if there is no
corresponding flush for it. We call a trace complete if it has no pending write actions.

To avoid an explosion in the number of different variables during the proof, the
scope of all variables ξi below is limited to the formula they occur in. References to
variables in the text pertain to their last occurrence in a formula.

Consider a DRF program P with visible locations protected. Let λ0 be a computa-
tion of P with a trace τ0. We preprocess this computation as follows. For every thread
t, consider the leftmost WRITE transition by t in λ0 such that its write action is pending
in τ0. We remove all non-flush transitions by every thread t starting from the WRITE
transition selected for this thread, which makes the trace of the computation complete.
Since visible locations are protected in P , this does not change the projection of the
trace to visible actions. Besides, for every FLUSH transition within an atomic block, if
it corresponds to a write action in the same block, we move it to the position directly
after the WRITE transition; otherwise we move it to the position right before the LOCK
transition starting the atomic block. Let τ = trace(λ). Given that visible locations are
only accessed in atomic blocks, it is easy to check that λ is a valid computation and
visible(τ) = visible(τ0).

We now transform the computation λ into a computation with an SC trace that
either has the same projections to visible actions as τ , or contains a data race in the
sense of Definition 9. To this end, we attempt to construct a sequence of computations
λi, i = 1..k with prefixes νi. Let τi = trace(λi) and ηi = trace(νi), i = 1..k. The
sequence of computations we construct satisfies the following conditions:

– λ1 = λ and ν1 is the empty computation consisting of the initial configuration of λ1
only;

– ηi is SC, i = 1..k;
– νi+1 extends νi by one or more transitions, i = 1..(k − 1);
– the end configuration of λi+1 is the same as that of λi, i = 1..(k − 1);
– visible(τi+1) = visible(τi), i = 1..(k − 1);
– λk = νk.

Hence, if the construction is successful, then the final computation λk and its trace τk
are the desired ones.

Assume λi and νi for some i ∈ {1, . . . , (k − 1)} satisfying the above conditions.
The following proposition describes the transformations on computations we use to
construct λi+1 and νi+1.

PROPOSITION 21. 1. Assume

σ1
τ−→∗P σ2

(t,flush(x,u))−−−−−−−−→P σ3,

where
– τ does not contain an UNLOCK transition without a matching LOCK transition

by a thread other that t;

– any transition by thread t in τ is not a FLUSH transition or the WRITE transition
corresponding to (t, flush(x, u)); and

– any transition by a thread other than t in τ is not FLUSH or READ accessing x.
Then for some σ′2 we have

σ1
(t,flush(x,u))−−−−−−−−→P σ

′
2

τ−→∗P σ3.

2. Assume
σ1

(t,write(x,u))−−−−−−−−→P σ2
τ−→∗P σ3.

where
– τ does not contain a LOCK transition without a matching UNLOCK transition

by a thread other that t; and

– τ does not contain transitions by t other than FLUSH transitions that do not
correspond to (t,write(x, u)).

Then for some σ′2 we have

σ1
τ−→∗P σ′2

(t,write(x,u))−−−−−−−−→P σ3,

Consider the transition in λi following νi. Since ηi is SC, the buffer of every CPU
in the final configuration of νi is empty. Hence, the transition cannot be obtained using
FLUSH. If it is obtained using LOCAL, READ, LOCK or UNLOCK, then we obtain νi+1

by extending νi with the transition; in this case λi+1 = λi. Consider the remaining case

when the transition is obtained using WRITE, so that its label is (t,write(x)). Then
there exists the corresponding flush action later in the trace τi. If the FLUSH transition
producing it immediately follows the WRITE transition producing (t,write(x)), then we
can obtain νi+1 by extending νi with these two transitions; again λi+1 = λi. Otherwise,
we have a computation with the following trace:

τi = ηi (t,write(x)) ξ1 (t, flush(x)) ξ2,

where (t, flush(x)) corresponds to (t,write(x)). Note that ξ1 cannot contain a flush
action by t. Indeed, since ηi is SC, such an action would correspond to a write action
in ξ1. But then this write would be flushed earlier than a preceding write (t,write(x)),
contradicting the FIFO ordering of store buffers.

If ξ1 does not contain any actions of threads other than t reading or flushing x, then
by Proposition 21, we can move the transition producing (t, flush(x)) to the position
right after the one producing (t,write(x)), obtaining a computation with the following
trace:

ηi (t,write(x)) (t, flush(x)) ξ1 ξ2.

We then take this computation as λi+1, and obtain νi+1 by extending νi with the tran-
sitions producing (t,write(x)) (t, flush(x)).

All the above transformations preserve the final configuration of the computation.
Furthermore, since visible locations are protected in P , they also preserve the projection
of the trace of the computation to visible actions. Hence, λi+1 and νi+1 thus constructed
satisfy the required conditions.

Now, assume that ξ1 contains actions by a thread other than t reading or flushing
x. We show that the computation λi can be transformed into another computation with
an SC trace containing a data race. Let (t′, access(x)) be the last action in ξ1 by a
thread other than t reading or flushing x. Proposition 21 allows us to move the transition
producing (t, flush(x)) right after the one producing (t′, access(x)), if the latter is not
inside an atomic block, or right after the corresponding UNLOCK transition, if it is. We
thus obtain a computation with the trace:

ηi (t,write(x)) ξ1 block(t′, access(x)) (t, flush(x)) ξ2,

where t 6= t′. Let us drop the suffix ξ2 and the corresponding fragment of the computa-
tion:

ηi (t,write(x)) ξ1 block(t′, access(x)) (t, flush(x)).

As before, ξ1 does not contain flush actions by t. Hence, by removing all transitions by
t from the computation fragment generating ξ1, we obtain a valid computation with the
above trace, but where the computation fragment generating ξ1 does not contain transi-
tions by t. By Proposition 21, we can then move the transition producing (t,write(x))
to the position right before the one producing (t, flush(x)), obtaining a computation
with the trace:

ηi ξ1 block(t′, access(x)) (t,write(x)) (t, flush(x)).

If (t′, access(x)) is inside an atomic block, or access is read, then the trace has the
form

ηi ξ1 ξ, (5)

where ξ is a data race.
Consider the case when access above is flush outside an atomic block. Since ηi is

SC, the write (t′,write(x)) corresponding to (t′, access(x)) is in ξ1:

ηi ξ1 (t
′,write(x)) ξ2 (t

′, flush(x)) (t,write(x)) (t, flush(x)), (6)

Since store buffers are FIFO, all flushes by t′ in ξ2 correspond to write actions from ξ1.
Hence, by removing all transitions of thread t′ except these flushes from ξ2, we obtain
a valid computation with a trace of the above form, but where ξ2 does not contain
transitions by t′ except flushes of writes in ξ1. By Proposition 21, we can now move
the transition producing the action (t′,write(x)) to the position right before the one
producing (t′, flush(x)), making the write immediate:

ηi ξ1 (t
′,write(x)) (t′, flush(x)) (t,write(x)) (t, flush(x)). (7)

Thus, in any case, we obtain a computation with a trace of the form (5). If there are
pending writes in ξ1, we can add the corresponding FLUSH transitions to the end of the
computation producing ξ1, thus ensuring that the trace is complete (this may lead to a
read in ξ reading a different value, but does not affect the form of the trace).

Let us apply all the transformations described above to the prefix of the computation
producing ηi ξ1, which is of a smaller length than the original computation λ. If this
converts it to a computation with an SC trace, then, since the transformations preserve
the final configuration of the computation, the resulting computation can be extended
with transitions producing the data race ξ. Otherwise, we obtain a computation with the
trace of the form (5), but of a smaller length and recurse again. The latter case cannot
happen infinitely often, so in the end we will construct a computation with a data race.

ut

C.6 Proof of Theorem 11

The proof is virtually identical to that of Theorem 10. Namely, consider τ ∈ JLKTSO

and the corresponding computation λ of MGC(L). We apply the same transformations
to λ as in the proof of Theorem 10, except that, instead of removing writes without
corresponding flushes in the preprocessing step, we append the necessary FLUSH tran-
sitions at the end of the computation. This ensures that this step preserves the history of
the computation. If the transformations produce an SC trace, then its history is equal to
the original one, which implies the required. Otherwise, we find an SC computation of
MGC(L) with a data race, contradicting the DRF of L. ut

C.7 Proof of Theorem 13

We first state auxiliary lemmas. We use the counterpart of the TSO/SC semantics de-
fined in Section 3 and Appendix B—an SC/TSO semantics in which client commands
access the memory directly, while library ones go via store buffers. The following
lemma shows that any TSO trace of C(L) can be converted into either a trace on
SC/TSO with the same visible behaviour or a trace exhibiting a data race.

LEMMA 22 (Client robustness). Assume that visible locations are protected in C(L).
Then

∀τ ∈ JC(L)KTSO.∃τ ′ ∈ JC(L)KSC/TSO. visible(τ ′) = visible(τ) ∨
(client(τ ′) contains a data race).

This lemma is proved below. We use the following variant of Lemma 18 for the SC/TSO
semantics. Its proof is an easy variation on the proof of the latter.

LEMMA 23 (Decomposition on SC/TSO).

∀τ ∈ JC(L)KSC/TSO.∃η ∈ JCKSC.∃ξ ∈ JLKTSO.

history(η) = history(ξ) ∧ client(τ) = client(η) ∧ lib(τ) = lib(ξ).

Finally, we use the following variant of Lemma 20, which is analogous to a theorem
proved in [7]. It states that any pair of client-local and library-local SC computations
agreeing on the history can be combined into a valid SC computation of C(L).

LEMMA 24 (Composition on SC).

∀η ∈ JCKSC.∀ξ ∈ JLKSC. history(η) = history(ξ)⇒
∃τ ∈ JC(L)KSC. client(τ) = client(η).

Proof of Theorem 13. Consider τ1 ∈ JC(L)KTSO. By Lemma 22, for some τ2 ∈
JC(L)KSC/TSO, either visible(τ2) = visible(τ1) or client(τ2) contains a data race. By
Lemma 23, τ2 generates two traces—a library-local trace ξ1 ∈ JLKTSO and a client-
local one η ∈ JCKSC—such that client(τ2) = client(η) and history(ξ1) = history(η).
Since L vTSO→SC L

], for some trace ξ2 ∈ JL]KSC, we have history(ξ1) v history(ξ2).
By Lemma 19, ξ2 can be transformed into a trace ξ′2 ∈ JL]KSC such that history(ξ′2) =
history(ξ1) = history(η). We then use Lemma 24 to compose the library-local com-
putation ξ′2 with the client-local one η into a computation τ3 ∈ JC(L])KSC such
that client(τ3) = client(η) = client(τ2). Hence, either visible(τ3) = visible(τ1) or
client(τ3) contains a data race. Since C(L]) is DRF, the latter case is impossible, which
implies the required. ut

Proof sketch for Lemma 22. Consider a trace τ ∈ JC(L)KTSO and the correspond-
ing computation λ of C(L). We construct a computation with the required trace τ ′

by running the transformations from the proof of Theorem 10 to make only the client
part of the trace SC. That is, we move FLUSH transitions to follow immediately the
corresponding WRITE transitions only for client locations. When every client write
is immediately followed by a flush, we get a computation in the SC/TSO semantics.
However, intermediate computations arising during the transformations are not valid in
either TSO or SC/TSO semantics. Thus, we consider yet another auxiliary semantics,
client-first TSO (C-TSO), in which we allow entries for client locations in store buffers
to be flushed ahead of entries for library ones, but not vice versa. A computation in
the TSO semantics also belongs to C-TSO, which gives us the initial computation λ1

for the construction of Theorem 10. The transformations from Theorem 10 are then run
without changes, except on every step we now have that client(ηi), rather than ηi, is SC:
if the transition following the computation prefix producing ηi is a library transition, a
call or a return, we just obtain ηi+1 by extending ηi with this transition and do not
perform any transformations. The transformations used in the proof of Theorem 10 can
be easily adjusted to the C-TSO semantics. For example, in several places during the
proof of Theorem 10, we considered a WRITE transition by t and a corresponding later
FLUSH transition, and argued that all FLUSH transitions by t between these two have to
be for writes preceding the WRITE transition. This is still true in the C-TSO semantics
when the WRITE transition is by the client. This justifies the step in the proof remov-
ing all transitions by t between the WRITE and the FLUSH except FLUSH transitions
(such as converting (6) into (7)). Note that this transformation can change the history of
the computation. By performing it in the C-TSO semantics, we preserve the knowledge
that, despite this, the computation can still be obtained by executing the client with the
given library. ut

Discussion. As we noted in Section 5, a proof of Theorem 13 cannot be obtained by
straightforwardly combining Theorems 5 and 10. Its proof relies crucially on the fact
that Lemma 22 guarantees that, in both outcomes, the client behaviour can be repro-
duced while using the TSO implementation of the library. The proof of the lemma uses
correlations in the use of store buffers by the client and the library to establish this.
Because of our reliance on this property, the proof of Theorem 13 would not go through
even if we used the strategy from the proof of Theorem 5 (instead of the end result), i.e.,
first split τ1 into a client-local and a library-local trace and then applied Theorem 22 to
make the former one SC. In the case when the client has a race, we would not be able
to guarantee that the transformation converting (6) into (7) in Theorem 22 preserves the
history of the library, and hence, would not be able to reproduce data race in C(L]).

C.8 Proof of Theorem 15

In the following, η ranges over SC traces. Traces subscripted with ¬t contain only
actions by threads other than t, and those with t, only actions by t. Like in the proof of
Theorem 10, the scope of all trace variables is limited to the formula they occur in.

Consider a trace τ ∈ JCKTSO and the corresponding computation λ. Like in the
proof of Theorem 10, we first preprocess the computation by removing transitions fol-
lowing pending writes and ensuring that all writes inside atomic blocks are immediate.
We can thus assume that τ is complete.

We now define a sequence of steps that transforms λ into a computation with an SC
trace that either has the same projection to visible actions or contains a quadrangular
race. In the former case, on every step, we obtain a computation with the trace of the
form η τ ′, where η is SC. We then either extend the SC prefix η of the trace without
decreasing the number of immediate writes in it, or increase the number of immediate
writes in τ ′. The transformations preserve the projection of the trace to visible actions.
For brevity, in the following we describe how our transformations affect traces only,
without referring to computations producing them. We use a number of transformations
on computations and traces similar to those in Proposition 21; we omit their formal
statements. Whenever we move actions in a trace, we move atomic blocks indivisibly.

To ease the exposition, we mark different stages in the transformation.

(A) Consider a trace η ϕ τ ′, where η is SC. Note that since η is SC the store buffers are
empty at the end of its computation, and so ϕ cannot be a flush action. If ϕ is a read
action or an action within an atomic block, then η ϕ is SC and we can extend the SC
prefix of the trace and continue with (A). Assume now that ϕ = (t,write(x)), which is
not inside an atomic block. Then there exists a corresponding flush action later in the
trace, which is outside an atomic block due to the preprocessing phase:

η (t,write(x)) τ1 (t, flush(x)) τf .

Note that τ1 cannot contain a flush action by t. Indeed, since the projection of η to
actions of t is SC, such an action would correspond to a write action in τ1. But then
this write would be flushed earlier than a preceding write (t,write(x)), contradicting
the FIFO ordering of store buffers.

If τ1 does not contain any actions of threads other than t reading or flushing x, then
we can move (t, flush(x)) to the position right after (t,write(x)):

η (t,write(x)) (t, flush(x)) τ1 τf ,

thus extending the SC prefix of the trace to η (t,write(x)) (t, flush(x)). We can then
continue with the transformation (A).

Assume now that τ1 does contain actions of a thread other than t reading or flushing
x. Then we can move (t, flush(x)) to the position right after the last such action in τ1
or the atomic block that contains it:

η (t,write(x)) τ1 block(t1, access(x)) (t, flush(x)) τf ,

where t1 6= t.

(B) We now try to move all actions by threads other than t in τ1 block(t1, access(x))
leftwards, so that they directly follow η. If successful, this would result in a trace of the
form

η τ¬t (t,write(x)) τt (t, flush(x)) τf .

We can then move (t, flush(x)) leftwards in this trace to make (t,write(x)) immediate:

η τ¬t (t,write(x)) (t, flush(x)) τt τf

and then proceed with (A).
We move the actions or atomic blocks by threads other than t in τ1 leftwards one by

one, starting with the leftmost. To ensure that these transformations succeed, we need
to check that the trace fragments being moved commute with actions by thread t in τ1.
Note that τ1 cannot contain atomic blocks by t, since otherwise the action (t, flush(x))
corresponding to (t,write(x)) could not follow τ1. Since τ1 does not contain flush ac-
tions by t, the only non-commuting pair of trace fragments we might have is (t, read(y))
and block(t2, flush(y)), where t 6= t2 and the read transition reads from the memory.
Since every read from x by t in τ1 reads from the store buffer, we have x 6= y and
(t1, access(x)) commutes with any action of t in τ1. Besides, atomic blocks access at

most one location, so that (t2, flush(y)) and (t1, access(x)) cannot be inside the same
atomic block. Thus, if the transformation (B) gets stuck, the stuck trace will have the
form

η τ1 (t,write(x)) τt (t, read(y)) block(t2, flush(y))

τ2 block(t1, access(x)) (t, flush(x)) τf , (8)

where x 6= y, t 6= t1, t 6= t2 and (t, flush(x)) corresponds to (t,write(x)). In the
current context, we know that τ1 does not contain actions by t. However, to handle
recursive invocations of transformations, in the following, we consider a more general
case where this requirement is omitted. Let us drop all the actions from the suffix τf
other than flushes for writes pending in the rest of the trace. We can thus assume that
τf consists of only flush actions. We now show that (8) can be transformed into an SC
trace exhibiting a quadrangular race.

(C) For every thread t3, let us partition its write actions in τ1 into those for which
the corresponding flush is in τ1 and those for which it is later in the trace. Then in a
projection of τ1 to actions of t3, the former precede the latter. Let us apply the trans-
formations (A)–(B) to the former kind of write actions in τ1: we move every such flush
action leftwards to make the corresponding write immediate, processing flushes left to
right. The only difference with the previous situation is that, while processing a write
by a given thread, the prefix η may not be SC: it might have pending writes by other
threads. However, in the transformations (A)–(B) we actually rely only on the fact that
the projection on η to actions of the thread whose write we are trying to make imme-
diate is SC. If the transformations fail, then we find a trace of the form (8) of a strictly
smaller length. We can then apply the transformation (C) again.

If the transformations (A)–(B) succeed, then we convert the trace into one of the
form (8), but such that (τ1)|t3 = τ ′t3τ

′′
t3 , where τ ′t3 is SC, and τ ′′t3 contains only reads

and writes pending in τ1, with at least one pending write (in particular, it does not
contain atomic blocks).

(D) Let us now move all actions in suffixes τ ′′t3 to the end of τ1. For this, we first process
the actions or atomic blocks left to right in their order in τ1 until we gather them in a
single block, and after this, we move the whole block together.

If this process succeeds, we get a trace of the form (8), but where τ1 contains only
reads and pending writes. Every pair of actions by different threads in τ1 is commuting.
We now ensure that the (t2,write(y)) action corresponding to (t2, flush(y)) is at the
position right before the latter. If (t2, flush(y)) is inside an atomic block, then so is
(t2,write(y)). Otherwise we try to move all actions by t2 in τ1 following (t2,write(y))
to the position after (t2, flush(y)), and then move (t2,write(y)) to the position before
it. If one of these actions (a read) conflicts with a flush in τt, then we can drop the
suffix of the trace following (t2, flush(y)), except some of the flushes, to keep the trace
complete. This again yields a trace of the form (8), but of a strictly smaller length. We
can then procede with (C).

Otherwise, we obtain:

η τ1 (t,write(x)) τt (t, read(y)) block((t2,write(y)) (t2, flush(y)))

τ2 block(t1, access(x))) (t, flush(x)) τf , (9)

where τ1 contains only reads and pending writes. We can then proceed with the trans-
formation (I).

(E) Assume the transformation (D) gets stuck at a trace of the form

η τ3 block((t3,write(z)) (t3, flush(z))) τf , (10)

where τ3 contains only reads and pending writes, and the last action in it does not com-
mute with block((t3,write(z)) (t3, flush(z))). Any pair of actions by different threads
in τ3 commute. Hence, let us move all actions in this subtrace that commute with
block((t3,write(z)) (t3, flush(z))) to τf . We know that an atomic block can access at
most one memory location. Thus, after this, the last action in the subtrace by any thread
different from t3 is a read(z). This implies that no thread other than t3 wrote to z in
the subtrace, for otherwise such read actions would read from the corresponding store
buffers and thus commute with the block. Also, we know that t3 did not execute write
actions in the subtrace, as the writes in block((t3,write(z)) (t3, flush(z))) are the first
ones by this thread to be flushed after the SC prefix η, and store buffers are FIFO.
Hence, we can move all read actions by t3 in τ3 to η. We can thus assume that τ3 does
not contain actions by t3.

(F) Every pending write write(u) in τ3 has a corresponding flush flush(u) after

block((t3,write(z)) (t3, flush(z))).

Let us try to move all such flushes to the position right after this block, processing
them left to right. If some flush cannot be moved to this position due to a race, we just
move it as far leftwards as possible. The flush actions that can be moved to the above
position can also be moved right before the block, since no thread wrote to z in τ3, and
atomic blocks access at most one location. For every thread with actions in τ3, consider
the maximal prefix of its actions there for which all corresponding flushes have been
moved to this position. Let us sort actions in τ3 so that it is split into two subtraces: τ ′3,
containing the above prefixes for all threads, followed by τ ′′3 , containing the rest of the
actions. Let us also sort actions in τ ′′3 by thread identifier.

(G) Let us try to move the flushes that are currently right before
block((t3,write(z)) (t3, flush(z))) to the position in between τ ′3 and τ ′′3 , process-
ing them left to right. If this process gets stuck for some flush action (t4, flush(u)), this
is because we cannot commute it over some action (t5, read(u)) in τ ′′3 . Since no thread
wrote to z in τ3, all flush actions to be moved commute with final read(z) actions in
τ ′′3 . By the definition of τ ′′3 , there exists a write action to the left of (t5, read(u)) whose
corresponding flush further down the trace participates in a race. Hence, we get a trace

of the form:

η τ ′3 τ4 (t5,write(w)) τt5 (t5, read(u)) (t4, flush(u))

τ2 block(t6, access(w)) (t5, flush(w)) τf ,

where t5 6= t4, t5 6= t6. By dropping all actions from τf except flush actions for writes
pending in the rest of the trace, we obtain a trace of the form (8). Let us also drop all
transitions by thread t5 between (t5,write(w)) and (t5, flush(w)) except FLUSH ones.
This erases at least the final reads from z, so the resulting trace is smaller than the
original one. We can thus apply the transformations starting from (C).

If the transformation (G) succeeds, then τ ′3, together with the flushes moved, is a
complete trace smaller than the original one. We can thus apply the transformations
starting from (A) to either make it SC, or to find a quadrangular race. In the former
case, we obtain a trace of the form (10), but where for every pending write in τ3, the
corresponding flush has a race in τf .

(H) Consider the write in τ3 with the earliest flush. By commuting actions in τ3, we can
ensure that this write is the first action in this trace. Since t3 does not execute actions
in τ3, this write is not by t3. Let us erase the suffix of the trace following the flush and
the actions of all the threads with writes in τ3 following η, except the one that performs
the flush. Since the other writes in τ3 are flushed later than the flush action we are
considering, the resulting trace is still valid. It is of the form (9), but with τ1 = ε. We
can then continue with the transformation (J).

(I) We are left with the case when the transformation (D) succeeded, so that we have a
trace of the form (9). However, this trace is also of the form (10), so we can again apply
the transformations (E)–(H), obtaining a trace of the form (9) with τ1 = ε.

(J) We thus have a trace

η (t,write(x)) τt (t, read(y)) block((t2,write(y)) (t2, flush(y)))

τ2 block(t1, access(x)) (t, flush(x)) τf ,

where x 6= y, t 6= t1, t 6= t2 and (t, flush(x)) corresponds to (t,write(x)). We now
drop non-FLUSH transitions from τf .

Let us complete (t,write(x)) with an immediate flush and discard (t, flush(x)) later
in the trace. This may result in some actions in τ2 changing. However, this can only be
the case if there is a read or flush of x in τ2, so in any case we get a trace of the form

η (t,write(x)) (t, flush(x)) τt (t, read(y))

block((t2,write(y)) (t2, flush(y))) τ2 block(t1, access(x)) τf .

We then continue the same process with all writes in τt: again, if something changes
in τ2, this is due to an access to the location the write to which being completed. In
the end, we obtain a trace of the above form, but where τt is SC. We can then drop all
non-FLUSH transitions from τf .

(K) Since the trace τ2 block(t1, access(x)) is complete, we can apply the transforma-
tions to it starting from (A). This will either make it SC, in which case we will have
reproduced a quadrangular race, or find a quadrangular race inside the trace.

We now prove that the above transformation strategy indeed produces either an
equivalent SC trace, or an SC trace with a quadrangular race.

Assume that the transformation of τ encountered a trace of the form (8). Since after
this, every jump to an earlier stage in the strategy considers a trace strictly smaller than
the original one, the transformation will eventually terminate with a quadrangular race.

Assume now that the transformation of τ never encounters a trace of the form (8),
so that we only apply the transformations (A)–(B). In this case, on every step of the
transformation strategy where the SC prefix of the trace is not extended, the number
of non-immediate writes following the prefix decreases. This means that eventually the
trace will become SC. ut

C.9 Proof of Theorem 17

We use yet another variant of Lemma 187. Let lib be an operation on traces analogous
to client, but selecting actions relevant to the library.

LEMMA 25 (Decomposition on SC).

∀τ ∈ JC(L)KSC.∃η ∈ JCKSC.∃ξ ∈ JLKSC.

history(η) = history(ξ) ∧ client(τ) = client(η) ∧ lib(τ) = lib(η).

Assume L is QRF, C(L) is strongly DRF, and visible locations are protected in it.
Consider a computation λ of C(L) on TSO. Let us apply the transformations from the
proof of Theorem 15 that try to make the computation SC. If they succeed, we get a
computation of C(L) on SC with the same sequence of visible actions, as required. If
they fail, we get a computation with the trace of the form (8), where τ1 does not contain
actions by t. We now show that this trace can be transformed into a trace violating the
race-freedom assumptions in the theorem.

We consider several cases depending on whether the locations x and y involved in
the problematic trace fragment belong to the client or the library.

– x, y ∈ LLoc. By Lemma 18, there exists a trace from JLKTSO containing the quad-
rangular race on the locations x and y. Applying the transformations from the proof
of Theorem 15 further, we can convert this trace to an SC trace in JLKSC containing
a quadrangular race, which contradicts the QRF of L.

– x ∈ CLoc. In this case we proceed like in the proof of Theorem 10. Since store
buffers are FIFO, there are no flushes by t in the trace fragment from (t,write(x)) up
to, but not including (t, flush(x)). Hence, by removing all transitions of thread t from
this computation fragment and dropping the suffix of the computation corresponding
to τf , we obtain a valid computation with the trace:

η τ1 (t,write(x)) τ2 block(t1, access(x)) (t, flush(x)),

7 Proved in: A. Gotsman and H. Yang. Liveness-preserving atomicity abstraction. In ICALP,
2011.

where τ2 does not contain flushes by t. Thus, we can move the transition producing
the action (t,write(x)) to the position right before the one producing (t, flush(x)):

η τ1 block(t1, access(x)) (t,write(x)) (t, flush(x)),

In the case when access is flush, we can ensure that the write action (t1,write(x))
corresponding to (t1, flush(x)) precedes it directly as in the proof of Theorem 10.
Thus, we get a data race at the end of the trace. By adding FLUSH transitions for
pending writes before the race, we can make sure that the trace is complete. We then
apply the transformations from Theorem 15 to the computation prefix producing the
part of the trace preceding the race. If this makes the computation SC, then we can
still execute the racing commands at its end. By projecting the trace of the resulting
computation to client actions using Lemma 25, we get a contradiction with the DRF
of C(L). If the transformations fail, we start from the beginning of this proof, but
with a smaller trace.

– y ∈ CLoc. Consider the transition producing the write action (t2,write(y)) corre-
sponding to (t2, flush(y)). If this transition is within the same atomic block as the
one producing (t2, flush(y)), then we can assume that it directly precedes the lat-
ter. Otherwise, like in the previous case, we can remove all non-flush transitions by
thread t2 from the fragment of computation starting with the transition producing
(t2,write(y)) and ending with the one producing (t2, flush(y)) and drop the suffix
of the trace following (t2, flush(y)). This allows moving (t2,write(y)) so that it is
immediate. In both cases we obtain a computation with the trace of the form:

η τ1 (t, read(y)) block((t2,write(y) (t2, flush(y))),

As before, we can ensure that this trace is complete. We can then apply the trans-
formations from the beginning, trying to make the prefix of the computation SC. In
the end, we either reproduce a race in the sense of Definition 16, or end up with a
smaller trace to be transformed.

Every recursive call of the above transformation strategy is on a smaller trace. Hence, it
eventually terminates, with a QRF, a DRF or a strong DRF violation, contradicting the
conditions of the theorem. ut

