Noname manuscript No.
(will be inserted by the editor)

A divide-and-conquer approach for analysing overlaid data
structures

Oukseh Lee - Hongseok Yang - Rasmus
Petersen

the date of receipt and acceptance should be inserted later

Abstract We present a static program analysis for overlaid data structures such
that a node in the structure includes links for multiple data structures and these
links are intended to be used at the same time. These overlaid data structures
are frequently used in systems code, in order to impose multiple types of indexing
structures over the same set of nodes. Our analysis implements two main ideas.
The first is to run multiple sub-analyses that track information about non-overlaid
data structures, such as lists. The second idea is to control the communication
among the sub-analyses using ghost states and ghost instructions. The purpose
of this control is to achieve a high level of efficiency by allowing only necessary
information to be transferred among sub-analyses and at as few program points
as possible. Our analysis has been successfully applied to prove the memory safety
of the Linux deadline IO scheduler and AF'S server.

Keywords automatic program verification - memory safety - shape analysis -
overlaid data structure

We want to thank Gilad Arnold, Patrick Cousot, Peter Hawkins, Peter O’Hearn, Martin Ri-
nard, Noam Rinetzky, Xavier Rival, and John Wickerson for helpful comments. This work
was supported by EPSRC, and Lee by the Engineering Research Center of Excellence Pro-
gram of Korea Ministry of Education, Science and Technology (MEST) / National Research
Foundation of Korea (NRF) (Grant 2011-0000968).

O. Lee
Dept. of CSE, Hanyang University, Sangnok-gu, Ansan, Gyeonggi 426-791, South Korea
E-mail: oukseh@hanyang.ac.kr

H. Yang
Department of Computer Science, University of Oxford, Oxford OX1 3QD, United Kingdom
E-mail: hongseok.yang@cs.ox.ac.uk

R. Petersen
Queen Mary University of London, London E1 4NS, United Kingdom
E-mail: rusmus@eecs.qmul.ac.uk

1 Introduction

Recent advances in verification research have resulted in successful industrial-
strength software verifiers, such as Microsoft SDV [2] and Astrée [4]. These tools
do verification-by-static-analysis, where the tools work fully automatically without
asking the user to insert loop invariants or procedure specifications. But they
cannot approach many parts of operating systems because of their inaccurate or
unsound treatment of the heap. In fact, the heap is one of the outstanding problems
holding back verification-by-static-analysis (or software model checking). Although
there have been works approaching verification of the heap in real-world systems
programs [5,17], fundamental problems remain, and one of the most fundamental
is the presence of nontrivial, but not unrestricted, sharing. The not unrestricted
aspect gives some hope that techniques might be found that do not immediately
run into an efficiency brick wall.

In this paper, we consider the automatic verification of overlaid data structures,
which show such nontrivial but not unrestricted sharing. We call a data structure
overlaid, if a node in the structure includes links for multiple data structures and
these links are intended to be used at the same time. These overlaid data structures
are frequently used in systems code in order to impose multiple types of indexing
structures over the same set of nodes. For instance, the deadline IO scheduler of
Linux has a queue whose nodes have links for a doubly-linked list as well as links
for a red-black tree. The linked list is used to record the order in which nodes
are inserted in the queue, and the red-black tree provides an efficient indexing
structure on the sector fields of the nodes.

Our goal is to build an efficient yet precise program analysis for overlaid data
structures, capable of verifying the memory safety or shape properties of real-
world programs. The objective here is not to verify toy problems of overlaid data
structures, but to prove real-world examples. In fact, we created an analyser in
2008 that could show the memory safety of toy examples, but this analyser did
not scale to verify real code like the deadline IO scheduler for several fundamental
reasons (see Section 10). Also, there have been other papers that take on toy
programs using overlaid data structures or graphs, but they are all too imprecise
or too expensive to verify serious examples [11,9,6,16].

In this paper, we present a new program analysis for overlaid data structures,
which can verify the memory safety and shape properties of medium sized real-
world examples from Linux. Our analysis implements two main ideas:

1. Run multiple sub-analyses that track information about standard data struc-
tures, such as lists: Each sub-analysis infers shape properties of only one com-
ponent of an overlaid data structure, but the results of these sub-analyses are
later combined to derive the desired safety properties about the whole overlaid
data structure. This is reminiscent of Cartesian abstraction [3].

2. Control the communication among the sub-analyses using ghost states and
ghost instructions: We found that to prove the memory safety of programs using
overlaid data structures, the sub-analyses need to transfer information among
themselves (using a form of reduction [7]); the memory safety of the programs
often relies on the fact that components of an overlaid data structure use the
same set of nodes. Our analysis controls this information transfer in order to
achieve a high level of efficiency. It aims at allowing only necessary information

to be transferred among sub-analyses and at as few program points as possible.
To achieve the aim, the analysis uses ghost states, special instructions for
modifying ghost states, and algorithms that insert those instructions before or
during the main phase of the analysis.

The rest of the paper is organized as follows. Related works are given in Sec-
tion 2. Section 3 gives an informal account of the analysis, and Section 4 details
the ghost states that allow communication among sub-analyses. Section 5 describes
the abstract domain of our analysis where abstract states are seen to be tuples
of those of the sub-analyses. Section 6 describes the weak reduction operator that
enables communication among the sub-analyses. We then move on to the formal
account of the analysis itself: pre-analyses (Section 7 and 8) and a main analysis
(Section 9). Section 10 shows some experimental results and Section 11 concludes.

An extended abstract [13] of this paper was presented at the CAV 2011 confer-
ence. Compared to the conference version, this paper expands on the pre-analysis
phase of our program analyser. This phase modifies an input program by auto-
matically inserting ghost instructions, which control information transfer among
sub-analyses. It is one of the main reasons that our analysis is efficient.

2 Related work

In addition to the approaches cited already, we discuss three other related works.
The first is the synthesis approach by Hawkins et al. [10], where a programmer
specifies an overlaid data structure using a high level specification in the style of
a relational database. This approach focuses on generating new correct programs
using overlaid data structures, and it is complementary to the results of this paper.
The second is the general meet algorithm [1] for finding intersections of heap
abstractions in TVLA. The algorithm is related to our operator for transferring
information among sub-analyses, but it aims at computing the exact meet, not
an efficient over-approximation of the meet as in this paper. The last is the Hob
system by Kuncak et al. [12], where one can apply different analysis plug-ins for
different data structures, combine the analysis results, and verify that values stored
in these data structures are properly related. This system regards an overlaid data
structure as a single data structure, and requires a plug-in for its analysis. This
requirement can be met by the analysis in this paper.

3 Informal description

We start with an informal description of our analysis using the baby IO scheduler
in Fig. 1, which is modelled on the Linux deadline IO scheduler.

Our baby IO scheduler schedules IO requests using two disjoint queues. When
a request arrives, it is stored in the first queue. Later the request is selected
according to a scheduling policy, processed, and moved to the second queue. In
order to help the performance of the scheduling, the first queue uses an overlaid
data structure with list and tree components. The list component is a singly-linked
list starting from qis, and it keeps requests in FIFO order. The tree component
is a binary search tree with parent pointers. The address of the root of the tree is
stored in q1t, and the tree provides an efficient search mechanism on the key field

Fig. 1 Baby IO scheduler and snapshot of the data structure used

struct node {
struct node *next;

struct node *p,*1,*r; next
int key;
}; ’ 7o
‘7
next \¥ 1T
struct node *qls, *qlt, *q2; next
7 1
void move_request() { P2 N
struct node *c; / 0

¢ = list_remove_first(&qls); next
if (c==0) return; // trans(list->tree) (c) 0 1 1

tree_remove(c); // move(c,gamma) I
list_add_first(&q2,c); 0 0
c = 0; // moveRgn(gamma,beta)

} qls

of requests. The second queue is, on the other hand, a simple linked list from q2,
storing processed requests in FIFO order. A concrete example of both queues is
shown in Fig. 1.

The move_request function in Fig. 1 shows a typical example of exploiting
both components of an overlaid data structure. This function removes the first
node of the list component qis of the overlaid data structure. Then, it switches
to the tree component, removes the node from the tree, and adds it to q2. One
important aspect is that the removal from the tree exploits the correlation between
components of the overlaid data structure—both the list q1s and the tree q1t use
the same set of nodes. Although the node c is found using the list part, the
correlation ensures that the node is in the tree as well. Hence, the removal from
the tree can be performed safely without traversing the tree.

The main challenge for automatically proving the memory safety or shape prop-
erties of the baby 10 scheduler is to find a good representation of the overlaid data
structure (qis,qlt), which enables the design of an efficient yet precise program
analysis. Although nodes in this data structure are highly shared, this sharing has
a pattern, i.e., it is generated by the overlay of a list and a tree. Furthermore, our
baby scheduler, like the original Linux IO scheduler, relies only on the correlation
between the list and tree components found in the move_request function—both
components are formed using exactly the same set of nodes. We would like the
representation to exploit fully the pattern of (qis,q1t), and to express only this
relatively weak correlation of its two components.

Our solution is to use the conjunction of two types of assertions ¢ A v, where
¢ describes the heap only in terms of list fields and v does the same but using
only the fields from the tree (including key). To express that the components of an
overlaid data structure use the same set of nodes, ¢ and i use what we call region
variables «, 3,7, which denote sets of memory addresses. Concretely, our analysis
infers that the data structures of our IO scheduler normally satisfy the following
assertion:

(Is(q1s)a *1s(q2)g) A (tr(qlt)a * trueg). (1)

The predicate Is(z) means a singly-linked list starting from the address x, and tr(y)
a tree rooted at y. The separating conjunction P x @Q means that the heap consists
of two disjoint sub-heaps described by P and Q.

The first conjunct in (1) says that the heap contains two disjoint singly-linked
lists q1s and g2. Using the subscripts —a and —g, it also states that the addresses
of the nodes in the list q1s form the set a, and those of the nodes in the list
g2 the set 8. The second conjunct, on the other hand, talks about tree-related
properties of the heap. According to this conjunct, the heap contains a tree with
root address qlt. Furthermore, the addresses of nodes in the tree form the set «,
while the addresses of all the other nodes make the set 3. Note that each conjunct
has its own characterisations of o and S. To be consistent, both characterisations
of a should mean the same, which implies that the list and the tree use the same
set of nodes. This is exactly the type of correlation that we want to express for
the overlaid data structure (qis,qlt).

This representation enables an interesting strategy for analyzing a client pro-
gram of an overlaid data structure. The strategy is to run multiple sub-analyses
that are designed for tracking information about standard non-overlaid data struc-
tures, such as lists and trees. Each of these sub-analyses infers shape properties
of only one component of the overlaid data structure, hence handling only one
conjunct in our representation. The desired memory properties of the program are
then proved by combining the results of the sub-analyses.

Our analysis implements a real-world adjustment of this strategy. Note that in
our example, the sub-analyses cannot be completely independent. They need to
communicate during (not after) analysis because of the above-mentioned correla-
tion among components of an overlaid data structure; in the function move_request,
the removal of ¢ from the tree cannot be inferred to be safe without looking at
the list. To address this concern while keeping the communication cost of the sub-
analyses low, our analysis uses ghost instructions for region variables. It runs the
sub-analyses independently most of the time, except at a few program points where
the memory safety proof demands communication among the sub-analyses. At
these program points, the analysis inserts ghost instructions that initiate commu-
nication among sub-analyses. Furthermore, even in those communication points,
the analysis tries to keep the communicated information as simple as possible,
using region variables.

We illustrate the analysis using the move_request function in Fig. 1. In this case,
our analysis runs the list and tree sub-analyses, which update the conjunct for list
and that for tree, respectively. The first step of our analysis is a pre-analysis that
inserts ghost instructions for changing the values of region variables or for trans-
ferring information between the list and tree sub-analyses. For our move_request
example, the pre-analysis inserts transi—ir..(c) and move(c,) before and after
tree_remove, as shown in Fig. 1. The instruction transis—ue(c) tells the tree
sub-analysis to get information about cell ¢ from the list sub-analysis, and it is
a so-called reduction operator in program analysis [7]. The instruction is inserted
here because the pre-analysis conjectures that information about cell c at this
program point will be necessary for verification. The second instruction move(c,~)
tells the analysis to manage the values of region variables by moving the address
c from its current region to the region ~. We defer the details of the pre-analysis
to Section 7.

The second step is to run the move_request function symbolically, starting from
the assertion in (1), while abstracting away unnecessary information from time to
time. This symbolic abstract execution is done by invoking the corresponding
routines of the sub-analyses. The command list_remove_first(&qls) is run first
in this manner, and results in the assertion

(Is(q1s)a * c—={}a *1s(q2)g) A (tr(qlt)q *trueg) (2)

for the true branch of the following conditional statement. Compared to the orig-
inal in (1), the assertion has additionally c¢— {}+ in the first conjunct, and this
additional predicate describes the cell ¢ removed from the list q1s. In this abstract
execution, our analysis runs only the list sub-analysis not the tree one because
it detects that list_remove_first(&qls) is equivalent to skip as far as the tree
sub-analysis is concerned.

Note that only the first conjunct of (2) knows the allocatedness of cell c in «.
The next instruction transi,ce—is(c) makes the analysis transfer the information
about cell ¢ from the first to the second conjunct, which gives the assertion:

(Is(q1s)a * c—{}a *1s(a2)g) A (@(qlt,c,a) *trueg). (3)

Here p(qlt, c, @) is an assertion with free variables qit, c, a, and it describes a tree
with root q1t and a normal node ¢ such that all nodes of the tree form the set
o.! This refinement of assertions is how our analysis enables the communication
between sub-analyses, this time from the list to the tree sub-analysis. The trans-
ferred information allows the analysis to prove the memory safety of the following
instruction tree_remove(c), which is handled by the tree sub-analysis only, and to
over-approximate the instruction’s output states by the assertion:

(Is(q1s)a * c = {}a *Is(q2)g) A (tr(qlt)a * ¢+ {}a * trueg). (4)

This assertion has c¢— {}+ in both conjuncts, hence confirming that the node c is
indeed removed from both the list q1s and the tree q1t.

The next instruction is the ghost instruction move(c,v) inserted by the pre-
analysis. This instruction simply changes the subscript of ¢+ {} from « to ~v:

(Is(q1s)a * c— {}y % 1s(q2)) A (tr(qlt)a *x cr>{}y * trueﬁ). (5)

Semantically, this change means that the allocated cell ¢ is moved from the set «
to the set v, which only contains c. The decision for singling out ¢ and putting it in
a separate set 7 is made because the pre-analysis detected a possibility of moving
cell ¢ between two different data structures. This possibility is indeed realized in
the program because the following two instructions list_add_first(&q2,c) and
c = 0 move the cell ¢ to the second queue q2. The analysis tracks the move of the
cell, using its list sub-analysis, and transforms (5) to the assertion:

(Ja. Is(q1s)a * g2 — {next:a}y *xIs(a)g) A (3b. tr(qlt)a *x b {}y x trueg). (6)

The variable a has the old value of g2, and b the old value of c.
Note that the sub-formula q2+— {next:a} lIs(a)s in (6) describes a list starting
from g2 of length at least one (because of cell q2). The list sub-analysis decides

1 Concretely, op(qlt,c,a) is Juvwzy. tseg(qlt,0,c,u)q * ¢ {p:u, L, r:x}e * tseg(v,c,
0,w)q * tseg(z, c,0,y)o where tseg is a tree segment predicate explained in Section 5.

that this length information is not necessary for verifying the memory safety of
the program, and it plans to drop the information by replacing the sub-formula
by Is(q2). To do this, the analysis inserts the instruction moveRgn(v, 8) for moving
all cells in v to 3, and analyzes the inserted instruction:

(Ja. Is(q1s)a * g2+ {next:a}g *Is(a)g) A (Ib. tr(qit)a * b {}g *trueg). (7)

The reason for inserting the instruction moveRgn(y,3) is to make sure that the
changes in the values of region variables happen consistently for both conjuncts
(i.e., both sub-analyses), although the changes are initiated by the need for ab-
stracting a part of the first conjunct. Now, both the head q2 and the tail a are in
the same set 3, so the abstraction applies and gives the final result:

(Is(q1s)a *I1s(q2)g) A (tr(qlt)a * trueg). (8)

Here b {}g * trueg is also abstracted to trueg by the tree sub-analysis. This
amounts to forgetting the fact that 8 contains at least one cell.
Our formalization of the ideas described so far will form the rest of the paper.

4 Formal setting for region variables
4.1 Instrumented storage model

We use a storage model where a state consists of three components. The first
two are the usual ones, namely, the stack for program variables and the heap for
dynamically allocated cells. The third one is, however, unusual, and it defines the
values of region variables.

To give a formal definition of our model, we need four disjoint countable sets: a
set Addrs of addresses; a set Vars of program variables x,y, z; sets Fields and Regions
that respectively contain field names f, g of heap cells and region variables «, 3, .
We assume that a fixed constant null is not in Addrs. The storage model is defined
by the following equations:

Vals = Addrs U {null} Stacks = Vars — Vals Heaps = Addrs —, (Fields — Vals)
Partitions = Regions — P(Addrs) States = Stacks x Heaps x Partitions

Note that a state has three components (s, h,n) € States, where s defines the values
of stack variables, h specifies the contents of allocated cells, and n maps region
variables to address sets. We call a pair (h,n) well-formed if the mapping n defines
a partition of allocated cells, that is, the following holds:

(dom(h’) = UaGRegionsn(a)) A (Vavﬂ € Regions. o # f = 77(04) N 77(5) = (Z))

A state (s, h,n) is well-formed when (h,n) is well-formed. In the rest of this paper,
we consider only well-formed states and pairs of heaps and region-maps.

Note that in a well-formed state, every allocated address belongs to a unique
region. As a result, a fact about an allocated address ! can be approximated by
the region variable o containing I. For instance, when the variable = contains the
address ! of an allocated cell (i.e., s(z) =), we can approximate this information
by s(z) € n(a). Our analysis uses this approximation to form the lightweight
information to be passed among the sub-analyses.

Fig. 2 Semantics of sample assertions. We assume a function [e] from Stacks to
Vals that defines the meaning of an expression e, and a mapping [p] from tuples
of values to heaps that specifies the semantics of a primitive predicate p.

8,0, |= pa < s,h,n = ¢ and dom(h) = n(a)

s,hynEeca <~ [e]s € n(a)

s,h,nEe—{f:e} <= dom(h)={[e]s} and h([e]s)f; = [e;]s for all 1 < i < |f|
S, hﬂl):p(elv 76") — he H:p]]([[el]]sv"'v[[e’ﬂ]]s)

s, h,n = emp <= dom(h) =0 and n(a) =0 for all

s;h,nEPx*Q <= 3h1,he,m,m2. (h1,m) e (h2,n2) = (h,n)

and s,h1,n1 = P1 and s,ha,n2 = P>

4.2 Assertions

Assertions ¢ describe properties of states, and are defined as follows:

e == x | null Y = pa | e=e|eca | e—{f:e} | p(e)
| emp | oxp |true | oAy | ~p | 3z

This is a variant of the assertion language from separation logic [15]. The first pq
says that the heap satisfies ¢ and all the allocated addresses in the heap form the
set a. This is the most unusual case of our assertion language, and it enables one
to talk about the values of region variables, the new part of our storage model.
The next two are the usual equalities on expressions and the membership of an
expression to a region variable. The assertion z+— {f: e} means a heap containing
only one cell x that stores e in fields £. This definition does not require that £ be the
only field in cell z. Hence, the cell = can have fields other than £. The following case
p(ei,...,en) is the application of a primitive predicate p, such as the tree or singly-
linked list predicates, and it is mainly used to describe a recursive data structure.
Our assertion language includes separating connectives—emp for the empty heap
and the region variables all having the empty set, and ¢ * ¢ for the splitting of
both the heap and the region-variable map such that one pair satisfies ¢ and the
other 1. The remaining cases are the standard connectives from classical logic,
and they have the usual meanings. We point out that other standard connectives
from classical logic can be defined in a standard way.

The formal semantics is given by a satisfaction relation = between well-formed
states and assertions (s, h,n) |E ¢, and sample clauses of the semantics appear in
Fig. 2. The clause for ¢ * uses the following partial combining operator (hi,n1) e
(h2,7n2) on well-formed pairs of heaps and region-maps:

(hwh', \8.7(B)wn'(B)) if dom(k) Ndom(k') =@ and
(h,m) e (h',n') = Va. n(a) Ny’ (a) =0
undefined otherwise

The operator merges two pairs of heaps and region-maps when both components
of the pairs do not overlap. The definition of ¢ *1 uses this operator to express the
splitting of the heap and region-map components. Also note that the semantics of
emp says that both the heap and the region map are empty.

Fig. 3 Semantics of sample primitive instructions. We assume a function [b] from
Stacks to {true, false} that defines the meaning of a Boolean expression b.

[assume(b)](s, h,n) =if ([b]s = true) then {(s,h,n)} else 0
[z :=newa, r Ol(s, h,n) ={(s[z —], [l = v], nla = n(a) U{1}]) |

l € Addrs \ dom(h) and v is a function from F to Vals}
[move(e, @) (s, h,n) =if —(38. [e]s € n(B)) then err
else {(s, h,n[B — n(B) \ {[e]s}, a = n(a) U{[e]s}])}

[moveRgn(c, B)I(s, h,n) = {(s, h,nla = 0, B — n(e) Un(B)])}

4.3 Syntax and semantics of programs

We consider simple imperative programs specified in terms of standard control
flow graphs. These programs are directed graphs (V, E) with two distinguished
vertices entry, exit € V' and a labeling function L from F to primitive instructions.
The vertex entry is required to have no incoming edges and exit no outgoing edges.
The syntax of primitive instructions ¢ are given by the following grammar:

e =z | null c:=assume(b) | x:=e | xz:=ef | ef:=e
bi=e=c|efe | free(e) | :=mnewy () (where F C Fields)
| bAb|DbVD | move(e,a) | moveRgn(a, 3)

Most cases are standard imperative operations. For instance, assume(b) checks
whether the input state satisfies a Boolean expression b. If so, it skips. Otherwise,
it diverges. The only exceptions are the last three cases. The instruction z :=
new, r() allocates a new cell with fields F', and puts this cell into the region «. The
fields of this new cell are uninitialized, and may contain any non-deterministically
chosen values. The next two move(e,a) and moveRgn(a, 3) are ghost instructions
that mainly manipulate the region-map parts of states. When cell e is allocated
in the input state, move(e, @) removes this cell from its current region, and puts it
in the region «. The instruction moveRgn(«, 8) moves all the cells in the region o
to the region 8. Hence, at the end of this instruction, o contains no cells, while
B contains all cells that used to be in . The meaning of both instructions is not
ambiguous because we assume that the input states are well-formed and so all
allocated addresses belong to only one region variable.

Our analysis uses move and moveRgn to ensure that the region-map part of a
state carries useful information about heap data structures. In particular, it aims
to put each data structure, such as a list or a tree, in its own partition described
by some region variable o because then knowing e € « is sufficient to identify the
data structure containing e.

The formal meanings of primitive instructions are given in terms of functions
from States to P(States) U {err}, where err models a memory error. Sample cases
of the semantics appear in Fig. 3.

5 Abstract states
Our abstract domain consists of assertions of the form:

(p1aV.eVoim) Ap21 V.o Voam,) Ao Allenai Voo Venm,). (9)

Each conjunct here records the current analysis result of one sub-analysis. For
instance, the first conjunct could express the findings of the list analysis, and say
how fields for singly-linked lists are connected in the heap. The second conjunct
could, on the other hand, be concerned with the result of the tree analysis, and
describe the connection of tree-related fields. Notice that disjunction appears right
under the conjunction. This disjunction is used by a sub-analysis to keep track of
various correlations of stack variables and heap data structures explicitly. We point
out that this is the only disjunction explicitly appearing in the abstract state; ¢; ;
does not contain any disjuncts inside.

Formally, our domain is parametrised by a finite collection F = {F;}1<;<p of
sets of fields and primitive predicates p. The intention is that n specifies the number
of sub-analyses, and that each F; describes the fields and primitive predicates that
the sub-analysis ¢ cares about.

Once a parameter F is given, we can construct our abstract domain D(F) in
three steps. First, we define special forms of assertions, called symbolic heaps:

IT :=true |e=e|e#e | NI Pure formulae
Y o= trueq | (e—{f:e})a | (p(€))a | emp | '« X Spatial formulae
H = 3xIINY Symbolic heaps

The IT part of a symbolic heap describes the information about variables, and the
X part expresses a property on the heap and region-map components of states.
Note that in a symbolic heap, the region subscript —q is used only in limited
places with three basic predicates. Furthermore, the pure part of a symbolic heap
does not contain membership expressions e € «; all memberships are implicitly
expressed using the subscript formulae —,. These and other syntactic restrictions
in symbolic heaps (such as the absence of disjunction and negation) are imposed
so that we can reuse the core components of existing separation-logic based shape
analyses, such as abstraction algorithms and transfer functions [8]. We write SH
for the set of all symbolic heaps.

Second, we define a set of assertions used by each sub-analysis . Let SH; be
the set of symbolic heaps H such that all points-to predicates (e {f : e})q in H
mention only fields in F; (i.e., £ C F;), and all primitive predicates (p(e))a in H
belong to F; (i.e., p € F;). The domain for the sub-analysis i is D; = 7Pj.(SH;).
The finite powerset operator is used here to express finite disjunction. For instance,
the set {H1,...,Hm} € D; means the disjunction Hy V...V Hp,.

Finally, the abstract domain D(F) is defined by D = Dy x ... x D, U{T} for
n = |F|. The Cartesian product means the conjunction of assertions. For instance,
the assertion (9) in the beginning of this section is formally represented by the
tuple ({@1,1,---,@1,m1 }s {P2,15---,P2,mats ---s {Pn,1s-+,Pn,m,) in this domain.
The element T means the possibility of error. We will use d to denote a non-T
element in D, and d; to mean the ith component of d.

The domain D(F) is a lattice when T is considered the largest element and
the non-T elements are ordered point-wise. Then, the lattice operations of D(F)
are obtained by extending corresponding operations on the D;’s point-wise. For
instance, the join d U d is given by (d1 Ud), ..., dn Udy,).

10

Fig. 4 Subroutines getRegion and caseSH. The function caselD below is a parameter
provided for each primitive predicate p. In the figure, we give an example of caselD
for tr and tseg.

get7 (e, emp) = Nolnfo
getyr(e, ¢—{f:e’"}o x X) =if (I F e = ¢’) then « else get (e, X)
getr(e, p(€')a x X) = if (II Ap(e’) - e—{} * true) then « else get (e, X)
getRegion(e, H) =let (Ix. Il A X) = H in get;(e, X)
caselD(e, tr(eg)a) =
{(uvway, tseg(eon, 0, e, u)a * e {p:u, L:v, r:w}q * tseg(v, €,0,x)q * tseg(w, e,0,y)a)}
caselD(e, tseg(eo, €1, €2,€3)a) =
{(uwvwz, tseg(ep, e1,€,u)a * e {p:u, Liv, riw}q * tseg(v, €, €2, €3) * tseg(w, e,0,)a),
(uvwz, tseg(eo, €1, €,u)a * e {p:u, Liv, r:w o * tseg(v, e,0,) * tseg(w, e, €2,€3)a)}
case(¢,q, 1) (%, emp) =0
case(c o, 7)) (%, ' {f:e’}g* X)) =
if (II'-e# ¢ or a # B) then case(. o) (& * e'—={f:e’}5, X')
else {([J, e=e¢/, U xe'>{f:e’}g* X')} Ucase(e o) (X * e'—{f:e"}5, X')
case(c,q,m) (¥, p(e')g x X') =
if (a #) then case(. o 1)(X * p(e’)g, X')
else {(a, true, ¥+ X"+ X') | (a, X") € caselD(e,p(e’))} U case(c o, mm) (X *p(e’) g, X')
caseSH(e,a, H) =
let(Ax.IAYX)=Hin{3xa.(IANIT)YANX | (a, II', X)) € case(c,q,) (emp, X)}

6 Weak reduction operator

One important operator of our domain is a weak reduction operator that transfers
information among components of abstract states. The transferred information is
about the allocatedness of a cell and a region variable o containing this cell. For
instance, consider the abstract state:

(x> {next:0}a V (3a.x+ {next:a}a *Is(a)a)) A tr(y)a

where only the first conjunct says that cell x is allocated and belongs to the set
«. Using our reduction operator, we can transfer this information about cell x
from the first to the second conjunct. Given appropriate parameters, the operator
transforms this abstract state to the one below:

(x+ {next:0}a V (Ja.x+> {next:a}ta *Is(a)a))
A Juvw. tseg(y, 0, x,u) o * x — {p:u, Liv, r:w o * tseg(v, x,0,) * tseg(w, x,0,)a.

Here the predicate tseg(a,b,c,d) describes a rooted tree segment with one hole.
The root is a and its parent pointer points to b. The hole of the segment is an
outgoing pointer from the tree, going from address d to address c¢. The source d
belongs to the segment, but the target ¢ does not. We write _ in the parameter of
tseg when we do not want to specify the parameter.? Note that the second conjunct
now talks about the allocatedness of cell x and its membership of «.

Our operator is defined by lifting a similar reduction operator on symbolic
heaps to abstract states. We first describe this original unlifted operator, denoted
trans. Let i be a sub-analysis id and e an expression.

trans;(e)(H : SH, H' : SH;) : D; =
let R = getRegion(e, H) in if (R = Nolnfo) then {H'} else caseSH(e, R, H').

2 Formally, ¢ * tseg(a, b, ¢,) is an abbreviation for 3d.¢ * tseg(a, b, ¢, d) for a fresh d.

11

The operator trans;(e)(H, H') transfers information about cell e from H to H’, and
the transferred information talks about the allocatedness of e and a region vari-
able that contains e. The operator starts by calling the subroutine getRegion(e, H),
which has two possible outcomes. The first outcome is Nolnfo indicating that H
does not have any information on cell e. In this case, the input H’ gets no in-
formation from H, and it becomes the output of trans. The second outcome is a
region variable « satisfying the entailment H F e € o, which means that according
to H, the region variable o contains cell e. Given this outcome, the operator trans
conjoins the membership information e € a with H’, and calls a case-analysis rou-
tine that transforms the assertion back into a set of symbolic heaps in SH; while
ensuring the soundness condition expressed below:

H = caseSH(e,a, H') = (e€c aANH')F \/7—[.

One implementation of getRegion and caseSH is given in Fig. 4.
For sub-analysis ids 7,5 and an expression e, we define our weak reduction
operator trans;_j(e) : D — D by trans;_,j(e)(T) =T and

trans;_.j(e)(d) =let H = U{transj(H, H') | (H,H") € d; x d;} in d[j — H].

This operator applies trans; to all possible symbolic-heap combinations from the i
and jth components of d, and uses the result to update the jth component.

Note that the parameters 1, j, e control the transferred information by our re-
duction operator. It restricts the source to only one component of an abstract
state, and does a similar restriction on the target. Furthermore, it transfers infor-
mation only about a cell e with respect to its membership to one region variable.
This fine-grained control is essential for the performance of our analysis. Based on
the results of a pre-analysis, our analysis does only necessary information transfer
among component sub-analyses, by using our reduction operator with carefully
chosen parameters and only at necessary program points.

7 Inserting the weak reduction instructions

The first step of our analysis is to insert trans instructions that apply weak re-
duction into the input program. Intuitively, the pre-analysis inserts trans;_,;(e)
before a program point v if it makes the following three conclusions at v:

1. The cell e will be dereferenced by the sub-analysis j.
2. The sub-analysis j is unlikely to infer that e is allocated or null.
3. But the sub-analysis i is likely to infer that e is allocated or null.

The first can be detected easily by a simple syntactic check, but the other two
require more sophisticated reasoning. In the remainder of this section, we focus on
this reasoning.

7.1 Semantics of component-wise execution with symbolic stacks

In order to make our intuition clear, we start from a modified semantics that
explicitly describes the information about the stack and the heap tracked by each

12

sub-analysis. The input program is a control flow graph G = (V, E, entry, exit, L).
Since G represents a normal C program, its labelling L does not use our ghost
instructions or weak reduction operator, and new instructions do not have region
variables. We assume that the standard semantics [c](s,) is given.

A symbolic stack o is an extension of pure formulae with expressions involving
addresses, disjunction and existential quantifiers. Using a symbol [€ Addrs, we
describe the syntax of symbolic stacks as follows:

E =z |null |l cu=E=E|E#FE|ocANo|oVo|3x.c Symbolic stacks

Symbolic stacks have the standard meaning similar to that for pure formulae,
which can be formalised by the satisfaction relation s = o.
We consider the following operations on symbolic stacks:

o(z) =if ((3s.s E o)A (Vs.s = o= s(z) = v)) for a unique v then v
else undefined
oz a] = 32’ (02" /2] A x = a[2’/z]) when a is a value or an expression

Note that o(z) is defined only when there exists at least one stack that satisfies o,
and all stacks that satisfy o give the same value for variable z. These operations
let us reuse the definition of [c](s, h) and specify [c](c, k) simply by replacing the
stack lookup and update operations with the corresponding ones above.

The semantics of this section is called component-wise semantics because a
state in this new semantics consists of multiple components, each of which is a
pair of a symbolic stack and a heap. The number of components is |F|, that of
sub-analyses, and the heap of the ith component tracks the values of only those
fields in F;. Such a multiple-component state p = ((o1,h1),...,(on, hn)) is well-
formed if and only if

1. there exists a stack s such that s =01 A ... Aop;

2. for all program variables z, (01 A ... A on)(z) is defined;

3. for all 1 <4,j < n, dom(h;) = dom(h;); and

4. for all 1 <4 < n and for all locations | € dom(h;), dom(h;(l)) C F;.

We will consider well-formed states only in this paper.

The execution of an instruction ¢ on the multiple-component states is based on
the separate execution [c]; of the instruction for each component ¢ (Fig. 5), which
accesses the symbolic stack and the heap of the ith component only. Concretely,
[z :=newp()]; allocates a cell with only those fields associated with the component
i, i.e., the fields in F;. The heap update [e.f := €']; changes the heap cell only
when £ belongs to F;. Otherwise, this instruction is skip. Similarly, [z = e.f];
does the usual lookup of the heap and the update on the symbolic stack only if
the field £ is associated with the component i. If this is not the case, the semantics
sets & to undefined because it is impossible to get the value of e.f from the heap
of the ith component. The assignment [z := e]; does not depend on 4, and it
always updates the symbolic stack of the ith component such that z = e holds.
Similarly, [assume(b)]; is independent of i, and it conjoins the predicate b with the
symbolic stack of the ith component. If this conjunction leads to inconsistency, the
resulting state is ill-formed, and it gets filtered out. The execution of the remaining
instructions is standard.

13

Fig. 5 Semantics of component-wise execution. [c]cg denotes the semantics of
component-wise execution, [c]; denotes the semantics for executing the ith com-
ponent, and [c] denotes the original semantics.

[elce((o1, h1), ... (on, hn)) = {p|p € [c]1 (0}, h1) X ... X [c]n(0},, hn) and p is well-formed }
where o = o; Areveal(i,c,01 A...Aop) forall1 <i<n

[z :=newp()]i(o, h)

[x :=e.£]i(o, h)

[e.£ :=€]i(o, h)

[z :=e]i(o, h)

)

)

[z :=newpnr,)](o, h)

if (£ € F;) then [z := e.f](c, h) else {(Iz.0,h)}
if (f € F;) then [e.f := €'](0, h) else {(o,h)}
{(olz > e, 1)}

[assume(b)]; (o, h) = if (Is.s = o A b) then {(c Ab,h)} else O

[eli(o, R [el(o,h) (for other instructions)
reveal(i,c,0) = N{z = o(z)| ({,x) € need(c)} with need below :
instr ¢ need(c)
z:=e.f {(t,e) | £ € F;}
e.f:=¢ {(i,e), (i,e') | £ € F;}
free(e) {(i,e)|1 <i<n}
other instructions|()

where the notation {(i, e), (¢,€’) | £ € F;} means {(i,e) | £ € F;} U{(i,e') | £ € F;}

The definition of [c]cg in Fig. 5 describes how an instruction c¢ transforms a
given multiple-component state ((o1,h1),...,(0n,hn)). It first strengthens sym-
bolic stacks o1 ...0n to o ...0, and then transforms each (o}, h;) using [c];. To
see the need of the strengthening here, consider the sequential composition of two
instructions z := y.£; 2z := x.g, where £ and g belong to different components. Sup-
pose that the first instruction was run on each component using [z := y.£];. After
this execution, most components lose track of the value of z, but the component
associated with f still keeps the updated value of xz. However, if all the compo-
nents are immediately updated again by [z := z.g]; of the following instruction,
we cannot avoid the generation of error because the component associated with g
is different from the one for £ and it is ignorant about the dereferenced variable x.
The information about x is kept in the component for £, and to avoid this error,
this information should be transferred from the £ component to the g component.
This transfer is implemented by the strengthening of o; to o} in the definition of
[clce, and the strengthening itself is done by the subroutine reveal. The subrou-
tine uses need(c) to find out which component will need information about which
variables. Then, it gathers information about these variables from the combined
stack o, and transfers the information to the stacks of appropriate components.

This component-wise semantics is the basis of our analysis. The ith sub-analysis
over-estimates all the reachable stack-heap pairs of the ith component, and re-
gions are maintained across the sub-analyses in order to accurately capture the
behaviours of reveal.

14

7.2 Insertion of the trans instruction

We interpret trans;_,;(z) in the component-wise semantics as follows:

[trans,—;(z)]ce((o1, k1), -- -, (on, hn)) =
{((01, h1), ey (Gj N = oi(x), hj), e (O’n, hn))}

This definition means that trans;_, ;(z) transfers information about the cell z from

the ith component to the jth component. While the reveal operation is implicit

about the transferred information, trans;_,;(x) is explicit about the originator i

and the recipient j of the information as well as the variable = in concern.

The information transferred by the reveal operation is useful when it is new
to the recipient. Our pre-analysis captures all such cases in a given program, and
inserts appropriate trans instructions. For each component in our component-wise
semantics, the pre-analysis under-approximates the set of program variables that
are tracked by the component at each program point. Then, it concludes that the
ith component may need information about a variable x at a program point v,
if z is not one of those definitely tracked variables by the component but it is
dereferenced at the point v.

The under-estimation of tracked variables is done by the data-flow analysis for
Awail in Fig. 6. The domain of this analysis is D,,. = P(Comps x Exp) where Comps
is the set of component ids {1,...,n} and Exp is the set of expressions in the given
program. The data-flow analysis computes a map Awvail from program points to D,,.
by repeatedly applying the first three equations in Fig. 6 until Availy; = Availy,
for some k. If (i,e) € Awail(v) at a program point v, the expression e must be
null or its value can be obtained just using the stack of the ith component. Our
data-flow equation differs from usual ones in having need(c) in the equation, which
reflects the effect of reveal in the semantics.

By using the analysis result Awail, we insert trans instructions as follows: for
each edge (vo,v1) with label ¢, and for all (j,z) € need(c), if (j,z) € Avail(vy) but
(i,2) € Avail(vg) for some i, an edge with label trans;_,;(x) is inserted right before
the edge (vo,v1).

7.3 Inter-procedural setting

A straightforward extension to inter-procedural analysis could miss the insertion
of trans in a desired place. Recall the function tree remove(t) in Fig. 1, which
separates the node t from its enclosing tree. Consider a call tree_remove(x) where
the tree component has no information about the node x. Then our transformation
algorithm in the previous section would insert trans for t inside the procedure
body, since the tree fields of ¢ are accessed there but the node t is unknown to
the tree component. This insertion is not ideal. To see this, consider another call
tree_remove(y) where the tree component has the information about the node y
this time. In this case, the inserted trans inside the body of tree_remove will make
the sub-analyses communicate, even when this communication is not necessary.
Inserting trans right before the particular call tree_remove(x) is better than doing
it inside the body of tree_remove.

15

Fig. 6 The pre-analyses for discovering trans instructions. di.; € D is the initial
abstract state given as the input to the whole analysis.

Awaily(v) = Comps x Exp (for all v € V)
Avail 11 (entry) = {(4,€e) | e is null or appears in all H in (dinit)q }

Availy 41 (v) = ﬂ(v,’weE(]L('u/,v)[)/’i(Avail;C (v")) (for v € V '\ {entry})
where QCDg(X) = (X Uneed(c))\kill(c) Ugena (¢, X)
Liveg(v) = 0 (for all v € V)
Livey,1 (exit) = Comps X {null}
Liveg+1(v) = Ugy,vyer (L, v’)[)ﬁ(Livek(v’)) (for v € V'\ {exit})
where QcDﬁ(X) = X \kill(c) Ugen| (¢, X)

instr ¢ need(c) kill(c) gena (¢, X) gen (¢, X)

assume(b) |0 0 0

T:=e€ 0 Comps x {z}|{(i,z) | (i,e) € X}|{(4,¢e)| (4,z) € X}

z :=ef {Gi,e) | £ € F;} Comps x {z}|{(i,z) | £ € F;} |{(i,e)|f € F}}
ef:=¢ {(i,e), (i,€') | £ € F;}|0 0 {(i,e), (i,e') | £ € F;}
free(e) Comps x {e} Comps x {e} |0 Comps x {e}

z :=newp()|0 Comps X {z}|Comps x {z} 1]

To enable the insertion of trans at call sites, we infer which fields of parameters
are accessed in the body of each procedure using a data-flow analysis. This data-
flow analysis computes a map Live from program points to D,,. as shown in Fig. 6.
Our intention is that if (i,e) € Live(v), the value of e should be obtainable from the
stack of the ith component, so that the ith component does not need the help from
the reveal operation. The equation in the figure is similar to that of the standard
liveness analysis except in the case z := e of gen . For z := e, the liveness of z is
propagated to e.

For interprocedural analysis of Awvail, we use the analysis result Live. For the
entry point v of procedure p(t), Availyy(v) = Live(v) for all £ > 0, and need(z :=
p(e)) = Live(v)[e/t] for all procedure calls p(e).

8 Region inference

The next step is to find move and moveRgn instructions which give us a fine-grained
region scheme. Note that there is no correct region scheme; it is not wrong to assign
two separate data structures to one region. However, a coarse region scheme will
sometimes fail to verify program correctness. We found it desirable to assign as
many different regions to separate overlaid data structures as possible.

8.1 Introducing regions

We use new and move instructions to introduce new regions at a cell’s allocation
and at the separation of a cell from its data structure, respectively. When a cell is
newly allocated, it is natural to introduce a new region for the cell. So, we transform
z :=newp() to x := new,, () with fresh a. Also, we introduce a new region when a
cell is detached from all the components of an overlaid data structure because, as
shown in Section 3, this separation is possibly the first step of moving the cell across

16

Fig. 7 The pre-analysis for discovering move instructions.

Alloco(v) = Comps X (Exp \ {null}) (for all v € V)
Allocg+1 (entry) = 0
Alloc41(v) = ﬂ<vlyv)€E(]L(v’,v)[)g(Allock (v")) (for v € V' \ {entry})
where QCDg(X) = (X Unonnull(c))\kill(c) Ugeng(c, X)

instr ¢ nonnull(c) kill(c) geng(c, X)
assume(b) |0 0 0

T:=e 0 Comps x {z}|{(i,x) | (i,e) € X}
z:=ef {(i,e) | £ € F;}|Comps x {z}|0

ef:=¢ {(i,e) | £ € F;}|0 0

free(e) Comps x {e} |Comps x {e} |0

x :=newp()|0 Comps x {z}|Comps x {z}

overlaid data structures. Note that we are not interested in a cell’s separation from
only some components. Such a separation cannot be the start of a move across
overlaid data structures; at most within one overlaid data structure. This might
be valuable to be captured for verification but it was not in our experiment.

By tracking of a cell’s allocatedness in the semantics, we can capture the cell’s
separation from an overlaid data structure. For cutting the pointers of all the
components in the cell z, the cell should be looked up for all the components; that
is, the value of z should be available as a location for all the stack components in
the component-wise semantics.

Such program points can be statically estimated by a data-flow analysis similar
to Fig. 6. Awvail shows which variables must be defined, but here it is necessary
to figure out which variables must have locations. We need a map Alloc from
program points to D,,. such that if (i,e) € Alloc(v), e should have a location in the
ith stack component at program point v. The map can be computed by the data-
flow analysis in Fig. 7. The equation is similar to that of Awvail in Fig. 6 but they
are different in the cases of :=e.f and e.f := ¢’. For Awail, it is guaranteed that
x and ¢’ are defined in f’s component by reveal, but for Alloc, it is not guaranteed
that they are not null.

By using the analysis result Alloc, we insert move instructions as follows: for all
(v',v) € E and for all variables x, if there exists i such that (i,2) ¢ Alloc(v') and
{(4,x)|1<j<n}C (]L(v',v)[)ﬁO(Alloc(v')), move(z,) is inserted with fresh « right
after this edge (v',v).

8.2 Merging regions

We use moveRgn instructions to combine two regions when the cells in two regions
are connected as one overlaid data structure. This behaviour cannot be easily
captured in the semantics but can be detected by our main shape analysis. The
function abs used in our main shape analysis detects several assertions connected
as one data structure and converts them to one assertion. This is exactly what
we want capture. We assume that for all 1 < i < n, the function abs; of each ith
component is given. Additionally, we assume that abs; combines only assertions in
the same region, so that abs; cannot abstract assertions in different regions. The
abstraction function abs on our abstract domain D is defined by component-wise

17

Fig. 8 Abstract transfer functions. The abstract value d below is not T. When T
is the input, [¢]*T = T. We assume that [[c]]f’s are given for other instructions c.

[c]*(d) = if (3i. [c]*(d;) = T) then T else ([c]’ (d1), . .-, []4(dn))
[trans;_;(e)]*(d) = trans;_;(e)(d)
[moveRgn(a, B)]¥(d) = d[B/q]
[nove(e, a)]*(d) =
let check(i, H) =
(1) Find finitely many Hy’s in SH; such that
Ht\,cx Hi and Hy has the form 3xy. IT;, A e—{fx:e} }g, * .
(2) If cannot find, return {T}. Otherwise, for the found Hy’s, rename the
subscript B of e—{...}, by a and return {Ixi . [T} A e {fk:ef }a * i }rek-
and r; = |J{check(:,H) | H € d;} for all ¢
inif (Jis.t. T €r;) then T else (r1,...,7n)

applications of abs;’s:
abs(T)=T abs(d) = (absi(d1),...,absn(dn)).

When merging two regions enables further abstraction, we insert moveRgn in-
structions. Let d be an abstract state and d[3/a] be the same one but such that
every region variable « is replaced by B. Suppose that abs(d) # abs(d[3/a]). It
means that some cells in two regions a and 8 are connected as one data structure
in at least one component of d. In this case, we insert moveRgn(a, 3). Here we just
define which moveRgn instructions are discovered for an abstract state d:

enableAbs(d) = {moveRgn(a, 3) | abs(d) # abs(d[3/a])} .

This function will be used in our main shape analysis.

9 Main analysis: invariant inference

Next, our analysis runs its main invariant inference engine, which computes an
invariant at each program point. Our invariant inference engine takes an initial
abstract state d,,; and the output of our pre-analysis, which is a control flow graph
G = (V, E,entry, exit, L) that can include ghost instructions move(e, o) and reduc-
tion operators trans;_, ;(e) discovered by our pre-analysis (but not moveRgn(c, 8)).
Given this input, the engine computes two maps I and A from program points,
the first I to abstract states and the second A to sets of ghost instructions of the
form moveRgn:

M = {moveRgn(w,) | o, B € Regions(dinir, L)}, 1:V =D, A:V — P(M).

Here Regions(diuu, L) is the set of region variables appearing in d,,; or some instruc-
tion in the range of L. Note that since Regions(d,..;, L) is finite, so are M, its subsets
and the collection P(M). The first map I is the usual result of a program analysis,
and keeps an invariant at each program point. The second map A records the
ghost instructions dynamically discovered and then executed during the invariant
inference. These instructions move cells from one region variable to another, and
they are added and executed so as to maintain the relationship between region
variables and data structures in the heap.

18

Our analysis uses the standard fixpoint algorithm for control flow graphs, with
one interesting twist regarding the map A for ghost instructions. Assume that for
all normal or ghost instructions or our weak reduction operator ¢, we are given the
transfer function [c]*: D — D. Now, for (finite) subsets My of M, define [Mo]*(d) =
([en]* o ... 0 [c1]*)(d), where c1,...,cn is one enumeration of My according to a
fixed scheme. (In our analysis, this choice does not matter because the transfer
functions of any two instructions in M commute.) Using what we have assumed
or defined, we define the main fixpoint algorithm below:

I (entry) =din, Iny1(v) = U(U,yv)eE(abs o [[An(v)]]Ii o [[L(v/,v)]]ﬁ)(ln(v'))7
An(entry) =0, Ap+41(v) = An(v) UenableAbs(Ip41(v)).

Note that since P(M) is finite, there are only finitely many values for A, and the
fixpoint computation of A does not cause non-termination. In practice, we found
that the analysis time is dominated by the fixpoint computation for 1.

To complete the story, we need to discharge our assumption of abstract transfer
function [¢]f. For normal instructions ¢, we define [¢]* by applying component-
wise the sub-analyses’ transfer functions [[c]]f :D;U{T} = D; U{T}. The details
are given in Fig. 8. The figure also shows that [['cranszgj(e)]]ji is implemented
by the reduction operator with the same name trans;_;(e) defined in Section 6,
[moveRgn(c, B)]* by the substitution of the source region variable o by the target
3, and [move(e, @)]* by the exposure of a points-to fact e+ {...} 5, from a symbolic
heap followed by the renaming of its subscript S by «.

10 Experiments

We have implemented an interprocedural version of the analysis (based on the
RHS algorithm [14]), and applied it to verify the memory safety of two types of
programs. The first are toy examples of modest size and with just enough structure
to warrant an overlaid analysis. The second are programs lifted from the Linux
2.6.37 code base. The results of our experiments appear in Fig. 9.

The figure also includes the numbers obtained by applying our previous anal-
ysis built in 2008 to the same examples. This previous analysis couples the sub-
analyses more tightly (using the abstract domain P(SH1 X ... X SHy) U {T}), it
does not use ghost instructions, and it transfers information among sub-analyses
more frequently than our current analysis. The figure shows that the current im-
plementation performs better, and the performance gain becomes more significant
when a program becomes bigger or more complicated. There are also a number of
programs that cannot be analysed at all by the old analysis.

The right-most column records the number of trans;_;(e) inserted by the pre-
analysis of our current implementation. It shows that very little communication is
happening. We consider this a primary factor of the efficiency of the analysis.

— list-dio is an abstract version of the deadline IO scheduler. It uses two doubly-
linked lists instead of a list and a tree. The sim version skips the request-move
routine, which cannot be verified by the old analysis.

— many-keys has an overlaid data structure of doubly-linked lists that are ordered
by different keys. The number of lists is annotated in the filename.

19

Fig. 9 Experimental result obtained using Intel Core i7 2.66GHz with 8 GB mem-
ory.

filename # of | analysistime (sec) |speedup | # of trans
lines®| (A) old | (B) new (A/B) | inserted
list-dio-sim.c 110 3.12 1.56 2.0 2
list-dio.c 134 - 3.95 - 4
many-keys-3.c 92 1.65 0.72 2.3 2
many-keys-4.c 98 8.16 1.22 6.7 3
many-lists-3.c 106 1.90 1.37 1.4 3
many-lists-4.c 124 12.53 3.05 4.1 4
cache-1.c 88 1.29 0.97 1.3 9
cache-2.c 93 14.70 1.81 7.8 11
linux/block/deadline-iosched-sim.c | 1,941 237.67 32.76 7.3 4
linux/block/deadline-iosched-sim2.c | 1,968 | 5,399.73 100.06 54.0 4
linux/block/deadline-iosched.c 2,131 - 364.45 - 5
linux/fs/afs/server-sim.c 712 705.67 22.61 31.2 9
linux/fs/afs/server.c 1,084 - | 1,932.65 - 13

@ Only relevant lines of the preprocessed source files are counted.

— many-lists uses multiple doubly-linked lists implemented by different fields.
These lists do not share nodes, so they do not form an overlaid data structure.
However, our analysis can analyse each list separately, using a distinct conjunct
for each list. The number of lists is annotated.

— cache has one doubly-linked list and pointers to cells in the list that were
recently accessed. We can separately analyse the list and pointers by using our
technique. The number of cache pointers is annotated.

— block/deadline-iosched.c has an overlaid data structure of a doubly-linked
list and a red-black tree to maintain a list of requests. The original source was
modified as follows: irrelevant fields and procedures such as ones for locks and
language constructors such as arrays that our analyser does not support were
removed, and assumptions were inserted to tree operations to compensate for
our inaccurate tree abstraction. The sim/sim2 version skips procedures that
the old analyser cannot verify due to its imprecision as well as procedures of a
high analysis cost.

— fs/afs/server.c has an overlaid data structure of three components: two
doubly-linked lists and one red-black tree. The components of a list and a
tree are for maintaining a list of servers, and the other doubly-linked list is
for removing servers: Servers to be removed are additionally connected to the
graveyard list.

11 Conclusion

In this paper, we have presented a static analysis for overlaid data structures,
capable of verifying memory safety of real world programs. Our insight is to de-
compose an overlaid data structure into its components, and to track components
using sub-analyses as independently as possible, while allowing communication
among them using ghost instructions. Besides the progress in verifying more chal-

20

lenging data structures, we hope that our work has provided further evidence that
with a proper understanding of more programming patterns in systems code, to-
gether with specialized abstractions, one can design effective automatic verifiers
for ever-larger classes of real-world systems programs.

References

10.

11.

12.

13.

14.

15.

16.

17.

. Arnold, G., Manevich, R., Sagiv, M., Shaham, R.: Combining shape analyses by inter-

secting abstractions. In: Proc. of the International Conference on Verification, Model
Checking, and Abstract Interpretation, pp. 33—48 (2006)

. Ball, T., Levin, V., Rajamani, S.K.: A decade of software model checking with SLAM.

Communications of the ACM 54(7), 68-76 (2011)

. Ball, T., Podelski, A., Rajamani, S.: Boolean and cartesian abstraction for model checking

C programs. In: In Proc. of the Tools and Algorithms for the Construction and Analysis
of Systems, pp. 268-283 (2001)

. Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D.,

Rival, X.: A static analyzer for large safety-critical software. In: Proc. of the ACM Con-
ference on Programming Language Design and Implementation, pp. 196-207 (2003)

. Calcagno, C., Distefano, D., O’Hearn, P., Yang, H.: Compositional shape analysis by

means of bi-abduction. In: Proc. of the ACM Symposium on Principles of Programming
Languages, pp. 289-300 (2009)

. Cherini, R., Rearte, L., Blanco, J.: A shape analysis for non-linear data structures. In:

Proc. of the International Static Analysis Symposium, pp. 201-217 (2010)

. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In: Proc. of

the ACM Symposium on Principles of Programming Languages, pp. 269-282 (1979)

. Distefano, D., O’Hearn, P., Yang, H.: A local shape analysis based on separation logic. In:

In Proc. of the Tools and Algorithms for the Construction and Analysis of Systems, pp.
287-302 (2006)

. Hawkins, P., Aiken, A., Fisher, K.: Reasoning about shared mutable data structures (2010).

Manuscript

Hawkins, P., Aiken, A., Fisher, K., Rinard, M., Sagiv, M.: Data structure fusion. In: Proc.
of the Asian Symposium on Programming Languages and Systems, pp. 204-221 (2010)
Kreiker, J., Seidl, H., Vojdani, V.: Shape analysis of low-level C with overlapping struc-
tures. In: Proc. of the International Conference on Verification, Model Checking, and
Abstract Interpretation, pp. 214-230 (2010)

Kuncak, V., Lam, P., Zee, K., Rinard, M.: Modular pluggable analyses for data structure
consistency. IEEE Transactions on Software Engineering 32(12), 988-1005 (2006)

Lee, O., Yang, H., Petersen, R.: Program analysis for overlaid data structures. In: Proc.
of the International Conference on Computer Aided Verification, pp. 592-608 (2011)
Reps, T., Horwitz, S., Sagiv, S.: Precise interprocedural dataflow analysis via graph reach-
ability. In: Proc. of the ACM Symposium on Principles of Programming Languages, pp.
49-61 (1995)

Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In: Proc. of
the IEEE Symposium on Logic in Computer Science, pp. 55-74 (2002)

Sagiv, M., Reps, T., Wilhelm, R.: Parametric shape analysis via 3-valued logic. ACM
Transactions on Programming Languages and Systems 24(3), 217-298 (2002)

Yang, H., Lee, O., Berdine, J., Calcagno, C., Cook, B., Distefano, D., O’Hearn, P.: Scalable
shape analysis for systems code. In: Proc. of the International Conference on Computer
Aided Verification, pp. 285-398 (2008)

21

