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Abstract. We present a method for proving data refinement in the
presence of low-level pointer operations, such as memory allocation and
deallocation, and pointer arithmetic. Surprisingly, none of the existing
methods for data refinement, including those specifically designed for
pointers, are sound in the presence of low-level pointer operations. The
reason is that the low-level pointer operations allow an additional po-
tential for obtaining the information about the implementation details
of the module: using memory allocation and pointer comparison, a client
of a module can find out which cells are internally used by the module,
even without dereferencing any pointers. The unsoundness of the exist-
ing methods comes from the failure of handling this potential. In the
paper, we propose a novel method for proving data refinement, called
power simulation, and show that power simulation is sound even with
low-level pointer operations. Then, we identify special cases where power
simulation has a more conventional-style representation. It turns out that
the obtained representation for those special cases is an interesting com-
bination of two well-known simulation methods, namely forward and
backward simulation.

1 Introduction

Data refinement [7] is a process in which the concrete representation of some
abstract module is formally derived. Viewed from outside, the more concrete
representation behaves the same as (or better than) the given abstract module.
Thus, data refinement ensures that for every program, we can replace a given
abstract module by the concrete one, while preserving (or even improving) the
observable behavior of the program.

Our aim here is to develop a method of data refinement in the presence of
low-level pointer operations, such as memory allocation and deallocation, and
pointer arithmetic. Developing such methods is challenging, because low-level
pointer operations allow subtle ways for accessing the internals of a module;
without protecting the module internals from these accessing mechanisms (and
thus ensuring that the module internals are only accessed by the module opera-
tions), we cannot have a sound method of data refinement.
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module counter1 { module counter2 { module counter3 {
init() {∗1=allocCell2(); ∗∗1=0;} init() {∗1=0;} init() {∗1=alloc(); ∗∗1=0;}
inc() {∗∗1=(∗∗1)+1;} inc() {∗1=(∗1)+1;} inc() {∗∗1=(∗∗1)+1;}
read() {∗3=(∗∗1);} read() {∗3=(∗1);} read() {∗3=(∗∗1);}
final() {free(∗1); ∗1=0;} } final() {∗1=0;} } final() {free(∗1); ∗1=0;} }

Fig. 1. Counter Modules

The best-known accessing mechanism is the dereference of cross-boundary
pointers. If a client program knows the location of some internal heap cell of a
module, which we call a cross-boundary pointer, it can directly read or write that
internal cell by dereferencing that location. Thus, such a program can detect the
changes in the representation of a module, and invalidate the standard methods
of data refinements. This problem of cross-boundary pointers is well known, and
several methods for data refinement have been proposed specifically to solve this
problem [12, 16, 1, 3, 2].

However, none of the existing data-refinement methods, including the ones
designed for cross-boundary pointers, can handle another accessing mechanism,
which we call allocation-status testing. This mechanism uses the memory allo-
cator and pointer comparison (with specific integers) to find out which cells are
used internally by a module. A representative example check2 that implements
this mechanism is z=alloc(); if (z==2) then v=1 else v=2. Assume that the mem-
ory allocator alloc nondeterministically chooses one inactive cell, and allocates
the chosen cell. Under this assumption, check2 can detect whether cell 2 is used
internally by a module or not. If a module is currently using cell 2, the newly
allocated cell in check2 has to be different from 2, so that check2 always assigns 2
to v. On the other hand, if a module is not using cell 2, so cell 2 is free, then the
memory allocation in check2 may or may not choose cell 2, and so, the variable
v nondeterministically has value 1 or 2. Thus, by changing its nondeterministic
behavior, check2 “observes” the allocation status of cell 2.

Protecting the module internals from the allocation-status testing is crucial
for sound data refinement; using the allocation-status testing, a client can de-
tect space-optimizing data refinements. We explain the issue with the first two
counter modules, counter1 and counter2, in Fig. 1. Both modules implement a
counter “object” with operations for incrementing the counter (inc) or reading
the value of the counter (read). The main difference is that the second module
uses less space than the first module. Let allocCell2() be a memory allocator that
always selects cell 2: if cell 2 is inactive, allocCell2() allocates the cell; otherwise,
i.e., if 2 is already allocated, then allocCell2() diverges. The first module is ini-
tialized by allocating cell 2 (allocCell2()) and storing the value of the counter in
the allocated cell 2. The address of this newly allocated cell, namely 2, is kept
in cell 1. On the other hand, the second module uses only cell 1, and stores the
counter value directly to cell 1. The space-saving optimization in counter2 can
be detected by the command check2 in the previous paragraph. When check2



is run with counter1, it always assigns 1 to v, but when check2 is run with the
other module counter2, it can nondeterministically assign 1 or 2 to v. Thus, the
optimization in counter2 is not correct, because it generates a new behavior of
the client program check2.

Here, we present a data-refinement method that handles both cross-boundary
pointers and allocation-status testing. Our method is based on Mijajlović et al.’s
technique [12], which ensures correct data refinement in the presence of cross-
boundary pointers, but as stressed there, not with allocation status testing. We
provide a more general method which can cope well with both problems. The
key idea of our method is to restrict the space optimization of a concrete module
to nondeterministically allocated cells only, in order to hide the identities of the
optimized cells from a client program, by making all the allocation-status testing
fail to give any useful information. For instance, our method allows counter3
in Fig. 1 to be optimized by counter2, because the internal cell in counter3
is allocated nondeterministically. Note that even with check2, a client cannot
detect this optimization, e.g. when cell 2 is free initially, counter3.init(); detect2
nondeterministically assigns 1 or 2 to v, just as counter2.init(); detect2 does.
The precise formulation of our method uses a new notion of simulation – power
simulation, to express this restriction on space optimization.

Related Work and Motivation It has long been known that pointers cause
great difficulties in the treatment of data abstraction [8, 9], and this has lead
on to a non-trivial body of research [1, 3, 13, 11, 18, 16]. The focus of the present
work (and [12]), on problems caused by low-level operations, sets it apart from
all this other research.

Now, the reader might think that these problems arise only because of lan-
guage bugs. Indeed, previous work has relied strongly on protection mechanisms
of high-level, garbage collected languages. In such high-level languages, the non-
deterministic memory allocation is harmless; it does not let one implement the
allocation-status testing (because those languages forbid explicit deallocation
and pointer arithmetic) and the nondeterministic allocation can even be treated
deterministically using location renaming [18, 16]. Moreover, those high-level lan-
guages often have sophisticated type systems [3, 2] that limit cross-boundary
pointers. However, we would counter that a comprehensive approach to abstrac-
tion cannot be based on linguistic restrictions. For, the fact of the existence of
significant suites of infrastructure code – operating systems, database servers,
network servers – argues against it. The architecture of this code is not en-
forced by linguistic mechanisms, and it is hard to see how it could be. Low-level
code naturally uses cross-boundary pointers and address arithmetic. But it is
a mistake to think that infrastructure code is unstructured; it often exhibits a
large degree of pre-formal modularity. In this paper, we will demonstrate that
there is no inherent reason why the idea of refinement of modules should not be
applicable to it.



Outline We start the paper by defining the storage model and the programming
language in Sec. 2 and 3. Then, in Sec. 4, we describe the problem of finding
a sound data-refinement method, and show that the usual forward method of
data refinement fails to be a solution for the problem. In Sec. 5, we introduce the
notion of power simulation, and prove its soundness; so, power simulation is a
solution for the problem. In Sec. 6, we study the special case of power simulation
that can be expressed in a more conventional style. Finally, in Sec. 7, we conclude
the paper.

2 Storage Model and Finite Local Action

Our storage model, St, is the RAM model in separation logic [17, 10]:

Loc = {1, 2, . . .} Int = {. . . ,−2,−1, 0, 1, . . .} St = Loc ⇀fin Int

A state h ∈ St in the model is a finite mapping from locations to integer values;
the domain of h denotes the set of currently allocated memory cells, and the “ac-
tion” of h the contents of those allocated cells. Note that addresses are positive
natural numbers, and so, they can be manipulated by arithmetic operations. We
recall the disjointness predicate h#h′ and the (partial) heap combining operator
h·h′ from separation logic. The predicate h#h′ means that dom(h)∩dom(h′) 6= ∅;
and, h·h′ is defined only for such disjoint heaps h and h′, and in that case, it
denotes the combined heap h∪h′. We overload the disjointness predicate #, and
for states h and location sets L, we write h#L to mean that all locations in L
are free in h (i.e., dom(h) ∩ L = ∅).

We specify a property of storage, using subsets of St directly, instead of syn-
tactic formulas. We call such subsets of St predicates, and use semantic versions
of separating conjunction ∗ and preciseness from separation logic:

p, q ∈ Pred
def= ℘(St) p ∗ q def= {hp·hq | hp ∈ p ∧ hq ∈ q} true

def= St

p is precise def⇔ for all h, there is at most one splitting hp·h0 = h of h s.t. hp ∈ p.

An action r is a relation from St to St ∪ {av, flt}. Intuitively, it denotes
a nondeterministic client program that uses a module. Action r can output
two types of errors, access violation av and memory fault flt. The first error av
means that a client attempts to break the boundary between the client and the
module, by accessing the internals of the module directly without using module
operations. The second one, flt, means that a client tries to dereference a null
or a dangling pointer. Note that if ¬h[r]flt, state h contains all the cells that r
dereferences, except the newly allocated cells. As in separation logic, we write
safe(r, h) to indicate this (i.e., ¬h[r]flt).

A finite local action is an action that satisfies: safety monotonicity, frame
property, finite access property, and contents independence. Intuitively, these four
properties mean that each execution of the action accesses only finitely many
heap cells. Some of the cells are accessed directly by pointer dereferencing, so
that the contents of the cells affects the execution, while the other remaining



cells are accessed only indirectly by the allocation-status testing, so that the
execution only depends on the allocation status of the cells, not their contents.
More precisely, we define the four properties as follows:1

– Safety Monotonicity: if h0#h1 and safe(r, h0), then safe(r, h0·h1).
– Frame Property: if safe(r, h0) and h0·h1[r]h′, then ∃h′0. h′=h′0·h1∧h0[r]h′0.
– Finite Access Property: if safe(r, h0) and h0[r]h′0, then

∃L⊆finLoc.∀h1. (h1#h0 ∧ h1#h′0 ∧ (dom(h1) ∩ L = ∅)) ⇒ h0·h1[r]h′0·h1.

– Contents Independence: if safe(r, h0) and h0·h1[r]h′0·h1, then h0·h2[r]h′0·h2

for all states h2 with dom(h1)=dom(h2).

The first two properties are well-known locality properties from separation logic,
and mean that if h0 contains all the directly accessed cells by a “command” r,
every computation from a bigger state h0·h1 is safe, and it can be tracked by
some computation from the smaller state h0. The third condition expresses the
converse; every computation from the smaller state h0 can be extended to a
computation from the bigger state h0·h1, as long as the extended part h1 does
not include directly accessed locations (h1#h0 ∧ h1#h′0) or indirectly accessed
locations (i.e., dom(h1) ∩ L = ∅). Note that the finite set L contains all the
indirectly accessed locations by the computation h0[r]h′0. The last one, contents
independence, expresses that if safe(r, h0), the execution of r from a bigger state
h0·h1 does not look at the contents of cells in h1; it can only use the information
that the locations in h1 are allocated initially. At first glance, it may seem
that contents independence follows from the frame property, but the following
example suggests otherwise. Let [] be the empty state, and let r be an action
defined by h[r]v ⇔ h = v ∧ (h = [] ∨ (1∈dom(h)∧ h(1)=2)). This “command”
r satisfies both the safety monotonicity and the frame property, but not the
contents independence; even though safe(r, []) and 1 6∈ dom([]), “command” r
behaves differently depending on the contents of cell 1. The finite access property
and contents independence are new in this paper, and they play an important
role in the soundness of our data-refinement method (Sect. 5.1).

Definition 1 (Finite Local Action). A finite local action, in short FLA, is an
action that satisfies safety monotonicity, frame property, finite access property,
and contents independence. A finite local action is av-free iff it does not relate
any state to av.

The set of finite local actions has a structure rich enough to interpret pro-
grams with all the low-level pointer operations that have been considered in
separation logic.2 Let F be the poset of FLAs ordered by the “graph-subset”
1 All the states free in the properties are universally quantified.
2 Thus, the set of finite local actions, as a semantic domain, expresses the computa-

tional behavior of pointer programs more accurately than the set of local actions,
just as the set of continuous functions is a more “accurate” semantic domain than
that of monotone functions in the domain theory.



Let l be a location, i an integer, n a positive natural number, and I a set of integers.

h[update(l, i)]v
def⇔ if l 6∈ dom(h) then v=flt else v=h[l 7→ i]

h[cons(l, n)]v
def⇔ if l 6∈ dom(h) then v=flt else (∃l′. v=(h[l 7→ l′])·[l′→0, .., l′+n−1→0])

h[dispose(l)]v
def⇔ if l 6∈ dom(h) then v=flt else v·[l→h(l)]=h

h[test(l, I)]v
def⇔ if l 6∈ dom(h) then v=flt else (v=h ∧ h(l)∈I)

Fig. 2. Semantic Low-level Pointer Operations

relation v3, and let Fnoav be the sub-poset of F consisting of av-free FLAs. Par-
ticularly interesting are the low-level pointer operations, such as the memory
update, allocation and deallocation of a cell, and a test “∗l ∈ I” for location l
and integer set I: if l is allocated and it contains a value in I, the test skips;
if l is allocated but its value is not in I, the test blocks; otherwise (i.e., if l is
not allocated), the test generates the memory fault flt. For instance, test(1, {3})
expresses the conditional statement if (∗16=3){diverge}. Note that test(1, {3})
generates flt precisely when the boolean condition ∗16=3 dereferences an inactive
cell.

Lemma 1. The poset Fnoav of av-free FLAs contains the operations in Fig. 2.

Proof. None of the defined operations generate av. So, it suffices to show that
the operations obey all four properties of finite local actions. We only prove that
update(l, i) satisfies the finite access property; it is straightforward to prove the
remaining cases. Suppose that ¬h[update(l, i)]flt and h[update(l, i)]h′. Then, l is
allocated in both h and h′, and dom(h) = dom(h′). Thus, for all states h1 such
that h1#h and h1#h, location l is allocated in both h·h1 and h′·h1 and its value
in h′·h1 is h′(l) = i. Hence, h·h1[update(l, i)]h′·h1. Thus, the required set L of
indirectly accessed locations in the finite access property is the empty set. ut

Lemma 2. Both F and Fnoav are complete lattices that have the set union as
their join operator: for every family {ri}i∈I in each poset,

⊔
i∈I ri is

⋃
i∈I ri.

Proof. Since both F and Fnoav are ordered by the graph-subset relation, we only
need to show that they are closed under arbitrary union. Note that for every
family {ri}i∈I in F , if each ri is av-free, then

⋃
i∈I ri is av-free as well. Thus, it

suffices to show the closedness only for F . It is well-known that the set of local
actions are closed under union [19]. Thus, we focus on the finite access property
and contents independence. Let {ri}i∈I be a family of FLAs, and let r be its
graph union

⋃
i∈I ri. We first show that r satisfies the finite access property.

Suppose that ¬h0[r]flt and h0[r]h′0. By the definition of r, there is some rj such
that ¬h0[rj ]flt and h0[rj ]h′0. Since rj satisfies the finite access property, there
exists a finite set L of indirectly accessed locations for h0[rj ]h′0. We claim that L
is the required set. To see why, consider a state h1 such that h1#h0, h1#h′0 and

3 r v r′ iff ∀h ∈ St.∀v ∈ St ∪ {flt, av}. h[r]v ⇒ h[r′]v



dom(h1)∩L = ∅. By the finite access property of rj , we have that h0·h1[rj ]h′0·h1.
Since r includes rj , we also have h0·h1[r]h′0·h1.

For the contents independence, consider states h0, h
′
0, h1, h2 such that

h1#h0 ∧ h1#h′0 ∧ ¬h0[r]flt ∧ h0·h1[r]h′0·h1 ∧ dom(h1) = dom(h2).

Then, there exists rj such that ¬h0[rj ]flt and h0·h1[rj ]h′0·h1. By the contents
independence of rj , we have that h0·h2[rj ]h′0·h2. Since r includes rj , we also
have h0·h2[r]h′0·h2, as required. ut

3 Programming Language

The programming language is Dijkstra’s language of guarded commands [5] ex-
tended with low-level pointer operations and module operations. The syntax of
the language is given by the grammar:

C ::= f | a | C;C | C[]C | P | fixP.C

where f, a, P are, respectively, chosen from three disjoint sets mop, aop, pid of
identifiers. The first construct f is a module operation declared in the “interface
specification” mop. Before a command in our language gets executed, it is first
“linked” to a specific module that implements the interface mop. This linked
module provides the meaning of the command f . The second construct a is an
atomic operation, which a client can execute without using the module opera-
tions. Usually, a denotes a low-level pointer operation. Note that the language
does not provide a syntax for building specific pointer operations. Instead, we
assume that the interpretation [[−]]a of these atomic client operations as av-free
FLAs is given along with aop, and that under this interpretation, aop includes at
least all the pointer operations in Lemma 1, so that aop includes all the atomic
pointer operations considered in separation logic. The remaining four constructs
of the language are the usual compound commands from Dijkstra’s language:
sequential composition C;C, nondeterministic choice C[]C, the call of a param-
eterless procedure P , and the recursive definition fixP.C of a parameterless
procedure. As in Dijkstra’s language, the construct fixP.C not only defines a
parameterless recursive procedure P , but also calls the defined procedure. We
express that a command C does not have free procedure names, by calling C a
complete command.

Note that all the usual constructs of the while language can be expressed in
this language. For example, conditional statement if (∗l ∈ I) then C else C ′ can
be expressed as (test(l, I);C)[](test(l, I);C ′), where Ī is the complement Int−I
of I. And, the allocation-status testing check2 can be expressed as:

cons(3, 1);
((

test(3, {2}); update(3, 1)
)
[]
(
test(3, Int−{2}); update(3, 2)

))
.

We interpret commands using an instrumented denotational semantics; be-
sides computing the usual state transformation, the semantics also checks whether



µ ∈ E def
= pid → F [[C]](p,η) : E → F [[C]]c(p,η) : F (for complete C)

[[a]](p,η)µ
def
= prot([[a]]a, p) [[C[]C′]](p,η)µ

def
= [[C]](p,η)µ ∪ [[C]](p,η)µ

[[f ]](p,η)µ
def
= η(f) [[P ]](p,η)µ

def
= µ(P )

[[C; C′]](p,η)µ
def
= seq([[C]](p,η)µ, [[C′]](p,η)µ) [[fix P. C]](p,η)µ

def
= fix λr. [[C]](p,η)(µ[P→r])

[[C]]c(p,η)

def
= seq(seq(η(init), [[C]](p,η)⊥), η(final)) (for complete C)

where seq:F×F→F and prot:F×Pred→F are defined as follows:

h[prot(r, p)]v
def⇔ h[r]v ∨ (v=av ∧ ¬h[r]flt ∧ ∃hp, h0. h=hp·h0 ∧ hp ∈ p ∧ h0[r]flt)

h[seq(r, r′)]v
def⇔ (∃h′. h[r]h′ ∧ h′[r′]v) ∨ (h[r]flt ∧ v=flt) ∨ (h[r]av ∧ v=av)

Fig. 3. Semantics of Language

each atomic client operation accesses the internals of a module, and for such il-
legal accesses, the semantics generates an access violation av.

To implement the instrumentation, we parameterize the semantics by what
we call a semantic module. Let init and final be identifiers that are not in mop. A
semantic module is a pair of a predicate p and a function η from mop∪{init, final}
to Fnoav, such that (1) ∀h, h′. (safe(η(init), h) ∧ h[η(init)]h′ ⇒ h′∈p∗true); (2) for
all f in mop, ∀h, h′. (safe(η(f), h) ∧ h∈p∗true ∧ h[η(f)]h′ ⇒ h′∈p∗true); (3) p is
precise. Intuitively, the predicate p in the semantic module denotes the resource
invariant for the module internals, and function η specifies the meaning of the
module operations, initialization init and finalization final. The first condition of
the semantic module requires initialization to establish the resource invariant,
and the second condition, that the established resource invariant be preserved by
module operations. The last condition is more subtle. It ensures that using the
invariant p, we can determine which part of each state belongs to the module.
Recall that a predicate q is precise iff every state h in q ∗ true has a unique
splitting hq·h0 = h such that hq ∈ q. Thus, if p is precise, then for every state h
containing both the internals and externals of the module (i.e., h ∈ p ∗ true), we
can unambiguously split h into module-owned part hp and client-owned part h0.
This unambiguous splitting is used in the semantics to detect the access violation
of the atomic client operations, and it also plays a crucial role in the soundness of
our refinement method (Sect. 5.1). We remark that requiring the preciseness of
the invariant p is not as restrictive as one might think, because most of the used
resource invariants are precise; among the used resource invariants in separation
logic, only one invariant is not precise, but even that invariant can safely be
tightened to a precise one.4

Let E be the poset of all functions from pid to F ordered pointwise. Given
semantic module (p, η), we interpret a command as a continuous function [[−]](p,η)

4 The only known unprecise invariant is listseg(x, y) in [17], which means the existence
of a (possibly cyclic) linked list segment from x to y. However, even that invariant
can be made precise, if it is restricted to forbid a cycle in the list segment [14].



from E to F . For complete commands C, we consider an additional interpretation
[[−]]c(p,η) that uses the least environment⊥ = λP.∅, and runs the initialization and
the finalization of the module (p, η) before and after ([[C]](p,η)⊥), respectively.
The details of these two interpretations are shown in Fig. 3.

The most interesting part of the semantics lies in the interpretation of the
atomic client operations. For each atomic operation a, its interpretation first
looks up the original meaning [[a]]a ∈ Fnoav, which is given when the syntax
of the language is defined. Then, the interpretation transforms the meaning
into prot([[a]]a, p), “the p-protected execution of [[a]]a.” Intuitively, prot([[a]]a, p)
behaves the same as [[a]]a, except that whenever [[a]]a accesses the p-part of the
input state, prot([[a]]a, p) generates av, thus indicating that there is an “access
violation.” Since p is the resource invariant of the module, prot([[a]]a, p) notifies
all illegal accesses to the module internals, by generating av.

Lemma 3. Function seq is a continuous map from F × F to F

Proof. Let r, r′ be FLAs. We first prove that seq(r, r′) is a FLA. Since it is
well known that seq(r, r′) satisfies the safety monotonicity and frame property
[20], we focus on the finite access property and contents independence. To show
that seq(r, r′) satisfies the finite access property, consider states h0, h

′
0 such that

¬h0[seq(r, r′)]flt and h0[seq(r, r′)]h′0. Then, there exists an intermediate state m0

such that
h0[r]m0 ∧ m0[r′]h′0.

Since ¬h0[seq(r, r′)]flt, by the definition of seq, we have that

(¬h0[r]flt) ∧ (¬m0[r′]flt).

Thus, we can use the finite access property of r and r′ for h0[r]m0 and m0[r′]h′0.
Let L,L′ be the finite sets of indirectly accessed locations for h0[r]m0 and
m0[r′]h′0, respectively. We will show that the required set L′′ for h0[seq(r, r′)]h′0
is L ∪ L′ ∪ dom(m0). For all states h1 such that

dom(h1) ∩
(
dom(h0) ∪ dom(h′0) ∪ L ∪ L′ ∪ dom(m0)

)
= ∅,

dom(h1) is disjoint from dom(h0) ∪ dom(m0) ∪ L and dom(m0) ∪ dom(h′0) ∪ L′.
Thus,

h0·h1[r]m0·h1 ∧ m0·h1[r′]h′0·h1.

This implies h0·h1[seq(r, r′)]h′0·h1, as required.
We now show that seq(r, r′) satisfies the contents independence. Consider

states h0, h
′
0, h1, h2 such that

h1#h0 ∧ h1#h′0 ∧ ¬h0[seq(r, r′)]flt ∧ h0·h1[seq(r, r′)]h′0·h1 ∧ dom(h1) = dom(h2)

Then, there exists an intermediate state m such that

h0·h1[r]m ∧ m[r′]h′0·h1.



Since ¬h0[seq(r, r′)]flt, by the definition of seq, we have that

¬h0[r]flt.

Thus, we can apply the frame property of r to h0·h1[r]m. If we apply the frame
property, then we get a substate m0 of m such that

m = m0·h1 ∧ h0[r]m0.

Since ¬h0[seq(r, r′)]flt, this substate m0 should be a safe input for r′: ¬m0[r′]flt.
We now use the contents independence of r and r′. We replace h1 by h2 in the
computation h0·h1[r]m0·h1 and m0·h1[r′]h′0·h1, and obtain the following new
computations:

h0·h2[r]m0·h2 ∧ m0·h2[r′]h′0·h2.

The obtained computations show that h0·h2[seq(r, r′)]h′0·h2.
Next, we prove that seq is continuous. Consider a chain {(ri, r′i)}i∈ω of FLA

pairs. Then,

h[seq(
⋃

i∈ω ri,
⋃

i∈ω r
′
i)]v

⇐⇒(
h[

⋃
i∈ω ri]v ∧ (v = flt ∨ v = av)

) ∨ (∃h′. h[⋃i∈ω ri]h
′ ∧ h′[

⋃
i∈ω r

′
i]v

)
⇐⇒ (∵ {(ri, r′i)}i∈ω is a chain)(∃i. h[ri]v ∧ (v = flt ∨ v = av)

) ∨ (∃i. ∃h′. h[ri]h′ ∧ h′[r′i]v
)

⇐⇒
∃i.

((
h[ri]v ∧ (v = flt ∨ v = av)

) ∨ (∃h′. h[ri]h′ ∧ h′[r′i]v
))

⇐⇒
∃i. h[seq(ri, r′i)]v

⇐⇒
h[

⋃
i∈ω seq(ri, r′i)]v

ut
Lemma 4. For every FLA r ∈ F and every precise predicate p, action prot(r, p)
is a finite local action.

Proof. Action prot(r, p) is identical to r when both are restricted to St × (St ∪
{flt}). Note that all of the safety monotonicity, frame property, finite access
property and contents independence only concern the state or flt outputs, and
that those properties are satisfied by r. Thus, they are also satisfied by prot(r, p).

ut
Lemma 5. The interpretation in Fig. 3 is well-defined.

Proof. We use the induction on the structure of C. When C is either an atomic
client operation a or a module operation f , [[C]](p,η) is a constant function from
E to F (Lemma 4), and so, it is continuous. When C is a procedure name P ,
[[C]](p,η) is a projection map, and so, it is continuous as well. The cases of the
sequential composition C1;C2 and the choice operator C1[]C2 follow from the



fact that ∪ and seq are continuous operators from F × F to F (Lemma 3). In
both cases, the semantics of C is given by the composition of some continuous
function k:F × F → F with

k′ = λµ. 〈[[C1]](p,η)µ, [[C2]](p,η)µ〉 : E → F × F .
By the induction hypothesis, k′ is continuous, and so, the semantics [[C]](p,η),
given by k ◦ k′, is continuous as well. The final case is when C is fixx.C. In
this case, [[C]](p,η) is the composition of the continuous least-fixed-point operator
fix: [F → F ] → F with the following function k′:

k′ = λµ ∈ E . λr ∈ F . [[C]](p,η)(µ[x→r]).

We will show that k′ is a continuous function from E to [F → F ]. For all
environments µ, and for all chains {ri}i∈ω of finite local actions, {µ[x→ri]}i∈ω is a
chain whose least upper bound is µ[x→

⋃
i∈ω ri]. So, by the induction hypothesis,

[[C]](p,η)(µ[x→
⋃

i∈ω

ri]) = [[C]](p,η)(
⊔

i∈ω

(µ[x→ri])) =
⋃

i∈ω

[[C]](p,η)(µ[x→ri]).

Thus, k′ is a well-defined function from E to [F → F ]. We now show that k′ is
indeed continuous. Let {µi}i∈ω be a chain of environments. Then, for all r in F ,

[[C]](p,η)((
⊔

i∈ω

µi)[x→r]) = [[C]](p,η)(
⊔

i∈ω

(µi[x→r])) =
⋃

i∈ω

([[C]](p,η)(µi[x→r])).

Thus, k′ is continuous. ut

4 Data Refinement

The goal of this paper is to find a method for proving that a “concrete” module
(q, ε) data-refines an “abstract” module (p, η). In this section, we first formalize
this goal by defining the notion of data refinement. Then, we demonstrate the
difficulty of achieving the goal, by showing that the standard forward method is
not sound in the presence of allocation-status testing.

We use the notion of data refinement that Mijajlović et al. devised in order to
handle cross-boundary pointers. Usually, data refinement is a relation between
modules defined by substitutability: a module (q, ε) data-refines another module
(p, η) iff for all complete commands C using (p, η), substituting the concrete
module (q, ε) for the abstract module (p, η) improves the behavior of C, i.e., C
becomes more deterministic with the concrete module. Mijajlović et al. weak-
ened this usual notion of data refinement, by dropping the requirement about
improvement for error-generating input states: if C with the abstract module
(p, η) generates an access violation av or a memory fault flt from an input state
h, then for this input h, the data refinement does not constrain the execution
of C with the concrete module (q, ε), and allows it to generate any outputs.
In this paper, we use the following formalization of this weaker notion of data
refinement:



Definition 2 (Data Refinement). A module (q, ε) data-refines another mod-
ule (p, η) iff for all complete commands C and all states h, if [[C]]c(p,η) does not
generate an error from h (i.e., ¬h[[[C]]c(p,η)]av ∧ ¬h[[[C]]c(p,η)]flt), then

(¬h[[[C]]c(q,ε)]av ∧ ¬h[[[C]]c(q,ε)]flt
) ∧ (∀h′. h[[[C]]c(q,ε)]h

′ ⇒ h[[[C]]c(p,η)]h
′).

The main benefit of considering this notion of data refinement is that a proof
method for data refinement does not have to do anything special in order to
handle the cross-boundary pointers. Recall that flt means that a command tries
to dereference dangling pointers or nil, and av means that a command attempts
to dereference the internal cells of a module without using module operations.
Thus, if a command C does not generate an error from an input state h, then
all the cells that C directly dereferences during execution must be allocated and
belong to the “client” portion of the state; in particular, C does not dereference
any cross-boundary pointers directly. Since the data refinement now asks for
the improvement of only the error-free computations of C, a proof method for
data refinement can ignore the “bad” computations where C dereferences cross-
boundary pointers.

Unfortunately, even with this weaker notion of data refinement, standard
proof methods for data refinement are not sound; they fail to deal with the
allocation-status testing. We explain this soundness problem making use of the
notion of the forward simulation in [12]. As pointed out in their work, while
successfully dealing with the cross-boundary pointer dereferencing problem, the
forward method is not sound for allocation-status testing.

The key concept of the forward simulation in [12] is an operator fsim that
maps a pair (R0, R1) of state relations to a relation fsim(R0, R1) between FLAs.
Intuitively, r′[fsim(R0, R1)]r means that given R0-related input states h′ and h,
if r does not generate an error from h, then (1) r′ does not generates an error
from h′ and (2) every output of r′ from h′ is R1-related to some outcome of r.
More precisely, r′[fsim(R0, R1)]r iff for all states h′ and h, if (h′[R0]h∧¬h[r]flt∧
¬h[r]av), then

(¬h′[r′]flt ∧ ¬h′[r′]av) ∧ (∀h′1. h′[r′]h′1 ⇒ ∃h1. h[r]h1 ∧ h′1[R1]h1

)
.

The condition about the absence of errors comes from the fact that the data
refinement considers only error-free computations. Except this condition, the
way of relating two actions (or commands) in fsim(R0, R1) is fairly standard in
the work on data refinement [6, 4].

Let ∆ be the diagonal relation on states5, and for state relations R0 and R1,
let R0 ∗ R1 be their relational separating conjunction [16]: h′[R0 ∗ R1]h iff h′

and h are, respectively, split into h′0·h′1 = h′ and h0·h1 = h such that the first
parts h′0, h0 are related by R0 and the second parts h′1, h1 by R1.6 The formal
definition of forward simulation is given below:

5 h′[∆]h
def⇔ h′ = h

6 h′[R0 ∗R1]h
def⇔ ∃h′0, h′1, h0, h1. h′0·h′1 = h′ ∧ h0·h1 = h ∧ h′0[R0]h0 ∧ h′1[R1]h1.



Definition 3 (Forward Simulation). Let (q, ε), (p, η) be semantic modules,
and R a relation s.t. R ⊆ q × p. Module (q, ε) forward-simulates (p, η) by R iff

1. ε(init)[fsim(∆,R ∗∆)]η(init) and ε(final)[fsim(R ∗∆,∆)]η(final);
2. ∀f ∈ mop. ε(f)[fsim(R ∗∆,R ∗∆)]η(f).

The relation R ∗∆ here expresses that the corresponding states of r′ and r can,
respectively, be partitioned into the module and client parts; the module parts
of r′ and r are related by R, but the client parts of r′ and r are the same.

The forward simulation is not sound: there are modules (q, ε), (p, η) such that
the concrete module (q, ε) forward-simulates the abstract module(p, η) by some
R ⊆ q × p, but it does not data-refine it. The main reason of this unsound-
ness is that the low-level pointer operations in our language, especially those
implementing allocation-status testing, break the underlying assumption of the
forward simulation. The forward simulation assumes a language where if a com-
mand C does not call module operations, then for all relations R ⊆ q × p, the
command “forward-simulates” itself by R: [[C]](q,ε)µ

′[fsim(R∗∆,R∗∆)][[C]](p,η)µ
for all µ′, µ that define fsim(R∗∆,R∗∆)-related “procedures”. Our language,
however, does not satisfy this assumption; if an atomic client command a imple-
ments the allocation-status testing, it is not related to itself by fsim(R∗∆,R∗∆)
in general. For instance, having a concrete module (q, ε) and the abstract one
(p, η) and a relation R between them, consider an atomic command cons(2, 1)
that allocates one new cell initialized to 0 and assigns its address to cell 2; in
case that cell 2 is not allocated initially, cons(2, 1) generates flt.7 Let R be de-
fined by h′0[R]h0 ⇔ h′0 = [] ∧ h0 = [1→2]. Then, h′[R∗∆]h iff there is some state
h1 such that 1 6∈ dom(h1) ∧ h′ = []·h1 ∧ h = [1→2]·h1. Thus, states h′ = [2→0]
and h = [1→2, 2→0] are R∗∆-related. We will now consider the execution of
cons(2, 1) from these R∗∆-related states h′ and h. When cons(2, 1) is run from
h′ (with the concrete module (q, ε)), it can allocate cell 1 and give the output
state h′1 = [1→0, 2→1] (i.e., h1[[[cons(2, 1)]](q,ε)µ

′]h′1), because cell 1 is free initially
(i.e., 1 6∈ dom(h′)). However, when the same command is run from h (with the
abstract module (p, η)), it cannot allocate cell 1, because 1 is already active in h
(i.e., 1 ∈ dom(h)). In this case, all the output states of cons(2, 1) have the form
[1→0, 2→n, n→0] for some n ∈ Nats−{1, 2}. Note that the state h′1 = [1→0, 2→1]
is not R∗∆-related to any such outputs [1→0, 2→n, n→0]. Thus, we cannot have
that

(
[[cons(2, 1)]](q,ε)µ

′)[fsim(R∗∆,R∗∆)]
(
[[cons(2, 1)]](p,η)µ

)
. In Appendix A,

we use these R and cons to construct a counter example for the soundness of the
forward simulation.

5 Power Simulation

We now present the main result of this paper: a new method for data refinement,
called power simulation, and its soundness proof.

7 h[[[cons(2, 1)]]a]v
def⇔ if 2 6∈ dom(h) then v=flt else ∃n. v=h[2→n]·[n→0].



The key idea of power simulation is to use the state-set lifting lft(r) of a
FLA:

lft(r) : ℘(St) ↔ (℘(St) ∪ {flt, av})
H[lft(r)]V def⇔ (V⊆St ∧ ∀h′∈V.∃h∈H.h[r]h′) ∨ ((V=av ∨ V=flt) ∧ ∃h∈H.h[r]V ).

Given an input state set H, the “lifted command” lft(r) runs r for all the states
in H, chooses some states among the results, and returns the set V of the chosen
states. Note that V might not contain some possible outputs from H; so, lft(r)
is different from the usual direct image map of r, and in general, it is a relation
rather than a function. For each module (p, η), we write lft(η) for the lifting of
all module operations (i.e., ∀f ∈ mop. lft(η)(f) = lft(η(f))), and call (p, lft(η))
the lifting of (p, η).

The power simulation is the usual forward simulation of a lifted “abstract”
module by a normal “concrete” module. Suppose that we want to show that
a concrete module (q, ε) data-refines an abstract module (p, η). Define a power
relation to be a relation between states and state sets. Intuitively, the power sim-
ulation says that to prove this data refinement, we only need to find a “good”
power relation R ⊆ St × ℘(St) such that every concrete-module operation ε(k)
“forward-simulates” the corresponding lifted abstract-module operation lft(η(k))
byR. The official definition of power simulation formalizes this intuition by spec-
ifying (1) which power relation should be considered good for given modules (q, ε)
and (p, η), and (2) what it means that a normal command “forward-simulates”
a lifted command. For the first, we use the expansion operator and admissibility
condition for power relations. For the second, we use the operator psim that
maps a power-relation pair to a relation on FLAs. We will now define these sub-
components of power simulation, and use them to give the formal definition of
power simulation.

We explain operator psim first. For power relations R0 and R1, psim(R0,R1)
relates a “concrete” FLA r′ with an “abstract” r iff for every R0-related input
state h′ and state set H, if lft(r) does not generate an error from H, then all
the outputs of r′ from h′ are R1-related to some output state sets of lft(r) from
H. More precisely, r′[psim(R0,R1)]r iff for all h′ and H, if h′[R0]H and neither
H[lft(r)]flt nor H[lft(r)]av, then

(¬h′[r′]flt ∧ ¬h′[r′]av) ∧ (∀h′1. h′[r′]h′1 ⇒ ∃H1.H[lft(r)]H1 ∧ h′1[R1]H1

)
.

Note that this definition is the lifted version of fsim in Sec. 4; except that it
considers the lifted computation lft(r), instead of the usual computation r, it
coincides with the definition of fsim. In the definition of power simulation, we
will use this psim to express the “forward-simulation” of a lifted command by a
normal command.

Next, we define the expansion operator −⊗∆ for power relations. The ex-
pansion R⊗∆ of a power relation R is a power relation defined as follows:

h[R⊗∆]H def⇔ ∃hr, h0,Hr.
(
h = hr·h0 ∧ hr[R]Hr ∧ H = Hr ∗ {h0}

)
.



Intuitively, the definition means that h and H are obtained by extending R-
related state hr and state setsHr by the same state h0. Usually,R is a “coupling”
power relation that connects the internals of two modules, and R⊗∆ expands
this coupling relation to the relation for the entire memory, by asking that the
added client parts must be identical.

The final subcomponent of power simulation is the admissibility condition
for power relations. A power relation R is admissible iff for every R-related state
h and state set H (i.e., h[R]H), we have that8

H 6= ∅ ∧ (∀L⊆finLoc−dom(h). ∃H1⊆H.
(
H1 6=∅ ∧ h[R]H1 ∧ ∀h1∈H1. h1#L

))
.

The first conjunct in the admissibility condition means that all related state sets
must contain at least one state. The second conjunct is about the “free cells” in
these related state sets. It means that if h[R]H, state set H collectively has at
least as many free cells as h: for every finite collection L of free cells in h, set
H contains states that do not have any of the cells in L, and, moreover, the set
H1 of such states itself collectively has as many free cells as h. To understand
the second conjunct more clearly, consider power relations R0,R1,R2 defined
as follows:

h[R0]H
def⇔ h=[3→1] ∧H={[3→5]} h[R1]H

def⇔ h=[3→1] ∧H={[3→5, 4→5]}
h[R2]H

def⇔ h=[3→1] ∧ ∃L⊆finLoc. H={[3→5, n→5] | n 6∈ L ∪ {3}}
The first power relation R0 is admissible, because set {[3→5]} has only one state
[3→5] that has the exactly same free cells, namely all cells other than 3, as state
[3→1]. On the other hand, R1 is not admissible, because the (unique) state in
{[3→5, 4→5]} has an active cell 4 that is not free in [3→1]. The last relation R2 is
tricky; relation R2 is admissible, even though for all R2-related h and H, every
state in H has more active cells than h. The intuitive reason for this is that for
every free cell in [3→1], set H contains a state that does not contain the cell, and
so, it collectively has as many free cells as [3→1]; in a sense, by having sufficiently
many states, H hides the identity of the additional cell n. The formal proof
that R2 satisfies the second conjunct of the admissibility condition proceeds as
follows. ConsiderH,h′, L1 such that h′[R2]H and L1 ⊆fin (Loc−dom(h)). By the
definition of R2, there exists a finite location set L such that H = {[3→5, n→5] |
n 6∈ L ∪ {3}}. Let H1 = {[3→5, n→5] | n 6∈ L ∪ L1 ∪ {3}}. The defined set H1 is
a nonempty subset of H. We now prove that H1 is in fact the required subset
of H in the admissibility condition. Since h′[R2]H1, h′[R2]H1 follows from the
definition of R2 and H1. We also have that ∀h1 ∈ H1. dom(h1)∩L1 = ∅, because
dom(h1) ∩ L1 ⊆ {3} but L1 does not contain 3 (h′=[3→1]#L1).

Using the expansion operator and admissibility condition, we can define the
criteria for deciding which power relation should be considered “good” for given
modules (q, ε) and (p, η). The criteria is: a power relation should be the expansion
R⊗∆ of an admissible R for the module internals (i.e., R ⊆ q × ℘(p)). The
following lemma, which we will prove later in Sec. 5.1, provides the justification
of this criteria:
8 Recall that h1#L iff dom(h1) ∩ L = ∅.



Lemma 6: For all q, p, and all power relationsR ⊆ q×℘(p), ifR is admis-
sible and q is precise, then ∀r∈Fnoav. prot(r, q)[psim(R⊗∆,R⊗∆)]prot(r, p).

To see the significance of this lemma, recall that the forward simulation in
Sec. 4 failed to be sound mainly because some atomic client operations are
not related to themselves by fsim. The lemma indicates that as long as we
are using admissible power relation R, we do not have such a problem for
psim: if R is admissible, then for all atomic client operations a and all envi-
ronment pairs (µ′, µ) with psim(R⊗∆,R⊗∆)-related procedures, we have that
[[a]](q,ε)µ

′[psim(R⊗∆,R⊗∆)][[a]](p,η)µ.
We now define the power simulation of an abstract module (p, η) by a concrete

module (q, ε). Let R be an admissible power relation such that R ⊆ q × ℘(p),
and let ID be the “identity” power relation defined by: h[ID]H def⇔ {h} = H.

Definition 4 (Power Simulation). Module (q, ε) power-simulates (p, η) by R
iff

1. ε(init)[psim(ID,R⊗∆)]η(init) and ε(final)[psim(R⊗∆, ID)]η(final);
2. ∀f ∈ mop. ε(f)[psim(R⊗∆,R⊗∆)]η(f).

Example 1. We demonstrate power simulation using the semantic modules (q, ε)
and (p, η) that, respectively, correspond to counter2 and counter3 in Fig. 1. Re-
call that both counter2 and counter3 implement a counter “object” with two
operations, inc for incrementing the counter and read for reading the value of
the counter; the main difference is that counter3 uses two cells, namely cell 1
and a newly allocated one, to track the value of the counter, while counter2 uses
only cell 1 for the same purpose. The corresponding semantic modules, (q, ε) for
counter2 and (p, η) for counter3, are defined in Fig. 4. Note that the resource
invariant p indicates that counter3 uses two cells 1 and n internally, and the
invariant q that counter2 uses only one cell 1 internally. We will now show that
the space saving in counter2 is correct, by proving that (q, ε) power-simulates
(p, η).

The first step of power simulation is to find an admissible power relation that
couples the internals of (q, ε) and (p, η). For this, we use the following R:

h[R]H def⇔ ∃L, n. L⊆finLoc ∧ n≥0 ∧ h=[1→n] ∧ H={[1→n′, n′→n] | n′ 6∈ L∪{1}}.

Intuitively, h[R]H means that all the states in H and state h represent the same
counter having the value h(1), and moreover, H collectively has as many free
cells as h.

The next step is to show that all the corresponding module operations of
(q, ε) and (p, η) are related by psim. Here we only show that ε(init) and η(init)
are psim(ID,R⊗∆)-related. Consider h and H related by the “identity relation”
ID. Then, by the definition of ID, set H must be the singleton set containing the
heap h. Thus, it suffices to show that if lft(η(init)) does not generate an error
from {h}, all the outputs of ε(init) from h are R⊗∆-related to some output
state sets of lft(η(init)) from {h}. Suppose that lft(η(init)) does not generate an



h ∈ p
def⇔ ∃n, n′. n′ 6= 1 ∧ n ≥ 0 ∧ h = [1→n′, n′→n]

h[η(init)]v
def⇔ if (1 6∈dom(h)) then v=flt else ∃n. n 6∈dom(h) ∧ v=h[1→n]·[n→0]

h[η(inc)]v
def⇔ if (1 6∈dom(h) ∨ h(1) 6∈dom(h)) then v=flt else v=h[h(1)→(h(h(1))+1)])

h[η(read)]v
def⇔ if (1 6∈dom(h) ∨ h(1) 6∈dom(h) ∨ 36∈dom(h)) then v=flt else v=h[3→h(h(1))]

h[η(final)]v
def⇔ if (1 6∈dom(h) ∨ h(1) 6∈dom(h)) then v=flt

else ∃h0. v=h0[1→0] ∧ h=h0·[h(1)→h(h(1))]

h ∈ q
def⇔ ∃n. n ≥ 0 ∧ h = [1→n]

h[ε(init)]v
def⇔ if (1 6∈dom(h)) then v=flt else v=h[1→0]

h[ε(inc)]v
def⇔ if (1 6∈ dom(h)) then v=flt else v=h[1→(h(1)+1)]

h[ε(read)]v
def⇔ if (1 6∈dom(h) ∨ 3 6∈dom(h)) then v=flt else v=h[3→h(1)]

h[ε(final)]v
def⇔ if (1 6∈ dom(h)) then v=flt else v=h[1→0]

Fig. 4. Definition of Module (p, η) and (q, ε)

error from {h}. Then, η(init) cannot output flt from h, and so, cell 1 should
be in dom(h). From this, it follows that the concrete initialization ε(init) does
not generate an error from h. We now check the non-error outputs of ε(init).
When started from h, the concrete initialization ε(init) has only one non-error
output, namely state h[1→0]. We split this output state h[1→0] into [1→0] and
the remainder h0. By the definition of R, the first part [1→0] of the splitting is
R-related to Hr = {[1→n′, n′→0] | n′ 6∈ dom(h)}. Thus, extending [1→0] and Hr

by the remainder h0 gives R⊗∆-related state [1→0]·h0 = h[1→0] and state set
Hr∗{h0}. The state set Hr∗{h0} is equal to {h[1→n′]·[n′→0] | n′ 6∈ dom(h)}, and
so, it is a possible output of lft(η(init)) from {h} by the definition of lft(η(init)).
We have just shown that the output h[1→0] is R⊗∆-related to some output of
lft(η(init)), as required.

The nondeterministic allocation in the abstract initialization η(init) is crucial
for the correctness of data refinement. Suppose that we change the initialization
of the abstract module such that it allocates a specific cell 2:

h[η(init)]v def⇔ if (1 6∈ dom(h)) then (v=flt) else (2 6∈ dom(h) ∧ v=h[1→2]·[2→0])

Then, (q, ε) no longer data-refines (p, η);9 by testing the allocation status of cell
2 using memory allocation and pointer comparison, a client command can detect
the replacement of (p, η) by (q, ε), and exhibit a behavior that is only possible
with (q, ε), but not with (p, η). Power simulation correctly captures this failure
of data refinement. More specifically, for all power relations R ⊆ q × ℘(p) if
ε(init)[psim(ID,R⊗∆)]η(init), then R cannot be admissible. To see the reason,
suppose that ε(init)[psim(ID,R⊗∆)]η(init). When ε(init) and lft(η(init)) are run
from ID-related [1→0] and {[1→0]}, ε(init) outputs [1→0] and lft(η(init)) outputs
{[1→2, 2→0]} or ∅. Thus, by the definition of psim(ID,R⊗∆), [1→0] should be
9 Even when we replace p by a more precise invariant {[1→2, 2→n] | n ≥ 0}, module

(q, ε) does not data-refine (p, η).



R⊗∆-related to {[1→2, 2→0]} or ∅. Then, by the definition of R⊗∆, state [1→0]
isR-related to {[1→2, 2→0]} or ∅. In either case,R is not admissible; the first case
violates the second conjunct about the free cells in the admissibility condition,
and the second case violates the first conjunct about the nonemptiness. ut

5.1 Soundness of Power Simulation

The soundness of power simulation follows from the fact that every atomic client
operation is related to itself by psim (Lemma 6), all language constructs preserve
psim (Lemma 7,8) and psim(ID, ID) is precisely the improvement requirement in
the definition of data refinement (Lemma 9). In this section, we prove these
lemmas, and show how the lemmas give the soundness of power simulation.

Lemma 6. For all predicates q, p, and all power relations R ⊆ q × ℘(p), if q is
precise and R is admissible, then ∀r∈Fnoav. prot(r, q)[psim(R⊗∆,R⊗∆)]prot(r, p).

Note that the lemma requires that the “resource invariant” q for the “concrete
module” be precise, and that r be a av-free finite local action. None of these
requirements can be omitted, because the requirements are used crucially in the
proof of the lemma.

Proof. Let rq be prot(r, q) and let rp be prot(r, p). Pick arbitrary [R⊗∆]-related h
andH such that lft(rp) does not generate an error fromH. Since h[R⊗∆]H, state
h and state set H can, respectively, be split into hq·h0 = h and H = Hp ∗ {h0}
for some hq, h0,Hp such that hq[R]Hp. We note two facts about these splittings.
First, set Hp contains a state that is disjoint from h0. Since hq and Hp are related
by the admissible relation R and dom(hq) is disjoint from dom(h0), there is a
nonempty subset of Hp such that every h1 in the subset satisfies h1#dom(h0).
We pick one state from this subset, and call it hp. Second, the state hp in Hp

and the part hq of the splitting of h, respectively, belong to p and q. This second
fact follows since hq[R]Hp and R ⊆ q×℘(p). We sum up the obtained properties
about Hp, h0, hq, hp below:

H = Hp ∗ {h0} ∧ h = hq·h0 ∧ hq[R]Hp ∧ hp#h0 ∧ hp ∈ p ∧ hq ∈ q.

We now prove that rq does not generate an error from h. Since the lifted
command lft(rp) does not generate an error from H and state hp·h0 is in this
input state set H, we have that ¬hp·h0[rp]flt ∧ ¬hp·h0[rp]av. This absence of
errors of rp ensures one important property of r: r cannot generate flt from h0.
To see the reason, note that hp is in p, and that ¬hp·h0[r]flt since ¬hp·h0[rp]flt.
So, if h0[r]flt, then by the definition of prot, we have that hp·h0[rp]av, which
contradicts ¬hp·h0[rp]av. We will use this property of r to show ¬h[rq]flt and
¬h[rq]av. Since h = h0·hq and ¬h0[r]flt, by the safety monotonicity of r, we have
that ¬h[r]flt. Thus, ¬h[rq]flt by the definition of prot. For ¬h[rq]av, we have to
show that

¬h[r]av ∧ (
h[r]flt ∨ (∀mq,m0 ∈ St. (mq·m0=h ∧mq ∈ q) ⇒ ¬m0[r]flt

))
.



Since r is av-free, it does not output av for any input states. For the second
conjunct, consider a splitting mq·m0 of h such that mq ∈ q. Then, since h =
hq·h0, hq ∈ q and q is precise, we should have that mq = hq and m0 = h0. Since
¬h0[r]flt, it follows that ¬m0[r]flt.

Finally, we prove that every output state of rq from h is R⊗∆-related to
some output state set of lft(rp) from H. In the proof, we will use ¬h0[r]flt, which
we have shown in the previous paragraph. Consider a state h′ such that h[rq]h′.
Since h = h0·hq, by the definition of prot(r, q), we have that h0·hq[r]h′. Since
¬h0[r]flt, we can apply the frame property of r to this computation, and obtain
a substate h′0 of h′ such that h′ = h′0·hq. Let L0 be the finite set that includes
all the indirectly accessed locations by the “computation” h0·hq[r]h′0·hq; L0 is
guaranteed to exist by the finite access property of r. Let L be the location set(
L0 ∪ dom(h0)∪ dom(h′0)

)− dom(hq). Since hq[R]Hp and R is admissible, there
is a subset H1 of Hp such that

H1 ⊆ Hp ∧ H1[R]hq ∧ ∀h1 ∈ H1. h1#L.

We will show that H1∗{h′0} is the required output state set. Since hq and H1 are
R-related, their h′0-extensions, hq·h′0 and H1 ∗ {h′0}, have to be R⊗∆-related.
Thus, it remains to show that H = Hp∗{h0}[lft(rp)]H1∗{h′0}. Instead of proving
this relationship directly, we will prove that

H1 ∗ {h0}[lft(rp)]H1 ∗ {h′0}.

Because, then, the definition of lft(rp) will ensure that we also have the required
computation. For every m in H1 ∗ {h′0}, there is a state m1 ∈ H1 such that
m = m1·h′0. By the choice of H1, we have m1 ∈ Hp ∧m1#L. Then, there exist
splitting n1·n2 = m1 of m1 and splitting o2·o3 = hq of hq with the property
that n1#hq and dom(n2) = dom(o2). Note that n1#hq implies n1#L0, because
L0 ⊆ L∪ dom(hq) and n1·n2#L. We obtain a new computation of rp as follows:

hq·h0[r]hq·h′0 =⇒ n1·hq·h0[r]n1·hq·h′0 (∵ the finite access property of r)
=⇒ n1·o2·o3·h0[r]n1·o2·o3·h′0 (∵ hq = o2·o3)
=⇒ n1·n2·o3·h0[r]n1·n2·o3·h′0 (∵ the contents independence of r)
=⇒ n1·n2·h0[r]n1·n2·h′0 (∵ the frame property of r)
=⇒ m1·h0[r]m (∵ m1 = n1·n2 ∧m1·h′0 = m)
=⇒ m1·h0[rp]m (∵ the definition of prot(r, p))

Note that the input m1·h0 of the obtained computation belongs to the state set
H1∗{h0}. We just have shown H1∗{h0}[lft(rp)]H1∗{h′0}. ut
Lemma 7. For all power relations R0,R1,R2 and all FLAs r0, r

′
0, r1, r

′
1, if

r′0[psim(R0,R1)]r0 ∧ r′1[psim(R1,R2)]r1, then seq(r′0, r
′
1)[psim(R0,R2)]seq(r0, r1).

Proof. Let r0, r1, r′0, r
′
1 be FLAs such that r′0[psim(R0,R1)]r0 and r′1[psim(R1,R2)]r1.

Consider R0-related state h and state set H such that lft(seq(r0, r1)) does not
generate an error from H. We first prove that seq(r′0, r

′
1) does not generate an

error from h:



¬H[lft(seq(r0, r1))]flt ∧ ¬H[lft(seq(r0, r1))]av
=⇒ (∵ the definition of lft(seq(r0, r1)))
¬H[lft(r0)]flt ∧ ¬H[lft(r0)]av
∧ (∀H ′. H[lft(r0)]H ′ ⇒ ¬H ′[lft(r1)]flt ∧ ¬H ′[lft(r1)]av)

=⇒ (∵ h[R0]H ∧ r′0[psim(R0,R1)]r0)
¬h[r′0]flt ∧ ¬h[r′0]av ∧ (∀h′. h[r′0]h′ ⇒ ∃H ′. h′[R1]H ′ ∧H[lft(r0)]H ′)
∧ (∀H ′. H[lft(r0)]H ′ ⇒ ¬H ′[lft(r1)]flt ∧ ¬H ′[lft(r1)]av)

=⇒
¬h[r′0]flt ∧ ¬h[r′0]av
∧ (∀h′. h[r′0]h′ ⇒ ∃H ′. h′[R1]H ′ ∧ ¬H ′[lft(r1)]flt ∧ ¬H ′[lft(r1)]av)

=⇒ (∵ h′[R1]H ′ ∧ r′1[psim(R1,R2)]r1)
¬h[r′0]flt ∧ ¬h[r′0]av ∧ (∀h′. h[r′0]h′ ⇒ ¬h′[r′1]flt ∧ ¬h′[r′1]av)

=⇒
¬h[seq(r′0, r

′
1)]flt ∧ ¬h[seq(r′0, r

′
1)]av

Next we prove that all the output states of seq(r′0, r
′
1) from h are R2-related to

some output state sets of lft(seq(r0, r1)) from H:

¬H[lft(seq(r0, r1))]flt ∧ ¬H[lft(seq(r0, r1))]av ∧ h[seq(r′0, r
′
1)]h

′′

=⇒ (∵ the definition of seq(r0, r1))
¬H[lft(seq(r0, r1))]flt ∧ ¬H[lft(seq(r0, r1))]av ∧ (∃h′. h[r′0]h′ ∧ h′[r′1]h

′′)
=⇒ (∵ the definition of lft(seq(r0, r1)))
¬H[lft(r0)]flt ∧ ¬H[lft(r0)]av ∧ ¬H[lft(seq(r0, r1))]flt
∧ ¬H[lft(seq(r0, r1))]av ∧ (∃h′. h[r′0]h′ ∧ h′[r′1]h

′′)
=⇒ (∵ r′0[psim(R0,R1)]r0 ∧ h[R0]H)
∃H ′, h′. H[lft(r0)]H ′ ∧ h′[R1]H ′ ∧ ¬H[lft(seq(r0, r1))]flt

∧ ¬H[lft(seq(r0, r1))]av ∧ h′[r′1]h′′
=⇒ (∵ the definition of lft(seq(r0, r1)))
∃H ′, h′. H[lft(r0)]H ′ ∧ h′[R1]H ′ ∧ ¬H ′[lft(r1)]flt ∧ ¬H ′[lft(r1)]av ∧ h′[r′1]h′′

=⇒ (∵ r′1[psim(R1,R2)]r1 ∧ h′[R1]H ′)
∃H ′,H ′′. H[lft(r0)]H ′ ∧H ′[lft(r1)]H ′′ ∧ h′′[R2]H ′′

=⇒ (∵ the definition of lft(seq(r0, r1)))
∃H ′′. H[lft(seq(r0, r1))]H ′′ ∧ h′′[R2]H ′′.

ut

Lemma 8. For all power relations R0,R1, sets I and I-indexed families {r′i}i∈I ,
{ri}i∈I of FLAs, if ∀i∈I. r′i[psim(R0,R1)]ri, then

⋃
i∈I r

′
i[psim(R0,R1)]

⋃
i∈I ri.

Proof. Let {ri}i∈I and {r′i}i∈I be (possibly empty) families of FLAs such that
r′i[psim(R0,R1)]ri for all indices i in I. We need to show that

(
⋃

i∈I

r′i)[psim(R0,R1)](
⋃

i∈I

ri).

Consider R0-related state h and state set H such that lft(
⋃

i∈I ri) does not
generate an error from H. We first show that

⋃
i∈I r

′
i does not generate an error

from h:



¬H[lft(
⋃

i∈I ri)]flt ∧ ¬H[lft(
⋃

i∈I ri)]av
=⇒ (∵ ∀j ∈ I. lft(⋃i∈I ri) ⊇ lft(rj))
∀i ∈ I. ¬H[lft(ri)]flt ∧ ¬H[lft(ri)]av

=⇒ (∵ h[R0]H ∧ ∀i ∈ I. r′i[psim(R0,R1)]ri)
∀i ∈ I. ¬h[r′i]flt ∧ ¬h[r′i]av

=⇒
¬h[⋃i∈I r

′
i]flt ∧ ¬h[⋃i∈I r

′
i]av

Next, we prove that all the output states of
⋃

i∈I r
′
i from h are R1-related to

some output state sets of lft(
⋃

i∈I ri) from H:

h[
⋃

i∈I r
′
i]h

′ ∧ ¬H[lft(
⋃

i∈I ri)]flt ∧ ¬H[lft(
⋃

i∈I ri)]av
=⇒ (∵ ∀j ∈ I. lft(⋃i∈I ri) ⊇ lft(rj))
h[

⋃
i∈I r

′
i]h

′ ∧ (∀i ∈ I. ¬H[lft(ri)]flt ∧ ¬H[lft(ri)]av)
=⇒
∃i ∈ I. h[r′i]h′ ∧ ¬H[ri]flt ∧ ¬H[ri]av

=⇒ (∵ h[R0]H ∧ ∀i ∈ I. r′i[psim(R0,R1)]ri)
∃i ∈ I. ∃H ′. H[lft(ri)]H ′ ∧ h′[R1]H ′

=⇒ (∵ ∀j ∈ I. lft(⋃i∈I ri) ⊇ lft(rj))
∃H ′. H[lft(

⋃
i∈I ri)]H

′ ∧ h′[R1]H ′.
ut

Theorem 1 (Abstraction). Let (q, ε), (p, η) be semantic modules, and R be
an admissible power relation s.t. R ⊆ q × ℘(p). If (q, ε) power-simulates (p, η)
by R, then for all commands C and all environments µ, µ′, we have that

(∀P. µ′(P )[psim(R⊗∆,R⊗∆)]µ(P )) ⇒ [[C]](q,ε)µ
′[psim(R⊗∆,R⊗∆)][[C]](p,η)µ.

Proof. We use induction on the structure of C. When C is a module operation f
or a procedure name P , the theorem follows from the assumption: (q, ε) power-
simulates (p, η) byR, and for all P , µ′(P )[psim(R⊗∆,R⊗∆)]µ(P ). When C is an
atomic client operation a, the theorem holds because of Lemma 6. The remaining
three cases follow from the closedness of psim(R⊗∆,R⊗∆) in Lemma 7 and
8: psim(R⊗∆,R⊗∆) is closed under arbitrary union and seq. This closedness
property directly implies that the induction step goes through for the cases of
C1[]C2 and C1;C2. For fixP.C ′, we note that the closedness under arbitrary
union implies that psim(R⊗∆,R⊗∆) is complete,10 and that this completeness
is what we need to prove the induction step for fixP.C ′. ut

Lemma 9 (Identity Extension). A module (q, ε) data-refines another module
(p, η) iff for all complete commands C, we have that [[C]]c(q,ε)[psim(ID, ID)][[C]]c(p,η).

Proof. We prove this lemma by transforming psim(ID, ID) to an equivalent sim-
pler assertion; unrolling psim(ID, ID) in the lemma by this assertion then gives
the claimed equivalence. Power relation ID relates state h and state set H iff

10 psim(R1,R2) relates the least FLA to itself, and is chain-complete.



H = {h}. Therefore, psim(ID, ID) can be simplified as follows: r′[psim(ID, ID)]r
iff for all states h, if lft(r) does not generate an error from {h}, then

(¬h[r′]flt ∧ ¬h[r′]av) ∧ (∀h′. h[r′]h′ =⇒ {h}[lft(r)]{h′}).

Note that in this simplified assertion, the lifted command lft(r) is run only for
a singleton input set {h}. For such special inputs, lft(r) behaves the same as
r: lft(r) does not generate an error from {h} iff r does not generate an error
from h; lft(r) can produce {h′} from {h} iff r can produce h′ from h. Thus, the
definition of r′[psim(ID, ID)]r can be further simplified to the following assertion:
for all states h, if r does not generate an error from h, then r′ does not generate
an error and all the output states of r′ are also possible outcomes of r. Now,
using this assertion, we unroll psim(ID, ID) in the lemma. The resulting unrolled
statement proves the lemma, because both sides of “iff” in the statement are the
same. ut

Theorem 2 (Soundness). If a module (q, ε) power-simulates another module
(p, η) by an admissible power relation R ⊆ q×℘(p), then (q, ε) data-refines (p, η).

Proof. Suppose that a module (q, ε) power-simulates another module (p, η) by
an admissible power relation R ⊆ q × ℘(p). We will show that for all complete
commands C, [[C]](q,ε)[psim(ID, ID)][[C]](p,η), because, then, module (q, ε) should
data-refine (p, η) (Lemma 9). Pick an arbitrary complete program C. Let µ be
an environment that maps all program identifiers to the empty relation. By
Lemma 8, µ(P )[psim(R⊗∆,R⊗∆)]µ(P ) for all P in pid. From this, we derive
the required relationship as follows:

∀P ∈ pid. µ(P )[psim(R⊗∆,R⊗∆)]µ(P )
=⇒ (∵ Theorem 1)
[[C]](q,ε)µ[psim(R⊗∆,R⊗∆)][[C]](p,η)µ
=⇒ (∵ Lemma 7)
seq(seq(ε(init), [[C]](q,ε)µ), ε(final))[psim(ID, ID)]seq(seq(η(init), [[C]](p,η)µ)), η(final))
=⇒ (∵ the definition of [[−]]c)
[[C]]c(q,ε)[psim(ID, ID)][[C]]c(p,η)

ut

6 State-based Representation of Power Simulation

Our soundness result is rather technical, and does not provide a computational
intuition about why power simulation is sound. Giving one such intuition is the
goal of this section. We will consider a special case of power simulation where the
coupling power relation arises from a standard coupling relation on states, and
show that in such a case, the power simulation is forward simulation modified
with backtracking; thus, it is this backtracking that makes power simulation
sound. Throughout the section, we assume fixed modules (p, η) and (q, ε), and
consider the power simulation of (p, η) by (q, ε).



A standard coupling relation R ⊆ q×p can generate an admissible power
relation R ⊆ q×℘(p), when it is given two additional data: an equivalence re-
lation E on p, and an operator rs, which imposes certain restrictions on rela-
tions on states. Equivalence relation E denotes which “abstract” states can be
considered the same. The other data, rs, restricts a relation S, using pre-given
finite location set L and state h; intuitively, it imposes an additional require-
ment on S using L and h. We will require that for all L and h, the restriction
rs(S,L, h) of relation S satisfies (1) (∀L′. rs(S,L∪L′, h) ⊆ rs(S,L, h)), and (2)
(∀h′, h′0. h′[rs(S,L, h)]h′0 ⇒ h′[S]h′0 ∧ h′0#(L−dom(h))). From (R,E, rs), we de-
fine a power relation as follows:

h′[pw(R,E, rs)]H def⇔ ∃h∈St.∃L⊆finLoc. h′[R]h ∧H={h0 | h[rs(E,L, h′)]h0}.
This definition means that H is obtained from h′ in three steps: first, to find
some h such that h′[R]h; then, to collect all the states that are E-equivalent
to h; finally, to extract the states among the collected ones that “satisfy” the
additional requirement in rs(E,L, h′). The last extracting step is crucial in this
construction; it ensures that the constructed relation is admissible.

Lemma 10. If (∀h,H.h[pw(R,E, rs)]H ⇒ H 6=∅), then pw(R,E, rs) is admissi-
ble.

Proof. In order to prove that pw(R,E, rs) is admissible, we need to prove that
for all states h′ and state sets H such that h′[pw(R,E, rs)]H, the following two
conditions hold:

– H 6= ∅; and
– for all finite sets L of locations, there exists a subset H1 of H such that

H1 6= ∅ ∧ h′[pw(R,E, rs)]H1 ∧ ∀h1 ∈ H1. h1#(L−dom(h′)).

Consider pw(R,E, rs)-related state h′ and state set H. By the definition of
pw(R,E, rs), there exist L ⊆fin Loc and h ∈ St such that

h′[R]h ∧ H = {h0 | h[rs(E,L, h′)]h0}.
The first condition of the admissibility follows from the assumption of this
lemma. To prove the second condition of the admissibility, consider a finite set L1

of locations. The second condition requires a subset of H with certain properties.
We show that the following H1 is such a subset.

H1 = {h1 | h[rs(E,L∪L1, h
′)]h1}.

Set H1 is included in H, because rs(E,−, h′) relates more states as its second
parameter gets smaller. Moreover, by the definition of pw, state h′ is pw(R,E, rs)-
related to set H1. Note that by the assumption of the lemma, this relationship
also ensures that H1 is not empty. Finally, for every state h1 in H1, we have
h[rs(E,L ∪ L1, h

′)]h1, and so, h#(L∪L1−dom(h1)). Hence, h#(L1−dom(h1)).
ut



Suppose that pw(R,E, rs)⊗∆ = pw(R∗∆,E∗∆, rs). Under this supposition,
we give the state-based representation of psim(pw(R,E, rs)⊗∆, pw(R,E, rs)⊗∆).

Proposition 1. We have that r′[psim(pw(R,E, rs)⊗∆, pw(R,E, rs)⊗∆)]r, iff for
all h′, h, L0, if h′[R∗∆]h∧(∀h0. h[rs(E∗∆,L0, h

′)]h0 ⇒ ¬h0[r]av∧¬h0[r]flt), then

1. ¬h′[r′]flt ∧ ¬h′[r′]av, and
2. for all output states m′ of r′ from h′ (i.e., h′[r′]m′), there exist m,L1 s.t.

m′[R∗∆]m ∧ (∀m0.m[rs(E∗∆,L1,m
′)]m0 ⇒ ∃h0. h[rs(E∗∆,L0, h

′)]h0 ∧h0[r]m0).

The main message of the state-based characterization lies in the second con-
dition, which is about the output states of the concrete “command” r′. The
condition means that every such output state m′ from the given concrete input
h′ should be R∗∆-related to some “backtrackable output” m of the abstract r
from h: for some L1, abstract command r can backtrack every rs(E∗∆,L1,m

′)-
equivalent state m0 of m, to some rs(E∗∆,L0, h

′)-equivalent state h0 of h. Thus,
the condition mimics the usual tracking requirement in forward simulation, but
it requires that every normal concrete computation should be tracked by some
imaginary “backtrackable abstract computation,” instead of a normal abstract
computation.

Proof (Proposition 1). We will prove two facts about r and r′, which together
imply the proposition. Note that, when both the definition γ0 of psim and its
new characterization γ1 given here are viewed syntactically, they are universally
quantified formulas whose bodies are ϕ0 ⇒ ψ0 ∧ ψ′0 and ϕ1 ⇒ ψ1 ∧ ψ′1, respec-
tively. Consider the splittings of γi into αi = ∀...ϕi⇒ψi and βi = ∀...ϕi⇒ψ′i
where the universal quantifications are precisely the ones in the original formula
γi. Then, the original formula is equivalent to the conjunction of the split pieces.
The first fact about r and r′, which we will prove shortly, expresses the equiv-
alence between the first pieces α0, α1 of the two splittings, and the second fact
the equivalence between the second parts β0, β1 of the splittings. Thus, these
two facts together give the equivalence between γ0 and γ1 as required. We prove
the first fact below:

∀h′,H. (h′[pw(R,E, rs)⊗∆]H ∧ ¬H[lft(r)]av ∧ ¬H[lft(r)]flt)
⇒ (¬h′[r′]av ∧ ¬h′[r′]flt)

⇐⇒ (∵ pw(R,E, rs)⊗∆ = pw(R∗∆,E∗∆, rs))
∀h′,H. (h′[pw(R∗∆,E∗∆, rs)]H ∧ ¬H[lft(r)]av ∧ ¬H[lft(r)]flt)

⇒ (¬h′[r′]av ∧ ¬h′[r′]flt)
⇐⇒ (∵ the definition of pw(R∗∆,E∗∆, rs))
∀h′,H.
(∃h, L0. h

′[R∗∆]h ∧H={h0 | h[rs(E∗∆,L0, h
′)]h0} ∧ ¬H[lft(r)]av ∧ ¬H[lft(r)]flt)

⇒ (¬h′[r′]av ∧ ¬h′[r′]flt)
⇐⇒
∀h′,H, h, L0.
(h′[R∗∆]h ∧H={h0 | h[rs(E∗∆,L0, h

′)]h0} ∧ ¬H[lft(r)]av ∧ ¬H[lft(r)]flt)
⇒ (¬h′[r′]av ∧ ¬h′[r′]flt)



⇐⇒
∀h′, h, L0.(
h′[R∗∆]h ∧ ¬{h0 | h[rs(E∗∆,L0, h

′)]h0}[lft(r)]av
∧ ¬{h0 | h[rs(E∗∆,L0, h

′)]h0}[lft(r)]flt

)
⇒ (¬h′[r′]av ∧ ¬h′[r′]flt)

⇐⇒ (∵ the definition of lft(r))
∀h′, h, L0.(
h′[R∗∆]h ∧ (∀h0. h[rs(E∗∆,L0, h

′)]h0 ⇒ ¬h0[r]av ∧ ¬h0[r]flt)
)

⇒ (¬h′[r′]av ∧ ¬h′[r′]flt)

The second fact can be proved as follows:

∀h′,H,m′.
(
h′[pw(R,E, rs)⊗∆]H ∧ ¬H[lft(r)]av ∧ ¬H[lft(r)]flt ∧ h′[r′]m′)
⇒ (∃M. m′[pw(R,E, rs)⊗∆]M ∧H[lft(r)]M)

⇐⇒ (∵ pw(R,E, rs)⊗∆ = pw(R∗∆,E∗∆, rs))
∀h′,H,m′.

(
h′[pw(R∗∆,E∗∆, rs)]H ∧ ¬H[lft(r)]av ∧ ¬H[lft(r)]flt ∧ h′[r′]m′)
⇒ (∃M. m′[pw(R∗∆,E∗∆, rs)]M ∧H[lft(r)]M)

⇐⇒ (∵ the definition of pw(R∗∆,E∗∆, rs))
∀h′,H,m′.(∃h,L0. h

′[R∗∆]h ∧H={h0 | h[rs(E∗∆,L0, h
′)]h0}

∧ ¬H[lft(r)]av ∧ ¬H[lft(r)]flt ∧ h′[r′]m′

)

⇒ (∃M,m,L1. m
′[R∗∆]m ∧M={m0 | m[rs(E∗∆,L1,m

′)]m0} ∧H[lft(r)]M)
⇐⇒
∀h′,H,m′, h, L0.(
h′[R∗∆]h ∧H={h0 | h[rs(E∗∆,L0, h

′)]h0}
∧ ¬H[lft(r)]av ∧ ¬H[lft(r)]flt ∧ h′[r′]m′

)

⇒ (∃M,m,L1. m
′[R∗∆]m ∧M={m0 | m[rs(E∗∆,L1,m

′)]m0} ∧H[lft(r)]M)
⇐⇒
∀h′,m′, h, L0.(

h′[R∗∆]h ∧ h′[r′]m′ ∧ ¬{h0 | h[rs(E∗∆,L0, h
′)]h}[lft(r)]av

∧ ¬{h0 | h[rs(E∗∆,L0, h
′)]h}[lft(r)]av

)

⇒
(∃m,L1. {h0 | h[rs(E∗∆,L0, h

′)]h0}[lft(r)]{m0 | m[rs(E∗∆,L1,m
′)]m0}

∧m′[R∗∆]m

)

⇐⇒ (∵ the definition of lft(r))
∀h′,m′, h, L0.(
h′[R∗∆]h ∧ h′[r′]m′ ∧ (∀h0. h[rs(E∗∆,L0, h

′)]h0 ⇒ ¬h0[r]av ∧ ¬h0[r]flt
))

⇒
(∃m,L1. m

′[R∗∆]m
∧ ∀m0.m[rs(E∗∆,L1,m

′)]m0 ⇒ ∃h0. h[rs(E∗∆,L0, h
′)]h0 ∧ h0[r]m0

)

⇐⇒
∀h′, h, L0.(
h′[R∗∆]h ∧ (∀h0. h[rs(E∗∆,L0, h

′)]h0 ⇒ ¬h0[r]av ∧ ¬h0[r]flt
))

⇒


∀m′. h′[r′]m′ ⇒

∃m,L1.
m′[R∗∆]m
∧ ∀m0.m[rs(E∗∆,L1,m

′)]m0 ⇒ ∃h0. h[rs(E∗∆,L0, h
′)]h0 ∧ h0[r]m0







ut



7 Conclusion

In this paper, we have proposed a new data-refinement method, called power
simulation, for programs with low-level pointer operations, and provided a non-
trivial soundness proof of the method.

The very idea of relating a state to a state set in power simulation comes
from Reddy’s method for data refinement [15]. In order to have a single complete
data-refinement method for a language without pointers, he lifted forward simu-
lation such that all the components of the simulation become about state sets,
instead of states. However, the details of the two methods, such as the admis-
sibility condition for coupling relations and the lifting operator for commands,
are completely different.
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A Counter example for the Soundness of the Forward
Simulation

Suppose that the module interface mop is {init, final, f}. Let (p, η), (q, ε) be se-
mantic modules for mop defined as follows:

h ∈ p def⇔ h = [1→2]
h[η(init)]v def⇔ 1 6∈ dom(h) ∧ v = h·[1→2]
h[η(f)]v def⇔ v = h

h[η(final)]v def⇔ if (1 6∈ h) then (v = flt) else (∃i∈Int. v·[1→i] = h)

h ∈ q def⇔ h = []
h[ε(init)]v def⇔ 1 6∈ dom(h) ∧ v = h

h[ε(f)]v def⇔ v = h

h[ε(final)]v def⇔ v = h

Module (q, ε) does not data-refine (p, η). To see the reason, consider a complete
command that consists of a single atomic operation cons(2, 1) in Sec. 4. When
this complete command cons(2, 1) is run with (q, ε) from [2→0], it can output
[1→0, 2→1]:

[2→0]
[
[[cons(2, 1)]]c(q,ε)

]
[1→0, 2→1].

However, if the command is run with the other module (p, η) from [2→0], it
cannot produce the same output state; all of its output states have the form of
[2→n′, n′→0] for some n′ different from 1 and 2, because the initialization η(init)
takes cell 1 before cons(2, 1). Since the command with (p, η) does not generate
an error from the input [2→0], this failure of producing the same output shows
that module (q, ε) does not data-refine (p, η).

However, the forward simulation incorrectly claims the opposite. It is because,
when R is a relation defined by

h′[R]h def⇔ h′ = [] ∧ h = [1→2],

module (q, ε) forward-simulates (p, η) by R.


