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1. INTRODUCTION

Modularity is a key concept which programmers wield in their struggle against the
complexity of software systems. When a program is divided into conceptually dis-
tinct modules or components, each of which owns separate internal resources (such
as storage), the effort required for understanding the program is decomposed into
circumscribed, hopefully manageable, parts. And, if separation is correctly main-
tained, we can regard the internal resources of one module as hidden from its clients,
which results in a narrowing of interface between program components. The flip-
side, of course, is that an ostensibly modular program organization is undermined
when internal resources are accessed from outside a module.

It stands to reason that, when specifying and reasoning about programs, if we
can keep track of the separation of resources between program components, then
the resultant decomposition of the specification and reasoning tasks should con-
fer similar benefits. Unfortunately, most methods for specifying programs either
severely restrict the programming model, by ruling out common programming fea-
tures (so as to make the static enforcement of separation feasible), or they expose
the internal resources of a module in its specification in order to preserve soundness.

Stated more plainly, information hiding should be the bedrock of modular rea-
soning, but it is difficult to support soundly, and this presents a great challenge for
research in program logic.

To see why information hiding in specifications is important, suppose a program
makes use of n different modules. It would be unfortunate if we had to thread
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descriptions of the internal resources of each module through steps when reasoning
about the program. Even worse than the proof burden would be the additional
annotation burden, if we had to complicate specifications of user procedures by
including descriptions of the internal resources of all modules that might be ac-
cessed. A change to a module’s internal representation would necessitate altering
the specifications of all other procedures that use it. The resulting breakdown of
modularity would doom any aspiration to scalable specification and reasoning.

Mutable data structures with embedded addresses (pointers) have proven to be
a particularly obstinate obstacle to modularity. The problem is that it is difficult
to keep track of aliases, different copies of the same address, and so it is difficult
to know when there are no pointers into the internals of a module. The purpose
of this paper is to investigate proof rules for information hiding using separation
logic, a formalism for reasoning about mutable data structures [Reynolds 2002].

Our treatment draws on work of Hoare on proof rules for data abstraction and
for shared-variable concurrency [Hoare 1972a; 1972b; 1974]. In Hoare’s approach
each distinct module has an associated resource invariant, which describes its in-
ternal state, and scoping constraints are used to separate the resources of a module
from those of client programs. We retain the resource invariants, and add a log-
ical connective, the separating conjunction ∗, to provide a more flexible form of
separation.

We begin in the next section by describing the memory model and the logic
of pre- and post-conditions used in this work. We then describe our proof rules
for information hiding, followed by two examples, one a simple memory manager
module and the other a queue module. Both examples involve the phenomenon of
resource ownership transfer , where the right to access a data structure transfers
between a module and its clients. We work through proofs, and failed proofs, of
client code as a way to illustrate the consequences of the proof rules.

After giving the positive examples we present a counterexample, which shows
that our principal new proof rule, the hypothetical frame rule, is incompatible with
the usual Hoare logic rule for conjunction; the new rule is thus unsound in models
where commands denote relations, which validate conjunction. The problem is
that the very features that allow us to treat ownership transfer lead to a subtle
understanding where “Ownership is in the eye of the Asserter”. The remainder of
the paper is occupied with a semantic analysis, and that analysis is the principle
technical contribution of the paper. A crucial role is played by the identification of
the notion of a precise predicate, which requires the Asserter to identify a definite
portion of storage, unambiguously.

Familiarity with the basics of separation logic, as presented in [Reynolds 2002],
would be helpful in reading the paper. We remind the reader in particular that the
rules for disposing or dereferencing an address are such that it must be known to
point to something (not be dangling) in the precondition for a rule to apply. For
example, in the putative triple {true}[x] := 7{???}, where the contents of heap
address x is mutated to 7, there is no assertion we can use in the postcondition to
get a valid triple, because x might be dangling in a state satisfying the precondition.
So, in order to obtain any postcondition for [x] := 7, the precondition must imply
the assertion x 7→– ∗ true that x is not dangling.
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The local way of thinking encouraged by separation logic [O’Hearn et al. 2001] is
stretched by the approach to information hiding described here. We have found it
useful to use a figurative language of “rights” when thinking about specifications,
where a predicate p at a program point asserts that “I have the right to dereference
the addresses in p here”.

1.1 Contextual Remarks

The link between modularity and information hiding was developed in papers of
Hoare and Parnas in the early 1970s [Hoare 1972a; 1972b; Parnas 1972a; 1972b].
Parnas emphasized that poor information distribution amongst components could
lead to “almost invisible connections between supposedly independent modules”,
and proposed that information hiding was a way to combat this problem. Hoare
suggested using scoping restrictions to hide a particular kind of information, the
internal state of a module, and showed how these restrictions could be used in
concert with invariants to support proof rules that did not need to reveal the internal
data of a module or component. These ideas influenced many subsequent language
constructs and specification notations.

Most formal approaches to information hiding work by assuming a fixed, a priori,
partitioning between program components, usually expressed using scoping restric-
tions, or typing, or simply using cartesian product of state spaces. In simple cases
fixed partitioning can be used to protect internal resources from outside tamper-
ing. But in less simple situations, such as when data is referred to indirectly via
addresses, or when resources dynamically transfer between program components,
correct separation is more difficult to maintain. Such situations are especially com-
mon in low-level systems programs whose purpose is to provide flexible, shared ac-
cess to system resources. They are also common in object-oriented programs. An
unhappy consequence is that modular specification methods are lacking for widely-
used imperative or object-oriented programming languages, or even for many of the
programming patterns commonly expressed in them.

The essential point is that fixed partitioning does not cope naturally with sys-
tems whose resource ownership or interconnection structure is changing over time.
A good example is a resource management module, that provides primitives for
allocating and deallocating resources, which are held in a local free list. A client
program should not alter the free list, except through the provided primitives; for
example, the client should not tie a cycle in the free list. In short, the free list is
owned by the manager, and it is (intuitively) hidden from client programs. How-
ever, it is entirely possible for a client program to hold an alias to an element of the
free list, after a deallocation operation is performed; intuitively, the “ownership” of
a resource transfers from client to module on disposal, even if many aliases to the
resource continue to be held by the client code. In a language that supports address
arithmetic the potential difficulties are compounded: the client might intentionally
or unintentionally obtain an address used in an internal representation, just by an
arithmetic calculation.

A word of warning on our use of “module” before we continue: The concept
of module we use is just a grouping of procedures that share some private state.
The sense of “private” will not be determined statically, but will be the subject of
specifications and proof rules. This allows us to approach modules where correct
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protection of module internals would be impossible to determine with a compile-
time check in current programming languages. The approach in this paper might
conceivably be used to analyze the information hiding in a language that provides
an explicit module notation, but that is not our purpose here.

The point is that it is possible to program modules, in the sense of the word used
by Parnas, whether or not one has a specific module construct at one’s disposal. For
example, the pair of malloc() and free() in C, together with their shared free list,
might be considered as a module, even though their correct usage is not guaranteed
by C’s compile-time checking. Indeed, there is no existing programming language
that correctly enforces information hiding of mutable data structures, largely be-
cause of the dynamic partitioning issue mentioned above, and this is an area where
logical specifications are needed. We emphasize that the issue is not one of “safe”
versus “unsafe” programming languages; for instance, middleware programs written
in garbage-collected, safe languages, often perform explicit management of certain
resources, and there also ownership transfer is essential to information hiding.

Similarly, although we do not consider the features of a full-blown object-oriented
language, our techniques, and certainly our problems, seem to be relevant. Theories
of objects have been developed that account for hiding in a purely functional context
(e.g., [Pierce and Turner 1994]), but mutable structures with embedded addresses,
or object id’s, are fundamental to object-oriented programming. A thoroughgoing
theory should account for them directly, confronting the problems caused when
there are potential aliases to the state used within an object.

These contextual remarks do not take into account some recent work that at-
tempts to address the limitations of fixed partitioning and the difficulties of treating
mutable data structures with embedded addresses, including work that followed on
from the preliminary version of this paper published in the POPL’04 conference
proceedings [O’Hearn et al. 2004]. We will say more on some of the closely related
work at the end of the paper.

[Note to referees. Compared to the conference version from POPL’04, this paper
contains a much more thorough semantic analysis. In fact, the difficulty of the se-
mantic problem was almost completely hidden in POPL’04 due to space limitations,
and that is where a significant part of the technical contribution of this paper lies.
]

2. THE STORAGE MODEL

We consider a model where a heap is a finite partial function taking addresses to
values:

H
def= Addresses ⇀fin Values

This set has a partial commutative monoid structure, where the unit is the empty
function and the partial combining operation

∗ : H ×H ⇀ H

is the union of partial functions with disjoint domains. More formally, we say that
h1#h2 holds for heaps h1 and h2 when dom(h1) ∩ dom(h2) = {}. In that case,
h1 ∗h2 denotes the combined heap h1 ∪h2. When h1#h2 fails, h1 ∗h2 is undefined.
ACM Transactions on Programming Languages and Systems, Vol. V, No. N, November 2008.



Separation and Information Hiding · 5

In particular, note that if h = h1 ∗h2 then we must have that h1#h2. The subheap
order ≤ is subset inclusion of partial functions.

We will work with a RAM model, where the addresses are natural numbers and
the values are integers

Addresses
def= {0, 1, 2, . . .} Values

def= {. . . ,−1, 0, 1, . . .}

The results of this paper go through for other choices for Addresses and Values,
and thus cover a number of other naturally occurring models, such as the cons
cell model of [Reynolds 2002] and the hierarchical memory model of [Ahmed et al.
2003]. Our results also apply to traditional Hoare logic, where there is no heap, by
taking the trivial model where Addresses is empty (and Values non-empty).

To interpret variables in the programming language and logic, the state has an
additional component, the “stack”, which is a mapping from variables to values; a
state is then a pair consisting of a stack and a heap:

S
def= Variables → Values States

def= S ×H.

We treat predicates semantically in this paper, so a predicate is just a set of states.

Predicates
def= P(States)

The powerset of states has the usual boolean algebra structure, where ∧ is inter-
section, ∨ is union, ¬ is complement, true is the set of all states, and false is the
empty set of states. We use p, q, r, sometimes with subscripts and superscripts, to
range over predicates. Besides the boolean connectives, we will need the lifting of
∗ from heaps to predicates:

p ∗ q
def= {(s, h) | ∃h0, h1. h = h0 ∗ h1, and

(s, h0) ∈ p, and (s, h1) ∈ q}.
As a function on predicates we have a total map ∗ from Predicates× Predicates to
Predicates which, to the right of def=, uses the partial map, ∗ : H × H ⇀ H in its
definition. This overloading of ∗ will always be disambiguated by context. ∗ has a
unit emp, the set {(s, []) | s ∈ S} of states whose heap component is empty. It also
has an implication adjoint −∗ , though that will play no role in the present paper.
Note that emp is distinct from the empty set false of states.

We use x 7→E to denote a predicate that consists of all pairs (s, h) where h is
a singleton in which x points to the meaning of E: h(s(x)) = [[E]]s. The points-to
relation x 7→E,F for binary cons cells is syntactic sugar for (x 7→E) ∗ (x + 1 7→F ).
We will also use quantifiers and recursive definitions in examples in what should be
a clear way.

The syntax for the programming language considered in this paper is given by
the following grammar.

E ::= x, y, . . . | 0 | 1 | E + E | E × E | E − E

B ::= false | B ⇒ B | E = E | E < E

C ::= x := E | x := [E] | [E] := E | x := cons(E, . . . , E)

| dispose(E) | skip | C;C | if B then C else C

| while B C | letrec k = C, . . . , k = C in C | k
ACM Transactions on Programming Languages and Systems, Vol. V, No. N, November 2008.
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Generic Syntax

C ::= BC | skip | C1; C2

| while B C | if B then C1 else C2 | letrec k1 = C1, ..., kn = Cn in C | k

RAM-specific Syntax

BC ::= x := E | x := [E] | [E] := E1 | x := cons(E1, . . . , En) | dispose(E)

E ::= x, y, . . . | 0 | 1 | E1 + E2 | E1 × E2 | E1 − E2

B ::= false | B1 ⇒ B2 | E1 = E2 | E1 < E2

RAM-specific Syntactic Sugar

x.i := E
def
= [x + i− 1] := E

x := E.i
def
= x := [E + i− 1]

Table I. Programming Language Syntax

For simplicity we consider parameterless procedures only. The extension to all
first-order procedures raises no new difficulties, but lengthens the presentation.
Higher-order features, on the other hand, are not straightforward. We assume that
all the procedure identifiers are distinct in any letrec declaration. When procedure
declarations do not have recursive calls, we write let k1 = C1, ..., kn = Cn in C to
indicate this.

The command x := cons(E1, . . . , En) allocates n consecutive cells, initializes
them with the values of E1, . . . , En, and stores the address of the first cell in x. We
could also consider a command for variable-length allocation. The contents of an
address E can be read and stored in x by x := [E], or can be modified by [E] := F .
The command dispose(E) deallocates the address E. In x := [E], [E] := F and
dispose(E), the expression E can be an arbitrary arithmetic expression; so, this
language allows address arithmetic.

This inclusion of address arithmetic does not represent a general commitment to
it on our part, but rather underlines the point that our methods do not rely on
ruling it out. In examples it is often clearer to use a field-selection notation rather
than arithmetic, and for this we use the following syntactic sugar:

E.i := F
def= [E + i− 1] := F x := E.i

def= x := [E + i− 1].

Each command denotes a (nondeterministic) state transformer that faults when
heap storage is accessed illegally, and each expression determines a (heap inde-
pendent) function from stacks to values. The semantics will be given in Section
7.

3. PROOF SYSTEM

The form of judgment we use is the sequent

Γ ` {p}C{q}
which states that command C satisfies its Hoare triple, under certain hypotheses.
Hypotheses are given by the grammar
ACM Transactions on Programming Languages and Systems, Vol. V, No. N, November 2008.
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Γ ::= [] | {p}k{q}[X],Γ

subject to the constraint that no procedure identifier appears twice. An assumption
{p}k{q}[X] requires the parameterless procedure identifier k to denote a command
which modifies only the variables appearing in set X and which satisfies the indi-
cated Hoare triple.

The commands are drawn from a language of while programs with parameterless
procedures (Table I). The generic syntax includes procedure calls for parameterless
procedures k and a non-terminal BC for basic commands, which can be instantiated
in various ways depending on the storage model being used. We give one such
instantiation, corresponding to the RAM model.

3.1 Proof Rules for Information Hiding

Our main focus in this paper is the

Hypothetical Frame Rule

Γ, {p1}k1{q1}[X1], . . . , {pn}kn{qn}[Xn] ` {p}C{q}
Γ, {p1 ∗ r}k1{q1 ∗ r}[X1, Y ], . . . , {pn ∗ r}kn{qn ∗ r}[Xn, Y ] ` {p ∗ r}C{q ∗ r}

where
—C does not modify variables in r, except through using k1, ..., kn; and
—Y is disjoint from judgment “Γ, {p1}k{q1}[X1], ..., {pn}k{qn}[Xn] `
{p}C{q}”.

The idea behind these conditions is that we must be sure that client code does
not alter variables used within a module, but we must also allow some overlap
in variables to treat various examples. The side conditions use notions which are
as-yet-undefined, in particular the “except through using” clause. The conditions
will be made rigorous in Section 10; in the examples in the following sections we
will concentrate on the role of ∗, and there will be no harm to understanding if the
variable conditions are skated over, or referred back to as necessary.

The hypothetical frame rule is so named because of its relation to the ordinary
frame rule from [Isthiaq and O’Hearn 2001; O’Hearn et al. 2001]. The hypothetical
rule allows us to place invariants on the hypotheses as well as the conclusion of
sequents, whereas the ordinary rule includes invariants on the conclusion alone.
(The ordinary frame rule is thus a special case of the hypothetical rule, where
n = 0.)

To explain the rule intuitively, suppose we have a module, which exports a num-
ber of procedures ki. Here we mean “module” in an informal sense, a group-
ing of procedures that implements an abstraction, and not necessarily an explicit
programming-language construct. There are two views of the module. From the
outside, where the internal resource is invisible, one uses interface specifications
{pi}ki{qi} of the procedures, which do not mention the resource invariant r that
describes the internal state of the module. The perspective is different from in-
side the module; the operations operate on a larger state than that visible to the
client, preserving the invariant as well as satisfying interface specifications. The
hypothetical frame rule ties these two viewpoints together.
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The hypothetical frame rule is logician-friendly, suitable for theoretical analysis,
but more programmer-friendly, derived rules are useful when reasoning about pro-
grams. For example, we can formulate a proof rule for procedure declarations, which
perhaps more directly portrays the division between the two sides of a module.

Modular Non-Recursive Procedure Declaration Rule

Γ ` {p1 ∗ r}C1{q1 ∗ r}
...

Γ ` {pn ∗ r}Cn{qn ∗ r}
Γ, {p1}k1{q1}[X1], . . . , {pn}kn{qn}[Xn] ` {p}C{q}
Γ ` {p ∗ r}let k1 = C1, . . . , kn = Cn in C{q ∗ r}

In this rule k1, . . . kn is a grouping of procedures that share private state described
by resource invariant r. In a resource management module, the ki would be opera-
tions for allocating and freeing resources, and r would describe unallocated resources
(perhaps held in a free list). The rule distinguishes two views of such a module.
When reasoning about the client code C, we ignore the invariant and its area of
storage; reasoning is done in the context of interface specifications {pi}ki{qi} that
do not mention r. The perspective is different from inside the module; the im-
plementations Ci operate on a larger state than that presented to the client, and
verifications are performed in the presence of the resource invariant. The two views,
module and client, are tied up in the conclusion of the rule.

The modular procedure rule is subject to variable conditions: we require a set Y
(of “private” variables), and the conditions are

—C does not modify variables in r, except through using k1, ..., kn;

—Y is disjoint from judgment “Γ, {p1}k1{q1}[X1], . . . , {pn}kn{qn}[Xn] ` {p}C{q}”;

—Ci only modifies variables in Xi, Y .

An important point is that the free variables of the resource invariant are allowed
to overlap with the Xi. This often happens when using auxiliary variables to specify
the behaviour of a module, as exemplified by the treatment of the abstract variable
Q in the queue module given later (Table IV).

It is also possible to consider initialization and finalization code. For instance, if,
in addition to the premises of the modular procedure rule, we have Γ ` {p}init{p∗r}
and Γ ` {q ∗ r}final{q}, then we can obtain

Γ ` {p} init; (let k1 = C1, . . . , kn = Cn in C); final {q}.

In our examples we will not consider initialization or finalization since they present
no special logical difficulties.

In the modular procedure rule, the proof of {p}C{q} about the client in the
premises can be used with any resource invariant r. As a result, this reasoning
does not need to be repeated when a module representation is altered, as long
as the alteration continues to satisfy the interface specifications {pi}ki{qi}. This
addresses one of the points about reasoning that survives local changes discussed
in the Introduction.
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Interface Specifications
{p1}k1{q1}[X1], . . . , {pn}kn{qn}[Xn]

Resource Invariant: r

Private Variables: Y

Internal Implementations
C1, ..., Cn

Table II. Module Specification Format

However, the choice of invariant r is not specified by programming language
syntax let k1 = C1, . . . , kn = Cn in C in the modular procedure rule. In this
it is similar to the usual partial correctness rule for while loops, which depends
on the choice of a loop invariant. It will be convenient to consider an annotation
notation that specifies the invariant, and the interface specifications {pi}ki{qi}, as
a directive on how to apply the modular procedure rule; this is by analogy with the
use of loop invariant annotations as directives to a verification condition generator.

We will use the format for module specifications in Table II. This instructs us to
apply the modular procedure rule in a particular way, to prove

Γ, Interface Specifications ` {p}C{q}

for client code C, and to prove Γ ` {pi ∗ r}Ci{qi ∗ r} for the bodies. We emphasize
that this module format is not officially part of our programming language or even
our logic; however, its role as a directive on how to apply the modular procedure
rule in examples will, we hope, be clear.

3.2 Other Proof Rules

3.2.1 Generic Rules. We have standard Hoare logic rules for various constructs,
along with the rule of consequence and the rules for shrinking and extending con-
texts.

Γ, {p}k{q}[X] ` {p}k{q}
p ⇒ p′ Γ ` {p′}C{q′} q′ ⇒ q

Γ ` {p}C{q}

Γ ` {p ∧B}C{p}
Γ ` {p}whileB C{p ∧ ¬B}

Γ ` {p}C1{q} Γ ` {q}C2{r}
Γ ` {p}C1;C2{r}

Γ ` {p ∧B}C {q} Γ ` {p ∧ ¬B}C ′ {q}
Γ ` {p} ifB thenC elseC ′{q}

Γ ` {p}C{q}
Γ, {p′}k{q′}[X] ` {p}C{q}

Γ, {p′}k{q′}[X] ` {p}C{q}
Γ ` {p}C{q}

(k does not occur in C)

In addition, we allow for the context Γ to be permuted.
The standard rule for possibly recursive procedure declarations, which doesn’t

hide a resource invariant, uses the procedure specifications in proofs of the bodies
as follows:
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Γ, {p1}k1{q1}[X1], . . . , {pn}kn{qn}[Xn] ` {p1}C1{q1}
...

Γ, {p1}k1{q1}[X1], . . . , {pn}kn{qn}[Xn] ` {pn}Cn{qn}
Γ, {p1}k1{q1}[X1], . . . , {pn}kn{qn}[Xn] ` {p}C{q}

Γ ` {p}letrec k1 = C1, . . . , kn = Cn in C{q}

where Ci only modifies variables in Xi.

In case none of the ki are free in the Cj we can get a simpler rule, where the
{pi}ki{qi}[Xi] hypotheses are omitted from the sequents for the Cj . Using let
rather than letrec to indicate the case where a procedure declaration happens
to have no recursive instances, we can derive the modular non-recursive procedure
declaration rule of the previous section from the hypothetical frame rule and the
standard procedure rule just given. We can also derive a modular rule for recursive
declarations.

The ordinary frame rule is

Γ ` {p}C{q}
Γ ` {p ∗ r}C{q ∗ r}

where C does not modify any variables free in r.

This is a special case of the hypothetical rule, but we state it separately because
the ordinary rule will be used without restriction, while we will place restrictions
on the hypothetical rule.

One rule of Hoare logic, which is sometimes not included explicitly in proof
systems, is the conjunction rule.

Γ ` {p}C{q} Γ ` {p′}C{q′}
Γ ` {p ∧ p′}C{q ∧ q′}

The conjunction rule is often excluded because it is an example of an admissible
rule: one can (usually) prove a metatheorem, which says that if the premises are
derivable then so is the conclusion. However, it is not an example of a derived rule:
one cannot construct a generic derivation, in the logic, of the conclusion from the
premises. We will see in Section 6 that the hypothetical frame rule can affect the
admissible status of the conjunction rule.

3.2.2 RAM-specific Axioms. Specific axioms are needed for any collection BC
of basic commands. Here are the “small axioms” appropriate to the RAM model,
ACM Transactions on Programming Languages and Systems, Vol. V, No. N, November 2008.
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Interface Specifications

{emp}alloc{x 7→–, –} [x]
{x 7→–, –}free{emp} []

Resource Invariant: list(f)

Private Variables: f

Internal Implementations

if (f = nil) then x := cons(–, –) (code for alloc)
else x := f ; f := x.2;

x.2 := f ; f := x; (code for free)

Table III. Memory Manager Module

where x,m, n are assumed to be distinct variables.

Γ ` {E 7→–} [E] := E1 {E 7→E1}

Γ ` {E 7→–} dispose(E) {emp}

Γ ` {x = m ∧ emp}x := cons(E1, ..., Ek)Γ ` {x 7→E1[m/x], ..., Ek[m/x] }

Γ ` {x = n ∧ emp}x := E {x = (E[n/x]) ∧ emp}

Γ ` {E 7→n ∧ x = m}x := [E] {x = n ∧ E[m/x] 7→n}

These small axioms describe the effect of each command on only one, or sometimes
no, heap cells. Typically, these effects can be extended using the frame rule: for
example, we can infer {(x 7→ 3) ∗ (y 7→ 4)}[x] := 7{(x 7→ 7) ∗ (y 7→ 4)} by choosing
y 7→4 as the invariant in the frame rule.

4. A MEMORY MANAGER

We consider an extended example, of an idealized memory manager that doles out
memory in chunks of size two. The specifications and code are given in Table III.

The internal representation of the manager maintains a free list, which is a singly-
linked list of binary cons cells. The free list is pointed to by f , and the predicate
list(f) is the representation invariant, where

list(f) def⇐⇒ (f = nil ∧ emp) ∨ (∃g. f 7→–, g ∗ list(g))

This predicate says that f points to a linked list (and that there are no other cells
in storage), but it does not say what elements are in the head components.

For the implementation of alloc, the manager places into x the address of the
first element of the free list, if the list is nonempty. In case the list is empty the
manager calls the built-in allocator cons to get an extra element. The interaction
between alloc and cons is a microscopic idealization of the treatment of malloc in
Section 8.7 of [Kernighan and Ritchie 1988]. There, malloc manages a free list but,
occasionally, it calls a system routine sbrk to request additional memory. Besides
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fixed versus variable sized allocation, the main difference is that we assume that
cons always succeeds, while sbrk might fail (return an error code) if there is no
extra memory to be given to malloc. We use this simple manager because to use
a more complex one would not add anything to the points made in this section.

When a user program gives a cell back to the memory manager it is put on the
front of the free list; there is no need for interaction with a system routine here.

The form of the interface specifications are examples of the local way of thinking
encouraged by separation logic; they refer to small pieces of storage. It is important
to appreciate the interaction between local and more global perspectives in these
assertions. For example, in the implementation of free in Table III the variable x
contains the same address after the operation completes as it did before, and the
address continues to be in the domain of the global program heap. The use of emp
in the postcondition of free does not mean that the global heap is now empty, but
rather it implies that the knowledge that x points to something is given up in the
postcondition. We say intuitively that free transfers ownership to the manager,
where ownership confers the right to dereference.

It is interesting to see how transfer works logically, by considering a proof outline
for the implementation of free.

{list(f) ∗ (x 7→–, –)}
x.2 := f ;
{list(f) ∗ (x 7→–, f)}
{list(x)}
f := x;
{list(f)}
{list(f) ∗ emp}

The most important step is the middle application of the rule of consequence. At
that point we still have the original resource invariant list(f) and the knowledge
that x points to something, separately. But since the second field of what x points
to holds f , we can obtain list(x) as a consequence. It is at this point in the proof
that the original free list and the additional element x are bundled together; the
final statement simply lets f refer to this bundled information.

A similar point can be made about how alloc effects a transfer from the module
to the client.

We now give several examples from the client perspective. Each proof, or at-
tempted proof, is done in the context of the interface specifications of alloc and
free.

The first example is for inserting an element into the middle of a linked list.

{(y 7→a, z) ∗ (z 7→c, w)}
alloc;
{(y 7→a, z) ∗ (z 7→c, w) ∗ (x 7→–, –)}
{(y 7→a, z) ∗ (x 7→–, –) ∗ (z 7→c, w)}
x.2 := z; x.1 := b; y.2 := x
{(y 7→a, x) ∗ (x 7→b, z) ∗ (z 7→c, w)}

Here, in the step for alloc we use the interface specification, together with the
ordinary frame rule.
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If we did not have the modular procedure rule we could still verify this code, by
threading the free list through and changing the interface specification. That is,
the interface specifications would become

{list(f)}alloc{list(f) ∗ x 7→–, –}
{list(f) ∗ x 7→–}free{list(f)}

thus exposing the free list, and the proof would be

{(y 7→a, z) ∗ (z 7→c, w) ∗ list(f)}
alloc;
{(y 7→a, z) ∗ (z 7→c, w) ∗ (x 7→–, –) ∗ list(f)}
{(y 7→a, z) ∗ (x 7→–, –) ∗ (z 7→c, w) ∗ list(f)}
x.2 := z; x.1 := b; y.2 := x
{(y 7→a, x) ∗ (x 7→b, z) ∗ (z 7→c, w) ∗ list(f)}.

Although technically correct, this inclusion of the free list in the proof of the client
is an example of the breakdown of modularity described in the Introduction.

One might wonder whether this hiding of invariants could be viewed as a simple
matter of syntactic sugar, instead of being the subject of a proof rule. We return
to this point in Section 6.

We can similarly reason about deletion from the middle of a linked list, but it is
more interesting to attempt to delete wrongly.

{(y 7→a, x) ∗ (x 7→b, z) ∗ (z 7→c, w)}
free;
{(y 7→a, x) ∗ (z 7→c, w)}
y := x.2;
{???}

This verification cannot be completed, because after doing the free operation the
client has given up the right to dereference x.

This is a very simple example of the relation between ownership transfer and
aliasing; after the free operation x and f are aliases in the global state, and the
incorrect use of the alias by the client has been rightly precluded by the proof rules.

Similarly, suppose the client tried to corrupt the manager, by sneakily tying a
cycle in the free list.

{emp} alloc; free; x.2 := x {???}

Once again, there is no assertion we can find to fill in the ???, because after the free
statement the client has given up the right to dereference x (emp will hold at this
program point). And, this protection has nothing to do with the fact that knotting
the free list contradicts the resource invariant. For, suppose the statement x.2 := x
was replaced by x.1 := x. Then the final assignment in this sequence would not
contradict the resource invariant, when viewed from the perspective of the system’s
global state, because the list(f) predicate is relaxed about what values are in head
components. However, from the point of view of the interface specifications, the
client has given up the right to dereference even the first component of x. Thus,
separation prevents the client from accessing the internal storage of the module in
any way whatsoever.
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Finally, it is worth emphasizing that this use of ∗ to enforce separation provides
protection even in the presence of address arithmetic which, if used wrongly, can
wreak havoc with data abstractions. Suppose the client tries to access some memory
address, which might or might not be in the free list, using [42] := 7. Then, for this
statement to get past the proof rules, the client must have the right to dereference
42, and therefore 42 cannot be in the free list (by separation). That is, we have
two cases

{42 7→– ∗ p} [42] := 7; alloc {42 7→7 ∗ p ∗ x 7→–, –}

and

{p} [42] := 7; {???} alloc {???}

where p does not imply that 42 is in the domain of its heap. In the first case the
client has used address arithmetic correctly, and the 42 7→ – in the precondition
ensures that 42 is not one of the cells in the free list. In the second case the client
uses address arithmetic potentially incorrectly, and the code might indeed corrupt
the free list, but the code is (in the first step) blocked by the proof rules.

5. THE EYE OF THE ASSERTER

In Table IV we give a queue module. In the specification we use a predicate
listseg(x, α, y) which says that there is an acyclic linked list from x to y that has
the sequence α in its head components. The variable Q denotes the sequence of
values currently held in the queue; it is present in the resource invariant, as well
as in the interface specifications. (Technically, we would have to ensure that the
variable Q was added to the s component of our semantics.) This exposing of
“auxiliary” variables is standard in module specifications, as is the inclusion of as-
signment statements involving auxiliary variables whose only purpose is to enable
the specification to work.

This queue module keeps a sentinel at the end of its internal list, as is indicated
by (y 7→–, –) in the resource invariant. The sentinel does not hold any value in the
queue, but reserves storage for a new value.

An additional feature of the treatment of queues is the predicate P , which is
required to hold for each element of the sequence α. By instantiating P in various
ways we obtain versions of the queue module that transfer different amounts of
storage.

—P (v) = emp: plain values are transferred in and out of the queue, and no storage
is transferred with any of these values;

—P (v) = v 7→–, –: binary cons cells, and ownership of the storage associated with
them, are transferred in and out of the queue;

—P (v) = list(v): linked lists, and ownership of the storage associated with them,
are transferred in and out of the queue.

To illustrate the difference between these cases, consider the following attempted
proof steps in client code.

{Q = 〈n〉·α ∧ emp}
deq
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Interface Specifications

{Q = α ∧ z = n ∧ P (z)} enq {Q = α·〈n〉 ∧ emp} [Q]

{Q = 〈m〉·α ∧ emp} deq {Q = α ∧ z = m ∧ P (z)} [Q, z]

{emp} isempty? {(w = (Q = ε)) ∧ emp} [w]

Resource Invariant: listseg(x, Q, y) ∗ (y 7→–, –)

Private Variables: x, y, t

listseg Predicate Definition

listseg(x, α, y)
def⇐⇒ if x = y then (α = [] ∧ emp)

else
“
∃v, z, α′. (α = 〈v〉·α′ ∧ x 7→v, z) ∗ P (v) ∗ listseg(z, α′, y)

”
Internal Implementations

Q := Q·〈z〉; (code for enq)
t := cons(–, –); y.1 := z; y.2 := t; y := t

Q := cdr(Q); (code for deq)
z := x.1; t := x; x := x.2; dispose(t)

w := (x = y) (code for isempty?)

Table IV. Queue Module, Parametric in P (v)

{Q = α ∧ z = n ∧ P (z)}
z.1 := 42
{???}

In case P (v) is either emp or list(v) we cannot fill in ??? because we do not have the
right to dereference z in the precondition of z.1 := 42. However, if P (v) is v 7→–, –
then we will have this right, and a valid postcondition is (Q = α∧z = n∧z 7→42, –).
Conversely, if we replace z.1 := 42 by code that traverses a linked list then the third
definition of P (v) will enable a verification to go through, where the other two will
not.

On the other hand there is no operational distinction between these three cases:
the queue code just copies values.

The upshot of this discussion is that the idea of ownership transfer we have
alluded to is not determined by instructions in the programming language alone.
Just what storage is, or is not, transferred depends on which definition of P we
choose. And this choice depends on what we want to prove.

This phenomenon, where “Ownership is in the eye of the Asserter”, can take
some getting used to at first. One might feel ownership transfer might be made an
explicit operation in the programming language. In some cases such a programming
practice would be useful, but the simple fact is that in real programs the amount
of resource transferred is not always determined operationally; rather, there is an
understanding between a module writer, and programmers of client code. For
example, when you call malloc() you just receive an address. The implementation
of malloc() does not include explicit statements that transfer each of several cells
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to its caller, but the caller understands that ownership of several cells comes with
the single address it receives.

6. A CONUNDRUM

In the following 0 is the assertion emp that the heap is empty, and 1 says that it
has precisely one active cell, say x (so 1 is x 7→–).

Consider the following instance of the hypothetical frame rule, where true is
chosen as the invariant:

{0 ∨ 1}k{0}[] ` {1}k{false}
{(0 ∨ 1) ∗ true}k{0 ∗ true}[] ` {1 ∗ true}k{false ∗ true}

The conclusion is definitely false in any sensible semantics of sequents. For example,
if k denotes the do-nothing command, skip, then the antecedent holds, but the
consequent does not.

However, we can derive the premise {0 ∨ 1}k{0}[] ` {1}k{false} as follows.

{0 ∨ 1}k{0}
{1}k{0}

Consequence

{0 ∨ 1}k{0}
{0}k{0}

Consequence

{0 ∗ 1}k{0 ∗ 1}
Ordinary Frame Rule

{1}k{1}
Consequence

{1 ∧ 1}k{1 ∧ 0}
Conjunction

{1}k{false}
Consequence

This shows that we cannot have all of: the usual rule of consequence, the ordinary
frame rule, the conjunction rule, and the hypothetical frame rule. It also shows that
the idea of treating information hiding as syntactic sugar for proof and specification
forms should be approached with caution: one needs to be careful that introduced
sugar does not interact badly with expected rules, in a way that contradicts them.

The counterexample can also be presented as a module, as in Table V. This can
be used to show a similar problem with the modular procedure rule.

Given this counterexample, the question is where to place the blame. There are
several possibilities.

(1) The specification {0∨1}k{0}. This is an unusual specification, since in the pro-
gramming languages we have been using there is no way to branch on whether
the heap is empty.

(2) The invariant true. Intuitively, a resource invariant should precisely identify
an unambiguous area of storage, that owned by a module. The invariant list(f)
in the memory manager is unambiguous in this sense, where true is perhaps
not.

(3) One of the rules of conjunction, consequence, or the ordinary frame rule.

The remainder of the paper is occupied with a theoretical analysis of this sit-
uation. Our main results concentrate on possibilities (1) and (2) just listed. We
identify a technical notion of “precise” predicate, which picks out an unambiguous
area of storage. By restricting the preconditions of procedure specifications to be
precise, we obtain a sound semantics, and this reaction corresponds to point (1).
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Interface Specifications

{0 ∨ 1}k{0} []

Resource Invariant

true

Internal Implementation

{true ∗ (0 ∨ 1)} (code for k)
skip;
{true ∗ 0}

Table V. Counterexample Module

By restricting resource invariants to be precise we also obtain a sound semantics,
and this reaction corresponds to point (2).

We also briefly point out a model of the hypothetical frame rule which places no
restrictions on it, but which invalidates the conjunction rule. This corresponds to
reaction (3). The reaction (3) is not one we would attempt to defend on conceptual
grounds, but it is interesting to know that reaction (3) can be upheld, technically.
(Furthermore, some follow-up works adopt reaction (3), starting with [Birkedal
et al. 2005].)

7. THE PROGRAMMING LANGUAGE MODEL

Until now in work on separation logic we have used operational semantics, but in
this paper we use a denotational semantics. By using denotational semantics we will
be able to reduce the truth of a sequent Γ ` {p}C{q} to the truth of a single seman-
tic triple {p}[[C]]η{q} where η maps each procedure identifier in Γ to a “greatest”
or “most general” relation satisfying it [Schwarz 1974; 1977; Morgan 1988]. In the
case of the hypothetical frame rule, we will be able to compare two denotations of
the same command for particular instantiations of the procedure identifiers, rather
than having to quantify over all possible instantiations. Our choice to use deno-
tational semantics here is entirely pragmatic: The greatest relation is not always
definable by a term in a given programming language, but the ability to refer to it
leads to significant simplifications in proofs about the semantics.

The model we use is chosen for its simplicity. Only basic domain theory is
required, essentially, continuity and fixed-points. Commands are modelled as rela-
tions, which are ordered by inclusion to form a complete partial order in terms of
which the constructs of our language are continuous. The model is adequate for
partial correctness, but not total correctness.

7.1 Domains

To begin with, we divide the program state into two components, the “stack”
which maps variables into values, and the “heap” which is the H component from
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the previous section.

S
def= Variables → Values

H
def= L ⇀fin R

States
def= S ×H

Often the set Values can be taken to be the same as R, but we do not require this.
A command is interpreted as a relation

States ↔ States ∪ {fault}

satisfying certain properties defined below. Because we use a fault-avoiding inter-
pretation of triples, it would be possible to use the domain

States → P(States) ∪ {fault}

instead. Using the more general domain lets us see clearly that if a command
nondeterministically chooses between fault and some state, then the possibility of
faulting will mean that the command is not well specified. This is not an essential
point; the more constrained domain could be used without affecting any of our
results.

This domain of relations is inappropriate for total correctness because it does not
include a specific result for non-termination, and our semantics will not distinguish
a command C from one that nondeterministically chooses C or divergence. Note
that divergence is distinguished from fault, which typically occurs when an l-value
not in the current state is accessed.

We say that a relation c:States ↔ States∪ {fault} is safe at a state (s, h) when
¬(s, h) [c] fault. Intuitively, this means that when started at (s, h), the “command”
c does not dereference dangling pointers. The two locality properties are:

(1) Safety Monotonicity: for all states (s, h) and heaps h1 such that h#h1, if c is
safe at (s, h), it is also safe at (s, h ∗ h1).

(2) Frame Property: for all states (s, h) and heaps h1 such that h#h1, if c is safe
at (s, h) and (s, h ∗ h1)[c](s′, h′), then there is a subheap h′

0 ≤ h′ such that

h′
0#h1, h′

0 ∗ h1 = h′ and (s, h)[c](s′, h′
0).

The poset LRel of “local relations” is the set of all such c satisfying the above
conditions, ordered by subset inclusion:

LRel
def= {c:States ↔ States ∪ {fault} | c satisfies safety monotonicity

and the frame property}

These local relations are exactly those that satisfy the ordinary frame rule. Local
relations inherit the domain structure from relations, ordered by subset inclusion,
which gives us access to fixed-points.

Lemma 1. The poset LRel is a chain-complete partial order with the least ele-
ment. The least element is the empty relation, and the least upper bound of a chain
is given by the union of all the relations in the chain.
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Proof: Since the empty relation is in LRel, the poset LRel has the least element.
To see that LRel is chain-complete, consider a chain {ci}i in LRel. We need to show
that

⋃
i ci satisfies safety monotonicity and the frame property. Suppose that

⋃
i ci

is safe at a state (s, h). Then, all of ci’s are safe at (s, h). The safety monotonicity
of ci, then, says that ci is safe at all bigger states (s, h ∗ h1) with h#h1. This
gives the safety monotonicity of

⋃
i ci. For the frame property, suppose that

⋃
i ci

is safe at a state (s, h), and that (s, h ∗ h1)[
⋃

i ci](s′, h′) for some h1, s
′, h′ with

h#h1. Then, there is some ci such that (s, h ∗ h1)[ci](s′, h′). The frame property
of ci gives a subheap h′

0 ≤ h′ such that (s, h)[ci](s′, h′
0) and h′ = h′

0 ∗ h1. This h′
0

is the subheap required for the frame property of
⋃

i ci because (s, h)[
⋃

i ci](s′, h′
0)

and h′ = h′
0 ∗ h1.

7.2 The General Semantics

We consider a simple imperative programming language extended with parame-
terless procedures. For the moment, we assume that we are given an unspecified
set of basic commands, and a fixed element A ∈ LRel for each basic command A;
the development of the semantics of the surrounding language is parametric in the
choice of the sets L, R, and Values, and the basic commands. We will separately
instantiate the basic commands as appropriate to the RAM model.

The semantics is in Table VI. The meaning of a command is given in the context
of an environment η, which maps procedure identifiers to relations in LRel. We
presume a semantics which assigns a truth value to [[B]]s.

Lemma 2. For each command C, [[C]] is well-defined: for all environments η,
[[C]]η is in LRel, and [[C]]η is continuous for η when environments are ordered point-
wise.

Proof: We use induction on the structure of C to show the lemma. When C is a
basic command the result holds by presumption.

When C = C1;C2, we first show that [[C1;C2]]η satisfies safety monotonicity
and the frame property so that it is in LRel; then, we will prove that [[C1;C2]]
is continuous. Consider a state (s, h) and an environment η such that [[C1;C2]]η
is safe at the state (s, h). Suppose that this [[C1;C2]]η is not safe at some big-
ger state (s, h ∗ h1) with h#h1. Then, we have either (s, h ∗ h1)[[[C1]]η]fault, or
(s, h ∗ h1)[[[C1]]η](s′, h′) and (s′, h′)[[[C2]]η]fault for some state (s′, h′). We get the
required contradiction in both cases. In the first case, since [[C1;C2]]η is safe at
(s, h), the [[C1]]η is also safe at (s, h). Therefore, because of the induction hypoth-
esis, the “command” [[C1]]η can not generate fault when run in the bigger state
(s, h ∗ h1). This contradicts the assumption, (s, h ∗ h1)[[[C1]]η]fault. In the second
case, note that since [[C1]]η is safe at (s, h), the induction hypothesis gives a sub-
heap h′

0 of h′ such that the subheap h′
0 is disjoint from h1 (i.e., h′

0#h1) and satisfies
h′ = h′

0 ∗ h1 and (s, h)[[[C1]]η](s′, h′
0). Since [[C1;C2]]η is safe at (s, h), [[C2]]η should

be safe at (s′, h′
0). Now, the induction hypothesis for C2 implies that [[C2]]η is also

safe at (s′, h′
0 ∗h1); this contradicts our assumption that (s′, h′)[[[C2]]η]fault holds.

For the frame property, consider a heap h1 disjoint from the heap h, and a state
(s′′, h′′) such that (s, h ∗ h1)[[[C1;C2]]η](s′′, h′′). We must find a subheap h′′

0 of h′′
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Atomic Commands (Assumed)

A ∈ LRel

Functionality of Environments

η ∈ ProcIds→ LRel

Functionality of Valuations

[[C]]η ∈ LRel

Valuations

for all (s, h) ∈ States and a ∈ States ∪ {fault},

[[A]]η
def
= A

(s, h)[[[skip]]η]a
def⇐⇒ a = (s, h)

(s, h)[[[C1; C2]]η]a
def⇐⇒ (s, h)[seq([[C1]]η, [[C2]]η)]a

(s, h)[[[if B then C1 else C2]]η]a
def⇐⇒ (s, h)

h
[[B]] ; [[C1]]η; [[C2]]η

i
a

(s, h)[[[while B C]]η]a
def⇐⇒ (s, h)

h
fix

“
λc ∈ LRel. ([[B]] ; seq([[C]]η, c); [[skip]]η)

”i
a

(s, h)[[[k]]η]a
def⇐⇒ (s, h)[η(k)]a

(s, h)[[[letrec k1 = C1, . . . , kn = Cn in C]]η]a
def⇐⇒ (s, h)

h
[[C]]η[k1 7→ d1, . . . , kn 7→ dn]

i
a

where fix f gives the least fixed-point of f , and seq(c1, c2), b ; c1; c2 and d1, ..., dn are defined
as follows:

(d1, . . . , dn)
def
= fix(λd1, . . . , dn ∈ LReln. (F1, ..., Fn))

where Fi = [[Ci]]η[k1 7→ d1, . . . , kn 7→ dn]

(s, h) [seq(c1, c2)] a
def⇐⇒

“
∃(s′, h′). (s, h) [c1] (s′, h′) ∧ (s′, h′) [c2] a

”
∨

“
(s, h) [c1] fault ∧ a = fault

”
(s, h) [b ; c1; c2] a

def⇐⇒ if b(s) = true then (s, h)[c1]a else (s, h)[c2]a

Table VI. The General Semantics

that satisfies

h′′
0#h1, h′′

0 ∗ h1 = h′′, and (s, h)[[[C1;C2]]η](s′′, h′′
0).

Since (s, h ∗ h1)[[[C1;C2]]η](s′′, h′′) holds, there is an intermediate state (s′, h′) for
this computation. That is, the state (s′, h′) satisfies (s, h ∗ h1)[[[C1]]η](s′, h′) and
(s′, h′)[[[C2]]η](s′′, h′′). Applying the induction hypothesis for C1 and then for C2,
we can find a subheap h′

0 of h′ and h′′
0 of h′′ such that the heap h′

0 satisfies
h′ = h′

0 ∗ h1 and (s, h)[[[C1]]η](s′, h′
0), and the heap h′′

0 satisfies h′′ = h′′
0 ∗ h1 and

(s′, h′
0)[[[C2]]η](s′′, h′′

0). The heap h′′
0 is the required subheap of h′′ for the frame

property of [[C1;C2]]η.
For the continuity of [[C1;C2]], it suffices to show that seq preserves the least

upper bound of a chain in LRel× LRel. Let {(ci, c
′
i)}i be a chain in LRel× LRel. By

Lemma 1, their least upper bound is (
⋃

i ci,
⋃

j c′j). The following shows that seq
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preserves this least upper bound:

(s, h)[seq(
⋃

i ci,
⋃

j c′j)]a
⇐⇒ (

∃(s′, h′). (s, h)[
⋃

i ci](s′, h′) ∧ (s′, h′)[
⋃

j c′j ]a
)
∨

(
(s, h)[

⋃
i ci]a ∧ a = fault

)
⇐⇒ (∵ {(ci, c

′
i)}i is a chain)

∃i.
(
∃(s′, h′). (s, h)[ci](s′, h′) ∧ (s′, h′)[c′i]a

)
∨

(
(s, h)[ci]a ∧ a = fault

)
⇐⇒

∃i. (s, h)[seq(ci, c
′
i)]a

⇐⇒
(s, h)[

⋃
i(seq(ci, c

′
i))]a.

When C = if B then C1 else C2, we note that the boolean expression B does
not depend on the heap so that the value of B at a smaller state (s, h) is the same
as that at a bigger state (s, h∗h1). Moreover, both [[C1]]η and [[C2]]η already satisfy
safety monotonicity and the frame property by the induction hypothesis. Therefore,
[[C]]η also satisfies these two properties. For the continuity, it suffices to show that
for all boolean functions b ∈ [S → {true, false}], and all chains {ci}i and {c′i}i of
local relations, we have

(b ;
⋃
i

ci;
⋃
i

c′i) =
⋃
i

(b ; ci; c′i).

We show this equality as follows:

(s, h) [(b ;
⋃

i ci;
⋃

i c′i)] a

⇐⇒ if b(s) = true then (∃i. (s, h)[ci]a) else (∃i. (s, h)[c′i]a)

⇐⇒ ∃i. if b(s) = true then (s, h)[ci]a else (s, h)[c′i]a

⇐⇒ (s, h)[
⋃

i(b ; ci; c′i)]a.

The meaning of a procedure call k is a projection, which is a well-defined contin-
uous map from environments to local relations.

For the remaining cases of loop and procedure definition, we just observe that
the domain LReln is a cpo, and that the least fixed-point operator fix is, itself,
continuous from the domain of continuous functions of type LReln → LReln to
LReln. The conclusion follows from this because the functionals, for which we
take the least fixed-point in both cases, are well-defined continuous functions from
environments to continuous functions of type LReln → LReln.

7.3 A Particular Semantics: The RAM Model

We now instantiate the previous development for the RAM model. The domains
are set out, together with the valuations for basic commands, in Table VII.

The command x := cons(E1, . . . , En) allocates n consecutive cells, initializes
them with the values of E1, . . . , En, and stores the address of the first cell in x.
The contents of an address E can be read and stored to x by x := [E], or can be
modified by [E] := E1. The command dispose(E) deallocates the address E. Note
that in x := [E], [E] := E1 and dispose(E), the expression E can be an arbitrary
arithmetic expression; so, this language allows address arithmetic. Also, note that
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Expressions (Assumed)

[[E]]s ∈ Ints [[B]]s ∈ {true, false} (where s ∈ S).

Domains for the RAM model

Nats
def
= {0, 1, . . . , 17, . . .} Ints

def
= {. . . ,−17, . . . ,−1, 0, 1, . . . , 17, . . .}

Variables
def
= {x, y, . . .} S

def
= Variables → Ints

H
def
= Nats ⇀fin Ints States

def
= S ×H

Valuations for Atomic Commands

for all (s, h) ∈ States and a ∈ States ∪ {fault},

(s, h)[x := E]a
def⇐⇒ a = (s[x 7→ [[E]]s], h)

(s, h)[x := cons(E1, . . . , En)]a
def⇐⇒ ∃m. (m, . . . , m + n− 1 6∈ dom(h))

∧
“
a = (s[x 7→ m], h ∗ [m 7→ [[E1]]s, . . . , m + n− 1 7→ [[En]]s])

”
(s, h)[x := [E]]a

def⇐⇒ if [[E]]s ∈ dom(h) then a = (s[x 7→ h([[E]]s)], h) else a = fault

(s, h)[[E] := E1]a
def⇐⇒ if [[E]]s ∈ dom(h) then a = (s, h[[[E]]s 7→ [[E1]]s]) else a = fault

(s, h)[dispose(E)]a
def⇐⇒ if [[E]]s ∈ dom(h)

then a = (s, h′) for h′ s.t. h′ ∗ ([[E]]s 7→ h([[E]]s)) = h
else a = fault

Table VII. The RAM Semantics

dereferencing or disposing a pointer not in the domain of the heap leads to a fault
in the semantics.

We can now specify the element A ∈ LRel for each basic command. It is a matter
of straightforward checking to show that each of these definitions satisfies safety
monotonicity and the frame property, so we state

Lemma 3. For each basic command A, we have A ∈ LRel.

It is entertaining to see the nondeterminism at work in the semantics of cons in
this model. In particular, since we are aiming for partial correctness, the semantics
does not record whether a command terminates or not; for instance, x := 1; y := 1
has the same denotation as a command that nondeterministically picks either x :=
1; y := 1 or divergence. Such a nondeterministic command can be expressed in our
language as

x := cons(0); dispose(x); y := cons(0); dispose(y);
if (x = y) then (x := 1; y := 1)

else (while (x = x) skip)

The reader may enjoy verifying that this is indeed equivalent to x := 1; y := 1 in
the model.

8. SEMANTICS OF SEQUENTS

In this section we give a semantics where a sequent
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Γ ` {p}C{q}

says that if every specification in Γ is true of an environment mapping procedure
identifiers to local relations, then so is {p}C{q}

To interpret sequents we define semantic cousins of the modifies clauses and
Hoare triples. If c ∈ LRel is a relation then

—modifies(c,X) holds if and only if whenever (s, h)[c](s′, h′) and y 6∈ X, we have
that s(y) = s′(y).

—{p}c{q} holds if and only if for all states (s, h) in p,
(1) ¬((s, h) [c] fault); and
(2) for all states (s′, h′), if (s, h) [c] (s′, h′), the state (s′, h′) is in q.

Intuitively, triple {p}c{q} says that when started at a state in p, the relation c does
not generate a fault so that it only accesses cells already in h or newly allocated
during execution, and, if c ever terminates, it always produces a state in q.

The interpretation of a sequent now works by quantifying over values in environ-
ments, and appealing to the semantic counterparts of triples and modifies clauses.

Definition 4. [Validity of Sequents]
A sequent

{p1}k1{q1}[X1] . . . , {pn}kn{qn}[Xn] ` {p}C{q}

holds in the standard semantics if and only if

for all environments η, if both {pi}η(ki){qi} and modifies(η(ki), Xi) hold
for all 1 ≤ i ≤ n, the triple {p}([[C]]η){q} also holds.

It is interesting to see the position of this semantics on the sequents used in the
counterexample from Section 6. The standard semantics validates the conjunction
rule

Γ ` {p}C{q} Γ ` {p′}C{q′}
Γ ` {p ∧ p′}C{q ∧ q′}

and so also the instance of it
{0 ∨ 1}k{0}[] ` {1}k{1} {0 ∨ 1}k{0}[] ` {1}k{0}

{0 ∨ 1}k{0}[] ` {1 ∧ 1}k{1 ∧ 0}

used in the derivation of {0 ∨ 1}k{0}[] ` {1}k{false}. This concluding sequent is
true because any relation c ∈ LRel satisfying {0∨1}k{0} must diverge given a state
satisfying 1; thus, the triple {1}k{0} will hold since divergence makes a triple true
in partial correctness.

The standard semantics, however, invalidates the hypothetical frame rule: this
can be seen, as indicated in Section 6, by taking k to be the identity relation in
LRel and r to be the entire set of states.

9. PRECISE PREDICATES

We know from the counterexample in Section 6 that we must restrict the hypothet-
ical frame rule in some way, if it is to be used with the standard semantics. Before
describing the restriction, let us retrace some of our steps. We had a situation where
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ownership could transfer between a module and a client, which made essential use
of the dynamic nature of ∗. But we had also got to a position where ownership
is determined by what the Asserter asserts, and this put us in a bind: when the
Asserter does not precisely specify what storage is owned, different splittings can
be chosen at different times using the nondeterministic semantics of ∗; this fools
the hypothetical frame rule (it is perhaps fortuitous that the nondeterminism in ∗
has not gotten us into trouble in separation logic before now). A way out of this
problem is to insist that the Asserter precisely nail down the storage that he or she
is talking about.

Definition 5. [Precision] A predicate p is precise if and only if for all states
(s, h), there is at most one subheap hp of h for which (s, hp) ∈ p.

Intuitively, this definition says that for each state (s, h), a precise predicate un-
ambiguously specifies the portion of the heap h that is relevant to the predicate.
Formulae that describe data structures are often precise. Indeed, the definition
might be viewed as a formalization of a point of view stressed by Richard Bornat,
that for practically any data structure one can write a formula or program that
searches through a heap and picks out the relevant cells. Bornat used this idea to
expose the cells in a data structure in order to give an approach to spatial separation
in traditional logic [Bornat 2000]. In separation logic we express spatial separation
using ∗, and have until now had less reason to expose, or insist on unambiguous
identification of, the cells in a data structure.

An example of a precise predicate is the following one for list segments:

listseg(x, y) def⇐⇒ (x = y ∧ emp) ∨
(
x 6= y ∧ ∃z. (x 7→–, z) ∗ listseg(z, y)

)
This predicate is true when the heap contains a non-circular linked list (and nothing
else), which starts from the cell x and ends with y. Note that because of x 6= y in
the second disjunct, the predicate listseg(x, y) says that if x and y have the same
value in a state (s, h), the heap h must be empty. If we had left x 6= y out of the
second disjunct, then listseg(x, y) would not be precise: listseg(x, x) could be true
of a heap containing a non-empty circular list from x to x (and nothing else), and
also of the empty heap, a proper subheap.

If p is a precise predicate then there can be at most one way to split any given
heap up in such a way as to satisfy p ∗ q; the splitting, if there is one, must give
p the unique subheap satisfying it. This leads to an important property of precise
predicates.

Lemma 6. [Distribution Lemma]
A predicate p is precise if and only if p ∗ − distributes over ∧:

for all predicates q and r, we have p ∗ (q ∧ r) = (p ∗ q) ∧ (p ∗ r).

Proof: We show the only-if direction first. By the definition of ∗, predicate p∗(q∧r)
is always included in (p ∗ q)∧ (p ∗ r) for all predicates p, q, r. So, it suffices to show
the other inclusion. Let (s, h) be a state in (p ∗ q) ∧ (p ∗ r). Then, heap h can be
split into hp, hq, and also into h′

p, h
′
r such that

(1) both (s, hp) and (s, h′
p) are in p,

(2) (s, hq) is in q and (s, h′
r) is in r, and
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(3) h = hp ∗ hr = h′
p ∗ h′

r holds.

Since predicate p is precise, hp = h′
p. So, hq = hr. The conclusion follows from

this.
For the if direction, suppose that p ∗ − distributes over ∧ but p is not precise.

Then, there is a state (s, h) and two different subheaps hp, h
′
p of h with (s, hp) ∈ p

and (s, h′
p) ∈ p. Let q = {(s, h − hp)} and let r = {(s, h − h′

p)}, where for all
subheaps h′ ≤ h, heap h− h′ denotes h excluding those cells in h′. Then, (s, h) is
in (p ∗ q) ∧ (p ∗ r), but it is not in p ∗ (q ∧ r) because q ∧ r is the empty set. This
contradicts the distributivity of p ∗ −.

We also have closure properties of precise predicates.

Lemma 7. For all precise predicates p and q, all (possibly imprecise) predicates
r, and boolean expressions B, all the predicates p∧ r, p ∗ q, and (B ∧ p)∨ (¬B ∧ q)
are precise.

As a first hint of the relevance of the notion of precise predicate to the conundrum
from Section 6, consider how an inference using the usual conjunction rule

{p}k{q} {p′}k{q′}
{p ∧ p′}k{q ∧ q′}

relates to a putative inference after we place invariants on the premises and the
conclusion:

{p ∗ r}k{q ∗ r} {p′ ∗ r}k{q′ ∗ r}
{(p ∧ p′) ∗ r}k{(q ∧ q′) ∗ r} ?

We can almost perform this inference

(p ∧ p′) ∗ r ⇒ (p ∗ r) ∧ (p′ ∗ r)
{p ∗ r}k{q ∗ r} {p′}k{q′}

{(p ∗ r) ∧ (p′ ∗ r)}k{(q ∗ r) ∧ (q′ ∗ r)}
{(p ∧ p′) ∗ r}k{(q ∗ r) ∧ (q′ ∗ r)}

and if we had one more implication

(q ∗ r) ∧ (q′ ∗ r)⇒(q ∧ q′) ∗ r

then we would obtain the putative conclusion, using the usual rule of consequence.
Alas, as we have seen, this implication fails in general: take q = 0, q′ = 1 and

r = true. But, if r is precise then the implication goes through, because of the
distribution lemma, and the putative conclusion is then fully justified.

This gives us a hint of the relevance of precision; now we undertake to provide a
detailed analysis. Before presenting the soundness proof of the hypothetical frame
rule in the standard semantics, we clarify the side conditions for the rule.

10. VARIABLE CONDITIONS

We repeat the hypothetical frame rule, with its side conditions.

Hypothetical Frame Rule

Γ, {p1}k1{q1}[X1], . . . , {pn}kn{qn}[Xn] ` {p}C{q}
Γ, {p1 ∗ r}k1{q1 ∗ r}[X1, Y ], . . . , {pn ∗ r}kn{qn ∗ r}[Xn, Y ] ` {p ∗ r}C{q ∗ r}
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where
—C does not modify variables in r, except through using k1, ..., kn; and
—Y is disjoint from “Γ, {p1}k{q1}[X1], . . . , {pn}k{qn}[Xn] ` {p}C{q}”.

As a first comment, note that in the rule we are using comma between the Xi

and Y for union of disjoint sets; the form of the rule therefore assumes that Xi and
Y are disjoint.

The disjointness requirement for Y enforces that we do not observe the changes
of a variable in Y while reasoning about C; as a result, reasoning in client code is
independent of variables in Y . We give a technical definition of several variants on
a notion of disjointness of a set of variables X from a set of variables, a command,
a predicate, or a judgment. X is disjoint from a set Y if their variables do not
overlap; X is disjoint from a command C if X does not intersect with the free
variables of C; X is disjoint from predicate r if the predicate is invariant under
changes to values of variables in X; X is disjoint from judgment Γ′ ` {p}C{q}
if it is disjoint from p, q, C in the concluding triple and also from p′, q′, Y for all
{p′}k{q′}[Y ] in Γ′. This defines the second side condition.

The first side condition can be made rigorous with a relativized version of the
usual notion of set of variables modified by a command. We describe this using a
set Modifies(C)(Γ) of variables associated with each command, where we split the
context into two parts. The two most important clauses in the definition concern
procedure call.

Modifies(k)(Γ) = X, if {p}k{q}[X] ∈ Γ

Modifies(k)(Γ) = {}, otherwise

The upshot is that Modifies(C)(Γ) reports those variables modified by C, except
that it doesn’t count any procedure calls for procedures not in Γ.

For the other commands, the relativized notion of modifies set is defined usual.
For a compound command C with immediate subcommands C1, . . . , Cn, the set
Modifies(C)(Γ) is the union ∪iModifies(Ci)(Γ). Two of the basic commands are as
follows:

Modifies(x := E)(Γ) = {x} Modifies([x] := E)(Γ) = {}

For [x] := E the modifies set is empty because the command alters the heap but
not the stack.

We are now in a position to state the first side condition rigorously: it means

Modifies(C)(Γ) is disjoint from r.

The modifies conditions for the the ordinary frame and recursive procedure rules
do not mention the “except through” clause. These can be formalized by taking Γ
in Modifies(C)(Γ) to be the entire context of the premise.

An important point is that the free variables of the resource invariant are allowed
to overlap with the Xi. This often happens when using auxiliary variables to specify
the behaviour of a module, as exemplified by the treatment of the auxiliary variable
Q in the queue module in Table IV.

The complexity of modifies clauses is a general irritation in program logic, and one
might feel that this problem with modifies clauses could be easily avoided, simply
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by doing away with assignment to variables, so that the heap component is the only
part of the state that changes. While this is easy to do semantically, obtaining a
satisfactory program logic is not as straightforward. The most important point is
the treatment of auxiliary variables. For example, in the queue module the variable
Q is used in interface specifications as well as the invariant. If we were to try
to place this variable into the heap then separation would not allow us to have
it in both an interface specification and an invariant. It is important that Q can
appear in client assertions, but cannot be altered by client code, and the detailed
syntactic conditions on variables are designed to allow this. It has been suggested
that fractional permissions, a method of sharing read access to heap cells, can also
deal with these uses of auxiliary variables [Bornat et al. 2005; Parkinson et al. 2006];
while an alluring suggestion, further work is needed to understand the connection
between permissions and auxiliary variables.

10.1 On Existentials and Free Variables

In [O’Hearn et al. 2001; Reynolds 2002] there is an inference rule for introducing
existential variables in preconditions and postconditions.

{p}C{q}
{∃x.p}C{∃x.q}

x 6∈ free(C)

The side condition cannot be stated in the formalism of this paper. For, a procedure
specification {p}k{q}[X] identifies the variables, X, that k might modify, but not
those that k might read from.

We can get around this problem by adding a free variable component to the
sequent form, thus having

(Y ) Γ ` {p}C{q}.

This constrains the variables appearing in C and all the procedures ki, but not the
preconditions and postconditions. This would allow us to describe the existential
rule as

(Y ) Γ ` {p}C{q}
(Y ) Γ ` {∃x.p}C{∃x.q}

x 6∈ Y

Another reasonable approach is to have a distinct class of “logical” variables, that
cannot be assigned to in programs. For technical simplicity, we do not explicitly
pursue either of these extensions in the current paper.

11. SOUNDNESS OF THE HYPOTHETICAL FRAME RULE

From now on we assume the standard notion of validity of sequents, as in Definition
4. Our task now is to prove the main result:

Theorem 8. [Soundness Theorem]

(a) The hypothetical frame rule is sound for fixed preconditions p1, ..., pn if and only
if p1, ..., pn are all precise.

(b) The hypothetical frame rule is sound for a fixed invariant r if and only if r is
precise.
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This result covers the queue and memory manager examples, where the precon-
ditions and invariants are all precise.

The remainder of this section contains the proof of this theorem, aided by several
preparatory steps which help to simplify what has to be proven.

—Rule decomposition. We decompose the hypothetical frame rule into two
simpler rules, one of which involves the addition of modifies sets without adding
invariants, and the other of which involves the addition of invariants without
extending modifies sets.

—The greatest relation. We identify the greatest relation for a specification
{p}k{q}[X], which is the greatest local relation satisfying it [Schwarz 1974; 1977;
Morgan 1988]. This allows us to reduce the truth of a sequent, which officially
involves quantification over all environments, to the truth of a single triple for a
single environment.

—Simulation. To show the soundness of the hypothetical frame rule we need to
connect the meaning of a command in one context to its meaning in another
with an additional invariant and additional modifies sets. We develop a notion
of simulation relation between commands to describe this connection.

11.1 Rule Decomposition

Our first simplification decomposes the hypothetical rule into two simpler rules.

Modifies Weakening

Γ, {p1}k1{q1}[X1], . . . , {pn}kn{qn}[Xn] ` {p}C{q}
Γ, {p1}k1{q1}[X1, Y ], . . . , {pn}kn{qn}[Xn, Y ] ` {p}C{q}

where Y is disjoint from “Γ, {p1}k1{q1}[X1], . . . , {pn}kn{qn}[Xn] ` {p}C{q}”

Simple Hypothetical Frame Rule

Γ, {p1}k1{q1}[X1], . . . , {pn}kn{qn}[Xn] ` {p}C{q}
Γ, {p1 ∗ r}k1{q1 ∗ r}[X1], . . . , {pn ∗ r}kn{qn ∗ r}[Xn] ` {p ∗ r}C{q ∗ r}

where Modifies(C)(Γ) is disjoint from r and for all {p′}k{q′}[X] in Γ,
the modifies set X is disjoint from r

Note that these rules are specific instances of the hypothetical frame rule: the first
rule is obtained by taking the set {(s, []) | s ∈ S} for a resource invariant, and the
second rule by taking the empty set for Y . In fact, the hypothetical frame rule is
equivalent to these rules because it is derivable from them:

Γ, {p1}k1{q1}[X1], . . . , {pn}kn{qn}[Xn] ` {p}C{q}
Γ0, {p1}k1{q1}[X1], . . . , {pn}kn{qn}[Xn] ` {p}C{q}
Γ0, {p1}k1{q1}[X1], . . . , {pn}kn{qn}[Xn] ` {p}C{q}

Γ0, {p1 ∗ r}k1{q1 ∗ r}[X1, Y ], . . . , {pn ∗ r}kn{qn ∗ r}[Xn, Y ] ` {p}C{q}
Γ, {p1 ∗ r}k1{q1 ∗ r}[X1, Y ], . . . , {pn ∗ r}kn{qn ∗ r}[Xn, Y ] ` {p ∗ r}C{q ∗ r}

Here Γ0 is a subcontext of Γ containing specifications of only those procedures
that appear in C. The derivation first uses the rule for shrinking contexts, and
removes specifications for uncalled procedures from Γ. Next, it applies the modifies
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weakening and the simple hypothetical frame rule, and adds first Y and then r.
Finally, the derivation restores Γ by extending Γ0. In the derivation, we shrink and
extend Γ, in order to ensure that the side condition of the hypothetical frame rule
implies that of the simple hypothetical rule.

11.2 Greatest Relation

For a specification {p}−{q}[X], we consider the greatest local relation great(p, q,X)
in LRel satisfying the (semantic) triple {p}great(p, q,X){q} and the modifies clause
modifies(great(p, q,X), X). The relation great(p, q,X) exists for all specifications
{p} − {q}[X], and can be defined as follows:

(s, h)[great(p, q,X)]fault def⇐⇒ (s, h) 6∈ p ∗ true

(s, h)[great(p, q,X)](s′, h′) def⇐⇒
(1) s(y) = s′(y) for all variables y 6∈ X; and
(2) ∀hp, h1. (hp ∗h1 =h ∧ (s, hp) ∈ p) =⇒ (∃h′

q. h
′
q#h1 ∧ h′

q ∗h1 =h′ ∧ (s′, h′
q) ∈ q)

The first equivalence says that the relation great(p, q,X) is safe at (s, h) just when
p holds in (s, hp) for some subheap hp of h. Note that this equivalence implies the
safety monotonicity of great(p, q,X). The second equivalence is about state changes.
The first condition in this equivalence means that great(p, q,X) can modify only
those variables in X, and the second condition that the output (s′, h′) is produced
by a deallocation of a subheap of h in p followed by an allocation of a new heap in q:
great(p, q,X) demonically chooses a subheap hp of the initial heap h that satisfies
p (i.e., (s, hp) ∈ p), and disposes all cells in hp; then, it angelically picks from q a
new heap h′

q (i.e., (s′, h′
q) ∈ q) and allocates h′

q to get the final heap h′.

Lemma 9. The relation great(p, q,X) is in LRel.

Proof: We only show that great(p, q,X) satisfies the frame property. Consider
states (s, h), (s′, h′) and a heap h0 such that great(p, q,X) is safe at state (s, h),
h0#h, and (s, h∗h0)[great(p, q,X)](s′, h′). Since great(p, q,X) is safe at (s, h), there
is a subheap hp ≤ h such that (s, hp) ∈ p. Then, since (s, h∗h0)[great(p, q,X)](s′, h′),
relation great(p, q,X) preserves heap (h−hp) ∗h0, so the final heap h′ is (h−hp) ∗
h0∗h′

q for some h′
q with (s′, h′

q) ∈ q. Now, we claim that (s, h)[great(p, q,X)](s′, (h−
hp) ∗h′

q) holds. Since s and s′ differ only for some variables in X, we will just show
that for all splittings mp ∗m = h of h, if (s,mp) is in p, there is a subheap m′

q of
(h− hp) ∗ h′

q such that

m′
q#m, h′

q ∗ (h− hp) = m′
q ∗m, and (s′,m′

q) ∈ q.

We use (s,mp ∗ m ∗ h0)[great(p, q,X)](s′, h′) to obtain such subheap m′
q of h′.

Because (s,mp ∗m ∗ h0)[great(p, q,X)](s′, h′), there exists a heap m′
q such that

m′
q#(m ∗ h0), h′ = m′

q ∗m ∗ h0, and (s′,m′
q) ∈ q.

Since h′
q ∗ (h− hp) ∗ h0 = h′ = m′

q ∗m ∗ h0, we have h′
q ∗ (h− hp) = m′

q ∗m. Thus,
this m′

q is the required subheap.

Lemma 10 (Greatestness). The greatest relation great(p, q,X) satisfies {p}−{q}
and modifies(−, X), and is the greatest such: for all local relations c, we have

{p}c{q} ∧modifies(c,X) =⇒ c ⊆ great(p, q,X).
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Proof: It is straightforward to see, from the definition, that great(p, q,X) satisfies
both {p}−{q} and modifies(−, X). To see that great(p, q,X) is indeed greatest, let’s
consider a relation c in LRel with {p}c{q} and modifies(c,X). When (s, h)[c]fault
holds, no subheap h0 of h is in p (i.e., (s, h0) 6∈ p): if (s, hp) were in p for some
subheap hp of h, then c is safe at (s, hp) because {p}c{q} holds; thus, c is also
safe at (s, h) by the safety monotonicity, and this gives the required contradiction.
Therefore, if (s, h)[c]fault, then (s, h)[great(p, q,X)]fault. Now, consider states
(s, h), (s′, h′) such that (s, h)[c](s′, h′). We need to show the two conditions for the
state change of great(p, q,X) hold for the states (s, h) and (s′, h′). The condition
for the stack holds: because of modifies(c,X), the stacks s and s′ differ only for
some variables in X. For the condition for the heap, consider a splitting hp ∗h0 = h
of h such that (s, hp) is in p. Since {p}c{q} holds, c is safe at (s, hp). Therefore, the
frame property of c implies that there is a subheap h′

q of h′ such that h′
q ∗ h0 = h′

and (s, hp)[c](s′, h′
q). Now, since {p}c{q} holds and the initial state (s, hp) is in

p, the final state (s′, h′
q) must be in q. Therefore, (s, h) and (s′, h′) satisfy the

condition for the heap change of great(p, q,X).

The greatest environment for a context Γ is the greatest environment satisfying all
the procedure specifications in Γ. It maps a procedure identifier k to great(p, q,X)
when the context Γ has the specification {p}k{q}[X]; otherwise, it maps k to the
greatest relation in LRel, which is States×(States∪{fault}). The greatest environ-
ment for Γ is well-defined because of Lemma 9, and it is the greatest environment
satisfying Γ because of Lemma 10.

We use the greatest environments to interpret a sequent Γ ` {p}C{q} and a
proof rule in a simpler way. In this interpretation, a sequent Γ ` {p}C{q} just
means that {p}([[C]]η){q} holds for the greatest environment η satisfying Γ. The
new interpretation is implied by the old one because it considers just a single
environment satisfying Γ; in fact, it is equivalent to the old interpretation, because
[[C]] maps a greater environment to a greater relation but a greater relation satisfies
fewer triples.

Lemma 11. A sequent Γ ` {p}C{q} holds if and only if the triple {p}([[C]]η){q}
holds for the greatest environment η satisfying Γ.

Proposition 12. For all predicates p, q, p′ and q′, commands C, and contexts
Γ and Γ′, we have the following equivalence: the proof rule

Γ ` {p}C{q}
Γ′ ` {p′}C{q′}

holds if and only if we have

{p}([[C]]η){q} =⇒ {p′}([[C]]η′){q′}

for the greatest environments η and η′ that, respectively, satisfy Γ and Γ′.

11.3 Simulation

Let R : States ↔ States be a binary relation between states. For c, c′ in LRel, we
say that c simulates c′ upto R, denoted c[sim(R)]c′, if and only if the following two
properties hold:
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—Generalized Safety Monotonicity: if c is safe at (s, h), and (s, h)[R](s′, h′), then c′

is safe at (s′, h′).
—Generalized Frame Property: if c is safe at (s, h) and we have that (s, h)[R](s′, h′)

and (s′, h′)[c′](s′1, h
′
1), then there is a state (s1, h1) such that (s, h)[c](s1, h1) and

(s1, h1)[R](s′1, h
′
1).

Intuitively, c[sim(R)]c′ says that for R-related initial states (s, h) and (s′, h′), when
we have enough resources at (s, h) to run c safely, we also have enough resources at
(s′, h′) to run c′ safely; in that case, every computation (s′, h′)(s′1, h

′
1) . . .(s′n, h′

n) . . .
of c′ from (s′, h′) can be simulated by some computation (s, h)(s1, h1) . . . (sn, hn) . . .
of c with (si, hi)[R](s′i, h

′
i).

We can give an alternate characterization of c[sim(R)]c′ using Hoare triples for c
and c′. For each predicate p, let R(p) be the image of p by R, that is, the predicate
{(s′, h′) | ∃(s, h) ∈ p. (s, h)[R](s′, h′)}.

Lemma 13. Local relations c and c′ are related by sim(R) if and only if for all
predicates p, q, we have

{p}c{q} =⇒ {R(p)}c′{R(q)}.

Proof: We show the only-if direction first. Suppose that a triple {p}c{q} holds.
Pick a state (s′, h′) from the predicate R(p). We need to show that the command
c′ is safe at this state (s′, h′), and that if c′ can produce a state (s′1, h

′
1) when run

in (s′, h′) (that is, (s′, h′)[c′](s′1, h
′
1)), this “final” state (s′1, h

′
1) is in R(q). Since

(s′, h′) is in R(p), there is a state (s, h) in p that is related to (s′, h′) by R. Then c
is safe at this state (s, h) because the triple {p}c{q} holds. Now, generalized safety
monotonicity implies that c′ is also safe at (s′, h′). Consider a state (s′1, h

′
1) that is

one of the possible final states of c′ from (s′, h′) (that is, (s′, h′)[c′](s′1, h
′
1)). Then,

the generalized frame property says that there is a state (s1, h1) such that

(s, h)[c](s1, h1) and (s1, h1)[R](s′1, h
′
1).

It suffices to show that (s1, h1) is in q, because, then, the state (s′1, h
′
1) is in R(q).

We note that c satisfies the triple {p}c{q}, and that (s, h) is in the precondition
p of this triple. Thus, (s1, h1), which is one of the possible final states of c from
(s, h), is in q.

For the other direction, consider states (s, h) and (s′, h′) such that c is safe at
(s, h), and the states (s, h) and (s′, h′) are related by R. Then, c satisfies the triple

{{(s, h)}}c{{(s1, h1) | (s, h)[c](s1, h1)}}.

From this triple, we obtain a triple {p′}c′{q′} for c′ by assumption where p′ and q′

are defined as follows:

(s0, h0) ∈ p′
def⇐⇒ (s, h)[R](s0, h0)

(s0, h0) ∈ q′
def⇐⇒ ∃(s1, h1). (s, h)[c](s1, h1) ∧ (s1, h1)[R](s′1, h

′
1).

Since c′ satisfies the triple {p′}c′{q′} and the state (s′, h′) is in the precondition p′

of this triple, c′ is safe at (s′, h′). For the generalized frame property, consider a
“final” state (s′1, h

′
1) of c′ from (s′, h′) (that is, (s′, h′)[c′](s′1, h

′
1)). This final state

(s′1, h
′
1) is in q′ because {p′}c′{q′} holds and (s′, h′) is in p′. Now, the definition
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of the postcondition q′ gives the required state: it says that there exists a state
(s1, h1) such that (s, h)[c](s1, h1) and (s1, h1)[R](s′1, h

′
1).

The simulation relation for environments, also denoted sim(R), is defined point-
wise: two environments η, η′ are related by sim(R) if and only if for all procedure
identifiers k, we have η(k)[sim(R)]η′(k).

We use the simulation for environments to further simplify the meaning of a
proof rule, building on Proposition 12. Let R be a relation between states. We say
that a command C is independent of R if and only if every basic command A in C
simulates itself upto R, and every boolean expression B in C maps R-related states
to the same value:

A[sim(R)]A ∧
(
∀(s, h), (s′, h′). (s, h)[R](s′, h′) =⇒ [[B]]s = [[B]]s′

)
.

Proposition 14. Let Γ and Γ′ be contexts, and let η and η′ be the greatest
environments satisfying Γ and Γ′, respectively. Consider a set P of commands such
that all commands in P are independent of R. Then, the following proof rule holds
for all predicates p, q and all commands C in P

Γ ` {p}C{q}
Γ′ ` {R(p)}C{R(q)}

if we have η[sim(R)]η′. Moreover, the converse holds if P contains the procedure
call k for every procedure identifier k.

We note two special cases of this proposition, which are related to the rule of
modifies weakening and the simple hypothetical frame rule, respectively. The first
case is when the proposition is instantiated with a relation RY for a set Y of
variables. The relation RY relates two states when the states differ only for variables
in Y :

(s, h)[RY ](s′, h′) def⇐⇒ (h = h′ ∧ ∀x ∈ Variables. x 6∈ Y ⇒ s(x) = s′(x)).

Note that the image RY (p) of a predicate p is just p if the set Y is disjoint from p;
and a command C is independent of RY if Y is disjoint from the command C. For
this relation RY , the proposition implies the following: for all contexts Γ and Γ′, if
the greatest environments for Γ and Γ′ are related by sim(RY ), then the proof rule

Γ ` {p}C{q}
Γ′ ` {p}C{q}

holds for all predicates p, q and commands C such that Y is disjoint from p, q, and
C. Note that the rule of modifies weakening is a special case of the above proof
rule.

The second case instantiates the proposition with a relation Rr for a predicate
r. The relation Rr relates states (s, h) and (s′, h′) when we can obtain (s′, h′) from
(s, h) by allocating a new heap in r:

(s, h)[Rr](s′, h′) def⇐⇒ (s = s′ ∧ ∃h1 ∈ Heaps. h1#h ∧ h1 ∗ h = h′ ∧ (s, h1) ∈ r).

For all predicates p, the image Rr(p) of a predicate p is p ∗ r. Thus, for relation
Rr, the proposition says the following: let Γ and Γ′ be contexts, and P a set
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of commands such that all the commands in P are independent of Rr, and all
procedure calls k are in P; then, the proof rule

Γ ` {p}C{q}
Γ′ ` {p ∗ r}C{q ∗ r}

holds for all predicates p and q and commands C in P if and only if the greatest
environments for Γ and Γ′ are related by sim(R). We use this instantiation to
handle the simple hypothetical frame rule.

We prove Proposition 14 using Proposition 12, Lemma 13, and an additional
lemma which says that a command preserves the simulation. Consider a relation
R between states, and contexts Γ and Γ′ for procedure identifiers. Let η and η′ be
the greatest environments for the contexts Γ and Γ′, respectively. We first simplify
the meaning of a proof rule as follows:

∀C ∈ P, p, q.
(
Γ ` {p}C{q} =⇒ Γ′ ` {R(p)}C{R(q)}

)
⇐⇒ ∀C ∈ P, p, q.

(
{p}[[C]]η{q} =⇒ {R(p)}[[C]]η′{R(q)}

)
(∵ Proposition 12)

⇐⇒ ∀C ∈ P. [[C]]η[sim(R)][[C]]η′ (∵ Lemma 13).

When the set P contains k for all procedure identifiers k, this simplified meaning
implies that the environments η and η′ are related by sim(R). So, the only-if
direction of Proposition 14 holds. For the other direction, we use a lemma which
says that C maps sim(R)-related environments to sim(R)-related local relations.

Lemma 15. For all commands C and state relations R, if C is independent of
R, then we have

∀η, η′. η[sim(R)]η′ =⇒ ([[C]]η)[sim(R)]([[C]]η′).

Since all commands in P are independent of R, this lemma says, η[sim(R)]η′ is
enough to ensure [[C]]η[sim(R)][[C]]η′ for all commands C in P. This shows the if
direction of Proposition 14.

Proof: [Lemma 15] We prove the lemma by induction on the structure of C. Con-
sider the case that C is a basic command A. Since C is independent of R, the
relation A is related to itself by sim(R).

For the remaining cases, we consider states (s, h) and (s′, h′) such that they are
related by R, and the relation [[C]]η is safe at (s, h). In each case, we show that

(1) the relation [[C]]η′ is safe at (s′, h′); and
(2) for all states (s′1, h

′
1), if (s′, h′)[[[C]]η′](s′1, h

′
1), then there is a state (s1, h1) such

that

(s, h)[[[C]]η](s1, h1) and (s1, h1)[R](s′1, h
′
1).

Consider the case of C = C1;C2. The safety of [[C1;C2]]η at (s, h) implies that
[[C1]]η is safe at the same state. We show that [[C1;C2]]η′ is safe at (s′, h′) by
contradiction. Suppose that [[C1;C2]]η′ faults when run in (s′, h′). Then, either
[[C1]]η′ is not safe at (s′, h′), or the state (s′, h′) is related to some state (s′1, h

′
1) by

[[C1]]η′ but [[C2]]η′ is not safe at this state (s′1, h
′
1). The first case is impossible: the

induction hypothesis for C1 implies that [[C1]]η′ must be safe at (s′, h′), because
[[C1]]η is safe at (s, h). The second case is not possible, either. The induction
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hypothesis says that there exists a state (s1, h1) satisfying (s, h)[[[C1]]η](s1, h1) and
(s1, h1)[R](s′1, h

′
1). Then, [[C2]]η is safe at (s1, h1), because [[C1;C2]]η is safe at (s, h)

and [[C1]]η can produce (s1, h1) when run in (s, h) (that is, (s, h)[[[C1]]η](s1, h1)).
Now, the induction hypothesis for C2 implies that [[C2]]η′ must be safe at (s′1, h

′
1).

For the second requirement for sim(R), consider states (s′1, h
′
1), (s

′
2, h

′
2) for which

we have

(s′, h′)[[[C1]]η′](s′1, h
′
1) and (s′1, h

′
1)[[[C2]]η′](s′2, h

′
2).

Because of the induction hypothesis for C1, there exists a state (s1, h1) such that
(s, h)[[[C1]]η](s1, h1) and (s1, h1)[R](s′1, h

′
1). Now, the induction hypothesis for C2

says that there exists a state (s2, h2) for which we have (s1, h1)[[[C2]]η](s2, h2) and
(s2, h2)[R](s′2, h

′
2). This state (s2, h2) is the required one for the second requirement

for sim(R).
When C is if B then C1 else C2 or a procedure call k, it is straightforward to

show that the two requirements are satisfied. The case of the conditional statement
directly follows from the induction hypothesis for C1 and C2, because the indepen-
dence of C with R ensures that [[B]]η and [[B]]η′ map R-related states to the same
values. The case of the procedure call follows from η[sim(R)]η′.

For the remaining cases of loop and procedure definition, it suffices to show that
sim(R) is a complete relation.

(1) ⊥[sim(R)]⊥ for the empty local relation ⊥, and
(2) if ci[sim(R)]c′i for all i ∈ I, we have⋃

i∈I

ci[sim(R)]
⋃
i∈I

c′i.

The first is straightforward since ⊥ is safe at all states and it does not relate any
states. For the second, consider two families of commands, {ci}i∈I and {c′i}i∈I ,
such that ci[sim(R)]c′i. When

⋃
i∈I ci is safe at a state (s, h), all ci are safe at

(s, h). For all states (s′, h′), if (s, h) and (s′, h′) are related by R, all c′i are safe
at state (s′, h′) because ci[sim(R)]c′i. Therefore,

⋃
i∈I c′i is also at (s′, h′). To com-

plete the proof, we only need to prove the generalized frame property: for all
states (s, h), (s′, h′), and (s′1, h

′
1), if

⋃
i∈I ci is safe at state (s, h), and we have

(s, h)[R](s′, h′) and (s′, h′)[
⋃

i∈I c′i](s
′
1, h

′
1), then there exists a state (s1, h1) such

that (s, h)[
⋃

i∈I ci](s1, h1) and (s1, h1)[R](s′1, h
′
1). Such a state (s1, h1) can be ob-

tained as follows. Since (s′, h′)[
⋃

i∈I c′i](s
′
1, h

′
1), there is some i in I such that c′i

produces (s′1, h
′
1) when run in (s′, h′) (that is, (s′, h′)[c′i](s

′
1, h

′
1)). Moreover, the

corresponding ci is safe at (s, h), because
⋃

i∈I ci is safe at (s, h). Now, we use
ci[sim(R)]c′i and (s, h)[R](s′, h′), and get a state (s1, h1) such that (s, h)[ci](s1, h1)
and (s1, h1)[R](s′1, h

′
1). This state is the required one because (s, h)[ci](s1, h1) en-

tails (s, h)[
⋃

i∈I ci](s1, h1).

11.4 Soundness of Modifies Weakening

We use a particular simulation relation to prove that

Proposition 16. The rule of modifies weakening is sound.

Suppose that we apply the rule to extend the modifies clauses by a set Y of variables.
To simplify the rule in this case, we instantiate Proposition 14 with a relation
ACM Transactions on Programming Languages and Systems, Vol. V, No. N, November 2008.



Separation and Information Hiding · 35

RY : States ↔ States, contexts

“Γ, {p1}k1{q1}[X1], . . . , {pn}kn{qn}[Xn]”
and “Γ, {p1}k1{q1}[X1, Y ], . . . , {pn}kn{qn}[Xn, Y ]”,

and a set PY of commands. The relation RY relates two states when they differ at
most for variables in Y

(s, h)RY (s1, h1)
def⇐⇒ h = h1 ∧ (∀x ∈ Variables. x 6∈ Y ⇒ s(x) = s1(x)),

and the set PY consists of commands C such that Y is disjoint from C. The set
PY satisfies the side condition of Proposition 14 for the if direction, because PY

contains only those commands from which Y is disjoint, and all such commands are
independent of RY . Proposition 14 implies that the following weakening rule holds
for all commands C in PY , and all predicates p, q such that Y is disjoint from p, q

Γ, {p1}k1{q1}[X1], . . . , {pn}kn{qn}[Xn] ` {p}C{q}
Γ, {p1}k1{q1}[X1, Y ], . . . , {pn}kn{qn}[Xn, Y ] ` {p}C{q}

if for each {p}k{q}[X] in Γ, we have great(p, q,X)[sim(RY )]great(p, q,X), and for all
i, we have great(pi, qi, Xi)[sim(RY )]great(pi, qi, Xi ∪Y ). Here, we write {p}C{q} in
the conclusion instead of {R(p)}C{R(q)}, because if Y is disjoint from a predicate
p′, the image R(p′) is the same as p′. Also, we ignore procedure identifiers that do
not appear in antecedents of the sequents, because the greatest environments map
such procedure identifiers to the greatest local relation States× (States ∪ {fault})
in LRel, and this local relation is related to itself by sim(R) for all R. We show that
this sufficient condition is implied by the side condition of modifies weakening.

Lemma 17. Let Y be a set of variables. For all predicates p, q and sets X of
variables, if Y is disjoint from all of p, q and X, then for all subsets Y0 of Y , we
have

great(p, q,X)[sim(RY )]great(p, q,X ∪ Y0).

Proof: Consider states (s, h) and (s1, h1) such that they are related by RY and
great(p, q,X) is safe at (s, h). We first show that great(p, q,X∪Y0) is safe at (s1, h1).
Since great(p, q,X) is safe at (s, h), heap h has a subheap hp such that (s, hp) is in
p. This subheap hp is also a subheap of h1, because (s, h)[RY ](s1, h1) implies that
h and h1 are the same. Moreover, state (s1, hp) is in p. The reason is that, because
(s, h)[RY ](s1, h1), the stacks s and s1 differ only for some variables in Y , and Y is
disjoint from p. Thus, great(p, q,X ∪ Y0) is safe at (s1, h1).

For the generalized frame property, suppose that great(p, q,X ∪ Y0) produces a
state (s′1, h

′
1) when run in (s1, h1). Let s′ be the stack that is the same as s′1 except

that s′ stores s(y) for each variable y in Y . Then, we have (s′, h′
1)[RY ](s′1, h

′
1).

We will show that (s, h) and (s′, h′
1) are related by great(p, q,X). The definition

of great(p, q,X) requires that s and s′ differ only for some variables in X. This
requirement is satisfied because for every variable y ∈ Y , we have s(y) = s′(y) by
definition; and for every variable z 6∈ X ∪ Y , we have the following:

s(z) = s1(z) (∵ (s, h)[RY ](s1, h1))
= s′1(z) (∵ (s1, h1)[great(p, q,X ∪ Y0)](s′1, h

′
1))

= s′(z).
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For the other requirement of great(p, q,X), consider a splitting mp∗m = h of h such
that (s,mp) is in p. Since Y is disjoint from p, state (s1,mp) is also in p; therefore,
(s1, h1)[great(p, q,X ∪ Y0)](s′1, h

′
1) gives a splitting m′

q ∗ m′ = h′
1 of h′

1 such that
(s′1,m

′
q) ∈ q and m′ = m. Since Y is disjoint from q, state (s′,m′

q) is also in q; thus,
the splitting m′

q ∗m′ = h′
1 is the required one for (s, h)[great(p, q,X)](s′, h′

1).

11.5 Soundness of the Simple Hypothetical Frame Rule

We again use particular simulation relations, this time to prove results about the
simple hypothetical frame rule.

Proposition 18.

(a) The simple hypothetical frame rule is sound for fixed preconditions p1, ..., pn if
and only if p1, ..., pn are all precise.

(b) The simple hypothetical frame rule is sound for a fixed invariant r if and only
if r is precise.

Theorem 8 follows from this proposition, and the soundness of modifies weakening.
The remainder of the section is devoted to proving the proposition.

Consider a predicate r, and a context “Γ, {p1}k1{q1}[X1], . . . , {pn}kn{qn}[Xn]”,
such that all the modifies clauses in Γ are disjoint from r (i.e., for every {p′}k′{q′}[X ′]
in Γ, the set X ′ is disjoint from r). We will use these predicate and context for a
resource invariant and procedure specifications, respectively. To prove the proposi-
tions we instantiate Proposition 14 with the following relation Rr:States ↔ States,
contexts Γ1 and Γ2, and set Pr of commands:

(s, h)[Rr](s1, h1)
def⇐⇒ (s = s1) ∧ (∃hr. h1 = h ∗ hr ∧ (s, hr) ∈ r)

Γ1
def= Γ, {p1}k1{q1}[X1], . . . , {pn}kn{qn}[Xn]

Γ2
def= Γ, {p1 ∗ r}k1{q1 ∗ r}[X1], . . . , {pn ∗ r}kn{qn ∗ r}[Xn]

C ∈ Pr
def⇐⇒ Modifies(C)(Γ) is disjoint from r

Intuitively, Rr relates states (s, h) and (s1, h1) just when (s1, h1) can be obtained
from (s, h) by adding a new heap in r; so, the image Rr(p) of a predicate p is just
p ∗ r.

The set Pr satisfies the side condition of Proposition 14 for the if direction,
because for each command C in Pr, the set Modifies(C)(Γ) is disjoint from r, and
such command C is independent of Rr. To see why independence holds, suppose
that the set Modifies(C)(Γ) of a command C is disjoint from r. Every boolean
expression depends only on the stack, and Rr-related states have the same stack,
so C trivially satisfies the constraint that its boolean expression maps Rr-related
states to the same value. Thus, for the independence of C with Rr, we only need
to show that every basic command A in C is related to itself by sim(Rr). Note that
since Modifies(C)(Γ) is disjoint from r, each basic command A in C changes only
those variables that are disjoint from r. The following lemma says that every such
local relation is related to itself by sim(Rr).

Lemma 19. Let r be a predicate and c a local relation in LRel. If there is a set
X of variables such that modifies(c,X) holds and X is disjoint from r, we have
c[sim(Rr)]c.
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Proof: Consider Rr-related states (s, h) and (s1, h1) such that c is safe at (s, h).
By the definition of (s, h)[Rr](s1, h1), stacks s and s1 are the same and there exists
a subheap hr of h1 such that

hr#h, hr ∗ h = h1, and (s1, hr) ∈ r.

For generalized safety monotonicity, we need to show that c is also safe at (s1, h1);
the local relation c is safe at that state because c satisfies safety monotonicity
and state (s1, h1) is an extension of (s, h) (that is, (s1, h1) = (s, h ∗ hr)). For the
generalized frame property, consider a state (s′1, h

′
1) that can be produced by c when

c is run in (s1, h1) (that is, (s1, h1)[c](s′1, h
′
1)). We must find a state (s′, h′) such that

(s, h)[c](s′, h′) and (s′, h′)[Rr](s′1, h
′
1). Note that we have (s, h ∗ hr)[c](s′1, h

′
1) since

(s1, h1) and (s, h∗hr) are the same. The frame property of c for (s, h∗hr)[c](s′1, h
′
1),

then, gives a heap m′ such that

m′#hr, m′ ∗ hr = h′
1, and (s, h)[c](s′1,m

′).

Moreover, since c only changes variables that are disjoint from r, and (s, hr) is in
r, the state (s′1, hr) is also in r; so, (s′1,m

′)[Rr](s′1, h
′
1) holds. This state (s′1,m

′) is
the required (s′, h′).

The set Pr also satisfies the side condition for the only-if direction of Proposi-
tion 14, because all the modifies clauses in Γ are disjoint from r. The side condition
requires that Pr should contain the call of every procedure k, and it can be proved
by the case analysis on k as follows. If k appear in Γ, by the choice of r and Γ, the
set Modifies(k)(Γ) should be disjoint from r, which gives k ∈ Pr. Otherwise, the
set Modifies(k)(Γ) is empty, so it is disjoint from r. This means that k belongs to
Pr, as required.

Thus, using Proposition 14, we have established the following for Rr, Γ1, Γ2, and
Pr:

Lemma 20. The following rule holds for all predicates p, q and all commands C
in Pr

Γ, {p1}k1{q1}[X1], . . . , {pn}kn{qn}[Xn] ` {p}C{q}
Γ, {p1 ∗ r}k1{q1 ∗ r}[X1], . . . , {pn ∗ r}kn{qn ∗ r}[Xn] ` {p ∗ r}C{q ∗ r}

if and only if, for all i, we have great(pi, qi, Xi)[sim(Rr)]great(pi ∗ r, qi ∗ r, Xi) and
for each {p′}k{q′}[X] in Γ, we have great(p′, q′, X)[sim(Rr)]great(p′, q′, X).

We use the sufficient, and sometimes necessary, condition in the lemma to prove
Propositions 18. The proof also uses the following properties, which will be shown
below.

—If a set X of variables is disjoint from a predicate r, then for all predicates p, q,
great(p, q,X)[sim(Rr)]great(p, q,X) (Proposition 21).

—A predicate p is precise if and only if great(p, q,X)[sim(Rr)]great(p ∗ r, q ∗ r, X)
holds for all predicates q, r and all sets X of variables (Proposition 23(a)).

—A predicate r is precise if and only if great(p, q,X)[sim(Rr)]great(p ∗ r, q ∗ r, X)
holds for all predicates p, q and all sets X of variables (Proposition 23(b)).

Postponing the proofs of these facts for a moment, we complete the main proof.
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Proof: [of Proposition 18]
Proposition 21 establishes the side condition for each {p}k{q}[X] in Γ in Lemma

20, and the only-if direction of Proposition 23(a) establishes that

great(pi, qi, Xi)[sim(Rr)]great(pi ∗ r, qi ∗ r, Xi).

Thus, we may apply the first (sufficient) part of Lemma 20 to show the soundness
(if direction) part of Proposition 18(a). Similarly, we can use Proposition 23(b)
with Lemma 20 to show the if direction of Proposition 18(b).

We still need to show the only-if directions. Suppose that the simple hypothetical
frame rule is sound for a fixed invariant r. We will show that for all predicates p1, q1

and all sets X1 of variables, great(p1, q1, X1)[sim(Rr)]great(p1 ∗ r, q1 ∗ r, X1) holds;
this implies that r is precise by the if direction of Proposition 23(b). Since the
simple hypothetical frame rule is sound for r, the following holds for all predicates
p1, q1, p, q, sets X1 of variables, and commands C such that Modifies(C)({}) is
disjoint from r:

{p1}k1{q1}[X1] ` {p}C{q}
{p1 ∗ r}k1{q1 ∗ r}[X1] ` {p ∗ r}C{q ∗ r}

Here we take the empty context for Γ in the hypothetical rule. Thus, the side con-
dition for the only-if direction of Proposition 14 holds for Pr. Now, Proposition 14
gives the required

∀p1, q1, X1. great(p1, q1, X1)[sim(Rr)]great(p1 ∗ r, q1 ∗ r, X1).

This establishes the only-if direction of Proposition 18(b).
The other case for fixed preconditions is proved similarly. Suppose that the simple

hypothetical frame rule is sound for the fixed preconditions p1, . . . , pn. Then, the
following instance of the rule holds for all predicates p, q, r, q1, . . . , qn, commands C
and sets X1, . . . , Xn of variables if Modifies(C)({}) is disjoint from r:

{p1}k1{q1}[X1] . . . {pn}kn{qn}[Xn] ` {p}C{q}
{p1 ∗ r}k1{q1 ∗ r}[X1] . . . {pn ∗ r}kn{qn ∗ r}[Xn] ` {p ∗ r}C{q ∗ r}

Since Pr satisfies the side condition of Proposition 14 for the only-if direction, the
proposition says that each precondition pi satisfies

∀q, r, X. great(pi, q,X)[sim(Rr)]great(pi ∗ r, q, X).

This property of each pi implies that pi is precise by Proposition 23(a). This
establishes the only-if direction of Proposition 18(a).

All that remains is to show the propositions whose proofs we postponed.

Proposition 21. For all predicates p, q and sets X of variables, if X is disjoint
from r, we have

great(p, q,X)[sim(Rr)]great(p, q,X).

Proof: This proposition follows from Lemma 19 because the relation great(p, q,X)
satisfies modifies(great(p, q,X), X).

We prove the remaining propositions using the following observations: general-
ized safety monotonicity for great(p, q,X)[sim(Rr)]great(p∗r, q ∗r, X) always holds,
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irrespective of whether p or r is precise, and both great(p, q,X) and great(p ∗ r, q ∗
r, X) modify only those variables in X.

The following lemma will be used in the proof.

Lemma 22. We have great(p, q,X)[sim(Rr)]great(p∗ r, q ∗ r, X) if and only if for
all states (s, h) and (s′1, h

′
1), if

1. great(p, q,X) is safe at (s, h), and
2. there is a heap hr such that (s, hr) ∈ r and (s, h∗hr)[great(p∗r, q∗r, X)](s′1, h

′
1),

then heap h′
1 can be split into two heaps h′ and h′

r (i.e., h′
1 = h′ ∗ h′

r) such that

3. (s′1, h
′
r) is in r, and

4. whenever h is split into m and mp satisfying (s,mp) ∈ p, heap h′ can also be
split into the heap m and some m′

q satisfying (s′1,m
′
q) ∈ q.

Proof: We focus on the if direction because the other direction follows straightfor-
wardly from the definitions of sim(Rr) and great(p, q,X). Suppose that

(a) great(p, q,X) is safe at a state (s, h), and
(b) the state (s, h) is related to (s1, h1) by Rr.

Then

(c) s and s1 are the same, and h1 has a subheap hr such that h ∗ hr = h1 and
(s, hr) ∈ r.

For generalized safety monotonicity, it suffices to show that great(p ∗ r, q ∗ r, X) is
safe at (s, h ∗ hr); equivalently, (s, h ∗ hr) is in p ∗ r ∗ true. This holds because
great(p, q,X) is safe at (s, h) and so, the state (s, h) is in p ∗ true.

For the generalized frame property, consider a state (s′1, h
′
1) such that

(d) (s1, h1)[great(p ∗ r, q ∗ r, X)](s′1, h
′
1).

We need to find a state (s′, h′) that satisfies

(s, h)[great(p, q,X)](s′, h′) and (s′, h′)[Rr](s′1, h
′
1).

The condition 1 in the if clause of the lemma holds for (s, h) by the assumption
(a) above. The condition 2 holds for (s, h) and (s′1, h

′
1) by the property (c) and

assumption (d). Thus, the if clause of the lemma gives a splitting h′ ∗h′
r = h′

1 of h′
1

satisfying the two properties 3 and 4 in the statement of the lemma. We show that
(s′1, h

′) is the required state. Since (s′1, h
′
r) is in r, state (s′1, h

′) is related to (s′1, h
′
1)

by Rr. For (s, h)[great(p, q,X)](s′1, h
′), the requirement (2) from the definition of

great holds because it is precisely the property 4 of the splitting h′ ∗ h′
r from the

statement of the lemma; and the remaining requirement (1) from the definition
of great holds since s and s′1 can differ only for variables in X, because we know
(s, h ∗ hr)[great(p ∗ r, q ∗ r, X)](s′1, h

′
1) from (d) and (c).

Proposition 23.

(a) A predicate p is precise if and only if great(p, q,X)[sim(Rr)]great(p ∗ r, q ∗ r, X)
holds for for all predicates r and q, and sets X of variables.
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(b) A predicate r is precise if and only if great(p, q,X)[sim(Rr)]great(p ∗ r, q ∗ r, X)
holds for all predicates p, q and sets X of variables.

Proof: We first prove the only-if directions of (a) and (b) using Lemma 22; assum-
ing p or r precise, we show that great(p, q,X)[sim(Rr)]great(p ∗ r, q ∗ r, X) holds

Suppose that properties 1 and 2 from the statement of Lemma 22 hold. We must
find a splitting of h′

1 into h′ and h′
r making properties 3 and 4 hold.

Since great(p, q,X) is safe at (s, h), state (s, h) is in p ∗ true. Thus, heap h can
be partitioned into hp, h0 (i.e., h = hp ∗ h0) such that (s, hp) ∈ p. Since (s, h ∗ hr)
is related to (s′1, h

′
1) by great(p ∗ r, q ∗ r, X), heap h′

1 can be split into the heap h0

and heaps h′
q, h

′
r (i.e., h′

1 = h0 ∗ h′
q ∗ h′

r) such that state (s′1, h
′
q) is in q and state

(s′1, h
′
r) is in r. The heaps h′

q ∗h0 and h′
r form the sought partitioning of h′

1 (taking
h′ to be h′

q ∗ h0). Property 3 is immediate. For property 4, we have two subcases.

(a) Assume p precise. We know that hp ∗ h0 = h is a splitting of h such that
(s, hp) ∈ p is true, thus satisfying the antecedent of 4 (taking m = h0, mp = hp).
Furthermore, since p is precise this can be the only splitting satisfying the
antecedent, so to satisfy property 4 it suffices to show it’s consequent for this
particular splitting. The consequent asks for a splitting m ∗m′

q = h′ for some
m′

q where (s′1,m
′
q) ∈ q. Our candidate m′

q is the heap h′
q which we obtained

above, and m has been chosen as h0. We know that state (s′1, h
′
q) is in q, and

we defined h′ to be h0 ∗h′
q, so we obtain the desired consequent just requested.

This establishes property 4, and we finished the proof of the only if part of (a).
(b) Assume r precise. Consider a splitting mp ∗m = h of h such that (s,mp) ∈ p.

For property 4 we need to split h′
q ∗ h0 into the heap m and some m′

q that
satisfies (s′1,m

′
q) ∈ q. Note that mp∗hr and m form a splitting of h∗hr, and that

(s,mp∗hr) is in p∗r. Therefore, we can use (s, h∗hr)[great(p∗r, q∗r, X)](s′1, h
′
1)

to split h′
1 into the heap m and two heaps m′

q,m
′
r (i.e., h′

1 = m′
q ∗m′

r ∗m) such
that (s′1,m

′
q) is in q and (s′1,m

′
r) is in r. Since r is precise, and h′

r and m′
r are

both subheaps of h′
1, and we know that (s′1, h

′
1) ∈ r, it follows that m′

r must
be equal to h′

r; this and the identities h′
1 = m′

q ∗m′
r ∗m and h′

1 = h0 ∗ h′
q ∗ h′

r

then imply that m′
q ∗ m = h′

q ∗ h0. These heaps m′
q and m thus give us the

splitting of h′
q ∗ h0 that we were after. This completes the proof of the only if

part of (b).

We show the if part of (a) by contradiction. Suppose that p is not precise. Then,
there are states (s, h1) and (s, h2) in p whose heaps are different but consistent: for
all l in dom(h1) ∩ dom(h2), the r-values h1(l) and h2(l) are the same. Let s, h1, h2

be such stack and heaps such that the cardinality of dom(h1 ∪ h2) is the least. Let
h be h1 ∩ h2, and let h′

i be hi − h for i = 1, 2. Let q be the predicate {(s, [])}, and
let r be the predicate defined by

r = {(s, h′
1 ∗ h ∗ h′

2), (s, [])} ∪ {(s,m) | ∃m0.m ∗m0 = h′
1 ∗ h ∗ h′

2 ∧ (s,m) ∈ p}.

We show that

(1) (s, h′
1 ∗ h ∗ h′

2) [great(p ∗ r, q ∗ r, X)] (s, h′
1 ∗ h ∗ h′

2) holds; but
(2) heap h′

1 ∗ h ∗ h′
2 can not be partitioned into two heaps m′ and m′

r such that
(s,m′

r) is in r and (s, h′
1 ∗ h ∗ h′

2)[great(p, q,X)](s,m′) holds.
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Then, since (s, []) is in r and great(p, q,X) is safe at (s, h′
1 ∗ h ∗ h′

2), these two facts
contradict the assumption that great(p, q,X)[sim(Rr)]great(p ∗ r, q ∗ r, X). For the
first fact, consider a splitting of h′

1 ∗ h ∗ h′
2 into heaps mp,mr,m such that state

(s,mp) is in p and state (s,mr) is in r.

—When mr is the empty heap [], we split h′
1 ∗h ∗h′

2 to the empty heap [], the heap
mp and the heap m. This ([] ∗ mp) ∗ m is the required splitting for (s, h′

1 ∗ h ∗
h′

2)[great(p ∗ r, q ∗ r, X)](s, h′
1 ∗ h ∗ h′

2). It is because (s, []) is in q and (s,mp) is
in r by the definition of r.

—When mr is h′
1 ∗ h ∗ h′

2, both mp and m are empty. The required partitioning of
h′

1 ∗h ∗h′
2 is ([] ∗ (h′

1 ∗h ∗h′
2)) ∗ [], because (s, []) is in q and (s, h′

1 ∗h ∗h′
2) is in r.

—When mr is a subheap of h′
1 ∗h∗h′

2 satisfying p (that is, (s,mr) ∈ p), either heap
mp is (h′

1 ∗ h ∗ h′
2)−mr, or both mp and mr are empty. The reason is that if mp

is a strict subheap of (h′
1 ∗h∗h′

2)−mr, then the cardinality of mp∪mr is strictly
smaller than that of h1∪h2; because both (s,mp) and (s,mr) are in p, the heaps
mp and mr must be equal, which, under mr#mp, implies mp = mr = []. When
mp is (h′

1 ∗h∗h′
2)−mr, the required splitting of h′

1 ∗h∗h′
2 is ([]∗ (h′

1 ∗h∗h′
2))∗ [],

because (s, []) is in q and (s, h′
1 ∗h ∗h′

2) is in r. In the other case, where both mp

and mr are empty, the splitting ([] ∗ []) ∗ (h′
1 ∗ h ∗ h′

2) of h′
1 ∗ h ∗ h′

2 becomes the
required one, because (s, []) ∈ q and (s, []) ∈ r.

For the second fact, note that great(p, q,X) can not relate (s, h′
1 ∗ h ∗ h′

2) to any
states, because two different sub-states (s, h1) and (s, h2) of (s, h′

1 ∗ h ∗ h′
2) are in

p, but q is the singleton set. This completes the proof of the if part of (a).
We prove the if direction of (b) by contradiction. Suppose that r is not precise.

Then, r has states (s, h1) and (s, h2) such that h1 and h2 are different but consistent:
for all l in dom(h1) ∩ dom(h2), we have h1(l) = h2(l). We pick such s, h1, h2

in such a way that the cardinality of dom(h1 ∪ h2) is the least. Let h be the
restriction of h1 to dom(h1) ∩ dom(h2), and let h′

1 and h′
2 be h1 − h and h2 − h,

respectively. Since h1 is different from h2, at least one of h′
1 and h′

2 must be
nonempty. Without loss of generality, we assume that h′

1 is not empty. Define
predicate p to be the set {(s, h′

1), (s, [])}, and predicate q the set {(s, h′
2), (s, [])}.

We claim that great(p, q,X)[sim(Rr)]great(p ∗ r, q ∗ r, X) does not hold. To prove
this claim, we show that

(1) (s, h′
1 ∗ h ∗ h′

2) [great(p ∗ r, q ∗ r, X)] (s, h′
1 ∗ h ∗ h′

2) holds; but

(2) there are no splittings of h′
1 ∗ h ∗ h′

2 into heaps m,mr such that (s,mr) is in r
and (s, h′

1)[great(p, q,X)](s,m) holds.

Note that the claim follows from these two, because (s, h∗h′
2) is in r and great(p, q,X)

is safe at (s, h′
1). That is, if we establish 1 and 2, we will have contradicted the

generalized frame property.
For 1, from the definition of great it suffices to show that

3. for every partitioning of h′
1 ∗ h ∗ h′

2 into three parts mp, mr, and m, if (s,mp)
is in p and (s,mr) is in r, heap h′

1 ∗ h ∗ h′
2 can be split into the heap m and

some heaps m′
q and m′

r such that (s,m′
q) is in q and (s,m′

r) is in r.
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Let mp ∗mr ∗m be a partitioning of h′
1 ∗h ∗h′

2 such that (s,mp) is in p and (s,mr)
is in r. Because of the definition of p, heap mp is either h′

1 or []. We consider these
two cases separately:

—When mp is h′
1, heap mr must be equal to h ∗ h′

2 because r can not contain a
state whose stack is s and whose heap is a strictly smaller subheap of h′

2: since
h′

1 is not empty, if r did have such a state, the s, h1, h2 could not be the least in
terms of the cardinality of dom(h1 ∪ h2). So, m is the empty heap []. We split
h′

1 ∗ h ∗ h′
2 three ways, into h′

2, h′
1 ∗ h, and the empty heap []. Since h′

1 ∗ h is h1,
state (s, h′

1 ∗ h) is in r so that (s, h′
2 ∗ (h′

1 ∗ h)) is in q ∗ r. Therefore, the splitting
(h′

2 ∗ h′
1 ∗ h) ∗ [] = h′

1 ∗ h ∗ h′
2 is the required one for property 3 above.

—When mp is the empty heap, we partition h′
1 ∗ h ∗ h′

2 to [], mr and m. The
splitting ([] ∗ mr) ∗ m of h′

1 ∗ h ∗ h′
2 is the required one for property 3 because

(s, []) is in q and (s,mr) is in r.

For 2 suppose, toward contradiction, that there is a splitting m∗mr = h′
1 ∗h∗h′

2

of h′
1 ∗ h ∗ h′

2 making both (s,mr) ∈ r and (s, h′
1)[great(p, q,X)](s,m) true. Since

(s, []) is in p and (s, h′
1)[great(p, q,X)](s,m) holds, heap h′

1 must be a subheap of
m. Moreover, since (s, h′

1) is in p and (s, h′
1)[great(p, q,X)](s,m) holds, state (s,m)

must be in q. Therefore, q must have a state whose heap has h′
1 as a subheap. But,

q does not have such a state: h′
1 is not a subheap of [] or h′

2. Thus, we have the
required contradiction.

12. SUPPORTED AND INTUITIONISTIC PREDICATES

We consider two further special classes of predicates, which can be used to furnish
further sufficient conditions for the soundness of the hypothetical frame rule. A
supported predicate is one where, for any given heap, if the collection of subheaps
satisfying the predicate is not empty, it has a least element. An intuitionistic
predicate is one whose truth is invariant under heap enlargement. These kinds of
predicate are of interest in situations, such as in a garbage collected language, where
one would like to write loose specifications which state that a certain data structure
is present in memory, without worrying about whether there are additional cells.

Definition 24. [Supported and Intuitionistic Predicates]
A predicate p is supported if and only if for all states (s, h), when h has a subheap
h′ satisfying (s, h′) ∈ p, there is a least subheap hp of h with (s, hp) ∈ p: for all
subheaps h′ of h, if (s, h′) satisfies p, we have hp ≤ h′. A predicate p is intuitionistic
if and only if for every state (s, h), if (s, h) ∈ p and h ≤ h′ then also (s, h′) ∈ p.

Supported predicates do not ensure unique heap splittings in the way that precise
ones do. However, if p is precise and q intuitionistic then we can choose a canonical
splitting: make the heap for p be the least possible one, and enlarge the heap for q
as much as necessary.

The reader will have noticed intuitive similarity between the concepts of precise
and supported predicates. For each precise predicate p, the predicate p ∗ true is
intuitionistic and supported. In fact, there is a converse map from intuitionistic
supported predicates to precise predicates.

Lemma 25. If a predicate p is precise, the predicate p ∗ true is intuitionistic
and supported, and if a predicate q is intuitionistic and supported, the predicate
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q ∧ ¬(q ∗ ¬emp) is precise. Moreover, we have(
(p ∗ true) ∧ ¬((p ∗ true) ∗ ¬emp)

)
= p

for all precise predicates p, and

(q ∧ ¬(q ∗ ¬emp)) ∗ true = q

for all intuitionistic supported predicates q.

Proof: For each predicate p, we have the following equivalences:

(s, h) ∈ p ∗ true ⇐⇒ ∃h′ ≤ h. (s, h′) ∈ p
(s, h) ∈

(
p ∧ ¬(p ∗ ¬emp)

)
⇐⇒ (s, h) ∈ p and ∀h′ < h. (s, h′) 6∈ p

With these equivalences, it is straightforward to show that if p is precise, the pred-
icate p ∗ true is intuitionistic and supported. Next, we will show that for every
intuitionistic supported predicate p, the predicate p ∧ ¬(p ∗ ¬emp) is precise. Con-
sider a state (s, h) such that h has a subheap h′ such that (s, h′) ∈ p∧¬(p ∗ ¬emp).
Because of the above equivalence for p ∧ ¬(p ∗ ¬emp), state (s, h′) is in p, but for
all strict subheaps h′′ of h′, we have (s, h′′) 6∈ p. Since p is supported, h′ is the
unique subheap of h such that (s, h′) ∈ p and h′ is the least such. This shows that
p ∧ ¬(p ∗ ¬emp) is precise.

It remains to show that

—if p is intuitionistic and supported, we have (p ∧ ¬(p ∗ ¬emp)) ∗ true = p; and
—if p is precise, we have ((p ∗ true) ∧ ¬((p ∗ true) ∗ ¬emp)) = p.

We show the first implication as follows:

(s, h) ∈
(
(p ∧ ¬(p ∗ ¬emp)) ∗ true

)
⇐⇒ ∃h′ ≤ h. (s, h′) ∈

(
p ∧ ¬(p ∗ ¬emp)

)
⇐⇒ ∃h′ ≤ h.

(
(s, h′) ∈ p and

(
∀h′′ < h′. (s, h′′) 6∈ p

))
⇐⇒ (s, h) ∈ p (∵ p is intuitionistic and supported).

The second implication holds because of the following:

(s, h) ∈
(
p ∗ true ∧ ¬((p ∗ true) ∗ ¬emp)

)
⇐⇒

(
(s, h) ∈ p ∗ true and ∀h′ < h. (s, h′) 6∈ p ∗ true

)
⇐⇒ (s, h) ∈ p (∵ p is precise).

Theorem 26. The hypothetical frame rule is sound in the following cases:

(a) the preconditions p1, . . . , pn are supported, and the postconditions q1, . . . , qn are
intuitionistic; or

(b) the resource invariant r is supported, and the postconditions q1, . . . , qn are in-
tuitionistic.

Notice that the first point does not contradict the only if part of Theorem 8(a),
because it mentions postconditions in addition to preconditions. Likewise, the
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second point does not contradict Theorem 8(b), because it mentions postconditions
as well as the resource invariant.

The proof of this theorem makes use of the decomposition into modifies weaken-
ing and the simple hypothetical frame rule, and goes as in Section 11.5, with the
following key proposition.

Proposition 27.

(a) If a predicate p is supported and a predicate q is intuitionistic, then

great(p, q,X)[sim(Rr)]great(p ∗ r, q ∗ r, X)

holds for all predicates r and sets X of variables.
(b) If a predicate r is supported and a predicate q is intuitionistic, then

great(p, q,X)[sim(Rr)]great(p ∗ r, q ∗ r, X)

holds for for all predicates p and sets X of variables.

Proof: We prove (a) using Lemma 22. Consider states (s, h), (s′1, h
′
1) and a heap

hr such that great(p, q,X) is safe at (s, h), state (s, hr) is in r, and (s, h ∗ hr) and
(s′1, h

′
1) are related by great(p ∗ r, q ∗ r, X). Since great(p, q,X) is safe at (s, h) and

p is supported, heap h can be split into hp and h0 such that hp is the least subheap
of h that makes (s, hp) ∈ p hold. Since (s, h ∗ hr)[great(p ∗ r, q ∗ r, X)](s′1, h

′
1) and

(hp ∗hr) ∗h0 = h ∗hr, we can partition h′
1 into the heap h0 and some heaps h′

q and
h′

r such that (s′, h′
q) ∈ q and (s′, h′

r) ∈ r. We claim that h′
q ∗ h0 and h′

r form the
required partitioning of h′

1 by Lemma 22. Since (s′, h′
r) is in r, it suffices to show

that for all splittings mp ∗ m = h of h, if the state (s,mp) is in p, heap (h′
q ∗ h0)

can be split into the heap m and some heap m′
q (i.e., m ∗m′

q = h′
q ∗ h0) such that

(s′,m′
q) is in q. Consider a splitting mp ∗ m = h of h such that the state (s,mp)

is in p. Heap mp must have hp as a subheap, because hp is the least heap such
that (s, hp) ∈ p. So, m must be a subheap of h0. We split the heap h′

q ∗ h0 into
h′

q ∗ (h0 −m) and m. The state (s′, h′
q ∗ (h0 −m)) is in q because q is intuitionistic

and (s′, h′
q) is already in q. Thus, this partitioning (h′

q ∗(h0−m))∗m is the required
one, and we have finished the proof of (a).

We also prove (b) using Lemma 22. Consider states (s, h), (s′1, h
′
1) and a heap

hr such that great(p, q,X) is safe at (s, h), state (s, hr) is in r, and (s, h ∗ hr) and
(s′1, h

′
1) are related by great(p ∗ r, q ∗ r, X). Since great(p, q,X) is safe at (s, h),

heap h can be split into hp, h0 (i.e., h0 ∗ hp = h) such that (s, hp) ∈ p. Since
(s, h ∗hr)[great(p ∗ r, q ∗ r, X)](s′1, h

′
1) and hp ∗hr ∗h0 = h ∗hr, we can partition the

heap h′
1 into the heap h0 and some heaps h′

q, h
′
r (i.e., h′

q ∗ h′
r ∗ h′

0 = h′
1) such that

(s′, h′
q) is in q and (s′, h′

r) is in r. In particular, we can partition h′
1 in such a way

that h′
r is the least subheap of h′

1 such that (s′, h′
r) ∈ r, because the invariant r is

supported and the postcondition q is intuitionistic. The splitting (h′
q ∗ h0) ∗ h′

r of
h′

1 is the required one by Lemma 22. To see the reason, suppose that h is split into
mp and m such that (s,mp) ∈ p. Since (s, h ∗ hr)[great(p ∗ r, q ∗ r, X)](s′1, h

′
1), we

can split h′
1 into the heap m and some heaps m′

q,m
′
r such that (s′,m′

q) is in q and
(s′,m′

r) is in r. Heap m′
r has h′

r as a subheap because h′
r is the least subheap of

h′
1 satisfying (s′, h′

r) ∈ r. Now, we can partition heap (h′
q ∗ h0) into m′

q ∗ (m′
r − h′

r)
and m, where m′

r −h′
r is the restriction of m′

r to those cells in dom(m′
r)−dom(h′

r).
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Since q is intuitionistic and (s′,m′
q) is in q, state (s′,m′

q ∗ (m′
r − h′

r)) is also in q.
This gives the conclusion.

13. CONCLUSION

This paper has two main contributions. First, we described a new inference rule,
the hypothetical frame rule, which gives a powerful way of hiding resources when
reasoning about heap-manipulating programs. Second, we provided a theoretical
analysis of when the new rule is sound.

The theoretical work was nontrivial, and to ease it we focussed attention on a
simplified programming language with parameterless procedures only. The exten-
sion to first-order procedures is probably not difficult: we could follow the ideas
of [Hoare 1971; Cook 1978] in the treatment of procedures in Hoare logic, which
utilizes certain anti-aliasing conditions. The extension to higher-order procedures
is another matter. Proof rules for higher-order procedures are generally difficult,
quite apart from issues of information hiding.

Perhaps the most significant previous work that addresses information hiding in
program logics, and that confronts mutable data structures, is that of [Leino and
Nelson 2002]. They use auxiliary variables (like our use of the variable Q in Table
IV) to specify modules, and they develop a subtle notion of “modular soundness”
that identifies situations when clients cannot access the internal representation of
a module. This much is similar in spirit to what we are attempting, but on the
technical level we are not sure if there is any relationship between the separating
conjunction and their notion of modular soundness.

The information-hiding problems caused by pointers have been a concern for a
number of years in the object-oriented types community, beginning with Hogg’s col-
orful declaration “that objects provide encapsulation is the big lie of object-oriented
programming” [Hogg 1991]. A focal point of that work has been a concept of “con-
finement”, which disallows or controls pointers into data representations. Some
confinement systems use techniques similar to regions, with control over the num-
ber and direction of pointers across region boundaries [Clarke et al. 2001; Grothoff
et al. 2001].

In this paper an emphasis was placed on ownership transfer, which allows the
dynamic reconfiguration of resource partitions between program components. This
phenomenon is not uncommon in systems and object-oriented programs; good ex-
amples are given by malloc() and free(), and by thread pool managers used in
(e.g.) web servers. The type systems for confinement have difficulty dealing with
such idioms.

At the time of publication of the preliminary version of this paper in the POPL’04
proceedings there was relatively little related work on program logic and information
hiding (and abstraction) in the presence of the heap. In addition to [Leino and
Nelson 2002] we mention also [Müller and Poetzsch-Heffter 2000]. But since then
there have been many further developments. We briefly mention some of them to
conclude the paper.

[Birkedal et al. 2005] have described an extension of the work here to call-by-
name higher-order procedures, for a language that mixes procedures and state in the
manner of idealized Algol. They have described higher-order frame rules, where the
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hypothetical rule here is second-order. The higher-order frame rules are formulated
for call-by-name procedures, which combine state and functions in the way that
Idealized Algol and Haskell do, rather than the way that ML does.

Incidentally, the work in [Birkedal et al. 2005] uses a form of semantics that vali-
dates the hypothetical frame rule without a restriction on precision, while denying
the conjunction rule. This represents a different reaction to the conundrum of
Section 6 than the one taken in this paper, and the consistency of which further
underlines the subtleties surrounding the rules. The semantics is a kind of possible-
worlds model, where the worlds are resource invariants. While it is perhaps not easy
to justify the invalidity of the conjunction law of intuitive grounds, this possible-
worlds construction has proven to be very useful in situations where the existence
of a model is difficult to come by; see [Birkedal and Yang 2007; Nanevski et al.
2006; Benton 2006; Peterson et al. 2008] for further applications of that semantics.

An approach to reasoning about objects using separation logic has been devel-
oped in [Parkinson and Bierman 2005; Parkinson 2005]. Instead of hiding resource
invariants, as here, there the approach is to let the client use abstract predicates
(i.e., predicate variables) when reasoning about the use of an object, without know-
ing the definition of the predicate. In a sense, this transports the fundamental ideas
on polymorphism and data abstraciton [Reynolds 1983; Mitchell and Plotkin 1988]
from types for functional languages to logic for imperative programs.

Parkinson suggests that the hypothetical frame rule and abstract predicates are
complementary: the former addresses information hiding, and the latter addresses
abstraction. For some programs (e.g., with malloc/free) the specifications using
the hypothetical frame rule are more succinct than with abstract predicates alone.
On the other hand, the abstract predicates are very powerful. They support multi-
instance classes easily, examples where the class invariant is not the natural concept
to use in a specification, and cases where we want to distinguish different internal
states of objects without telling the entire invariant. The many examples in [Parkin-
son and Bierman 2005; Parkinson 2005; 2007] confirm the power and naturality of
abstract predicates. See also the examples and theory developed in [Biering et al.
2007; Krishnaswami et al. 2007].

A significant recent line of work on reasoning about objects, the Boogie method-
ology, takes some inspiration from type systems for objects, particularly ownership
typing schemes, but uses assertions rather than types to describe an ownership
hierarchy [Barnett et al. 2004]. As a consequence it is considerably more flexi-
ble than the typing systems; for example, it deals with ownership transfer by, like
here, allowing for dynamically changing partitions [Banerjee and Naumann 2005].
While more flexible than the type systems, it is not always the case that a data
abstraction fits naturally into a hierarchy. An example is a queue, where neither
the left nor the right end of the queue conceptually dominates the other in a hi-
erarchy. As a result, a number of extensions or alterations of Boogie have been
developed which aim to deal with the inflexibility of the hierarchy structures (e.g.,
NaumannBarnett04b, NaumannBarnett04,LeinoMuller04). We refer to the survery
article [Naumann 2007] for further information and references concerning work on
Boogie and other work on specifying object-oriented programs.

A distinguishing feature of the work on Boogie is that they deal with the possi-
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bility of re-entrant (recursive) modules where an invariant is temporarily broken.
Here, if we combine the hypothetical frame rule with the standard rule for recursive
procedures, we obtain a proof rule for modules where the resource invariant must
be true before each call of a module procedure. It has been claimed that there are
natural programming patterns where one wants the invariants to be broken, and
ingenious solutions have been devised in the work on Boogie, where auxiliary vari-
ables are used to tell a client when an invariant need and need not hold, without
telling the client what the invariant is. This issue is too subtle for a full discussion
here, and we refer to the survey paper of Naumann referenced above for a detailed
account. We also refer to [Parkinson 2007] for an interesting turnabout, where it is
(convincingly) argued that the problem lies with the class invariant concept itself,
that technical complexities to do with invariants and re-entrance are a symptom of
a mistaken assumption (that we should start with class invariants), rather than a
fundamental problem to be solved.

We emphasize that the hypothetical frame rule does not take any stance on
this “object invariants” problem. It could conceivably be used in concert with
Parkinson’s solution, and there is nothing in the rule which says that an invariant
has to refer to a single object.

Finally, we have stayed in a sequential setup in this paper, but the ideas are
relevant to concurrent programming. Indeed, the paper arose originally as a result
of a problem in concurrency. In unpublished notes from August 2001, O’Hearn
described proof rules for concurrency using ∗ to express heap separation, and showed
program proofs where storage moved from one process to another. The proof rules
were not published, because O’Hearn was unable to establish their soundness. Then,
in August 2002, Reynolds showed that the rules were unsound if used without
restriction, and this lead to our focus on precise assertions. Both the promise
and subtlety of the proof rules had as much to do with information hiding as
concurrency, and it seemed unwise to attempt to tackle both at the same time. At
the time of Reynolds’s discovery we had already begun work on the hypothetical
frame rule, and the counterexample appears here as the conundrum in Section 6.

The work reported in this paper provided the first resolution of Reynolds’s conun-
drum, with the semantic analysis revolving around the concept of precise predicate.
Precision was then subsequently used as part of the resolution of the original issues
in the concurrent setting [Brookes 2007], which finally allowed the publication of
the proof rules that had been circulated in 2001 [O’Hearn 2007].
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