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Abstract. Modern concurrent algorithms are usually encapsulated in libraries,
and complex algorithms are often constructed using libraries of simpler ones. We
present the first theorem that allows harnessing this structure to give composi-
tional liveness proofs to concurrent algorithms and their clients. We show that,
while proving a liveness property of a client using a concurrent library, we can
soundly replace the library by another one related to the original library by a gen-
eralisation of a well-known notion of linearizability. We apply this result to show
formally that lock-freedom, an often-used liveness property of non-blocking al-
gorithms, is compositional for linearizable libraries, and provide an example il-
lustrating our proof technique.

1 Introduction

Concurrent systems are usually expected to satisfy liveness properties [1], which, infor-
mally, guarantee that certain good events eventually happen. Reasoning about liveness
in modern concurrent programs is difficult. Fortunately, the task can be simplified using
reasoning methods that are able to exploit program structure. For example, concurrent
algorithms are usually encapsulated in libraries and complex algorithms are often con-
structed using libraries of simpler ones. Thus, in reasoning about liveness of client code
of a concurrent library, we would like to abstract from the details of a particular library
implementation. This requires a notion of library abstraction that is able to specify the
relevant liveness properties of the library.

Sound abstractions of concurrent libraries are commonly formalised by the notion
of linearizability [10], which fixes a certain correspondence between the library and its
abstract specification (the latter usually sequential, with its methods implemented atom-
ically). However, linearizability is not suitable for liveness. It takes into account finite
computations only and does not restrict the termination behaviour of library methods
when relating them to methods of an abstract specification. As a result, the linearizing
specification loses most of the liveness properties of the library. For example, no lin-
earizing specifications can specify that library methods always terminate or a method
meant to acquire a resource may not always return a value signifying that the resource
is busy. In this paper we propose a generalisation of linearizability that lifts the above
limitations and allows specifying such properties (§3).

Building on our generalized notion of linearizability, we present a theorem that
allows giving liveness proofs to concurrent algorithms that are compositional in their
structure (Theorem 4, §4). Namely, we show that, while proving a liveness property of
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a client of a concurrent library, we can soundly replace the library by a simpler one
related to the original library by our generalisation of linearizability. To our knowledge,
this is the first result, both for safety and liveness, that allows exploiting linearizability
in verifying concurrent programs. In particular, it enables liveness-preserving atomicity
abstraction. When proving a liveness property of a client using a concurrent library, we
can replace the library by its atomic abstract specification, and prove the liveness of the
client with respect to this specification instead.

We further show that we can use existing tools for proving classical linearizabil-
ity (e.g., [15, 2]) to establish our generalisation. To this end, we identify a class of
linearization-closed properties that, when satisfied by a library, are also satisfied by any
other library linearizing it. This allows us to perform atomicity abstraction in two stages.
We first use existing tools to establish the linearizability of a library to a coarse specifi-
cation, sufficient only for proving safety properties of a client. We can then strengthen
the specification for free with any linearization-closed liveness properties proved of the
library implementation (Corollary 7, §5).

Finally, we demonstrate how our results can be used to give compositional proofs
of lock-freedom, a liveness property often required of modern concurrent algorithms.
In particular, we show that lock-freedom is a compositional property for linearizable li-
braries (Theorem 9, §6): when proving it of an algorithm using a linearizable lock-free
library, we can replace library methods by their atomic always-terminating specifica-
tions. Our formalisation also highlights a (perhaps surprising) fact that compositionality
does not hold for a variant of lock-freedom that assumes fair scheduling. We demon-
strate the resulting proof technique on a non-blocking stack by Hendler et al. [8] (§7).

Proofs of our theorems can be found in § B and § C.

2 Preliminaries

Programming language. We consider a simple language for heap-manipulating con-
current programs, where a program consists of a library implementing several methods
and its client, given by a parallel composition of threads. Let Var be a set of variables,
ranged over by x, y, . . ., and Method a set of method names, ranged over by m. For
simplicity, all methods take one argument. The syntax of the language is given below:

E ::= Z | x | E + E | −E | . . . C ::= c | m(E) | C;C | C + C | C	

D ::= C; return(E) (where C does not include method calls m(E))
A ::= {m = D, . . . ,m = D}
C(A) ::= let A in C ‖ . . . ‖C (where all the methods called are defined in A)

The language includes primitive commands c, method call m(E), sequential compo-
sition C;C ′, nondeterministic choice C+C ′, and iteration C	. We use a notation C	

here (instead of the usual Kleene star C∗), so as to emphasise that C	 describes not
just finite, but also infinite iterations of C. Both primitive commands and method calls
m(E) are assumed atomic. The primitive commands form the set PComm, and they in-
clude standard instructions, such as skip, variable assignment x=E, the update [E]=E′

of the heap cell E by E′, the read x=[E] of the heap cell E into the variable x, and the
assume statement assume(E), filtering out states making E=0. We point out that the
standard constructs, such as loops and conditionals, can be defined in our language as
syntactic sugar, with conditions translated using assume (see also §A).



Let us fix a program C(A) = let A in C1 ‖ . . . ‖ Cn with the library definition
A = {m = Dm | m ∈ M}. We let the signature of the library A be the set of the
implemented methods: sig(A) = M . In the following we index threads in programs
using the set of identifiers ThreadID = N.

We restrict programs to ensure that the state of the client is disjoint from that
of the library, and that this state separation is respected by client operations and li-
brary routines. We note that this restriction is assumed by the standard notion of lin-
earizability [10]; we intend to relax it in our future work. Technically, we assume
PComm = ClientPComm ] LibPComm for some sets ClientPComm and LibPComm
and require that all primitive commands in the client be from ClientPComm and those
in the library from LibPComm. As formalised below, the commands in ClientPComm
and LibPComm can access only variables and heap locations belonging to the client
and the library, respectively.

We also assume special variables retvalt ∈ Var for each thread t and param ∈ Var.
The variable retvalt contains the result of the most recent method call by thread t and is
implicitly updated by the return command. No commands in the program are allowed to
modify retvalt explicitly, and the variable can only be read by Ct. The variable param
keeps the values of parameters passed upon method calls and is implicitly updated by
the call command. We assume that the variables occurring in the expression E of a call
command m(E) are accessed only by the thread executing the command.

State model. Let CLoc and LLoc be disjoint sets representing heap locations that belong
to the address spaces of the client and the library, respectively. We also assume Var =
CVar]LVar for some sets CVar and LVar representing variables that belong to the client
and the library, respectively. Let param ∈ LVar and retvalt ∈ CVar, t = 1..n. We then
define the set of program states State as follows:

Loc = CLoc ] LLoc Val = Z ] Loc
Stack = Var→ Val Heap = Loc→ Val State = Stack× Heap

A state in this model consists of a stack and a heap, both of which are total maps from
variables or locations to values. Every location or variable is owned either by the library
or by the client. We make this ownership explicit by defining two sets, CState for client
states and LState for library states: CState = (CVar → Val) × (CLoc → Val) and
LState = (LVar → Val) × (LLoc → Val). Also, we define three operations relating
these sets to State: client : State → CState, lib : State → LState and ◦ : CState ×
LState → State. The first two project states to client and library states by restricting
the domains of the stack and the heap: e.g., for (s, h) ∈ State we have lib(s, h) =
(s|LVar, h|LLoc). The ◦ operator combines client and library states into program states:
(s1, h1) ◦ (s2, h2) = (s1 ] s2, h1 ] h2). We lift ◦ to sets of states pointwise.

Control-flow graphs. In the definition of program semantics, it is technically conve-
nient for us to abstract from a particular syntax of programming language and repre-
sent commands by their control-flow graphs. A control-flow graph (CFG) is a tuple
(N,T, start, end), consisting of the set of program positions N , the control-flow rela-
tion T ⊆ N ×Comm×N , and the initial and final positions start, end ∈ N . The edges
are annotated with commands from Comm, which are primitive commands, callsm(E)
or returns return(E). Every command C in our language can be translated to a CFG in
a standard manner (§A). Hence, we can represent a program C(A) by a collection of
CFGs: the client command Ct for a thread t is represented by (Nt, Tt, startt, endt), and



the bodyDm of a methodm by (Nm, Tm, startm, endm). We often view this collection
of CFGs for C(A) as a single graph consisting of two node sets CNode =

⊎n
t=1Nt and

LNode =
⊎
m∈sig(A)Nm, and the edge set T =

⊎n
t=1 Tt ]

⊎
m∈sig(A) Tm. Finally, we

define method : LNode→M as follows: method(v) = m if and only if v ∈ Nm.

Program semantics. Programs in our semantics denote sets of traces, which are finite
or infinite sequences of actions of the form

ϕ ∈ Act ::= (t,Client(c)) | (t, Lib(c)) | (t, call m(k)) | (t, ret m(k))

where t ∈ ThreadID, c ∈ PComm, k ∈ Val and m ∈ Method. Each action corre-
sponds to a primitive command c executed by the client or the library (in which case
we tag c with Client or Lib), a call to or a return from the library. We denote the sets of
each kind of actions with ClientAct, LibAct, CallAct and RetAct, respectively, and let
CallRetAct = CallAct∪RetAct. Also, we write Trace for the set of all traces and adopt
the standard notation: ε is the empty trace, τ(i) is the i-th action in the trace τ , and |τ |
is the length of the trace τ (|τ | = ω if τ is infinite).

Our semantics assumes an interpretation of every primitive command c as a trans-
former fc of type LState → P(LState), if c ∈ LibPComm, or of type CState →
P(CState), if c ∈ ClientPComm. In both cases, we lift it to a function fc : State →
P(State) by transforming only the client or the library part of the input state:

∀θ ∈ State. fc(θ)
def
=

{
{client(θ)} ◦ fc(lib(θ)), if c ∈ LibPComm;
fc(client(θ)) ◦ {lib(θ)}, if c ∈ ClientPComm.

For the transformers of sample primitive commands see §A.
Let the set of thread positions be defined as follows: Pos = CNode∪(Val×CNode×

LNode). Elements in Pos describe the runtime status of a thread. A node v ∈ CNode
indicates that the thread is about to execute the client code coming right after the node
v in its CFG. A triple 〈u, v, v′〉 means that the thread is at the program point v′ in the
code of a library method, u is the current value of the param variable for this method
and v the return program point in the client code.

The semantics of the program C(A) with threads {1, . . . , n} is defined using a tran-
sition relation −→C(A): Config × Act× Config, which transforms program configura-
tions Config = ({1, . . . , n} → Pos) × State. The configurations are pairs of program
counters and states, where a program counter defines the position of each thread in the
program. The relation is defined by the rules in Figure 1. Note that, upon a method call,
the actual parameter and the return point are saved as components in the new program
position, and the method starts executing from the corresponding starting node of its
CFG. The saved actual parameter is accessed whenever the library code reads the vari-
able param, as modelled in the third rule for the library action. Upon a return, the return
point is read from the current program counter, and the return value is written into the
retvalt variable for the thread t executing the return command.

Our operational semantics induces a trace interpretation of programs C(A). For a
finite trace τ and σ, σ′ ∈ Config we write σ τ−→ ∗

C(A)σ
′ if there exists a corresponding

derivation of τ using −→. Similarly, for an infinite trace τ and σ ∈ Config we write
σ

τ−→ ω
C(A)− to mean the existence of infinite τ -labelled computation from σ according

to our semantics. Let us denote with pc0 the initial program counter [1 : start1, . . . , n :
startn]. The trace semantics of C(A) is defined as follows:

JC(A)K = {τ | ∃θ ∈ State. (pc0, θ)
τ−→ ω

C(A)− ∨ ∃σ ∈ Config. (pc0, θ)
τ−→ ∗

C(A)σ}.



(v, c, v′) ∈ T θ′ ∈ fc(θ)

pc[t : v], θ
(t, Client(c))−−−−−−−→C(A) pc[t : v

′], θ′

(v,m(E), v′) ∈ T JEKs = u

pc[t : v], θ
(t, call m(u))−−−−−−−−→C(A) pc[t : 〈u, v′, startm〉], θ

(v, c, v′) ∈ T (s′, h′) ∈ fc(s[param : u], h)

pc[t : 〈u, v0, v〉], (s, h)
(t, Lib(c))−−−−−−→C(A) pc[t : 〈s′(param), v0, v

′〉], (s′, h′)
(v, return(E), v′) ∈ T JEK(s[param : u]) = u′

pc[t : 〈u, v0, v〉], (s, h)
(t, ret (method(v))(u′))−−−−−−−−−−−−−−→C(A) pc[t : v0], (s[retvalt : u

′], h)

Fig. 1. Operational semantics of programs. JEKs ∈ Val is the value of the expression E in the
stack s. We denote with g[x : y] the function that has the same value as g everywhere except x,
where it has the value y. We remind the reader that T is the control-flow relation of C(A).

Note that JC(A)K includes all finite or infinite traces (including non-maximal ones).

Client and library traces. In this paper we consider two special kinds of traces: client
traces, which include only actions from CallRetAct ∪ ClientAct, and library traces,
which include only actions from CallRetAct∪LibAct. Given a trace τ ∈ Trace, we can
obtain the corresponding client client(τ) and library lib(τ) traces by projecting τ to the
appropriate subsets of actions. We consider two further projections: visible(τ) projects
τ to actions in ClientAct, and τ |t to actions of thread t. We let CTrace be the set of all
client traces and LTrace the set of all library traces.

Histories. We record interactions between the client and the library using histories,
which are sequences of actions from CallRetAct ∪ BlockAct, where BlockAct =
{(t, starve) | t ∈ ThreadID}. An action (t, starve) means that thread t is suspended
by the scheduler and is never scheduled again (is ‘starved’). We record starve events
because the liveness properties we are dealing with in this paper, such as lock-freedom
(§6), need to distinguish between method non-termination due to divergence and the
one due to being starved by the scheduler. Let History be the set of all histories.

Given a trace τ ∈ Trace, we can construct a corresponding history history(τ) in
two steps. First, for every thread t, if the last action of the thread in τ exists and is an
action in CallAct ∪ LibAct, we insert (t, starve) right after this action in τ , obtaining
a sequence of actions τ ′. The history history(τ) is then obtained by projecting τ ′ to
actions in CallRetAct ∪ BlockAct.

3 Concurrent Library Semantics and Linearizability

The correctness of concurrent libraries is usually defined using the notion of lineariz-
ability [10], which fixes a particular correspondence between the implementation and
the specification of a library. We now define an analogue of this notion in our setting.

Definition 1. The linearizability relation is a binary relation v on histories defined
as follows: H v H ′ if ∀t ∈ ThreadID. H|t = H ′|t and there is a bijection
π : {1, . . . , |H|}→{1, . . . , |H ′|} such that ∀i.H(i) = H ′(π(i)) and

∀i, j. (i < j ∧H(i) ∈ RetAct ∧H(j) ∈ CallAct)⇒ π(i) < π(j).



That is, the history H ′ linearizes the history H when it is a permutation of the latter
preserving the order of actions within threads and non-overlapping method invocations.
The duration of a method invocation is defined by the interval from the method call
action to the corresponding return action (or to infinity if there is none). Our definition
allowsH andH ′ to be infinite, in contrast to the standard notion of linearizability which
considers only finite histories (we provide a more detailed comparison below).

To check if one library linearizes another, we need to define the set of histories a
library can generate. We do this using the most general client of the library. As we
show in Lemma 10(1), §B, the client we define here is indeed most general in the sense
that its semantics includes all library behaviours generated by any other client in our
programming language. Formally, consider a library A = {m = Dm | m ∈M}. For a
given n, the most general client MGCn(A) is the combination of CFGs for the library
A and those for the client with n threads that repeatedly invoke library methods in
any order and with all possible parameters: the CFG for thread t is (Nt, Tt, vtmgc, v

t
mgc)

with Nt = {vtmgc} and Tt = {(vtmgc,m(u), vtmgc) | m ∈ sig(A), u ∈ Val}. One can
understand MGCn(A) as “let A in C1

mgc ‖ . . . ‖ Cnmgc” where Ctmgc repeatedly makes
all possible method calls. Let Nmgc =

⊎n
t=1Nt.

We define the denotation of MGCn(A) in a library-local semantics, where the
program executes only on the library part of state. Namely, we consider a rela-
tion −→MGCn(A): LConfig × Act × LConfig transforming configurations LConfig =
({1, . . . , n} → LPos) × LState, where LPos = Nmgc ∪ (Val × Nmgc × LNode). The
relation is defined as in Figure 1, but with the rule for return commands replaced by the
one that does not write the return value into retvalt (since this variable is not part of
library states in LState):

(v, return(E), v′) ∈ T JEK(s[param : u]) = u′

pc[t : 〈u, v0, v〉], (s, h)
(t, ret (method(v))(u′))−−−−−−−−−−−−−−→MGCn(A) pc[t : v0], (s, h)

Let JMGCn(A)Klib ⊆ LTrace be the set of all traces generated by the program
MGCn(A) in this semantics from any initial state in LState. We then define the set of all
possible behaviours of the library A as the set of its traces JAK =

⋃
n≥1JMGCn(A)Klib.

This lets us lift the notion of linearizability to libraries as follows.

Definition 2. For libraries A1 and A2 with sig(A1)= sig(A2) we say that A2 lin-
earizes A1, written A1vA2, if ∀H1 ∈ history(JA1K).∃H2 ∈ history(JA2K). H1vH2.

Thus, A2 linearizes A1 if every behaviour of the latter under the most general client
may be reproduced in a linearized form by the former.

It is instructive to compare our definition of linearizability with the classical
one [10]. The original definition of linearizability between an implementation A1 of a
concurrent library and its specification A2 considers only finite histories without starve
actions. It assumes that the specification A2 is sequential, meaning that every method
in it is implemented by an atomic terminating command. To deal with non-terminating
method calls in A1 when comparing the sets of histories generated by the two libraries,
the original definition completes the histories of A1 before the comparison: for every
call action in the history without a corresponding return action, either the action is dis-
carded or a corresponding return action with an arbitrary return value is added in the
history. Such an arbitrary completion of pending calls does not allow making any state-
ments about the termination behaviour of the library in its specification. Furthermore,



the fact that the definition considers only finite histories makes it impossible to spec-
ify trace-based liveness properties satisfied by the library, e.g., that a method meant to
acquire a resource may not always return a value signifying that the resource is busy.

Our definition lifts these limitations in a bid to enable compositional reasoning
about liveness properties of concurrent libraries. Definitions 1 and 2 take into account
infinite computations and do not require the specification A2 to be sequential. Thus,
they allow method calls in A2 to diverge and the execution of such methods to overlap
with the executions of others. Our definitions require any method divergence in the im-
plementation to be reproducible in the specification. As we show in §5, by restricting the
set of histories of the specification with fairness constraints, we can specify trace-based
liveness properties. As we discuss in §8, our definition is more flexible than previous
attempts at generalising linearizability to deal with method non-termination.

The classical notion of linearizability can also be expressed in our setting. We use
this in §5 to harness existing linearizability checkers in reasoning about liveness prop-
erties. The linearizability of concurrent libraries according to the classical definition
can be established using several logics and tools, e.g., based on separation logic [15,
14] or TVLA [2]. These logics and tools reduce showing linearizability to proving an
invariant relating the states of the implementation and the sequential specification. They
establish the validity of the invariant both on finite and infinite computations. Hence, it
can be shown that they also establish linearizability in the sense of Definition 1. More
precisely, assume a specification of the effect of every method m in a library A1 given
as a command cm; return(Em) for some cm ∈ PComm. Then the tools in [15, 14, 2] es-
tablish A1 v A2, where A2 = {m = (skip	; cm; skip	; return(Em)) | m ∈ sig(A1)}.
It is easy to show that this linearizability relation, when restricted to finite histories, is
equivalent to the classical notion of linearizability [10].

Since the classical notion of linearizability does not specify the termination be-
haviour of the library, methods in the library A2 above may diverge. The divergence
can happen either before the method makes a change to the library state using cm or
after, as modelled by the two skip	 statements. In fact, both of these cases are exhibited
by practical concurrent algorithms. For example, the classical Treiber’s stack [13] and
its variations [8] do not modify the state in the case of divergence, but Harris’s non-
blocking linked list [7] does. History completion in the classical definition of lineariz-
ability corresponds to divergence at one of the skip	 statements in our formalisation:
discarding a pending call models the divergence at the first one, and completing a pend-
ing call with an arbitrary return the divergence at the second. We are able to express the
classical notion of linearizability in a uniform way because the specification A2 above
is not sequential. Namely, we allow non-terminating method invocations to overlap with
others in the specification and, hence, do not need to complete them.

4 Atomicity Abstraction

We now show how our notion of linearizability can be used to abstract an implemen-
tation of a library while reasoning about liveness properties of its client. Namely, we
prove that replacing a library used by a client with its linearization leaves all the original
client behaviours reproducible modulo the following notion of trace equivalence:

Definition 3. Client traces τ, τ ′ ∈ CTrace are equivalent, written τ ∼ τ ′, if ∀t ∈
ThreadID. τ |t = τ ′|t and there exists a bijection π : {1, . . . , |τ |} → {1, . . . , |τ ′|} such



that ∀i. τ(i) = τ ′(π(i)) and

∀i, j. (i < j ∧ τ(i), τ(j) ∈ ClientAct)⇒ π(i) < π(j)

Two traces are equivalent if they are permutations of each other preserving the order
of actions within threads and all client actions. Note that visible(τ) = visible(τ ′) when
τ ∼ τ ′. Hence, trace equivalence preserves any linear-time temporal property over trace
projections to client actions. The following theorem states the desired abstraction result.

Theorem 4 (Abstraction). Consider C(A1) and C(A2) such that A1 v A2. Then

∀τ1 ∈ JC(A1)K.∃τ2 ∈ JC(A2)K. client(τ1) ∼ client(τ2) ∧ history(τ1) v history(τ2).

Corollary 5. If A1 v A2, then visible(JC(A1)K) ⊆ visible(JC(A2)K).

According to Corollary 5, while reasoning about a client C(A1) of a library A1, we
can soundly replace A1 with a simpler library A2 linearizing A1: if a linear-time live-
ness property over client actions holds over C(A2), it will also hold over C(A1). In
practice, we are usually interested in atomicity abstraction (see, e.g., [11]), a special
case of the above transformation when methods in A2 are implemented using atomic
commands. In §6 we apply this technique to proving liveness properties of modern
concurrent algorithms. Before this, however, we need to explain how to establish the
required linearizability relation A1 v A2. This is the subject of the next section.

5 Linearization-Closed Properties

As we explained in §3, existing tools can only prove linearizability relations A1 v A2

such that A2 has the form {m = (skip	; cm; skip	; return(Em)) | m ∈ sig(A1)} for
some atomic commands cm and expressions Em. The specification A2 of the library
A1 is too coarse to prove a non-trivial liveness property of a client, as it allows methods
to diverge and does not permit specifying liveness properties. If the library A1 satisfies
some liveness property (e.g., its method invocations not starved by the scheduler always
terminate), we would like to carry it over to A2 to use in the proof of the client. This is,
in fact, possible for a certain class of properties.

Definition 6. A property P ⊆ History over histories is linearization-closed if
∀H,H ′. (H ∈ P ∧H v H ′)⇒ H ′ ∈ P .

Intuitively, linearization-closed properties should be formulated in terms of pairs of
call and return actions and not in terms of individual actions, as the latter can be re-
arranged during linearization. For example, the property “methods that are not starved
by the scheduler always terminate” is linearization-closed. In contrast, the property “a
(t, ret m(0)) action is always followed by a (t′, ret m(1)) action” is not.

Corollary 7. Let P ⊆ History be linearization-closed, A1 v A2, and history(JA1K) ⊆
P . Then visible(JC(A1)K) ⊆ visible(JC(A2)K ∩ {τ | history(τ) ∈ P}).

This corollary of Theorem 4, improving on Corollary 5, allows us to perform atomicity
abstraction in two stages. We start with the coarse refinement A1 v A2 established
by tools for classical linearizability. If a liveness property P over histories holds of the
implementation A1 and is linearization-closed, the trace set of the specification A2 can



be shrunk by removing those violating P . To convert C(A2) into a program with the
trace set JC(A2)K ∩ {τ | history(τ) ∈ P} we can use standard automata-theoretic
techniques from model checking: we represent P by an automaton and construct a
synchronous product of C(A2) and the automaton. See [16, 4, 6] for more details.

6 Compositional Liveness Proofs for Concurrent Algorithms

Lock-freedom. We now illustrate how Corollary 7 can be used to perform composi-
tional proofs of liveness properties of non-blocking concurrent algorithms [9]. These
complicated algorithms employ synchronisation techniques alternative to the usual
lock-based mutual exclusion and typically provide high-performance concurrent im-
plementations of data structures, such as stacks, queues, linked lists and hash tables
(see, for example, the java.util.concurrent library).

Out of all properties used to formulate progress guarantees for such algorithms,
we concentrate on lock-freedom, as the one most often used and most difficult to prove.
Informally, an algorithm implementing operations on a concurrent data structure is con-
sidered lock-free if from any point in a program’s execution, some thread is guaranteed
to complete its operation. Thus, lock-freedom ensures the absence of livelock, but not
starvation. The formal definition is as follows.

Definition 8. A library A is lock-free if for any t ∈ ThreadID, the set of its histories
history(JAK) satisfies LF = 23( , ret ) ∨2((t, call )⇒ 3((t, starve) ∨ (t, ret ))).

Here we use linear temporal logic (LTL) over histories, with predicates over actions
as atomic propositions; 2 and 3 are the standard operators “always” and “eventually”
and stands for an irrelevant existentially quantified value. The property formalises
the informal condition that some operation always complete by requiring that either
some operation return infinitely often (for the case when the client calls infinitely many
operations), or every operation that has not been starved by the scheduler return (for the
case when the client calls only finitely many operations).

Note that the semantics of §2 allows for unfair schedulers that starve some threads.
A crucial requirement in the definition of lock-freedom is that the property has to be
satisfied under such schedulers: the threads that do get scheduled have to make progress
even if others are starved. In Definition 8 we formalise it using starve actions.

Example. Consider the algorithm in Figure 2, ignoring the elim function and calls to
it for now. For readability, the example is presented in C, rather than in our minimalis-
tic language. It is a simple non-blocking implementation of a concurrent stack due to
Treiber [13]. A client using the implementation can call several push or pop operations
concurrently. To ensure the correctness of the algorithm, we assume that pop does not
reclaim the memory taken by the deleted node [9]. The stack is stored as a linked list,
and is updated by compare-and-swap (CAS) instructions. CAS takes three arguments:
a memory address addr, an expected value v1, and a new value v2. It atomically reads
the memory address and updates it with the new value when the address contains the
expected value; otherwise, it does nothing. In C syntax this might be written as follows:

atomic { if (*addr==v1) {*addr=v2; return 1;} else {return 0;} }

In most architectures an efficient CAS (or an equivalent operation) is provided natively
by the processor. The operations on the stack are implemented as follows. The function



struct Node {
value_t data;
Node *next;

};
Node *S;
int collision[SIZE];

void init() { S = NULL; }
void push(value_t v) {
Node *t, *x;
x = new Node();
x->data = v;
while (1) {
t = S; x->next = t;
if (CAS(&S,t,x)) return;
elim(); } }

void elim() { // Elimination scheme
// ...
int pos = GetPos(); // 0 ≤ pos ≤ SIZE-1
int hisId = collision[pos];
while (!CAS(&collision[pos],hisId,MYID))
hisId = collision[pos];

// ...
}
value_t pop() {
Node *t, *x;
while (1) {
t = S;
if (t == NULL) return EMPTY;
x = t->next;
if (CAS(&S,t,x)) return t->data;
elim(); } }

Fig. 2. A non-blocking stack implementation

init initialises the data structure. The push operation (i) allocates a new node x; (ii)
reads the current value of the top-of-the-stack pointer S; (iii) makes the next field of
the newly created node point to the read value of S; and (iv) atomically updates the
top-of-the-stack pointer with the new value x. If the pointer has changed between (ii)
and (iv) and has not been restored to its initial value, the CAS fails and the operation is
restarted. The pop operation is implemented in a similar way.

Note that a push or pop operation of Treiber’s stack may diverge if other threads
are continually modifying S: in this case the CAS instruction may always fail, which
will cause the operation to restart continually. However, the algorithm is lock-free: if
push and pop execute concurrently, some operation will always terminate.

Lock-freedom of some algorithms, including Treiber’s stack, can be proved auto-
matically [6].

Compositionality of lock-freedom. It is easy to check that the property LF in Defi-
nition 8 is linearization-closed. Thus, if A is a lock-free library and is linearized by a
specification {m = (skip	; cm; skip	; return(Em)) | m ∈ sig(A)}, proving a liveness
property of a client of A can be simplified if we replace A by the specification and
consider only traces τ of the client such that history(τ) satisfies LF. As we now show,
in the case when the client is itself a concurrent algorithm being proved lock-free, we
can strengthen this result: we can assume a specification of A where every method ter-
minates in all cases. We thus prove that lock-freedom is a compositional property of
linearizable libraries.

To simplify presentation, we have not considered nested libraries, which makes the
direct formulation of this result impossible. Instead, we rely on the reduction in [6],
which says that an algorithm is lock-free if and only if any number of its operations
running in parallel do not have infinite traces, i.e., terminate if not starved. Thus, it
suffices to prove the result for the termination of the client.

Theorem 9. Let M be a set of method names. Consider libraries

A1 = {m = Dm | m ∈M}, A2 = {m = (cm; return(Em)) | m ∈M},
A3 = {m = (skip	; cm; skip	; return(Em)) | m ∈M},



where cm are atomic commands, A1 is lock-free, and A1 v A3. If JC(A2)K does not
have infinite traces, then neither does JC(A1)K.

Given the above reduction, the theorem implies that a concurrent algorithm using A1 is
lock-free if it is lock-free when it uses A2 instead.

We note that some concurrent algorithms rely on locks, while satisfying lock-
freedom under the assumption that the scheduler is fair [9]. Perhaps surprisingly, The-
orem 9 does not hold in this case: lock-freedom under fair scheduling is not a com-
positional property. The intuitive reason is as follows: we can replace A3 with A2 in
Theorem 9 because the effect of operations of A3 diverging at one of the skip	 state-
ments is already covered by the possible unfairness of the scheduler. This reasoning
becomes invalid once the scheduler is fair. We provide a counterexample in §C.

7 Example

Theorem 9 allows giving proofs of lock-freedom to non-blocking concurrent algorithms
that are compositional in the structure of the algorithms, as we now illustrate. As an ex-
ample, we consider an improvement of Treiber’s stack proposed by Hendler, Shavit,
and Yerushalmi (HSY), which performs better in the case of higher contention among
threads [8]. Figure 2 shows an adapted and abridged version of the algorithm. The
implementation combines Treiber’s stack with a so-called elimination scheme, imple-
mented by the function elim (partially elided). A push or a pop operation first tries
to modify the stack as in Treiber’s algorithm, by doing a CAS to change the shared
top-of-the-stack pointer. If the CAS succeeds, the operation terminates. If the CAS fails
(because of interference from another thread), the operation backs off to the elimination
scheme. If this scheme fails, the whole operation is restarted.

The elimination scheme works on data structures that are separate from the list
implementing the stack and, hence, can be considered as a library used by the HSY
stack with the only method elim. The idea behind the scheme is that two contending
push and pop operations can eliminate each other without modifying the stack if pop
returns the value that push is trying to insert. An operation determines the existence of
another operation it could eliminate itself with by selecting a random slot pos in the
collision array, and atomically reading that slot and overwriting it with its thread
identifier MYID. The algorithm implements the atomic read-and-write operation on the
collision array in a lock-free fashion using CAS. The identifier of another thread read
from the array can be subsequently used to perform elimination. The corresponding
code does not affect the lock-freedom of the algorithm and is elided in Figure 2.

According to Theorem 9, to prove the lock-freedom of the HSY stack, it is sufficient
to prove (i) the lock-freedom of the push and pop with a call to elim replaced by its
atomic always-terminating specification; and (ii) the lock-freedom and linearizability
of the elim method. The former is virtually identical to the proof of lock-freedom
of Treiber’s stack, since elim acts on data structures disjoint from those of the stack.
Informally, this proof is done as follows (see [6] for a detailed formal proof). It is
sufficient to check the termination of the program consisting of a parallel composition
of an arbitrary number of threads each executing one push or pop operation. For such a
program, we have two facts. First, no thread executes a successful CAS in push or pop
infinitely often. This is because once the CAS succeeds, the corresponding while-loop



terminates. Second, the while-loop in an operation terminates if no other thread executes
a successful CAS in push or pop infinitely often. This is because the operation does not
terminate only when its CAS always fails, which requires the other threads to execute
the CASes infinitely often. From these two facts, the termination of each thread follows.

The lock-freedom of the elim method can be proved in the same way and its lin-
earizability can be proved using existing methods [14, 15]. This completes the proof of
lock-freedom of the HSY stack. We have thus decomposed the proof of a complicated
non-blocking algorithm with two nested loops into proofs of two simple algorithms.

8 Related Work

Filipović et al. [5] have previously characterised linearizability in terms of observa-
tional refinement (technically, their result is similar to our Lemma 11, §B). They did
not consider infinite computations and treated non-terminating methods approximately;
thus, they could not handle liveness properties. Besides, the work of Filipović et al. did
not justify any compositional proof methods, as we have done in Theorem 4.

Petrank et al. [12] were the first to observe that lock-freedom is compositional, as
we prove in Theorem 9. However, their formulation and ‘proof’ of this property are
presented as a piece of informal text talking about artefacts without a clear semantics.
As a consequence, their compositionality theorem misses an important requirement that
library methods be linearizable.

Burckhardt et al. [3] have attempted to generalise linearizability on finite histories
to the case of non-terminating method calls. However, their definition is too restrictive,
as it requires any non-termination in the library implementation to be reproducible in
the sequential specification of the library. This requirement is not satisfied on infinite
traces by common lock-free algorithms, where some methods may diverge while others
make progress. Additionally, their definition considers any library where methods may
modify the library state before diverging (e.g., [7]) as non-linearizable. We provide a
more flexible definition.

Atomicity refinement is a well-known method for formal development of concurrent
programs [11], which allows refining an atomic specification to a concurrent implemen-
tation. As atomicity refinement and abstractions are duals of each other, our results can
also be used in the context of formal program development.
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A Additional Definitions for the Programming Language

Semantics of typical primitive commands. We consider the following sample primi-
tive commands:

skipi, (x = E)i, (x = [E])i, ([E] = E′)i, assume(E)i,

where the subscript i ∈ {client, lib} indicates whether the command is for the client
code or for the library code. We assume that if the subscript i of a command is client,
the command uses only client variables in CVar and make a similar assumption for the
case i = lib.

For these commands, we define corresponding transition relations ; in Figure 3.
If a command has the client subscript, this relation transforms client states in CState,
and if the commands has the lib subscript, the relation changes library states in LState.
Using these transition relations, we then define fc for the above commands c as follows:

fc(θ) =
⋃
{θ′ | c, θ ; θ′}.

Here θ is a client or library state depending on whether c is a client command or a
library command.

Definition of loops and conditionals. Let !E be the C-language style negation of an
expression E, so that J!EKs = 1 if JEKs = 0, and JEKs = 0 for all the other cases. The
standard commands for conditionals and loops are defined in our language as follows:

(ifi E then C1 else C2) = (assume(E)i;C1) + (assume(!E)i;C2),
(whilei E do C) = (assume(E)i;C)

	; assume(!E)i,

where i is client or lib, depending on which part of the code the command belongs to.

Translation of commands to CFGs. We construct the CFG of a command C by in-
duction on its syntax:

1. A primitive command c has the CFG ({start, end}, {(start, c, end)}, start, end).
2. Assume C1 and C2 have CFGs (N1, T1, start1, end1) and (N2, T2, start2, end2),

respectively. Then C1;C2 has the CFG
(N1 ∪N2, T1 ∪ T2 ∪ {(end1, skipi, start2)}, start1, end2).

skipclient, (sC , hC) ; (sC , hC)
(x = E)client, (sC , hC) ; (sC [x : JEKsC ], hC)

(x = [E])client, (sC , hC) ; (sC [x : hC(JEKsC)], hC) (when JEKsC ∈ CLoc)
([E] = E′)client, (sC , hC) ; (sC , hC [JEKsC : JE′KsC ]) (when JEKsC ∈ CLoc)

(assume(E))client, (sC , hC) ; (sC , hC) (when JEKsC 6= 0)

skiplib, (sL, hL) ; (sL, hL)
(x = E)lib, (sL, hL) ; (sL[x : JEKsL], hL)

(x = [E])lib, (sL, hL) ; (sL[x : hL(JEKsL)], hL) (when JEKsL ∈ LLoc)
([E] = E′)lib, (sL, hL) ; (sL, hL[JEKsL : JE′KsL]) (when JEKsL ∈ LLoc)

(assume(E))lib, (sL, hL) ; (sL, hL) (when JEKsL 6= 0)

Fig. 3. Transition relation for sample primitive commands. Here (sC , hC) is a client state in
CState and (sL, hL) a library state in LState.



(v, c, v′) ∈ T θ′ ∈ fc(θ)

pc[t : v], θ
(t, Client(c))−−−−−−−→C(·) pc[t : v

′], θ′

(v,m(E), v′) ∈ T JEKs = u

pc[t : v], (s, h)
(t, call m(u))−−−−−−−−→C(·) pc[t : 〈v′,m〉)], (s, h)

pc[t : 〈v,m〉], (s, h) (t, ret m(u))−−−−−−−→C(·) pc[t : v], (s[retvalt : u], h)

Fig. 4. Client-local semantics

3. Assume C1 and C2 have CFGs (N1, T1, start1, end1) and (N2, T2, start2, end2),
respectively. Then C1 + C2 has the CFG
(N1 ∪N2 ∪ {start, end}, T1 ∪ T2 ∪ {(start, skipi, start1), (start, skipi, start2),

(end1, skipi, end), (end2, skipi, end)}, start, end).

4. Assume C has a CFG (N,T, start, end). Then C	 has the CFG
(N,T ∪ {(end, skipi, start)}, start, end).

As before, i is client or lib, depending on which part of the code the command belongs
to.

B Proof of Theorem 4

We first present an outline of the proof of Theorem 4; proofs of the lemmas below are
given in the following sections. To prove the theorem, we need to be able to transform
traces of C(A1) into traces of C(A2), which uses a different implementation of the
library. We perform this transformation with the aid of a client-local semantics, which
produces all behaviours of C regardless of the particular library implementation it uses.
Let n be the number of threads in C. The semantics is defined by a transition rela-
tion −→C(·): CConfig × Act × CConfig in Figure 4, which transforms configurations
CConfig = ({1, . . . , n} → CPos)×CState for CPos = CNode∪ (CNode×Method).
Note that, upon a call, we do not execute library actions, but just save the return point
v′ and the method m called in a thread position of the form 〈v′,m〉. The semantics
allows for an arbitrary library behaviour, since we let library methods return with any
value. We define the client-local semantics of C as the set JC(·)K ⊆ CTrace of all traces
generated using −→C(·) from any initial configuration in CConfig.

We thus have three semantics related to a program C(A) used in the proof: the stan-
dard semantics JC(A)K ⊆ Trace, the client-local semantics JC(·)K ⊆ CTrace, and the
library-local semantics JAK ⊆ LTrace. They are defined by the corresponding transition
relations −→C(A), −→C(·) and −→MGCn(A).

For a trace τ we define its core history corehistory(τ) as the projection of τ to ac-
tions in CallRetAct. We denote with CoreHistory the set of all core histories. A client
trace τ ∈ CTrace is well-formed if for all t ∈ ThreadID, every call action (t, callm(u))
in the trace τ |t is either the last one in the trace or is immediately followed by the corre-
sponding return action (t, ret(u′)m), i.e., if every such projection behaves sequentially.
The definition of well-formed core histories is the same.



We first state a lemma showing that a trace of C(A) generates two traces in the
client-local and library-local semantics, and any two such traces agreeing on the core
history can be combined into a valid trace of C(A).

Lemma 10 (Decomposition). 1. ∀τ ∈ JC(A)K. client(τ) ∈ JC(·)K ∧ lib(τ) ∈ JAK.
2. ∀η ∈ JC(·)K.∀ξ ∈ JAK. corehistory(η) = corehistory(ξ)⇒
∃τ ∈ JC(A)K. client(τ) = η ∧ lib(τ) = ξ.

The following lemma presents the core of the trace transformation used to generate τ2
out of τ1 in Theorem 4: it shows that a client trace can be transformed into an equivalent
one with a given history linearizing the history of the original one.

Lemma 11 (Rearrangement). Consider well-formed core histories H,H ′ ∈
CoreHistory such that H v H ′. For all well-formed client traces τ ∈ CTrace such that
corehistory(τ) = H there exists τ ′ ∈ CTrace such that τ ∼ τ ′ ∧ corehistory(τ ′) = H ′.

Finally, the following lemma shows that the trace resulting from the transformation in
Lemma 11 is derivable in the client-local semantics if the original one is.

Lemma 12. The set JC(·)K is closed under trace equivalence.

Proof of Theorem 4. Take τ1 ∈ JC(A1)K. By Lemma 10(1),

client(τ1) ∈ JC(·)K ∧ lib(τ1) ∈ JA1K.
Let H1 = history(τ1). Then, H1 ∈ history(JA1K). Furthermore, since A1 v A2, there
exists a history H2 ∈ history(JA2K) such that H1 v H2. Then corehistory(H1) v
corehistory(H2). Applying Lemma 11, we can construct a trace η ∈ CTrace such that

client(τ1) ∼ η ∧ corehistory(η) = corehistory(H2).

By Lemma 12, η ∈ JC(·)K. Since H2 ∈ history(JA2K), there exists a library trace
ξ ∈ JA2K such that history(ξ) = H2. Then corehistory(η) = corehistory(ξ). By
Lemma 10(2), for some τ2 ∈ JC(A2)K we have η = client(τ2) and ξ = lib(τ2). Thus,

client(τ1) ∼ client(τ2) ∧ history(τ2) = history(lib(τ2)) = H2,

which implies that τ2 is what we are looking for. ut

B.1 Notation

Before proving the lemmas, we introduce some auxiliary notation.
For a state θ = (s, h), x ∈ Var and u ∈ Val we let θ[x : u] = (s[x : u], h) and

θ(x) = s(x). For a configuration σ = (pc, θ), t ∈ ThreadID and x ∈ CVar, we write
σ(t) for pc(t) and σ(x) for θ(x). For a state θ or a configuration σ, we denote with JEKθ
or JEKσ the value of the expression E in the stack of the state or the configuration.

We define functions client : Pos → CPos and libt : Pos → LPos, t ∈ ThreadID
that compute thread positions in the client-local and library-local semantics corre-
sponding to a position in the complete program: client(v) = v, for v ∈ CNode;
client(〈u, v′, v〉) = 〈v′,method(v)〉 for v′ ∈ CNode and v ∈ LNode; libt(v) = vtmgc

for v ∈ CNode; libt(〈u, v′, v〉) = 〈u, vtmgc, v〉 for v′ ∈ CNode and v ∈ LNode. We
then lift client and lib to program counters as follows: (client(pc))(t) = client(pc(t))
and (lib(pc))(t) = libt(pc(t)). Finally, we lift them to configurations: client(pc, θ) =



(client(pc), client(θ)) and lib(pc, θ) = (lib(pc), lib(θ)). We lift the client and lib oper-
ations on states defined in §2 to sets of states pointwise.

We define a partial operation ◦ : CPos × LPos ⇀ Pos that combines thread po-
sitions in the client-local and library-local semantics to obtain a position in the com-
plete program: v ◦ vtmgc = v for v ∈ CNode; 〈v,m〉 ◦ 〈u, vtmgc, v

′〉 = 〈u, v, v′〉 for
v ∈ CNode and v′ ∈ LNode such that method(v′) = m; all other combinations are
undefined. We then lift ◦ to program counters pointwise and to configurations as fol-
lows: (pc1, θ1) ◦ (pc2, θ2) = (pc1 ◦ pc2, θ1 ◦ θ2). Note that for all σ ∈ State we have
client(σ) ◦ lib(σ) = σ.

For a state θ ∈ CState, let core(θ) be the state θ with the stack excluding the retvalt
variables. (Strictly speaking, we are overloading the word ‘state’ here, because core(θ)
has the type (CVar′ → Val) × Heap for CVar′ = CVar − {retvalt | t ∈ ThreadID}.)
We lift core to sets of states pointwise and let core(pc, θ) = core(θ).

In the following we sometimes write vπ and ∼π instead of v and ∼ to make the
bijection π used to establish the relations between histories or traces explicit.

Finally, we recall the construction of transformers for primitive commands from §2
which is used in the proofs:

∀θ ∈ State. fc(θ)
def
=

{
{client(θ)} ◦ fc(lib(θ)), if c ∈ LibPComm;
fc(client(θ)) ◦ {lib(θ)}, if c ∈ ClientPComm.

(1)

B.2 Proof of Lemma 10

We prove each of the two cases in the lemma separately.
Case 1. Consider τ ∈ JC(A)K and let η = client(τ) and ξ = lib(τ). We need to

show that η ∈ JC(·)K and ξ ∈ JAK. Since τ ∈ JC(A)K, there exists a τ -labelled com-
putation sequence that starts from some initial configuration σ0 ∈ Config and follows
the relation −→C(A). Let n be the number of threads in C(A). From the computation
sequence of τ , we construct the computation sequence of η using −→C(·) and that of
ξ using −→MGCn(A). Our construction first considers every finite prefix τ1 of τ and
builds client-local and library-local computation sequences for τ1. Then we construct
the desired computation sequences for η and ξ as the limits of these sequences (our
construction is such that this limit exists). The following claim lies at the core of our
construction:

Consider a finite prefix τ1 of τ and a configuration σ ∈ Config such that

σ0
τ1−→∗C(A) σ ∧ client(σ0)

client(τ1)−−−−−→∗C(·) client(σ)

∧ lib(σ0)
lib(τ1)−−−−→∗MGCn(A) lib(σ).

If τ = τ1ϕτ
′
2 for some action ϕ and trace τ ′2, and σ

ϕ−→C(A) σ
′ for some σ′,

we have that

client(σ0)
client(τ1ϕ)−−−−−−→∗C(·) client(σ′) ∧ lib(σ0)

lib(τ1ϕ)−−−−−→∗MGCn(A) lib(σ′).

To prove the claim, we assume τ1, ϕ, τ ′2, σ, σ
′ satisfying the assumptions in the claim.

There are four cases:



– ϕ ∈ ClientAct. In this case, there exist a thread t ∈ {1, . . . , n}, client nodes v, v′ ∈
CNode, a client command c ∈ ClientPComm, and states θ, θ′ ∈ State, such that
(v, c, v′) is in the control-flow relation of C(A) and

σ = (pc[t : v], θ) ∧ σ′ = (pc[t : v′], θ′) ∧ θ′ ∈ fc(θ).
Since c is a client operation, from (1) it follows that

client(θ′) ∈ client(fc(θ)) = fc(client(θ)).

This in turn implies

client(pc)[t : v], client(θ)
ϕ−→C(·) client(pc)[t : v′], client(θ′).

Since v, v′ ∈ CNode, we have

client(pc[t : v]) = client(pc)[t : v] ∧ client(pc[t : v′]) = client(pc)[t : v′].

Hence, the transition above is equivalent to client(σ)
ϕ−→C(·) client(σ′), which

implies that

client(σ0)
client(τ1ϕ)−−−−−−→∗C(·) client(σ′).

For the library computation sequence, we use (1) again and infer that

lib(θ′) ∈ lib(fc(θ)) = {lib(θ)}.
Thus,

lib(σ) = (lib(pc)[t : vtmgc], lib(θ)) = (lib(pc)[t : vtmgc], lib(θ
′)) = lib(σ′).

From this and lib(τ1ϕ) = lib(τ1), it follows that

lib(σ0)
lib(τ1ϕ)−−−−−→∗MGCn(A) lib(σ′).

– ϕ ∈ LibAct. This case is treated similarly to the previous one. We establish that
lib(σ)

ϕ−→MGCn(A) lib(σ′) and client(σ′) = client(σ). Since lib(τ1ϕ) = lib(τ1)ϕ
and client(τ1ϕ) = client(τ1), this implies our claim.

– ϕ ∈ CallAct. In this case, there exist a thread t ∈ {1, . . . , n}, client nodes v, v′ ∈
CNode, a methodm, and a state θ ∈ State, such that (v,m(E), v′) is in the control-
flow relation of C(A) and

σ = (pc[t : v], θ) ∧ σ′ = (pc[t : 〈JEKθ, v′, startm〉], θ).
Then,

client(σ) = (client(pc)[t : v], client(θ)) ∧
client(σ′) = (client(pc)[t : 〈v′,m〉], client(θ)) ∧
lib(σ) = (lib(pc)[t : vtmgc], lib(θ)) ∧
lib(σ′) = (lib(pc)[t : 〈JEKθ, vtmgc, startm〉], lib(θ)).

From this we can establish client(σ)
ϕ−→C(·) client(σ′) and lib(σ)

ϕ−→MGCn(A)

lib(σ′). Furthermore, client(τ1ϕ) = client(τ1)ϕ and lib(τ1ϕ) = lib(τ1)ϕ. Hence,

client(σ0)
client(τ1ϕ)−−−−−−→∗C(·) client(σ′) ∧ lib(σ0)

lib(τ1ϕ)−−−−−→∗MGCn(A) lib(σ′).

– ϕ ∈ RetAct. This case is treated similarly to the previous one. We establish
client(σ)

ϕ−→C(·) client(σ′) and lib(σ)
ϕ−→MGCn(A) lib(σ′). Just like in the previ-

ous case, we also have client(τ1ϕ) = client(τ1)ϕ and lib(τ1ϕ) = lib(τ1)ϕ, which
implies our claim.



We have just shown that the claim holds for all ϕ.
Case 2. Assume η ∈ JC(·)K and ξ ∈ JAK such that corehistory(η) = corehistory(ξ).

There exists a η-labelled client-local computation sequence that starts from an initial
configuration σ1

0 ∈ CConfig and follows the transition relation −→C(·). Let n be the
number of threads in C(A). Since corehistory(η) = corehistory(ξ), the thread identi-
fiers mentioned in ξ all occur in η. Hence, using MGCn(A), we can generate a library-
local computation sequence for ξ. This sequence is labelled with ξ, starts from some
initial configuration σ2

0 ∈ LConfig, and uses the transition relation −→MGCn(A). Out
of these two computation sequences, we now construct the required trace τ ∈ JC(A)K
together with its computation sequence using −→C(A). We first build a series of finite
traces

τ0, τ1, τ2, . . .
and their computation sequences. One important feature of this series is that for i < j,
the computation sequence of τi is a prefix of that of τj , which also implies that τi is a
prefix of τj . Because of this feature, this series has the limit computation sequence and
the limit trace, which are the desired ones.

The first element in the series is the empty trace ε and the empty computation se-
quence consisting of the initial configuration σ1

0◦σ2
0 only. For the (i+1)-st element with

i > 0, we assume that the i-th element τi and its computation have been constructed
and satisfy the following property:

The client projection client(τi) is a finite prefix of η, and the library projec-
tion lib(τi) is a finite prefix of ξ. Furthermore, for some client configuration
σ1
i ∈ CConfig, and some library configuration σ2

i ∈ LConfig, the constructed
computation sequence for τi leads to σ1

i ◦ σ2
i :

σ1
0 ◦ σ2

0
τi−→∗C(A) σ

1
i ◦ σ2

i ,

and the given computation sequences for η and ξ have the following prefixes:

σ1
0

client(τi)−−−−−→∗C(·) σ
1
i ∧ σ2

0

lib(τi)−−−−→∗MGCn(A) σ
2
i .

Now we define the (i+ 1)-th element τi+1 and its computation sequence that maintain
this property. As we explained above, the computation sequence for τi+1 will be an
extension of that for τi by one or more steps.

Assume η = client(τi)ϕ1η
′ and ξ = lib(τi)ϕ2ξ

′ for some actions ϕ1 and ϕ2 and
traces η′ and ξ′ (the case that η = client(τi) or ξ = lib(τi) is treated analogously). Let
the following be the transitions by ϕ1 and ϕ2 in the computation sequences for η and ξ:

σ1
i

ϕ1−→C(·) σ
1 ∧ σ2

i
ϕ2−→MGCn(A) σ

2

for some σ1 ∈ CConfig and σ2 ∈ LConfig. We have the following cases:

– ϕ1, ϕ2 ∈ CallRetAct. In this case, ϕ1 is the same as ϕ2. This is because
corehistory(η1) and corehistory(ξ1) are the same by assumption so that their pre-
fixes corehistory(τi)ϕ1 and corehistory(τi)ϕ2 of the same length should be iden-
tical. Assume ϕ1 ∈ CallAct (the case when ϕ1 ∈ RetAct can be treated anal-
ogously). Then, there exist t ∈ {1, . . . , n}, v, v′ ∈ CNode, θ1 ∈ CState, and
θ2 ∈ LState such that (v,m(E), v′) is in the control-flow relation of C(A) and

σ1
i = (pc1[t : v], θ

1) ∧ σ1 = (pc1[t : 〈v′,m〉], θ1) ∧
σ2
i = (pc2[t : v

t
mgc], θ

2) ∧ σ2 = (pc2[t : 〈JEKθ1, vtmgc, startm〉], θ2).



Let pc = pc1 ◦ pc2. Then
σ1
i ◦ σ2

i = (pc[t : v], θ1 ◦ θ2) ∧
σ1 ◦ σ2 = (pc[t : 〈JEKθ1, v′, startm〉], θ1 ◦ θ2).

Furthermore, JEKθ1 = JEK(θ1 ◦ θ2). Then, σ1
i ◦ σ2

i
ϕ1−→C(A) σ

1 ◦ σ2. Hence, in
this case the desired τi+1 is τiϕ1, and the computation sequence for τi+1 is:

σ1
0 ◦ σ2

0
τi−→ ∗

C(A) σ
1
i ◦ σ2

i
ϕ1−→C(A) σ

1 ◦ σ2.

Finally, since client(τiϕ1) = client(τi)ϕ1 and lib(τiϕ2) = lib(τi)ϕ2, the condi-
tions on the prefixes of the computation sequences of η and ξ in this case follow
from those for τi.

– ϕ1 ∈ RetAct, ϕ2 ∈ LibAct and they are performed by the same thread. In this case
for some t ∈ {1, . . . , n}, θ1 ∈ CState, θ2 ∈ LState, θ3 ∈ LState, v0 ∈ CNode,
v, v′ ∈ LNode and u ∈ Val, we have that (v, c, v′) is in the control-flow relation of
C(A) and

σ1
i = (pc1[t : 〈v0,method(v)〉], θ1) ∧
σ2
i = (pc2[t : 〈u, vtmgc, v〉], θ2) ∧
σ2 = (pc2[t : 〈θ3(param), vtmgc, v

′〉], θ3) ∧ θ3 ∈ fc(θ2[param : u]).

Let pc = pc1 ◦ pc2. Then
σ1
i ◦ σ2

i = (pc[t : 〈u, v0, v〉], θ1 ◦ θ2) ∧
σ1
i ◦ σ2 = (pc[t : 〈(θ1 ◦ θ3)(param), v0, v

′〉], θ1 ◦ θ3).
From (1) we have

θ1 ◦ θ3 ∈ {θ1} ◦ fc(θ2[param : u]) = fc(θ
1 ◦ (θ2[param : u]))

= fc((θ
1 ◦ θ2)[param : u]).

Then σ1
i ◦ σ2

i
ϕ2−→C(A) σ

1
i ◦ σ2. The desired τi+1 is thus τiϕ2, and its computation

sequence is:
σ1
0 ◦ σ2

0
τi−→ ∗

C(A)σ
1
i ◦ σ2

i
ϕ2−→C(A) σ

1
i ◦ σ2.

Finally, the conditions on the prefixes of the computation sequences for η and ξ
follow from client(τiϕ2) = client(τi) and lib(τiϕ2) = lib(τi)ϕ2.

– ϕ1 ∈ ClientAct, ϕ2 ∈ CallAct and they are performed by the same thread. This
case is treated similarly to the previous one: we show that σ1

i ◦σ2
i

ϕ1−→C(A) σ
1 ◦σ2

i .
– ϕ1 ∈ ClientAct, ϕ2 ∈ LibAct and they are done by different threads. In this case,

client(τiϕ1ϕ2) = client(τi)ϕ1 ∧ lib(τiϕ1ϕ2) = lib(τi)ϕ2.

As before, we can show that

σ1
i ◦ σ2

i
ϕ1−→C(A) σ

1 ◦ σ2
i ∧ σ1 ◦ σ2

i
ϕ2−→C(A) σ

1 ◦ σ2.

This gives the extension of the given computation for τi by two further steps:

σ1
0 ◦ σ2

0
τiϕ1ϕ2−−−−→∗C(A) σ

1 ◦ σ2.

It follows that the trace τiϕ1ϕ2 is the desired τi+1.
– ϕ1 ∈ CallRetAct, ϕ2 ∈ LibAct and they are performed by different threads. In this

case
client(τiϕ2) = client(τi) ∧ lib(τiϕ2) = lib(τi)ϕ2.

Here we can show that
σ1
0 ◦ σ2

0
τi−→ ∗

C(A) σ
1
i ◦ σ2

i
ϕ2−→C(A) σ

1
i ◦ σ2,

which implies that τiϕ2 is the desired trace.



– ϕ1 ∈ ClientAct, ϕ2 ∈ CallRetAct and they are performed by different threads.
This case is similar to the previous one.

– ϕ1 and ϕ2 are done by the same thread and one of the two conditions holds: ϕ1 ∈
ClientAct and ϕ2 ∈ (RetAct ∪ LibAct), or ϕ1 ∈ CallAct and ϕ2 ∈ LibAct. Using
the definition of ◦, it is easy to check that these cases are impossible.

We have just shown how to construct τi for all the cases. The desired computation
sequence is constructed as the limit of the sequence for τi. It is easy to show that the
resulting trace τ satisfies client(τ) = η and lib(τ) = ξ. ut

B.3 Proof of Lemma 11

Consider a well-formed client trace τ ∈ CTrace and well-formed core histories H,S ∈
CoreHistory such that corehistory(τ) = H and H v S. We need to prove that there
exists a well-formed client trace τ ′ ∈ CTrace such that corehistory(τ ′) = S and τ ∼ τ ′.
To this end, we define a (possibly infinite) sequence of steps that transforms τ into τ ′.
The trace τ ′ is constructed as a limit of a sequence of well-formed traces ξk, defined for
every finite prefix Sk of S of length k. This sequence is defined inductively, and every
trace ξk in it is such that for some prefix ηk of ξk we have corehistory(ηk) = Sk and
corehistory(ξk) vπ S, where π is an identity on actions from Sk in corehistory(ξk).
To construct the sequence, we let ξ0 = τ and let the prefix η0 contain all the client
actions preceding the first call or return action in ξ0. The trace ξk+1 is constructed from
the trace ξk by applying the following lemma for τ1 = ηk, τ1τ2 = ξk, H1 = Sk and
H1ψH2 = S.

Lemma 13. Consider a well-formed core history H1ψH2, where ψ ∈ CallRetAct, and
a well-formed client trace τ1τ2 such that

corehistory(τ1) = H1, (2)
corehistory(τ1τ2) vπ H1ψH2, (3)

where π is an identity on actions from H1 in corehistory(τ1τ2). Then there exist traces
τ ′2 and τ ′′2 such that τ1τ ′2τ

′′
2 is a well-formed trace and

τ1τ2 ∼ρ τ1τ ′2τ ′′2 , (4)
corehistory(τ1τ

′
2) = H1ψ, (5)

corehistory(τ1τ
′
2τ
′′
2 ) vπ′ H1ψH2, (6)

where π′ is an identity on actions from H1ψ in corehistory(τ1τ
′
2τ
′′
2 ) and ρ is an identity

on actions from τ1 in τ1τ2.

It is easy to see that for all i, j with i < j and for all prefixes ηi and ηj of the traces
ξi and ξj thus constructed, ηi is a prefix of ηj . Hence, the sequence of traces ηk has a
limit trace τ ′ such that for every k, ηk is a prefix of τ ′ and corehistory(τ ′) = S, which
shows that Lemma 13 indeed entails Lemma 11.

To prove Lemma 13, we convert τ1τ2 into τ1τ ′2τ
′′
2 by applying a finite number of

the following transformations that preserve its properties of interest, described by the
proposition below.

Proposition 14. Let τ be a well-formed client trace and H a well-formed core history
such that corehistory(τ) vπ H . Then swapping any two adjacent actions ϕ1 and ϕ2 in
τ executed by different threads such that



1. ϕ1 ∈ CallAct and ϕ2 6∈ RetAct; or
2. ϕ2 ∈ RetAct and if ϕ1 ∈ CallAct, then ϕ2 precedes ϕ1 in H ,

yields a well-formed trace τ ′ such that τ ∼ρ τ ′ and corehistory(τ ′) vπ′ H for the
following bijections π′ and ρ.

The bijection π′ is defined as follows. If ϕ1 ∈ ClientAct or ϕ2 ∈ ClientAct, then
π′ = π. Otherwise, let i be the index of ϕ1 in corehistory(τ). Then π′(i + 1) = π(i),
π′(i) = π(i+ 1) and π′(k) = π(k) for k 6∈ {i, i+ 1}.

The bijection ρ is defined as follows. Let j be the index of ϕ1 in τ . Then ρ′(j+1) =
ρ(j), ρ′(j) = ρ(j + 1) and ρ′(k) = ρ(k) for k 6∈ {j, j + 1}.

Proof of Lemma 13. From (2) and (3) it follows that τ2 = τ ′3ψτ
′
4 for some traces τ ′3

and τ ′4. We have two cases.
1. ψ ∈ CallAct. Then τ ′3 cannot contain a return action ϕ, because in this case

ϕ would precede ψ in corehistory(τ1τ2). However, ϕ ∈ H2 and, thus, ψ precedes
ϕ in H1ψH2, so this would contradict (3). Hence, there are no return actions in τ ′3.
Moreover, since τ1τ2 is well-formed, for any call action ϕ = (t, call m(u)) in τ ′3 there
are no actions by the thread t in τ ′3 following ϕ. Thus, we can move all call actions
in the subtrace τ ′3 of τ1τ2 to the position right after ψ by swapping adjacent actions in
τ1τ2 a finite number of times as described in Proposition 14(1). We thus obtain the trace
τ1τ
′′
3 ψτ

′′
4 τ
′
4, where τ ′′4 consists of call actions in τ ′3 and τ ′′3 of the rest of actions in the

subtrace. Conditions (4)–(6) then follow from Proposition 14(1) and the transitivity of
∼ for τ ′2 = τ ′′3 ψ and τ ′′2 = τ ′′4 τ

′
4.

2. ψ ∈ RetAct. Since the history H1ψH2 is well-formed, the matching call of ψ is
in H1. From (2) and (3) it then follows that this call is not in τ ′3. Furthermore, since the
trace τ1τ2 is well-formed, the thread that executed ψ does not execute any actions in
the subtrace in τ ′3. Thus, we can move the action ψ to the beginning of τ ′3 by swapping
adjacent actions in τ1τ2 a finite number of times as described in Proposition 14(2). We
thus obtain the trace τ1ψτ ′3τ

′
4. Conditions (4)–(6) then follow from Proposition 14(2)

and the transitivity of ∼ for τ ′2 = ψ τ ′′2 = τ ′3τ
′
4.

B.4 Proof of Lemma 12

Take τ ∈ JC(·)K and η such that τ ∼ η. Let us fix the bijection π used to establish this
equivalence. We consider only the case that τ is infinite (the finite case is easier and can
be handled using the same ideas). Since τ ∼ η, we have

visible(τ) = visible(η).

Furthermore, there exists a τ -labelled computation sequence from some initial configu-
ration σ0 ∈ CConfig such that each step of the sequence uses the relation −→C(·). That
is, if τ = ϕ1ϕ2ϕ3 . . ., we have

σ0
ϕ1−→C(·) σ1

ϕ2−→C(·) σ2
ϕ3−→C(·) σ3

ϕ4−→C(·) . . . (7)

for some σi ∈ CConfig. Using this computation sequence for τ , we construct a series
of finite computation sequences and define the desired computation sequence for η as
the limit of this series.

The starting point of the series is the empty sequence σ0. To construct the (i+1)-st
element of the series, we make three assumptions about the i-th one:



1. The i-th computation sequence has the form

σ′0
ψ1−→C(·) σ

′
1

ψ2−→C(·) σ
′
2

ψ3−→C(·) . . .
ψi−→C(·) σ

′
i,

where σ′0 = σ0, the trace ψ1 . . . ψi is a prefix of η and σ′1, . . . , σ
′
i ∈ CConfig.

2. For all j ≤ i, if τ1 is a finite prefix of τ such that visible(τ1) = visible(ψ1 . . . ψj),
then

core(σ|τ1|) = core(σ′j).
3. For all j ≤ i and t ∈ {1, . . . , n}, if τ1 is a finite prefix of τ such that τ1|t =

(ψ1 . . . ψj)|t, then
σ|τ1|(t) = σ′j(t) ∧ σ|τ1|(retvalt) = σ′j(retvalt).

Under these assumptions, we extend the given i-th computation sequence by the (i+1)-
st action of η. The result of this extension becomes the (i + 1)-st sequence, which as
we show, meets the three assumptions described above.

Let ψi+1 be the (i + 1)-st action of η. To find a desired computation sequence, we
only need to find a client configuration σ′i+1 such that

σ′i
ψi+1−→C(·) σ

′
i+1

and σ′i+1 satisfies assumptions 2 and 3 above. We show that such a σ′i+1 exists by a case
analysis on ψi+1.

– ψi+1 = (t,Client(c)) for some t ∈ {1, . . . , n} and c ∈ PComm. Let ϕk be the
action of τ that is mapped to ψi+1 by π. Then, the computation sequence of τ in
(7) gives us the transition:

σk−1
ϕk−→ C(·) σk. (8)

Let σk = (pck, (sk, hk)) and σ′i = (pc′i, (s
′
i, h
′
i)). We define s′i+1 and σ′i+1 as

follows:

s′i+1(x) =

{
s′i(x), if x is retvalt′ for t′ 6= t;
sk(x), otherwise;

σ′i+1 = (pci[t : pck(t)], (s
′
i+1, hk)).

We show that σ′i+1 is the desired configuration. Since π preserves the order of ac-
tions from ClientAct, visible(ϕ1 . . . ϕk−1) = visible(ψ1 . . . ψi). Then assumption
2 for the i-th computation sequence implies

core(σk−1) = core(σ′i).

Furthermore, since π preserves the order of actions within the same thread,
(ϕ1 . . . ϕk−1)|t = (ψ1 . . . ψi)|t. Then assumption 3 for the i-th computation se-
quence implies

σk−1(t) = σ′i(t) ∧ σk−1(retvalt) = σ′i(retvalt).

Recall that the transitions of thread t do not access the positions of other threads or
retvalt′ for t′ 6= t. Additionally, ϕk = ψi+1. Hence, transition (8) and the definition
of σ′i+1 entails that the following transition is also possible:

σ′i
ψi+1−→ C(·) σ

′
i+1.

Now it remains to show that σ′i+1 satisfies the conditions in assumptions 2 and 3.
To handle assumption 2, consider a finite prefix τ1 of τ such that visible(τ1) =
visible(ψ1 . . . ψi+1). Then

core(σ|τ1|) = core(σk).



But core(σk) = core(σ′i+1) by the definition of σ′i+1. Hence core(σ|τ1|) =
core(σ′i+1), as desired. For assumption 3, we take an arbitrary thread t′ ∈
{1, . . . , n} and consider a finite prefix τ1 of τ such that τ1|t′ = (ψ1 . . . ψi+1)|t′ . If
t′ 6= t, we have

τ1|t′ = (ψ1 . . . ψiψi+1)|t′ = (ψ1 . . . ψi)|t′ .
Hence, by assumption 3 on σ′i,

σ|τ1|(t
′) = σ′i(t

′) ∧ σ|τ1|(retvalt′) = σ′i(retvalt′).

On the other hand, by the definition of σ′i+1,

σ′i(t
′) = σ′i+1(t

′) ∧ σ′i(retvalt′) = σ′i+1(retvalt′).

From the four equalities above, the condition in assumption 3 follows. If t′ = t,

σ|τ1|(t
′) = σk(t

′) = σ′i+1(t
′) ∧ σ|τ1|(retvalt′) = σk(retvalt′) = σ′i+1(retvalt′),

which again implies the condition in assumption 3.
– ϕ ∈ (t, call m(u′)) for some t ∈ {1, . . . , n} and u′ ∈ Val. Let ϕk be the action of
τ that is mapped to ψi+1 by π. Then, the computation sequence of τ in (7) gives us
the transition:

σk−1
ϕk−→ C(·) σk. (9)

Let m(E) be the instruction executed by this transition. Then,

JEKσk−1 = u. (10)

Now, define σ′i+1 as identical to σ′i except σ′i+1(t) = σk(t). We show that σ′i+1 is
the configuration we are looking for. Since π preserves the order of actions within
threads, (ϕ1 . . . ϕk)|t = (ψ1 . . . ψi+1)|t. As ϕk and ψi+1 are the same action by
thread t, this implies

(ϕ1 . . . ϕk−1)|t = (ψ1 . . . ψi)|t.
Hence, assumption 3 for the i-th computation sequence gives us

σk−1(t) = σ′i(t) ∧ σk−1(retvalt) = σ′i(retvalt). (11)

We now argue that for all variables x local to thread t

σk−1(x) = σ′i(x). (12)

Note that (11) already takes care of the case when x is retvalt. For the rest of
the variables, we consider two cases, depending on whether or not (ψ1 . . . ψi)|t
contains any actions in ClientAct. First, assume that it does not contain them. In
this case, (ϕ1 . . . ϕk−1)|t does not contain any actions from ClientAct either. Since
only such actions by thread t can change variables x local to thread t other than
retvalt, for all such variables x we have

σk−1(x) = σ0(x) = σ′i(x).

Hence, (12) holds in this case. Next, assume that (ϕ1 . . . ϕk−1)|t contains an action
from ClientAct. Let ψj be the last action from ClientAct in (ψ1 . . . ψi)|t, and ϕl
the corresponding action in (ϕ1 . . . ϕk−1)|t. In this case,

visible(ϕ1 . . . ϕl) = visible(ψ1 . . . ψj).

So, by assumption 2 on σ′j , we have that

core(σl) = core(σ′j).



Furthermore, by the choice of ψj and ϕl, if x is a variable local to thread t and it is
not retvalt, then

σk−1(x) = σl(x) ∧ σ′i(x) = σ′j(x).
From the three equations above (12) follows.
It is now time to use (12). Recall that the parameter expression E can include only
variables local to the thread t. Furthermore, because of (12), all t-local variables
have the same values in σk−1 and σ′i. Hence,

JEKσk−1 = JEKσ′i. (13)

From (9)-(13) and the definition of σ′i+1, it follows that

σ′i
ψi+1−→ C(·) σ

′
i+1.

It remains to show that σ′i+1 satisfies the requirements in assumptions 2 and 3. The
requirement for assumption 2 holds for σ′i+1, because

visible(ψ1 . . . ψi) = visible(ψ1 . . . ψi+1) ∧ core(σ′i) = core(σ′i+1)

and σ′i already satisfies the same requirement. Our proof for requirement 3 is the
same as in the previous case.

– ψi+1 = (t, ret m(u)) for some t ∈ {1, . . . , n} and u ∈ Val. Let ϕk be the action
in the trace τ that is related to ψi+1 by the bijection π. Then, the computation
sequence of τ in (7) gives us the transition:

σk−1
ϕk−→ C(·) σk.

Since π preserves the order of actions by the same thread, (ϕ1 . . . ϕk−1)|t =
(ψ1 . . . ψi)|t. Hence, by assumption 3 for the i-th computation sequence,

σ′i(t) = σk−1(t).

Let σ′i+1 be the same as σ′i except σ′i+1(retvalt) = σk(retvalt) and σ′i+1(t) =
σk(t). Then

σ′i
ψi+1−→ C(·) σ

′
i+1.

Assumption 2 holds for σ′i+1 because core(σ′i) = core(σ′i+1), visible(ψ1 . . . ψi) =
visible(ψ1 . . . ψiψi+1) and σ′i already satisfies assumption 2. The remaining as-
sumption 3 follows from the definition of σ′i+1 and the fact that only the actions by
thread t can change its thread position and the retvalt variable.

ut

C Proof of Theorem 9 and Additional Material for Section 6

Reduction from lock-freedom to termination. For completeness, we repeat the re-
duction from lock-freedom to termination from [6]. For a libraryA = {m = Cm | m ∈
M} let JAK1 be defined like JAK (see §3), but where the CFG of thread t in MGCn(A)
is (Nt, Tt, v

t
mgc, endtmgc) with Nt = {vtmgc | t = 1..n} ∪ {endtmgc | t = 1..n} and

Tt = {(vtmgc,m(u), endtmgc) | m ∈ M,u ∈ Val}. Thus, JAK1 defines the set of traces
of an arbitrary number of library operations running in parallel. We can now formulate
the reduction from lock-freedom to termination we described informally in §6.

Theorem 15 ([6]). A library A is lock-free if and only if there are no infinite traces in
JAK1.



Proof Theorem 9. By contrapositive, assume JC(A1)K has an infinite trace τ . From
Lemma 10(1), we have that lib(τ) ∈ JA1K. If client(τ) is finite, then the trace lib(τ)
has infinitely many actions from LibAct, but only finitely many from CallRetAct. By the
definition of JA1K, this means that history(lib(τ)) does not satisfy LF, which contradicts
the lock-freedom of A1.

Assume now client(τ) is infinite. By Theorem 4, there exists a trace τ ′ ∈ JC(A3)K
with infinitely many actions from ClientAct∪CallRetAct. From this trace we can easily
construct an infinite trace τ ′′ ∈ JC(A2)K if we replace any divergence at skip	 inA3 by
starving the corresponding thread. (Note that we can do this because the semantics in
Figure 1 allows for unfair schedulers.) This contradicts the assumptions of the theorem.

ut

Counterexample to the compositionality of lock-freedom under fair scheduling.
We now provide a counterexample showing that lock-freedom under fair scheduling is
not compositional. Consider the following library A1:

int x = 1;
void wait() { while (x == 0); }
void blip() { x = 0; x = 1; }

and another library B built on top of A1:

int y = 0;
void m1() { wait(); y = 1; }
void m2() { while (y == 0) blip(); }

The library A1 is lock-free under fair scheduling: in a program using it some method
always terminates. This may not be true under an unfair one, which can suspend a blip
operation forever in between x = 0 and x = 1. The libraryA1 is also linearizable with
respect to the specification

A3 = {wait = blip = (skip�; skip; skip�)}.
The library B is lock-free assuming that it uses

A2 = {wait = blip = skip}.
However, the library B implemented in terms of A1 is not lock-free: m2 can continually
execute blip, which will prevent wait in m1 from returning. The statement y = 1 in
m1, which could stop blips, will thus never be executed.


