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ABSTRACT
Anglican is a probabilistic programming system designed
to interoperate with Clojure and other JVM languages. We
introduce the programming language Anglican, outline our
design choices, and discuss in depth the implementation of
the Anglican language and runtime, including macro-based
compilation, extended CPS-based evaluation model, and func-
tional representations for probabilistic paradigms, such as a
distribution, a random process, and an inference algorithm.

We show that a probabilistic functional language can be
implemented efficiently and integrated tightly with a conven-
tional functional language with only moderate computational
overhead. We also demonstrate how advanced probabilistic
modelling concepts are mapped naturally to the functional
foundation.

CCS CONCEPTS
• Software and its engineering → Functional languages; Spe-
cialized application languages;
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1 INTRODUCTION
For data science practitioners, statistical inference is typi-
cally just one step in a more elaborate analysis workflow.
The first stage of this work involves data acquisition, pre-
processing and cleaning. This is often followed by several
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iterations of exploratory model design and testing of infer-
ence algorithms. Once a sufficiently robust statistical model
and a corresponding inference algorithm have been identified,
analysis results must be post-processed, visualized, and in
some cases integrated into a wider production system.

Probabilistic programming systems [6, 7, 9, 31] represent
generative models as programs written in a specialized lan-
guage that provides syntax for the definition and conditioning
of random variables. The code for such models is generally
concise, modular, and easy to modify or extend. Typically
inference can be performed for any probabilistic program
using one or more generic inference techniques provided by
the system back end, such as Metropolis-Hastings [9, 29, 33],
Hamiltonian Monte Carlo [23], expectation propagation [11],
and extensions of Sequential Monte Carlo [15, 28, 31] meth-
ods.

While probabilistic programming systems shorten the iter-
ation cycle in exploratory model design, they typically lack
basic functionality needed for data I/O, pre-processing, and
analysis and visualization of inference results. In this paper,
we describe the implementation of Anglican [26, 32], a prob-
abilistic programming language that tightly integrates with
Clojure [8], a general-purpose programming language that
runs on the Java Virtual Machine (JVM). Both languages
share a common syntax, and can be invoked from each other.
This allows Anglican programs to make use of a rich set of
libraries written in both Clojure and Java. Conversely, Angli-
can allows intuitive and compact specification of models for
which inference may be performed as part of a larger Clojure
project.

There are several ways to build a programming language
on top of or besides another language. The easiest is an in-
terpreter — a program that reads a program, in its entirety
or line-by-line, and executes it by applying operational se-
mantics of a certain kind to the language. Basic is famous
for line-by-line interpreted implementations.

Another approach is to write a compiler, either to a vir-
tual architecture, so called p-code or byte-code, or to real
hardware. Here, the whole program is translated from the
‘higher-level’ source language to a ‘lower-level’ object lan-
guage, which can be directly executed, either by hardware or
by an interpreter — but the latter interpreter can be made
simpler and more efficient than an interpreter for the source
language.
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On top of these two approaches are methods in which a
new language is implemented ‘inside’ another language of
the same level of abstraction. Different languages provide
different means for this; Lisp is famous for the macro facility
that allows to extend the language almost without restriction
— by writing macros, one adds new constructs to the existing
language. There are several uses of macros — one is to extend
the language syntax, for example, by adding new control
structures; another is to keep the existing syntax but alter
the operational semantics — the way programs are executed
and compute their outputs.

Anglican is implemented in just this way — a macro facil-
ity provided by Clojure, a Lisp dialect, is used both to extend
Clojure with constructs that delimit probabilistic code, and
to alter the operational semantics of Clojure expressions in-
side probabilistic code fragments. Anglican claims its right
to count as a separate language because of the ubiquitous
probabilistic execution semantics rather than a different syn-
tax, which is actually an advantage rather than a drawback
— Clojure programmers only need to know how to specify
the boundaries of Anglican programs, but can use familiar
Clojure syntax to write probabilistic code.

Inference algorithms execute Anglican programs while try-
ing to answer probabilistic queries on those programs. This
execution is significantly different from the one described in
the standard operational semantics. These algorithms typi-
cally run Anglican programs multiple times, often hundreds
of thousands or even millions of times for a single inference
task. The algorithms may make random choices that do not
correspond to any statements in the program, and decide
which parts of the program code are executed and how of-
ten. Some inference algorithms re-run the program multiple
times partially, from a certain point on, while reusing random
choices made in the previous runs as much as possible. A good
high-level picture is that each inference algorithm specifies a
virtual machine that executes Anglican programs according
to a non-standard (usually probabilistic) operational seman-
tics. Supporting a wide range of inference algorithms and
their unusual semantics the main reason that we developed
Anglican as a language rather than as a library.

An implementation of Anglican must therefore address
three issues:

• the Clojure syntax to introduce probabilistic Angli-
can code inside Clojure modules;

• source-to-source transformation of Anglican programs
into Clojure, so that probabilistic execution becomes
possible;

• algorithms which run Clojure code, obtained by
transforming Anglican programs, according to the
probabilistic operational semantics.

Execution of probabilistic programs by inference algorithms
is different from execution of deterministic programs. A prob-
abilistic program is executed multiple times, often hundreds
of thousands or even millions of times for a single inference
task. Random choices may affect which parts of the program
code are executed and how often. Many inference algorithms

require re-running the program multiple times partially, from
a certain point on. Different executions may employ different
random choices. However, for efficient inference a correspon-
dence between random choices in different executions should
be maintained. These are just some of the challenges which
were faced and solved during development of Anglican.

Comparisons of Anglican with other implementations of
probabilistic programming languages [21][16, pp. 32–33] demon-
strate that Anglican achieves state-of-the-art computational
efficiency without sacrificing expressiveness. Anglican lan-
guage syntax, compilation, invocation, and runtime support
of Anglican queries are discussed in detail in further sections.

Contributions
This paper brings the following major contributions:

• Design and implementation of a probabilistic pro-
gramming language Anglican involving tight bilat-
eral integration with a general-purpose programming
language.

• Techniques for efficient and compact implementation
of inference algorithms, such as representation of
inference results as a lazy sequence of samples and a
novel scheme for addressing of checkpoints.

• Anglican’s novel representation of random processes
from statistics and machine learning, such as beta-
Bernoulli process. The representation is stateless
and seamlessly integrates into pure functional com-
putation. This contrasts with typical stateful imple-
mentations of these processes in other probabilistic
programming languages.

2 RELATED WORK
Efficient implementation of expressive probabilistic program-
ming languages has recently been an active area of research [5–
7, 9–11, 18, 23, 31]. There is often a compromise between the
expressiveness of the language and the efficiency of inference.
Some languages emphasize expressiveness [6, 7, 9, 10]; others
restrict the class of models which can be expressed by the
language [11, 13, 23] to facilitate application of efficient in-
ference algorithms. Anglican allows unrestricted specification
of probabilistic models in the spirit of Church [6], while still
supporting efficient scalable inference [15, 20, 31].

Probabilistic programming languages are implemented as
interpreters [6, 9], embedded languages [5, 18, 21], and com-
piled languages [10, 23], and also through source-to-source
transformation with augmentation [7, 29]. Each of these meth-
ods emphasizes different priorities in language design, such
as computational efficiency, integration with an existing de-
velopment environment, ease of implementation, or efficiency
of inference. Anglican is implemented using a combination
of embedding and source-to-source transformational com-
pilation to combine advantages of both approaches. CPS
transformation, employed by Anglican compiler, is also used
in WebPPL [7] and facilitates clean separation between prob-
abilistic programs and inference algorithms and diversity of
applicable inference algorithms.
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Probabilistic programming languages are often implemented
as pure functional languages [6, 9, 21] in the sense that
they do not allow mutable states. This is because reasoning
about probabilistic programs and distributions defined by
the programs, as well as implementation of certain inference
algorithms [28], is easier in such pure functional setting. An-
glican is also implemented as a language without mutable
states. However, there are also languages which follow imper-
ative paradigm and support mutable state directly [5, 23], or
through probabilistic primitives [6, 9]. Anglican introduces a
functional alternative to stateful random primitives in the
form of random processes.

3 DESIGN OUTLINE
An Anglican program, or query, is compiled into a Clojure
function. When inference is performed with a provided algo-
rithm, this produces a sequence of samples. Anglican shares
a common syntax with Clojure; Clojure functions can be
called from Anglican code and vice versa. A simple program
in Anglican can look like the following code:
(defquery model "model selection" data

(let [;;; Guess a distribution.
dist (sample (categorical

[[normal 0.5]
[gamma 0.5]]))

a (sample (gamma 1 1))
b (sample (gamma 1 1))
d (dist a b)]

;;; Observe samples from the distribution.
(loop [observations data]

(when (not-empty observations)
;; Retrieve the first observation as `o'
(let [o (first observations)]

;; Observe 'o' from the guessed
;; distribution 'd'.
(observe d o))

;; Proceed to the next iteration with
;; the rest of observations.
(recur (rest observations))))

;;; Return the distribution and parameters.
[d a b]))

The query builds a model for the input data, a sequence
of data points. It defines a probability distribution on three
variables, d ∈ {normal, gamma} for a distribution type, and a
and b for positive parameters for the type. Concretely, using
the sample forms, the query first defines a so called prior
distribution on these three variables, and then it adjusts this
prior distribution based on observations in data using the
observe form. Samples from this conditioned distribution
(also called posterior distribution) can be obtained by running
the query under one of Anglican’s inference algorithms.

Clojure (and Anglican) programs run on the JVM and
are able to make use of a wide range of Java libraries for
data processing, networking, presentation, and imaging. Con-
versely, Anglican queries can be called from Java and other
JVM languages. Programs involving Anglican queries can be

deployed as JVM jars, and run without modification on any
platform for which the JVM is available.

A probabilistic program, or query, mostly runs determinis-
tic code. Aside from the special forms sample and observe,
which are probabilistic in nature, Anglican can be imple-
mented as a regular programming language. At sample and
observe forms, normal deterministic execution is interrupted,
and Anglican programs must allow the inference algorithm to
step in, recording information and affecting control flow. We
refer these points in the execution as checkpoints. Handling
of checkpoints can be implemented through coroutines/co-
operative multitasking, and parallel execution/preemptive
multitasking, as well as through explicit maintenance of pro-
gram continuations. Anglican follows the latter option.

Internally, an Anglican query is represented by a com-
putation in continuation passing style (CPS) [1]. The An-
glican ‘compiler’, represented by a set of functions in the
anglican.trap namespace, accepts a Clojure subset and
transforms it into a variant of CPS representation, which
allows inference algorithms to intervene in the execution
flow at probabilistic checkpoints 1. The available inference
algorithms include the Particle Cascade [15], Lightweight
Metropolis-Hastings [29], Iterative Conditional Sequential
Monte-Carlo (Particle Gibbs) [31], and others. Inference on
Anglican queries generates a lazy sequence of samples, which
can be processed asynchronously in Clojure for analysis, in-
tegration, and decision making.

Depending on the inference algorithm, sample and observe
may result in implicit input/output operations and control
changes. For example, observe in particle filtering inference
algorithms [31] is a non-deterministic control statement at
which a particle (corresponding to a user-level thread exe-
cuting a program) can be either replicated or terminated.
Similarly, in Metropolis-Hastings [29], sample is both an in-
put statement which ‘reads’ values from a random source, and
a non-deterministic control statement (with delayed effect),
eventually affecting acceptance or rejection of a sample.

Clojure is a functional language, and continuation-passing
style (CPS) transformation is a well-developed technique
in the area of functional languages. Implementing a variant
of CPS transformation seemed to be the most flexible and
lightweight option — any other form of concurrency would
put a higher burden on the underlying runtime (JVM) and
the operating system. Consequently, Anglican has been im-
plemented as a CPS-transformed computation with access
to continuations in probabilistic checkpoints.

Anglican is intended to co-exist with Clojure and be a
part of the source of a Clojure program. To facilitate this,
Anglican programs, or queries, are wrapped by macros (de-
fined in the anglican.emit namespace) which call the CPS
transformations and define Clojure values suitable for passing
as arguments to inference algorithms (defquery, query). In
addition to defining entire queries, Anglican promotes mod-
ularization of probabilistic models through the definitions

1[7] also describe a CPS-based implementation of a probabilistic pro-
gramming language.
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of probabilistic functions using defm (Anglican counterpart
of Clojure defn). Probabilistic functions are written in An-
glican, may include probabilistic forms sample and observe,
and can be seamlessly called from inside Anglican queries,
just like functions locally defined within the same query.

The operational semantics of an Anglican query are dif-
ferent from those of Clojure code, and are determined by an
inference algorithm. Thus, Anglican queries must be called
through these inference algorithms, rather rather than ‘di-
rectly’. For this purpose, the anglican.inference names-
pace declares the (ad-hoc) polymorphic function infer using
Clojure’s multimethod mechanism. This function accepts
and runs an Anglican query, and returns a lazy sequence
of weighted samples from the distribution defined by the
query. Providing an implementation of this function is a
responsibility of the inference algorithm, which should also
override the polymorphic function checkpoint (defined as
a multimethod) so as to handle sample and observe in an
algorithm-specific manner and to construct an appropriate
result on the termination of a probabilistic program.

Finally, Anglican queries use ‘primitive’, or commonly
known and used, distributions, to draw random samples
and condition observations. Many primitive distributions
are provided by the anglican.runtime namespace, and an
additional distribution can be defined by the user by imple-
menting a particular set of functions for the distribution (via
Clojure’s protocol mechanism). The defdist macro provides
a convenient syntax for defining primitive distributions.

4 PROBABILITY OF A PROGRAM
EXECUTION

Anglican programs define probability distributions over se-
quences of values, implicitly by means of program execution.
A good way to understand this is to imagine the following
interpreter of Anglican programs. Starting from a fixed ini-
tial state, the interpreter runs the deterministic parts of a
program according to the standard semantics, executes the
sample form by generating a random sample, and treats
the observe form by skip. More importantly, the interpreter
keeps a log that records information about all the sample
and observe forms encountered during execution. The in-
formation recorded for sample is a triple (F, x, α) of (i) a
primitive probability distribution F , such as the standard
normal, for which we have the probability density pF ; (ii) a
value x sampled from the distribution F ; and (iii) an address
α that uniquely and systematically identifies the random
choice made. The information recorded for observe is a pair
(G, y) where G is a primitive probability distribution as F
from above and y is an observed value. Thus, a log is a
sequence of triples (F, x, α) and pairs (G, y).

One important property of logs is that they are determined
by their projections to triples: when two logs project to the
same sequence of triples, they must be the same. This is
because the triples in a log contain all the information about
random choices made during execution and all the non-sample
forms in Anglican programs are deterministic. We define a

trace xxx to be a sequence of triples (F, x, α), and say that xxx
is feasible if the trace is precisely the triple part of the log
of some execution. Such a feasible trace uniquely determines
the rest of the execution and its log. In particular, it decides
the pair part of the log, namely, a sequence of (Gj , yj ) for
observed values. We call this sequence image of xxx and denote
it by yyy.

A (almost-surely terminating) probabilistic program de-
fines a probability distribution over finite feasible traces xxx
with probability density π(xxx) := γ (xxx)/Z where

γ (xxx) :=
|xxx|∏
i=1

pFi
(xi)

|yyy|∏
j=1

pGj
(yj ) for the image yyy of xxx, (1)

and Z is the normalization constant Z :=
∫
γ (xxx)d(xxx). The

integral and the density use the default measure obtained by
the standard extension of a σ-finite measure on finite traces
where the σ-finite measure itself is defined by a countable
sum of Lebesgue and counting measures.

5 LANGUAGE
5.1 Syntax
The Anglican language is a subset of Clojure2. Anglican
queries are defined within defquery. The value of the last
expression in the query body is the result of the query.
(defquery name doc-string? param? expr*)

Anglican functions outside of a query are defined using defm
with the same syntax as Clojure defn, however name is bound
to an Anglican function.
(defm name doc-string? [param*] expr*)

Within the body of defquery and defm, the following special
forms are supported, with syntax and semantics matching
those of Clojure:
(if pred then else?)
(when pred expr*)
(cond clause*)
(case expr clause* default?)
(let [binding*] expr*)
(and expr*)
(or expr*)
(fn name? [param*] expr*)
(loop [binding*] expr*)
(recur expr*)

In defquery parameter lists, let bindings, and fn argument
lists, Clojure vector destructuring is supported. Literals for
atomic types and compound literals for vectors, hash maps,
and sets are supported just like in Clojure.

Clojure provides special forms loop and recur for writ-
ing tail-recursive programs. Anglican programs are CPS-
converted and do not use the stack; recursive calls in Angli-
can cannot lead to stack overflow. However, loop and recur
2It would be possible to support almost full Clojure by expanding all
macros in the Anglican source code. However, in Clojure, unlike in
Scheme [22] or Common Lisp [19], the result of macro-expansion of
derived special forms is not well specified and implementation specific.
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are provided in Anglican for convenience as a way to express
loops. Unlike in Clojure though, recur is supported only
inside a loop.

5.2 Core Library
All of Clojure’s core library except for higher-order functions
(functions that accept other functions as arguments) is avail-
able in Anglican. Higher-order functions cannot be reused
from Clojure, as they have to be re-implemented to accept
functional arguments in CPS form. The following higher-
order functions are implemented: map, reduce, filter, some,
repeatedly, comp, partial.

5.3 Special Forms
In addition to re-implementing a subset of Clojure, Anglican
provides special forms for probabilistic inference:

(sample address? distribution)
(observe address? distribution value)
(mem function)
(store tag value)
(retrieve tag)

A good way to understand the sample and observe forms
is to consider the imaginary interpreter in Section 4. Under
this interpreter, the sample form draws a value x from its
parameter distribution F , and generates a unique address α
for this random draw. Then, it appends (F, x, α), the record of
this random draw, to the log of the current execution. Finally,
the form returns x. The computation of the observe form
is simpler. It just appends its two parameters, distribution
G and observed value v, to the log of the current execution,
and returns nil.

What we have just described is idealised semantics of
sample and observe. The actual computation involved in
handling sample and observe depends on the inference algo-
rithm. Different inference algorithms may treat sample and
observe differently as long as they compute the same distri-
bution on traces (i.e. sequences of sampled values), namely,
the one in Equation 1. Formal semantics for an idealized
version of Anglican or other higher-order probabilistic pro-
gramming languages are introduced in [4, 24]; in general
though, specifying semantics of higher-order probabilistic
programming languages is an open problem.

sample and observe may appear anywhere in the code of
an Anglican program. To support these forms, the inference
engine must be able to intervene into execution of the pro-
gram, perform computations related to inference, and control
further execution of the program. This tight and complicated
interaction between the program and the inference engine
necessitates implementing Anglican as a language rather than
a library.

The remaining Anglican special forms support carrying
values in the hidden program state. mem implements stochastic
function memoization (Section 7.3.2). store stores a value
for a tag in the program state, which can be later retrieved
using retrieve during the same program execution.

6 CASE STUDY
Before delving into implementation details, we discuss a case
study of the use of the Anglican language and environment.
This case study takes an inference problem for which a so-
lution is not immediately obvious, the Deli dilemma, and
discusses how this problem can be solved by writing an An-
glican program, executing the program, and post-processing
results.

The program presented in this section is intentionally short
and simple. Anglican is capable of compiling and running
elaborate programs and handling large amounts of data. Ad-
vanced examples of Anglican programs and inference can be
found in literature on applications of probabilistic program-
ming [16, 17, 27].

6.1 The Deli Dilemma
Imagine that we are facing the following dilemma:

A customer wearing round sunglasses came to a deli at
1:13pm, and grabbed a sandwich and a coffee. Later on the
same day, a customer wearing round sunglasses came at
6:09pm and ordered a dinner. Was it the same customer?

Additionally, we know that:
• There is an adjacent office quarter, and it takes

between 5 and 15 minutes on average to walk from
an office to the deli, where different average times
are for different buildings in the quarter.

• Depending on traffic lights, the walking time varies
by about 2 minutes.

• The lunch break starts at 1:00pm, and the workday
ends at 6:00pm.

• Based on the similarity of appearance, the waiter
assesses the odds that this is the same customer as
2 to 1.

6.2 Anglican Query
We want to formalize the dilemma as an Anglican query, based
on the knowledge we have. Let us formalize the knowledge in
Clojure (the times are in minutes). First, we encode our prior
information which holds true independently of the customer’s
visit:
(def mean-time-to-arrive "average time to arrive" 10.)
(def sd-time-to-arrive

"standard deviation of arrival time" 3.)
(def time-sd "walking time deviation" 1.)

Then, we record our observations, based on which we want
to solve the dilemma:
(def lunch-delay

"time between lunch break and lunch order" 13.)
(def dinner-delay

"time between end of day and dinner order" 9.)
(def p-same

"prior probability of the same customer" (/ 2. 3.))

For inference, one often chooses a known distribution to
represent uncertainty. We choose the normal distribution for
representing uncertainty about average arrival time.
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(def time-to-arrive-prior
"prior distribution of average arrival time"
(normal mean-time-to-arrive sd-time-to-arrive))

There are two possibilities: either the same customer visited
the deli twice, or two different customers came to the deli,
one for lunch and the other for dinner. We define an Anglican
function for each case. Note that this is the first time we
switch from Clojure to Anglican. The functions must be
written in Anglican (and hence defined using defm instead of
defn) because they contain probabilistic forms sample and
observe.

(defm same-customer
"observe the same customer twice"
[time-to-arrive-prior lunch-delay dinner-delay]
(let [time-to-arrive (sample time-to-arrive-prior)]

(observe (normal time-to-arrive time-sd)
lunch-delay)

(observe (normal time-to-arrive time-sd)
dinner-delay)

[time-to-arrive]))

(defm different-customers
"observe different customers"
[time-to-arrive-prior lunch-delay dinner-delay]
(let [time-to-arrive-1 (sample time-to-arrive-prior)

time-to-arrive-2 (sample time-to-arrive-prior)]
(observe (normal time-to-arrive-1 time-sd)

lunch-delay)
(observe (normal time-to-arrive-2 time-sd)

dinner-delay)
[time-to-arrive-1 time-to-arrive-2]))

Both functions have the same structure: we first ‘guess’ the
average arrival time and then observe the actual time from a
distribution parameterized by the guessed time. However, in
same-customer the average arrival time is the same for both
the lunch and the dinner, while in different-customers two
average arrival times are guessed independently.

We are finally ready to define the query in Anglican.

(defquery deli [time-to-arrive-prior
lunch-delay dinner-delay]

(let [is-same-customer (sample (flip p-same))
observe-customer (if is-same-customer

same-customer
different-customers)]

{:same-customer is-same-customer,
:times-to-arrive (observe-customer

time-to-arrive-prior
lunch-delay dinner-delay)}))

Performing inference on the query deli computes the
probability that the same customer visited the deli twice, as
well as probability distributions of average arrival times for
both cases.

6.3 Inference
Having defined the query, we are now ready to run the query
using an inference algorithm. Function doquery provided by
the anglican.core namespace accepts the inference algo-
rithm, the query, and optional parameters, and returns a lazy
sequence of samples. We use here the inference algorithm
called Lightweight Metropolis-Hastings (LMH). The algo-
rithm is somewhat slow to converge but can be used with any
Anglican query, and should be robust enough for our simple
problem. We bind the results of doquery to variable samples,
to analyse the results later. However, since the sequence is
lazy, no inference is performed and no samples are generated
until they are retrieved and processed.
(def samples (doquery :lmh deli nil))

To approximate the inferred distribution, we extract a
finite subsequence of samples. Many algorithms use an initial
subsequence of samples to converge to the target distribution.
Hence, we drop initial N samples (N is 5000 in the code
snippet below), and collect the next N samples.
(def N 5000)
(def results (map get-result (take N (drop N samples))))

Based on the collected samples we compute an approxi-
mation of the posterior probability p-same+ that the same
customer visited the deli twice.
(def p-same+ (/ (count (filter :same-customer results))

(double N)))

The :same-customer here represents a function that looks
up the entry with the same name in a given map. The
map stores the result of a single sampled execution, and
the :same-customer entry in the map records whether the
same customer visits the deli in the execution. The filter
function in p-same+ goes through all the maps in results
and picks only the ones whose executions involve just one
customer.

With the specified observations, p-same+ is ≈ 0.12. The
probability is much lower than the waiter’s guess p-same (2

3 ).
Of course, the results may vary from run to run, and, for
a given algorithm, the accuracy depends on the number of
samples we decide to retrieve.

Besides computing the posterior probability that the same
customer visited the deli twice, we may want to know the
average time (or times) to arrive. In Bayesian inference, it is
common to report distributions instead of ‘most likely’ values.
We use query results in retrieved samples to approximate
the distributions, and plot distribution histograms for the
same customer visiting twice (Figure 1) and two different
customers (Figure 2).
;; single customer
(def time-to-arrive+

(map (fn [x] (first (:times-to-arrive x)))
(filter :same-customer results)))

(def mean-to-arrive+ (mean time-to-arrive+))
(def sd-to-arrive+ (std time-to-arrive+))
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For two customers there are two different time distributions, let's compare them.

What if we had an algorithm that constructs the posterior? Let's rewrite the deli query with
posterior distributions and without observations.

#'deli/deli+
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(plot/histogram  time-to-arrive+
                 :x-title (format "arrival time: mean=%6g sd=%6g" 
                                  mean-to-arrive+
                                  sd-to-arrive+))

(plot/compose 
  (plot/histogram (map first times-to-arrive+) 
                  :x-title (format 
                             "arrival times: mean1=%6g, sd1=%6g; mean2=%6g, sd2=%6g" 
                             mean-1-to-arrive+ sd-1-to-arrive+
                             mean-2-to-arrive+ sd-2-to-arrive+)
                  :plot-range [[6 16] :all])
  (plot/histogram (map second times-to-arrive+)))

(defquery deli+
  (let [same-customer (sample (flip p-same+))]
    (predict :same-customer same-customer)
    (if same-customer
      ;; One customer
      (let [time-to-arrive (sample (normal mean-to-arrive+ sd-to-arrive+))]
         (predict :time-to-arrive time-to-arrive))
      ;; Two customers
      (let [time-to-arrive-1 (sample (normal mean-1-to-arrive+ sd-1-to-arrive+))
            time-to-arrive-2 (sample (normal mean-2-to-arrive+ sd-2-to-arrive+))]
        (predict :times-to-arrive [time-to-arrive-1 time-to-arrive-2])))))

This is what **Variational Inference** algorithm does **AUTOMATICALLY**.

Figure 1: Arrival time distribution for a single customer.

For two customers there are two different time distributions, let's compare them.

What if we had an algorithm that constructs the posterior? Let's rewrite the deli query with
posterior distributions and without observations.

#'deli/deli+
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(plot/histogram  time-to-arrive+
                 :x-title (format "arrival time: mean=%6g sd=%6g" 
                                  mean-to-arrive+
                                  sd-to-arrive+))

(plot/compose 
  (plot/histogram (map first times-to-arrive+) 
                  :x-title (format 
                             "arrival times: mean1=%6g, sd1=%6g; mean2=%6g, sd2=%6g" 
                             mean-1-to-arrive+ sd-1-to-arrive+
                             mean-2-to-arrive+ sd-2-to-arrive+)
                  :plot-range [[6 16] :all])
  (plot/histogram (map second times-to-arrive+)))

(defquery deli+
  (let [same-customer (sample (flip p-same+))]
    (predict :same-customer same-customer)
    (if same-customer
      ;; One customer
      (let [time-to-arrive (sample (normal mean-to-arrive+ sd-to-arrive+))]
         (predict :time-to-arrive time-to-arrive))
      ;; Two customers
      (let [time-to-arrive-1 (sample (normal mean-1-to-arrive+ sd-1-to-arrive+))
            time-to-arrive-2 (sample (normal mean-2-to-arrive+ sd-2-to-arrive+))]
        (predict :times-to-arrive [time-to-arrive-1 time-to-arrive-2])))))

This is what **Variational Inference** algorithm does **AUTOMATICALLY**.

Figure 2: Arrival time distributions for two customers.

;; two customers
(def times-to-arrive+

(map :times-to-arrive
(filter (fn [x] (not (:same-customer x))) results)))

(def mean-1-to-arrive+ (mean (map first times-to-arrive+)))
(def sd-1-to-arrive+ (std (map first times-to-arrive+)))
(def mean-2-to-arrive+ (mean (map second times-to-arrive+)))
(def sd-2-to-arrive+ (std (map second times-to-arrive+)))

In addition to plotting the distribution histograms, we use
functions mean, std provided in the anglican.stat names-
pace along with other useful statistical functions to compute
summary statistics. This is another illustration of advantage
of tight integration between Clojure and Anglican — proba-
bilistic models are expressed in Anglican. However, processing
of data and results can rely on the full power of Clojure.

For inference, we chose to use Lightweight Metropolis-
Hastings, perhaps somewhat arbitrarily. A strength of prob-
abilistic programming is that models are separated from
inference. To switch to a different inference algorithm we
just need to pass a different value to doquery. For example,
we may decide to use Black-Box Variational Bayes (BBVB),
which may not work equally well for all probabilistic pro-
grams, but is much faster to converge.
(def samples (doquery :bbvb deli nil))

We can still use samples and summary statistics with
BBVB to approximate the posterior distribution. However,
variational inference approximates the posterior by known
distributions, and we can directly retrieve the distribution
parameters.
(clojure.pprint/pprint

(anglican.bbvb/get-variational
(nth samples N)))

{S28209
{(0 anglican.runtime.normal-distribution)
{:mean 10.99753360180663,
:sd 0.7290976433082352}},

S28217
{(0 anglican.runtime.normal-distribution)
{:mean 12.668050292254202,
:sd 0.9446695174790353}},

S28215
{(0 anglican.runtime.normal-distribution)
{:mean 9.104132559955836,
:sd 0.9479290526821788}},

S28219
{(0 anglican.runtime.flip-distribution)
{:p 0.11671977016875924,
:dist {:min 0.0, :max 1.0}}}}

We can guess that the variational distributions correspond
to the prior distributions in the sample forms, in the order
of appearance. However, it would help if we could use more
informative labels instead of automatically generated symbols
S28209, S28217, etc. Here the option to specify identifiers
for probabilistic forms explicitly comes handy. If we modify
the sample forms to use explicit identifiers (only the forms
are shown for brevity), the output becomes much easier to
analyse.
(defm same-customer

...
(sample :arrival-time-same

time-to-arrive-prior)]
...)

(defm different-customers
...
(sample :arrival-time-first

time-to-arrive-prior)
...
(sample :arrival-time-second

time-to-arrive-prior)]
...)

(defquery deli ...
...
(sample :same-or-different

(flip p-same))
...)

The output becomes much easier to interpret and analyse
programmatically.
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{:arrivate-time-same
{(0 anglican.runtime.normal-distribution)
{:mean 10.99753360180663,
:sd 0.7290976433082352}},

:arrival-time-first
{(0 anglican.runtime.normal-distribution)
{:mean 12.668050292254202,
:sd 0.9446695174790353}},

:arrival-time-second
{(0 anglican.runtime.normal-distribution)
{:mean 9.104132559955836,
:sd 0.9479290526821788}},

:same-or-different
{(0 anglican.runtime.flip-distribution)
{:p 0.11671977016875924,
:dist {:min 0.0, :max 1.0}}}}

This completes the case study, where we showed a prob-
abilistic programming solution of a problem, implemented
and analysed in Anglican and Clojure, using two different
inference algorithms.

7 MACRO-BASED COMPILATION
Anglican queries are compiled into Clojure using a variant of
CPS transformation. In a basic CPS-transformed program,
a continuation receives a single argument — the computed
value. In Anglican, two flows of computation are performed
in parallel: values are computed by functional code, and,
at the same time, the state of the probabilistic program,
used by inference algorithms, is updated by probabilistic
forms. Because of that, in Anglican a continuation accepts
two arguments:

• the computed value;
• the internal state, bound to the local variable $state

in every lexical scope.
The compilation relies on the Clojure macro facility, and

implemented as a library of functions in namespace anglican.trap,
which are invoked by macros. The CPS transformation is
organized in top-down manner. The top-level function is
cps-of-expression, which receives an expression and a con-
tinuation, and returns the expression in the CPS form. For
example, the CPS transformation of constant 1 with contin-
uation cont thus takes the following form:
=> (cps-of-expression 1 'cont)
(cont 1 $state)

7.1 The State
The state ($state) is threaded through the computation
and contains data used by inference algorithms. $state is a
Clojure hash map:
(def initial-state

"initial program state"
{:log-weight 0.0, ;; map :log-weight to 0.0
:result nil, ;; map :result to nil
::store nil, ;; map ::store to nil
::mem {}, ;; map ::mem to the empty map

... })

which records inference-relevant information under various
keys such as :log-weight and ::mem. The full list of map
entries depends on the inference algorithm. CPS transforma-
tion routines are not aware of the contents of $state and do
not access or modify it directly. Rather, they just thread the
state unmodified through the computation. The sole excep-
tion is the transformation of the mem form (which converts a
function to one with memoization). Algorithm-specific han-
dlers of checkpoints corresponding to the probabilistic forms
(sample, observe) modify the state and insert an updated
state into the computation.

7.2 Expression Kinds
There are three different kinds of inputs to CPS transforma-
tion:

• Literals, which are constant expressions. They are
passed as an argument to the continuation unmodi-
fied.

• Value expressions such as the fn form (called opaque
expressions in the code). They must be transformed
to CPS, but the transformed object is passed to the
continuation as a whole, opaquely.

• General expressions (which we call transparent ex-
pressions). The continuation is threaded through
such an expression in an expression-specific way,
and can be called in multiple locations of the CPS-
transformed code, such as in all branches of an if
statement.

7.2.1 Literals. Literals are the same in Anglican and Clo-
jure. They are left unmodified; literals are a subset of opaque
expressions. However, the Clojure syntax has a peculiarity of
using the syntax of compound literals (vectors, hash maps,
and sets) for data constructors. Hence, compound literals
must be traversed recursively, and if there is a nested non-
literal component, transformed into a call to the correspond-
ing data constructor. Functions cps-of-vector, cps-of-hash-map,
cps-of-set, called from cps-of-expression, transform Clo-
jure constructor syntax ([...], {...}, #{...}) into the cor-
responding calls:

=> (cps-of-vector [0 1 2] 'cont)
(cont (vector 0 1 2) $state)
=> (cps-of-hash-map {:a 1, :b 2} 'cont)
(cont (hash-map :a 1, :b 2) $state)
=> (cps-of-set #{0 1} 'cont)
(cont (set (list 0 1)) $state)

7.2.2 Opaque Expressions. Opaque, or value, expressions,
have a different shape in the original and the CPS form.
However, their CPS form follows the pattern (continuation
transformed-expression $state), and thus the transfor-
mation does not depend on the continuation parameter, and
can be accomplished without passing the parameter as a
transformation argument. Primitive (non-CPS) procedures
used in Anglican code, (fn ...) forms, and (mem ...) forms
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are opaque and transformed by primitive-procedure-cps,
fn-cps, and mem-cps, correspondingly: a slightly simplified
CPS form of expression
(fn [x y]

(+ x y))

would be
(fn [cont $state x y]

(cont (+ x y) $state))

In the actual code an automatically generated fresh symbol
is used instead of cont.

7.2.3 General Expressions. The most general form of CPS
transformation receives an expression and a continuation as
parameters, and returns the expression in CPS form with
the continuation parameter potentially called in multiple tail
positions. General expressions can be somewhat voluntarily
divided into several groups:

• binding forms — let and loop/recur;
• flow control — if, when, cond, case, and, or and do;
• function applications and apply;
• probabilistic forms — observe, sample, store, and

retrieve.
Functions that transform general expressions accept the
expression and the continuation as parameters, and are
consistently named cps-of-form, for example, cps-of-do,
cps-of-store.

7.3 Implementation Highlights
So far we introduced the basics of Anglican compilation
to Clojure. The described approaches and techniques are
important for grasping the language implementation but
relatively well-known. In the rest of the section we focus on
challenges we met and resolved while implementing Anglican,
as well as on implementation of unique features of Anglican
as a probabilistic programming language.

7.3.1 Probabilistic Forms. The purpose of probabilistic
forms sample and observe is to interrupt deterministic com-
putation and transfer control to the inference algorithm.
Practically, this is achieved by returning a record that rep-
resents the state of program execution at the checkpoint,
rather than invoking a continuation. The Clojure record
used to interrupt execution at sample and observe forms
are anglican.trap.sample and anglican.trap.observe re-
spectively. These records contain a unique identifier (which
we will discuss in detail in section 8.3), the arguments to the
special form, the continuation, and the state.
=> (cps-of-expression '(sample dist) 'cont)
(->sample 'S1 dist cont $state)
=> (cps-of-expression '(observe dist v) 'cont)
(->observe 'O1 dist v cont $state)

Here ->sample and ->observe in the CPS-transformed ex-
pressions are constructors for Clojure records, and they take
values of their fields as arguments. Calling the continuation
resumes the computation.

Upon encountering a sample or observe record, the in-
ference algorithm computes the updated program state and
the value to be passed to the continuation. How the state
is updated, the number of times the continuation is called,
and the value passed to the continuation of sample depend
on the inference algorithm executing the program. Section 8
provides more detail on internals of inference algorithms and
their interaction with probabilistic programs.

* * *
In addition to sample and observe, there are a few other

special forms — store, retrieve, mem — which modify pro-
gram state. These forms are translated into expressions involv-
ing calls of functions from the anglican.state namespace.
The mem form, which implements memoization, deserves a
more detailed explanation.

7.3.2 Memoization. The author of a probabilistic model
might want to randomly draw a feature value for each entity
in a collection, but to retain the same drawn value for the
same entity during a single run of the probabilistic program.
For example, a person may have brown or green eyes with
some probability, but the same person will always have the
same eye color. This can be achieved through the use of
memoized functions. In Anglican, one might write:
(let [eye-color (mem (fn [person]

(sample (categorical ['brown 0.5]
['green 0.5]))))]

(if (not= (eye-color 'bill) (eye-color 'john))
(eye-color 'bill)
(eye-color 'john)))

The mem form converts a function to a memoized variant,
which remembers past inputs and the corresponding outputs,
and returns the remembered output when given such a past
input, instead of calling the original function with it. As a
result, for every input, random draws will be made only for
the first time that the memoized function is called with the
input; all subsequent calls with the input will just reuse these
draws and return the same output.

Memoization is often implemented on top of a mutable
dictionary, where the key is the argument and the value
is the returned value. However, there are no mutable data
structures in a probabilistic program. Hence, mem’s memory
is stored as a nested dictionary in the program state intro-
duced during CPS transformation (function mem-cps). Every
memoized function gets a unique automatically generated
identifier. Each time a memoized function is called, one of
two continuations is chosen, depending on whether the same
function (a function with the same identifier) was previously
called in the same run of the probabilistic program with
the same argument. If the memoized result is available, the
continuation of the memoized function call is immediately
called with the stored result. Otherwise, the argument of mem
is called with a continuation which first creates an updated
state with the memoized result, and then calls the ‘outer’
continuation with the result and the updated state:
=> (mem-cps '(foo))
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(let [M (gensym "M")]
(fn mem23623 [C $state & P]

(if (in-mem? $state M P)
;; previously memoized result
(fn [] (C (get-mem $state M P) $state))
;; new computation
(clojure.core/apply foo

;; memoize result in state
(fn [V $state]

(fn [] (C V (set-mem $state M P V))))
$state P)))))

Memoized results are not shared among multiple runs of a
probabilistic program, which is intended. Otherwise, it would
be impossible to memoize functions with random results.

7.3.3 Continuations. Continuations are functions that are
called in tail positions with the computed value and state
as their arguments — in CPS there is always a function
call in every tail position and never a value. Continuations
are passed to CPS transformers, and when transformers are
called recursively, the continuations are generated on the fly.

There are two critical issues related to generation of con-
tinuations:

• unbounded stack growth in recursive code;
• code size explosion when a non-atomic continuation

is symbolically substituted in multiple locations.

Managing stack size. In implementations of functional pro-
gramming languages stack growth is avoided through tail call
optimization (TCO). However, Clojure does not support a
general form of TCO, and CPS-transformed code that creates
deeply nested calls will easily exhaust the stack. Anglican
employs a workaround called trampolining [3] — instead of
inserting a continuation call directly, the transformer always
wraps the call into a thunk, or parameterless function. The
thunk is returned and called by the trampoline (Clojure
provides function trampoline for this purpose) — this way
the computation continues, but the stack is collapsed on
every continuation call. Function continue implements the
wrapping and is invoked on every continuation call:
=> (continue 'cont 'value 'state)
(fn [] (cont value state))

Correspondingly, the full, wrapped CPS form of
(fn [x y] (+ x y))

becomes
(fn [cont $state x y] (fn [] (cont (+ x y) $state)))

When the CPS-transformed function is called, it returns a
thunk (a parameterless function) which is then re-invoked
through the trampoline, with the stack collapsed.

Avoiding exponential code growth. To realize potential dan-
ger of code size explosion, consider CPS transformation of
code
(if (adult? person)

(if (male? person)
(choose-beer)

(choose-wine))
(choose-juice))

with continuation
(fn [choice _]

(case (kind choice)
:beer (beer-jar choice)
:wine (wine-glass choice)
:juice (juice-bottle choice)))

During CPS transformation, if we substitute the code of this
continuation for all of its calls, the code will be repeated three
times in the CPS-transformed expression. In general, CPS
code can grow extremely large if the code of continuations is
substituted repeatedly.

To circumvent this inefficiency, CPS transformers for ex-
pressions with multiple continuation points (if and deriva-
tives, and, or, and case) bind the continuation to a fresh
symbol if it is not yet a symbol. Macro defn-with-named-
cont establishes the binding automatically:
=> (cps-of-if '(c t f) '(fn [x] (* 2 x)))
(let [cont (fn [x] (* 2 x))]

(if c
(fn [] (cont t $state))
(fn [] (cont f $state))))

7.3.4 Primitive Procedures. When an Anglican function is
transformed into a Clojure function by fn-cps, two auxiliary
parameters are added to the beginning of the parameter list —
continuation and state. Correspondingly, when a function call
is transformed (by cps-of-application or cps-of-apply),
the current continuation and the state are passed to the called
function. Anglican can also call Clojure functions; however,
Clojure functions do not expect these auxiliary parameters.
To allow the mixing of Anglican (CPS-transformed) and
Clojure function calls in Anglican code, the Anglican compiler
must CPS-transform expressions selectively [12]. It must be
able to recognize ‘primitive’ (that is, implemented in Clojure
rather than in Anglican) functions, and invoke those functions
in a direct, not CPS, style.

Providing an explicit syntax for differentiating between
Anglican and Clojure function calls would be cumbersome.
Another option would be to use meta-data to identify Angli-
can function calls at runtime. However, this would impact
performance, and good runtime performance is critical for
probabilistic programs. The approach taken by Anglican is to
maintain a list of unqualified names of primitive functions, as
well of namespaces in which all functions are primitive, and
recognize primitive functions by name — if a function name
is not in the list, the function is an Anglican function. Global
dynamically-bound variables *primitive-procedures* and
*primitive-namespaces* contain the initial lists of names
and namespaces, correspondingly. Of course, local bindings
can shade global primitive function names. For example,
first is a Clojure primitive function that takes the first
element from an ordered collection such as list and vector,
but inside the let block in the following example, first is an
Anglican function:
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(let [first (fn [[x & y]] x)]
(first '[1 2 3]))

The Anglican compiler takes care of the shading by rebind-
ing *primitive-procedures* in every lexical scope (fn-cps,
cps-of-let). Macro shading-primitive-procedures auto-
mates the shading

8 INFERENCE ALGORITHMS
A probabilistic program in Anglican may look almost like a
Clojure program. However, the purpose of executing a proba-
bilistic program is different from that of a ‘regular’ program:
instead of producing the result of a single execution, a prob-
abilistic program computes, exactly or approximately, the
distribution from which execution results are drawn. Charac-
terising this distribution is done by the inference algorithm.

Probabilistic programming system Anglican provides a va-
riety of approximate inference algorithms. Ideally, Anglican
should automatically choose the most appropriate algorithm
for each probabilistic program. In practice, selecting an infer-
ence algorithm, or a combination thereof, is still a challenging
task, and program structure, intended use of the computa-
tion results, performance, approximation accuracy, and other
factors must be taken into consideration. New algorithms are
being developed and added to Anglican [20, 25, 27], as a part
of ongoing research.

In the implementation of Anglican, inference algorithms are
instantiations of the (ad-hoc) polymorphic function infer de-
clared as Clojure’s multimethod in the anglican.inference
namespace. The function accepts an algorithm identifier, a
query (the probabilistic program in which to perform the in-
ference), an initial value for the query, and optional algorithm
parameters.

8.1 The infer Function
The sole purpose of the algorithm identifier of infer is to
invoke an appropriate overloading or implementation of the
function — conventionally, the identifier is a Clojure key-
word (a symbolic constant starting with colon) related to the
algorithm name, such as :lmh for Lightweight Metropolis-
Hastings and :pcascade for Particle Cascade. The second
parameter is a query as defined by the defquery form or
its anonymous version query. For instance, the following
Clojure code invokes infer on an Anglican query defined
anonymously via the query form:

(let [x 1]
(infer :pgibbs (query x) nil))

A query is executed by calling the initial continuation of the
query, which accepts a value and a state. The state is supplied
by the inference algorithm, while the value is provided as
a parameter of infer. A query does not have to have any
parameters, in which case the value can be simply nil. When
a query is defined with a binding for the initial value, the
value becomes available inside the query. A query may accept
multiple parameters using Clojure’s structured binding. For
instance, it may take multiple parameters as components of

an input vector. In this case, the initial value is given as a
structured value, such as a vector, and the components of
this value are matched to the corresponding parameters of
the query via the destructuring mechanism of Clojure. For
example,

(defquery my-query [mean sd]
(sample (normal mean sd)))

(def samples (infer :lmh my-query [1.0 3.0]))

Finally, any number of auxiliary arguments can be passed
to infer. By convention, the arguments should be keyword
arguments, and are interpreted in the algorithm-specific man-
ner.

8.2 Internals of an Inference Algorithm
Implementing an inference algorithm in Anglican amounts
to defining an appropriate version of the infer function and
checkpoint handlers for sample and observe. The definitions
may just reuse default implementations or override them
with new algorithm-specific treatment of sample and observe
forms and inference state.

Let us illustrate this implementation step with importance
sampling, the simplest inference algorithm. Here is an imple-
mentation of the infer function for the algorithm:

;; Make ::algorithm be converted to
;; :anglican.inference/algorithm whenever necessary
(derive ::algorithm :anglican.inference/algorithm)

;; invoked when algo parameter is :importance
(defmethod infer :importance [algo prog value & {}]

(letfn
;; recursive function without any parameter
[sample-seq []

;; lazy infinite sequence
(lazy-seq (cons

(:state (exec ::algorithm prog value
initial-state))

(sample-seq)))]
(sample-seq)))

This implementation is dispatched when infer receives :im-
portance as its algo parameter. (Anglican includes multiple
implementations of infer for different inference algorithms.)
Once dispatched, it lazily constructs an infinite sequence of
inference states by repeatedly executing the program prog
using exec and retrieving the final inference state of the
execution using :state. For checkpoint handlers, importance
sampling simply relies on their default implementations.

Typically, an inference algorithm has its own implemen-
tations of checkpoint for sample, observe, or both, as well
as invokes exec from an elaborated conditional control flow.
LMH (anglican.lmh) and SMC (anglican.smc) are exam-
ples of inference algorithms where either observe (SMC) or
sample (LMH) handler is overridden. In addition, SMC runs
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multiple particles (corresponding to user-level threads) simul-
taneously, while LMH re-runs programs from an intermediate
continuation rather than from the beginning.

8.3 Addressing of Checkpoints
Many inference algorithms memoize and reuse earlier compu-
tations at checkpoints. Variants of Metropolis-Hastings reuse
previously drawn values [29], as well as additional informa-
tion used for adaptive sampling [25] at sample checkpoints.
Asynchronous SMC (Particle Cascade) computes average par-
ticle weights at observe checkpoints [15]. Implementations
of black-box variational inference [27, 30] associate with ran-
dom variables the learned parameters of variational posterior
distribution.

Checkpoints can be uniquely named at compilation time;
however, at runtime a checkpoint corresponding to a single
code location may occur multiple times due to recurrent
invocation of the function containing the checkpoint. Every
unique occurrence of a checkpoint must receive a different
address. An addressing scheme based on computing of stack
addresses of checkpoints was described in the context of
Lightweight Metropolis-Hastings [29]. This scheme has ad-
vantages over the naive scheme where dynamic occurrences of
checkpoints are numbered sequentially. However, it impacts
the performance of probabilistic programs because of the
computation cost of computing the stack addresses:

(1) On every function call, a component is added to the
address. Hence, the address size is linear in stack
depth.

(2) Every function call must be augmented by symbolic
information required to compute stack addresses.

In addition, the above scheme can still lead to inferior cor-
respondence between checkpoints in different traces: in An-
glican and other probabilistic languages where distributions
are first-class objects checkpoints with incompatible argu-
ments can correspond to the same stack address. Consider
the following program fragment:

(let [dist (if use-gamma (gamma 2. 2.) (normal 0. 1.))]
(sample dist))

The sample checkpoint has the same stack address in different
traces. However, the random values should not be reused be-
tween different distributions. Further on, in some algorithms,
such as black-box variational inference, the role of checkpoint
addresses is semantic rather than heuristic — appropriate
correspondence must be established between checkpoints in
different traces for the algorithm to work.

To overcome the above problems, Anglican introduces a
new addressing scheme which is almost as efficient as the
scheme based on stack addresses for reuse of previously drawn
values, while producing addresses of constant size, and allows
manual computation of checkpoint addresses at runtime when
the default automatic scheme is insufficient. According to the
scheme:

• A checkpoint may accept an auxiliary argument —
the checkpoint identifier. If specified, the identifier

is the first argument of a checkpoint. For exam-
ple (sample ’x1 (normal 0 1)) defines a sample
checkpoint with identifier x1.

• If the identifier is omitted, a unique identifier is
generated automatically as a fresh symbol.

• At runtime, the address of a checkpoint invoca-
tion has the form [checkpoint-identifier number-of-
previous-occurrences], where the occurrences are of
a checkpoint with the same checkpoint identifier.

• If a sequence of invocations of the same checkpoint
is interrupted by a different checkpoint, the number
of previous occurrences is rounded up to a multiple
of an integer. For efficiency, a small power of 2 is
used, such as 24 = 16.

Consider the following simplified Anglican query:

(defm foo []
(if (sample 'C1 (flip 0.5)) (foo) (bar)))

(defm bar []
(case (sample 'C2 (uniform-discrete 0 3))

0 (bar)
1 (foo)
2 (sample 'C3 (normal 0. 1.))))

(defquery baz (foo))

An execution of the query may result in the following sequence
of checkpoint invocations:

(sample 'C1 ...)
(sample 'C2 ...)
(sample 'C2 ...)
(sample 'C1 ...)
(sample 'C1 ...)
(sample 'C1 ...)
(sample 'C2 ...)
(sample 'C3 ...)

According to the addressing scheme, the addresses generated
for these invocations are

[C1 0][C2 0][C2 1][C1 16][C1 17][C1 18][C2 16][C3 0]

If the program is run by a Metropolis-Hastings algorithm,
then a small change usually takes place in the sequence of
checkpoints with each invocation, and the new sequence may
become

(sample 'C1 ...)
(sample 'C2 ...)
(sample 'C1 ...)
(sample 'C1 ...)
(sample 'C2 ...)
(sample 'C2 ...)
(sample 'C3 ...)

The addresses for the new sequence are

[C1 0][C2 0][C1 16][C1 17][C2 16][C2 17][C3 0]
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Despite the change, the correspondence between checkpoints
of similar types occurring in similar positions (relative po-
sitions in contiguous subsequences of a certain type) is pre-
served, and drawn values can be reused efficiently:

old new
[C1 0] [C1 0]
[C2 0] [C2 0]
[C2 1] unused
[C1 16] [C1 16]
[C1 17] [C1 17]
[C1 18] unused
[C2 16] [C2 16]
missing [C2 17] drawn
[C3 0] [C3 0]

Note that correspondence between checkpoints in different
traces plays the role of an heuristic in Metropolis-Hastings
family of algorithms. Any correspondence (or no correspon-
dence, meaning all values must be re-drawn from their pro-
posal distributions) is valid, and reused values from the
previous invocation which are not in support or have zero
probability in the new invocation are simply ignored and new
values are re-drawn.

This way, each occurrence of a checkpoint has a unique
address, but small disturbances — removal or addition of a
single or just a few checkpoints — are unlikely to derail the
entire sequence. The probability of derailment depends on
the padding. The padding can be safely, and without any
impact on performance, set to rather large numbers. However,
rounding up to a multiple of 16 proved to be appropriate for
all practical purposes.

Function checkpoint-id in the anglican.inference names-
pace automates generation of checkpoint addresses and can
be used from any inference algorithm.

9 DEFINITIONS AND RUNTIME LIBRARY
A Clojure namespace that includes a definition of an Angli-
can program imports (‘requires’) two essential namespaces:
anglican.emit and anglican.runtime. The former provides
macros for defining Anglican programs (defquery, query)
and functions (defm, fm, mem), as well as Anglican boot-
strap definitions that must be included with every program
— first of all, CPS implementations of higher-order functions.
anglican.emit can be viewed as the Anglican compiler tool,
which helps transform Anglican code into Clojure before any
inference is performed.

anglican.runtime is the Anglican runtime library. For
convenience, it exposes common mathematical functions (abs,
floor, sin, log, exp, etc.), but most importantly, it provides
definitions of common distributions. Each distribution object
implements a distribution interface with the sample* and
observe* methods; this interface is defined using Clojure’s
protocol mechanism (anglican.runtime/distribution). The

sample* method returns a random sample and roughly corre-
sponds to the default implementation of the sample check-
point. The observe* method returns the log probability of
the value, which roughly corresponds to the default imple-
mentation of the observe checkpoint. The methods can be,
and sometimes are called from handlers of the corresponding
checkpoints, but do not have to be. For example, in LMH
either the sample* or the observe* method is called for a
sample checkpoint, depending on whether the value is drawn
or reused.

The macro defdist is used to define distributions. defdist
takes care of defining a separate type for every distribution
so that Clojure multimethods (or overloaded methods) can
be dispatched on distribution types when needed, e.g. for
custom proposal distributions used in an inference algorithm.
The Bernoulli distribution could be defined as follows:
(defdist bernoulli "Bernoulli distribution" [p]

(sample* [this] (if (< (rand) p) 1 0))
(observe* [this value]

(Math/log (case value
1 p
0 (- 1. p)))))

In addition to distributions, Anglican provides random
processes, which define sequences of random variables that
are not independent and identically distributed. Random
processes are similar to the so called ‘exchangeable ran-
dom primitives’ in Church [6] and Venture [9]. However,
random sequences generated by Anglican random processes
are not required to be exchangeable. Random processes
are defined using the defproc macro and implement the
anglican.runtime/random-process protocol. This protocol
has two methods

• produce, which returns the distribution on the next
random variable in the sequence, and

• absorb, which incorporates the value for the next
random variable and returns an updated random
process.

As an example, here is a definition of a beta-Bernoulli process,
in which each random variable is distributed according to a
Bernoulli distribution with an unknown parameter that is
drawn from a beta distribution:
(defproc beta-bernoulli "beta-Bernoulli process" [a b]

(produce [this] (bernoulli (/ a (+ a b))))
(absorb [this x]

(case x
0 (beta-bernoulli a (inc b))
1 (beta-bernoulli (inc a) b))))

Unlike typical implementations of exchangeable random pro-
cesses, Anglican’s random processes do not have mutable
state. The produce and absorb methods are deterministic
and functional, and therefore do not have corresponding spe-
cial forms in Anglican. A sequence of random values can be
generated using a recursive loop in which absorb returns the
updated process for the next iteration. For example:
(defm sample-beta-binomial [n a b]
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(loop [process (beta-bernoulli a b)
values []]

(if (= (count values) n)
values
(let [dist (produce process)

value (sample dist)]
(recur (absorb process value)

(conj values value))))))

Similarly, random processes can also be used to recursively
observe a sequence of values:
(defm observe-beta-bernoulli [values a b]

(loop [process (beta-bernoulli a b)
values values]

(when (not-empty values)
(let [dist (produce process)

value (first values)]
(observe dist value)
(recur (absorb process value)

(rest values))))))

10 PERFORMANCE
To justify the claim that Anglican is an efficient implemen-
tation, performance of Anglican programs must be evaluated
both against Clojure programs and against inference tasks
in other probabilistic programming languages and environ-
ments. Anglican passes two additional parameters to every
function, adds extra code to variable bindings, and passes
every function call through the trampoline. Hence difference
in performance between Anglican and Clojure should be most
noticeable on programs which involve many function calls.
One such example is the famous Towers of Hanoi:
(defn towers-of-hanoi [n from to via]

(when (not= n 1) ;; return nil if n = 1.
(towers-of-hanoi (dec n) from via to)
(towers-of-hanoi (dec n) via to from)))

We run this program for n equal to 10, 15, 20, and 25.
Clojure is consistently only twice as fast as Anglican (Table 1);
considering the amount of overhead Anglican introduces, this
is a good result.

The other comparison must be made between Anglican and
another probabilistic programming environment. WebPPL [7]
is similar to Anglican in expressiveness. WebPPL runs on
top of V8, a high performance JavaScript engine featuring a
native compiler. Table 2 shows results for a few models from
WebPPL distribution, as well as from Anglican test suite.
For the comparison, we re-implemented WebPPL models

n 10 15 20 25
Anglican 0.63 3.00 75.9 2381.

Clojure 0.32 1.45 38.1 1245.
Table 1: Towers of Hanoi. Running times, in seconds, of Clo-
jure and Anglican, averaged over 100 runs. Clojure is only
twice as fast as Anglican.

model Anglican WebPPL
Latent Dirichlet allocation 22.2 31.5

Linear regression 6.1 8.5
Logistic regression 8.4 10.4

Multivariate regression 6.9 14.2
Simple branching 2.4 5.7

Hidden Markov model 8.7 10.2
Table 2: Anglican vs. WebPPL. Running times, in seconds,
of Anglican and WebPPL, for 100 000 iterations of Markov
Chain Monte Carlo (Lightweight Metropolis-Hastings), aver-
aged over 100 runs. Anglican outperforms WebPPL on all
models.

in Anglican, and Anglican models in WebPPL, following as
close as possible the original implementations, and run the
same inference algorithm (called MCMC in WebPPL, LMH
in Anglican) with the same number of iterations. Anglican
outperforms WebPPL on all models. This can be attributed
both to a better transformed representation of probabilistic
programs and to more efficient architecture of the inference
engine. The source code of the examples is available in the
paper repository.

In addition, [16, pp. 32 – 33] provides a comparison of
Anglican to an older, interpreted version of Anglican [31], and
Probabilistic Scheme [14] on a rather complicated inference
task of program synthesis. According to this comparison,
Anglican is at least 10 times faster than the older interpreted
version, and almost as fast as Probabilistic Scheme which uses
inference engine implemented in C. In addition, [21, p. 171]
compares Anglican to a DSL for probabilistic programming in
Haskell and to Probabilistic C [14] on two simple probabilistic
programs. Anglican shows similar performance to the Haskell
implementation of Sequential Monte Carlo [2] and scales
better with the number of particles. Given the simplicity
of the programs used in the evaluation, this comparison is
a confirmation that the flexible checkpoint and trampoline
based interaction between an Anglican program and the
inference engine does not introduce any noticeable overhead
compared to more rigid designs.

11 CONCLUSION
In this paper, we presented design and implementation in-
ternals of the probabilistic programming system Anglican.
Implementing a language is an interesting endeavour, in par-
ticular when the language implements a new paradigm, in
this case probabilistic programming. Functional program-
ming is a natural complement of probabilistic programming —
the latter allows both concise and expressive specification of
probabilistic generative models and efficient implementation
of inference algorithms.

Implementing a probabilistic language on top of and in
tight integration with a functional language, Clojure, both
helped us to accomplish an ambitious goal in a short time
span, and provided important insights on structure and se-
mantics of probabilistic concepts incorporated in Anglican.

http://v8project.blogspot.com/
https://github.com/probmods/webppl
https://bitbucket.org/probprog/anglican
https://bitbucket.org/probprogs/anglican-white-paper
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Computational efficiency and expressive power of Anglican
owe to adherence to the functional approach as much as to
rich inference opportunities of the Anglican environment.
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