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Abstract
Building a cost-effective static analyser for real-world pro-
grams is still regarded an art. One key contributor to this
grim reputation is the difficulty in balancing the cost and the
precision of an analyser. An ideal analyser should be adap-
tive to a given analysis task, and avoid using techniques that
unnecessarily improve precision and increase analysis cost.
However, achieving this ideal is highly nontrivial, and it re-
quires a large amount of engineering efforts.

In this paper we present a new approach for building
an adaptive static analyser. In our approach, the analyser
includes a sophisticated parameterised strategy that de-
cides, for each part of a given program, whether to apply
a precision-improving technique to that part or not. We
present a method for learning a good parameter for such
a strategy from an existing codebase via Bayesian optimi-
sation. The learnt strategy is then used for new, unseen pro-
grams. Using our approach, we developed partially flow-
and context-sensitive variants of a realistic C static analyser.
The experimental results demonstrate that using Bayesian
optimisation is crucial for learning from an existing code-
base. Also, they show that among all program queries that
require flow- or context-sensitivity, our partially flow- and
context-sensitive analysis answers the 75% of them, while
increasing the analysis cost only by 3.3x of the baseline
flow- and context-insensitive analysis, rather than 40x or
more of the fully sensitive version.

Categories and Subject Descriptors F.3.2 [Semantics of
Programming Languages]: Program Analysis; G.1.6 [Opti-
mization]: Global Optimization; D.2.4 [Software/Program
Verification]: Assertion Checkers; I.2.6 [Learning]: Param-
eter Learning

Keywords Program Analysis, Bayesian Optimization

1. Introduction
Although the area of static program analysis has progressed
substantially in the past two decades, building a cost-effective
static analyser for real-world programs is still regarded an
art. One key contributor to this grim reputation is the diffi-
culty in balancing the cost and the precision of an analyser.
An ideal analyser should be able to adapt to a given analysis
task automatically, and avoid using techniques that unnec-
essarily improve precision and increase analysis cost. How-
ever, designing a good adaptation strategy is highly nontriv-
ial, and it requires a large amount of engineering efforts.

In this paper we present a new approach for building an
adaptive static analyser, which can learn its adaptation strat-
egy from an existing codebase. In our approach, the analyser
includes a parameterised strategy that decides, for each part
of a given program, whether to apply a precision-improving
technique to that part or not. This strategy is defined in
terms of a function that scores parts of a program. The strat-
egy evaluates parts of a given program using this function,
chooses the top k parts for some fixed k, and applies the
precision-improving technique to these parts only. The pa-
rameter of the strategy controls this entire selection process
by being a central component of the scoring function.

Of course, the success of such an analyser depends on
finding a good parameter for its adaptation strategy. We de-
scribe a method for learning such a parameter from an ex-
isting codebase using Bayesian optimisation; the learnt pa-
rameter is then used for new, unseen programs. As typical in
other machine learning techniques, this learning part is for-
mulated as an optimisation problem: find a parameter that
maximises the number of queries in the codebase which are
proved by the analyser. This is a challenging optimisation
problem because evaluating its objective function involves
running the analyser over several programs and so it is ex-
pensive. We present an (approximate) solver for the problem
that uses the powerful Bayesian optimisation technique and
avoids expensive calls to the program analyser as much as
possible.



Using our approach, we developed partially flow-sensitive
and context-sensitive variants of a realistic C program anal-
yser. The experimental results confirm that using an efficient
optimisation solver such as ours based on Bayesian optimi-
sation is crucial for learning a good parameter from an exist-
ing codebase; a naive approach for learning simply does not
scale. When our partially flow- and context-sensitive anal-
yser was run with a learnt parameter, it answered the 75% of
the program queries that require flow- or context-sensitivity,
while increasing the analysis cost only by 3.3x of the flow-
and context-insensitive analysis, rather than 40x or more of
the fully sensitive version.

Contributions We summarise our contributions below:

• We propose a new approach for building a program anal-
ysis that can adapt to a given verification task. The key
feature of our approach is that it can learn an adaptation
strategy from an existing codebase automatically, which
can then be applied to new unseen programs.
• We present an effective method for learning an adapta-

tion strategy. Our method uses powerful Bayesian opti-
misation techniques, and reduces the number of expen-
sive program-analysis runs on given programs during the
learning process. The performance gain by Bayesian op-
timisation is critical for making our approach practical;
without it, learning with medium-to-large programs takes
too much time.
• We describe two instance analyses of our approach,

which are adaptive variants of our program analyser for
C programs. The first adapts the degree of flow sensi-
tivity of the analyser, and the second, that of both flow
and context sensitivities of the analyser. Our experiments
show the clear benefits of our approach.

2. Overview
We illustrate our approach using a static analysis with the
interval domain. Consider the following program.

1 x=0; y=0; z=1;

2 x=z;

3 z=z+1;

4 y=x;

5 assert(y>0);

The program has three variables (x, y, and z) and the goal of
the analysis is to prove that the assertion at line 5 holds.

2.1 Partially flow-sensitive analysis
Our illustration uses a partially flow-sensitive analysis.
Given a set of variables V , it tracks the values of selected
variables in V flow-sensitively, but for the other variables, it
computes global flow-insensitive invariants of their values.
For instance, when V = {x, y}, the analysis computes the
following results:

flow-sensitive flow-insensitive
line abstract state abstract state

1 {x 7→ [0, 0], y 7→ [0, 0]}
2 {x 7→ [1,+∞], y 7→ [0, 0]}
3 {x 7→ [1,+∞], y 7→ [0, 0]} {z 7→ [1,+∞]}
4 {x 7→ [1,+∞], y 7→ [1,+∞]}
5 {x 7→ [1,+∞], y 7→ [1,+∞]}

The results are divided into two parts: flow-sensitive and
flow-insensitive results. In the flow-sensitive part, the analy-
sis maintains an abstract state at each program point, where
each state involves only the variables in V . The informa-
tion for the other variables (z) is kept in the flow-insensitive
state, which is a single abstract state valid for the entire pro-
gram. Note that this partially flow-sensitive analysis is pre-
cise enough to prove the given assertion; at line 5, the anal-
ysis concludes that y is greater than 0.

In our example, our {x, y} and the entire set {x, y, z} are
the only choices of V that lead to the proof of the assertion:
with any other choice (V ∈ {∅, {x}, {y}, {z}, {x, z}, {y, z}}),
the analysis fails to prove the assertion. Our analysis adapts
to the program here automatically and picks V . We will next
explain how this adaption happens.

2.2 Adaptation strategy parameterised with w

Our analysis employs a parameterised strategy (or decision
rule) for selecting a set V of variables that will be treated
flow-sensitively. The strategy is a function of the form:

Sw : Pgm→ ℘(Var)

which is parameterised by a vector w of real numbers.
Given a program to analyse, our strategy works in three

steps:

1. We represent all the variables of the program as feature
vectors.

2. We then compute the score of each variable x, which is
just the linear combination of the parameter w and the
feature vector of x.

3. We choose the top-k variables based on their scores,
where k is specified by users. In this example, we use
k = 2.

Step 1: Extracting features Our analysis uses a pre-
selected set π of features, which are just predicates on vari-
ables and summarise syntactic or semantic properties of vari-
ables in a given program. For instance, a feature πi ∈ π in-
dicates whether a variable is a local variable of a function or
not. These feature predicates are chosen for the analysis, and
reused for all programs. The details of the features that we
used are given in later sections of this paper. In the example
of this section, let us assume that our feature set π consists
of five predicates:

π = {π1, π2, π3, π4, π5}.



Given a program and a feature set π, we can represent
each variable x in the program as a feature vector π(x):

π(x) = 〈π1(x), π2(x), π3(x), π4(x), π5(x)〉

Suppose that the feature vectors of variables in the example
program are as follows:

π(x) = 〈1, 0, 1, 0, 0〉
π(y) = 〈1, 0, 1, 0, 1〉
π(z) = 〈0, 0, 1, 1, 0〉

Step 2: Scoring Next, we computes the scores of variables
based on the feature vectors and the parameter w. The pa-
rameter w is a real-valued vector that has the same dimen-
sion as the feature vector, i.e., in this example, w ∈ R5 for
R = [−1, 1]. Intuitively, w encodes the relative importance
of each feature.

Given a parameter w ∈ R5, e.g.,

w = 〈0.9, 0.5,−0.6, 0.7, 0.3〉 (1)

the score of variable x is computed as follows:

score(x) = π(x) ·w

In our example, the scores of x, y, and z are:

score(x) = 〈1, 0, 1, 0, 0〉 · 〈0.9, 0.5,−0.6, 0.7, 0.3〉 = 0.3
score(y) = 〈1, 0, 1, 0, 1〉 · 〈0.9, 0.5,−0.6, 0.7, 0.3〉 = 0.6
score(z) = 〈0, 0, 1, 1, 0〉 · 〈0.9, 0.5,−0.6, 0.7, 0.3〉 = 0.1

Step 3: Choosing top-k variables Finally, we choose the
top-k variables based on their scores. For instance, when k =
2, we choose variables x and y in our example. As we have
already pointed out, this is the right choice in our example
because analysing the example program with V = {x, y}
proves the assertion.

2.3 Learning the parameter w

Finding a good parameter w manually is difficult. We expect
that a program analysis based on our approach uses more
than 30 features, so its parameter w lives in Rn for some
n ≥ 30. This is a huge search space. It is unrealistic to ask a
human to acquire intuition on this space and come up with a
right w that leads to a suitable adaptation strategy for most
programs in practice.1

The learning part of our approach aims at finding a good
w automatically. It takes a codebase consisting of typical
programs, and searches for a parameter w that instantiates an
adaptation strategy appropriately for programs in the code-
base: with this instantiation, a program analysis can prove a
large number of queries in these programs.

1 In our experiments, all manually chosen parameters lead to strategies that
perform much worse than the one automatically learnt by the method in this
subsection.

We explain how our learning algorithm works by using
a small codebase that consists of just the following two
programs:

1 a = 0; b = input();

2 for (a=0; a<10; a++);

3 assert (a > 0);

c = d = input();

if (d <= 0) return;

assert (d > 0);

P1 P2

Given this codebase, our learning algorithm looks for w that
makes the analysis prove the two assert statements in P1 and
P2. Our intention is to use the learnt w later when analysing
new unseen programs (such as the example in the beginning
of this section). We assume that program variables in P1 and
P2 are summarised by feature vectors as follows:

π(a) = 〈0, 1, 1, 0, 1〉, π(b) = 〈1, 0, 0, 1, 0〉
π(c) = 〈0, 1, 0, 0, 1〉, π(d) = 〈1, 1, 0, 1, 0〉

Simple algorithm based on random sampling Let us start
with a simple learning algorithm that uses random sampling.
Going through this simple algorithm will help a reader to un-
derstand our learning algorithm based on Bayesian optimisa-
tion. The algorithm based on random sampling works in four
steps. Firstly, it generates n random samples in the space R5.
Secondly, for each sampled parameter wi ∈ R5, the algo-
rithm instantiates the strategy with wi, runs the static anal-
ysis with the variables chosen by the strategy, and records
how many assertions in the given codebase are proved. Fi-
nally, it chooses the parameter wi with the highest number
of proved assertions.

The following table shows the results of running this
algorithm on our codebase {P1, P2} with n = 5. For each
sampled parameter wi, the table shows the variables selected
by the instantiated strategy with wi (here we assume that we
choose k = 1 variable from each program), and the number
of assertions proved in the codebase.

try sample wi decision #proved
P1 P2 P1 P2

1 -0.0, 0.7, -0.9, 1.0, -0.7 b d 0 1
2 0.2, -0.0, -0.8, -0.5, -0.2 b c 0 0
3 0.4, -0.6, -0.6, 0.6, -0.7 b d 0 1
4 -0.5, 0.5, -0.5, -0.6, -0.9 a c 1 0
5 -0.6, -0.8, -0.1, -0.9, -0.2 a c 1 0

Four parameters achieve the best result, which is to prove
one assert statement (either from P1 or P2). Among these
four, the algorithm returns one of them, such as:

w = 〈−0.0,−0.7, 0.9, 1.0,−0.7〉.

Note that this is not an ideal outcome; we would like to
prove both assert statements. In order to achieve this ideal,
our analysis needs to select variables a from P1 and d from
P2 and treat them flow-sensitively. But random searching
has low probability for finding w that leads to this variable
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Figure 1. A typical scenario on how the probabilistic model gets updated during Bayesian optimisation.

selection. This shortcoming of random sampling is in a sense
expected, and it does appear in practice. As we show in
Figure 2, most of the randomly sampled parameters in our
experiments perform poorly. Thus, in order to find a good
parameter via random sampling, we need a large number of
trials, but each trial is expensive because it involves running
a static analysis over all the programs in a given codebase.

Bayesian optimisation To describe our algorithm, we need
to be more precise about the setting and the objective of al-
gorithms for learning w. These learning algorithms treat a
program analysis and a given codebase simply as a specifi-
cation of an (objective) function

F : Rn → N.

The input to the function is a parameter w ∈ Rn, and the
output is the number of queries in the codebase that are
proved by the analysis. The objective of the learning algo-
rithms is to find w∗ ∈ Rn that maximises the function F :

Find w∗ ∈ Rn that maximises F (w). (2)

Bayesian optimisation [3, 15] is a generic algorithm for
solving an optimisation where an objective function does not
have a nice mathematical structure such as gradient and con-
vexity, and evaluating this function is expensive. It aims at
minimising the evaluation of the objective function as much
as possible. Notice that our objective function F in (2) lacks
good mathematical structures and is expensive to evaluate,
so it is a good target of Bayesian optimisation. Also, the
aim of Bayesian optimisation is directly related to the ineffi-
ciency of the random-sampling algorithm mentioned above.

The basic structure of Bayesian optimisation is similar to
the random sampling algorithm. It repeatedly evaluates the
objective function with different inputs until it reaches a time
limit, and returns the best input found. However, Bayesian
optimisation diverges from random sampling in one crucial
aspect: it builds a probability model about the objective
function, and uses the model for deciding where to evaluate
the function next. Bayesian optimisation builds the model
based on the results of the evaluation so far, and updates the
model constantly according to the standard rules of Bayesian
statistics when it evaluates the objective function with new
inputs.

In the rest of this overview, we focus on explaining in-
formally how typical Bayesian optimisation builds and uses
a probabilistic model, instead of specifics of our algorithm.
This will help a reader to see the benefits of Bayesian opti-
misation in our problem. The full description of our learning
algorithm is given in Section 5.3.

Assume that we are given an objective function G of type
R → R. Bayesian optimisation constructs a probabilistic
model for this unknown function G, where the model ex-
presses the optimiser’s current belief about G. The model
defines a distribution on functions of type R → R (using
so called Gaussian process [21]). Initially, it has high un-
certainty about what G is, and assumes that positive outputs
or negative outputs are equally possible for G, so the mean
(i.e., average) of this distribution is the constant zero func-
tion λx. 0. This model is shown in Figure 1(a), where the
large blue region covers typical functions sampled from this
model.

Suppose that Bayesian optimisation chooses x = 1.0,
evaluatesG(1.0), and get 0.1 as the output. Then, it incorpo-
rates this input-output pair, (1.0, 0.1), for G into the model.
The updated model is shown in Figure 1(b). It now says that
G(1.0) is definitely 0.1, and that evaluating G near 1.0 is
likely to give an output similar to 0.1. But it remains uncer-
tain about G at inputs further from 1.0.

Bayesian optimisation uses the updated model to decide
a next input to use for evaluation. This decision is based on
balancing two factors: one for exploiting the model and find-
ing the maximum of G (called exploitation), and the other
for evaluating G with an input very different from old ones
and refining the model based on the result of this evaluation
(called exploration). This balancing act is designed so as to
minimise the number of evaluation of the objective function.
For instance, Bayesian optimisation now may pick x = 5.0
as the next input to try, because the model is highly uncer-
tain about G at this input. If the evaluation G(5.0) gives 0.8,
Bayesian optimisation updates the model to one in in Fig-
ure 1. Next, Bayesian optimisation may decide to use the
input x = 3.0 because the model predicts that G’s output at
3.0 reasonably high on average but it has high uncertainty
around this input. If G(3.0) = 0.65, Bayesian optimisation
updates the model as shown in Figure 1(d). At this point,
Bayesian optimisation may decide that exploiting the model



so far outweighs the benefit of exploring G with new in-
puts, and pick x = 4.0 where G is expected to give a high
value according to the model. By incorporating all the in-
formation about G into the model and balancing exploration
and exploitation, Bayesian optimisation fully exploits all the
available knowledge about G, and minimises the expensive
evaluation of the function G.

3. Adaptive static analysis
We use a well-known setup for building an adaptive (or para-
metric) program analysis [12]. In this approach, an analy-
sis has switches for parts of a given program that determine
whether these parts should be analysed with high precision
or not. It adapts to the program by turning on these switches
selectively according to a fixed strategy.2 For instance, a par-
tially context-sensitive analysis has switches for call sites of
a given program, and use them to select call sites that will be
treated with context sensitivity.

Let P ∈ P be a program that we would like to analyse.
We assume a set JP of indices that represent parts of P . We
define a set of abstractions as follows:

a ∈ AP = {0, 1}JP ,

Abstractions are binary vectors with indices in JP , and are
ordered pointwise:

a v a′ ⇐⇒ ∀j ∈ JP . aj ≤ a′j .

Intuitively, JP consists of the parts of P where we have
switches for controlling the precision of an analysis. For in-
stance, in a partially context-sensitive analysis, JP is the set
of procedures or call sites in the program. In our partially
flow-sensitive analysis, it denotes the set of program vari-
ables that are analysed flow-sensitively. An abstraction a is
just a particular setting of the switches associated with JP ,
and determines a program abstraction to be used by the anal-
yser. Thus, aj = 1 means that the component j ∈ JP is
analysed, e.g., with context sensitivity or flow sensitivity. We
sometimes regard an abstraction a ∈ AP as a function from
JP to {0, 1}, or the following collection of P ’s parts:

a = {j ∈ JP | aj = 1}.

In the latter case, we write |a| for the size of the collection.
The last bit of notations is two constants in AP :

0 = λj ∈ JP . 0, and 1 = λj ∈ JP . 1,

which represent the most imprecise and precise abstractions,
respectively. In the rest of this paper, we omit the subscript
P when there is no confusion.
2 This type of an analysis is usually called parametric program analysis. We
do not use this phrase in the paper to avoid confusion; if we did, we would
have two types of parameters, ones for selecting parts of a given program,
and the others for deciding a particular adaption strategy of the analysis.

We assume that a set of assertions is given together with
P . The goal of the analysis is to prove as many assertions
as possible. An adaptive static analysis is modelled as a
function:

F : Pgm ×A → N.

Given an abstraction a ∈ A, F (P,a) returns the number of
assertions proved under the abstraction a. Usually, the used
abstraction correlates the precision and the performance of
the analysis. That is, using a more refined abstraction is
likely to improve the precision of the analysis but increase
its cost.3 Thus, most existing adaptation strategies aim at
finding a small a that makes the analysis prove as many
queries as the abstraction 1.

3.1 Goal
Our goal is to learn a good adaptation strategy automatically
from an existing codebase P = {P1, . . . , Pm} (that is, a
collection of programs). A learnt strategy is a function of the
following type: 4

S : Pgm → A,

and is used to analyse new, unseen programs P ;

F (P,S(P )).

If the learnt strategy is good, running the analysis with S(P )
would give results close to those of the most precise abstrac-
tion (F (P,1)), while incurring the cost at the level of or only
slightly above the least precise and hence cheapest abstrac-
tion (F (P,0)).

In order to achieve our goal, we need to address two
well-known challenges from the machine learning literature.
First, our learning algorithm should be able to generalise its
findings from a given codebase P, and derive an adaptation
strategy that works well for unseen programs, or at least
those similar to the programs in P. In our setting, this means
that we need to identify a restricted spaceH ⊆ [Pgm → A]
of adaptation strategies, called hypothesis space, such that
solving the following optimisation problem over the given
P gives a good strategy for unseen programs P :

Find S ∈ H that maximises
∑
Pi∈P

F (Pi,S(Pi)). (3)

Here a good strategy should meet both precision and accu-
racy criteria. Intuitively, our task here is to find a hypothesis
space H of strategies that are based on general adaptation
principles, not ad-hoc program-specific properties, so that
optimisation above does not lead to a strategy overfit to P.

3 If a v a′, we typically have F (P,a) ≤ F (P,a′), but performing
F (P,a′) costs more than performing F (P,a).
4 Strictly speaking, the set of abstractions varies depending on a given pro-
gram, so a strategy is a dependently-typed function and maps a program to
one of the abstractions associated with the program. We elide this distinc-
tion to simplify presentation.



Second, we need an efficient method for solving the opti-
misation problem in (3). Note that evaluating the objective
function of (3) involves running the static analysis on all pro-
grams in P, which is very expensive. Thus, while solving the
optimisation problem, we need to avoid the evaluation of the
objective function as much as possible.

In the rest of the paper, we explain how we address these
challenges. For the first challenge, we define a hypothesis
space H of parameterised adaptation strategies that score
program parts based on parameterised linear functions and
select high scorers for receiving precise analysis (Section
4). For the second challenge, we use Bayesian optimisation,
which attempts to minimise the evaluation of an objective
function by building a Bayesian model about this function
(Section 5).

4. Parameterised adaptation strategy
In this section, we explain a parameterised adaptation strat-
egy, which defines our hypothesis spaceH mentioned in the
previous section. Intuitively, this parameterised adaptation
strategy is a template for all the candidate strategies that our
analysis can use when analysing a given program, and its
instantiations with different parameter values formH.

Recall that for a given program P , an adaption strategy
chooses a set of components of P that will be analysed with
high precision. As explained in Section 2.2, our parame-
terised strategy makes this choice in three steps. We formal-
ize these steps next.

4.1 Feature extraction
Given a program P , our parameterised strategy first repre-
sents P ’s components by so called feature vectors. A feature
πk is a predicate on program components:

πk
P : JP → {0, 1} for each program P .

For instance, when components in JP are program variables,
checking whether a variable j is a local variable or not is
a feature. Our parameterised strategy requires that a static
analysis comes with a collection of features:

πP = {π1
P , . . . , π

n
P }.

Using these features, the strategy represents each program
component j in JP as a boolean vector as follows:

πP (j) = 〈π1
P (j), . . . , πn

P (j)〉.

We emphasise that the same set of features is reused for all
programs, as long as the same static analysis is applied to
them.

As in any other machine learning approaches, choosing
a good set of features is critical for the effectiveness of our
learning-based approach. We discuss our choice of features
for two instance program analyses in Section 6. According
to our experience, finding these features required efforts,
but was not difficult, because the used features were mostly
well-known syntactic properties of program components.

4.2 Scoring
Next, our strategy computes the scores of program compo-
nents using a linear function of feature vectors: for a program
P ,

scorewP : JP → R
scorewP (j) = πP (j) ·w.

Here we assume R = [−1, 1] and w ∈ Rn is a real-valued
vector with the same dimension as the feature vector. The
vector w is the parameter of our strategy, and determines
the relative importance of each feature when our strategy
chooses a set of program components.

We extend the score function to abstractions a:

scorewP (a) =
∑

j∈JP ∧ a(j)=1

scorewP (j),

which sums the scores of the components chosen by a.

4.3 Selecting top-k components
Finally, our strategy selects program components based on
their scores, and picks an abstraction accordingly. Given a
fixed k ∈ R (0 ≤ k ≤ 1), it chooses bk × |JP |c components
with highest scores. For instance, when k = 0.1, it chooses
the top 10% of program components. Then, the strategy
returns an abstraction a that maps these chosen components
to 1 and the rest to 0.

LetAk be the set of abstractions that contains bk× |JP |c
elements when viewed as a set of j ∈ JP with aj = 1:

Ak = {a ∈ A | |a| = bk × |JP |c}

Formally, our parameterised strategy Sw : Pgm → Ak is
defined as follows:

Sw(P ) = argmax
a∈Ak

P

scorewP (a) (4)

That is, given a program P and a parameter w, it selects an
abstraction a ∈ Ak with maximum score.

A reader might wonder which k value should be used.
In our case, we set k close to 0 (e.g. k = 0.1) so that our
strategy choose a small and cheap abstraction. Typically, this
in turn entails a good performance of the analysis with the
chosen abstraction.

Using such a small k is based on a conjecture that for
many verification problems, the sizes of minimal abstrac-
tions sufficient for proving these problems are significantly
small. One evidence of this conjecture is given by Liang
and Naik [12], who presented algorithms to find minimal
abstractions (the coarsest abstraction sufficient to prove all
the queries provable by the most precise abstraction) and
showed that, in a pointer analysis used for discharging
queries from a race detector, only a small fraction (0.4–
2.3%) of call-sites are needed to prove all the queries prov-



Program #Var Flow-insensitivity Flow-sensitivity Minimal flow-sensitivity
proved time(s) proved time(s) time(s) size

time-1.7 353 36 0.1 37 0.4 0.1 1 (0.3%)
spell-1.0 475 63 0.1 64 0.8 0.1 1 (0.2%)
barcode-0.96 1,729 322 1.1 335 5.7 1.0 5 (0.3%)
archimedes 2,467 423 5.0 1110 28.1 4.2 104 (4.2%)
tar-1.13 5,244 301 7.4 469 316.1 8.9 75 (1.4%)
TOTAL 10,268 1,145 13.7 2,015 351.1 14.3 186 (1.8%)

Table 1. The minimal flow-sensitivity for interval abstract domain is significantly small. #Var shows the number of program
variables (abstract locations) in the programs. proved and time show the number of proved buffer-overrun queries in the
programs and the running time of each analysis. Minimal flow-sensitivity proves exactly the same queries as the flow-sensitivity
while taking analysis time comparable to that of flow-insensitivity.

able by 2-CFA analysis. We also observed that the conjec-
ture holds for flow-sensitive numeric analysis and buffer-
overrun queries. We implemented Liang and Naik’s AC-
TIVECOARSEN algorithm, and found that the minimal flow-
sensitivity involves only 0.2–4.2% of total program vari-
ables, which means that we can achieve the precision of
full flow-sensitivity with a cost comparable to that of flow-
insensitivity (see Table 1).

5. Learning via Bayesian optimisation
We present our approach for learning a parameter of the
adaptation strategy. We formulate the learning process as an
optimisation problem, and solve it efficiently via Bayesian
optimisation.

5.1 The optimisation problem
In our approach, learning a parameter from a codebase P =
{P1, . . . , Pm} corresponds to solving the following optimi-
sation problem. Let n be the number of features of our strat-
egy in Section 4.1.

Find w∗ ∈ Rn that maximises
∑
Pi∈P

F (Pi,Sw∗(Pi)). (5)

That is, the goal of the learning is to find w∗ that maximises
the number of proved queries on programs in P when these
programs are analysed with the strategy Sw∗ . However, solv-
ing this optimisation problem exactly is impossible. The ob-
jective function involves running static analysis F over the
entire codebase Sw∗ and is expensive to evaluate. Further-
more, it lacks a good structure—it is not convex and does
not even have a derivative. Thus, we lower our aim slightly,
and look for an approximate answer, i.e., a parameter w that
makes the objective function close to its maximal value.

5.2 Learning via random sampling
A simple method for solving our problem in (5) approxi-
mately is to use random sampling (Algorithm 1). Although
the method is simple and easy to implement, it is extremely
inefficient according to our experience. In our experiments,

Algorithm 1 Learning via Random Sampling
Input: codebase P and static analysis F
Output: best parameter w ∈ Rn found

1: wmax ← sample from Rn (R = [−1, 1])
2: max ←

∑
Pi∈P F (Pi,Swmax

(Pi))
3: repeat
4: w← sample from Rn

5: s =
∑

Pi∈P F (Pi,Sw(Pi))
6: if s > max then
7: max ← s
8: wmax ← w
9: end if

10: until timeout
11: return wmax

most of randomly sampled parameters have poor qualities,
failing to prove the majority of queries on programs in P
(Section 7.1). Thus, in order to find a good parameter using
this method, we need to evaluate the objective function (run-
ning static analysis over the entire codebase) many times,
but this is not feasible for realistic program analyses.

5.3 Learning via Bayesian optimisation
In this paper, we propose a better alternative for solving our
optimisation problem in (5): use Bayesian optimisation for
learning a good parameter of an adaptive static analyses.
According to our experience, this alternative significantly
outperforms the naive method based on random sampling
(Section 7.1).

Bayesian optimisation is a powerful method for solving
difficult optimisation problems where objective functions
are expensive to evaluate [3] and do not have good struc-
tures, such as derivative. Typically, optimisers for such a
problem work by evaluating its optimisation function with
many different inputs and returning the input with the best
output. The key idea of Bayesian optimisation is to reduce
this number of evaluations by constructing and using a prob-
abilistic model for the objective function. The model defines
a probability distribution on functions, predicts what the ob-



Algorithm 2 Learning via Bayesian optimisation
Input: codebase P and static analysis F
Output: best parameter w ∈ Rn found

1: Θ← ∅
2: for i← 1, t do . random initialization
3: w← sample from Rn

4: s =
∑

Pi∈P F (Pi,Sw(Pi))

5: Θ← Θ ∪ {〈w, s〉}
6: end for
7: 〈wmax ,max 〉 ← 〈w, s〉 ∈ Θ s.t. ∀〈w′, s′〉 ∈ Θ. s′ ≤ s
8: repeat
9: update the model M by incorporating new data Θ

(i.e., compute the posterior distribution ofM given Θ,
and setM to this distribution)

10: w = argmaxw∈Rn acq(w,Θ,M)
11: s =

∑
Pi∈P F (Pi,Sw(Pi))

12: Θ← {〈w, n〉}
13: if s > max then
14: max ← s
15: wmax ← w
16: end if
17: until timeout
18: return wmax

jective function looks like (i.e., mean of the distribution), and
describes uncertainty on its prediction (i.e., variance of the
distribution). The model gets updated constantly during the
optimisation process (according to Bayes’s rule), such that it
incorporates the results of all the previous evaluations of the
objective function. The purpose of the model is, of course, to
help the optimiser pick a good input to evaluate next, good
in the sense that the output of the evaluation is large and re-
duces uncertainty of the model considerably. We sum up our
short introduction to Bayesian optimisation by repeating its
two main components in our program-analysis application:

1. Probabilistic modelM: Initially, this modelM is set to
capture a prior belief on properties of the objective func-
tion in (5), such as its smoothness. During the optimisa-
tion process, it gets updated to incorporate the informa-
tion about all previous evaluations.5

2. Acquisition function acq : Given M, this function gives
each parameter w a score that reflects how good the
parameter is. This is an easy-to-optimise function that
serves as a proxy for our objective function in (5) when
our optimiser chooses a next parameter to try. The func-
tion encodes a success measure on parameters w that bal-
ances two aims: evaluating our objective function with w
should gives a large value (often called exploitation), and

5 In the jargon of Bayesian optimisation or Bayesian statistics, the initial
model is called a prior distribution, and its updated versions are called
posterior distributions.

at the same time help us to refine our modelM substan-
tially (often called exploration).

Algorithm 2 shows our learning algorithm based on
Bayesian optimisation. At lines 2-5, we first perform ran-
dom sampling for t times, and stores the pairs of parameter
w and score s in Θ (line 5). At line 7, we pick the best pa-
rameter and score in Θ. The main loop is at lines from 8
to 17. At line 9, we build the probabilistic model M from
the collected data Θ. At line 10, we select a parameter w by
maximising the acquisition function. This takes some com-
putation time but is insignificant compared to the cost of
evaluating the expensive objective function (running static
analysis over the entire codebase). Next, we run the static
analysis with the selected parameter w, and update the data
(line 12). The loop repeats until we run out of our fixed
time budget, at which point the algorithm returns the best
parameter found.

Algorithm 2 leaves open the choice of a probabilistic
model and an acquisition function, and its performance de-
pends on making a right choice. We have found that a pop-
ular standard option for the model and the acquisition func-
tion works well for us—the algorithm with this choice out-
performs the naive random sampling method substantially.
Concretely, we used the Gaussian Process (GP) [21] for our
probabilistic model, and the expected improvement (EI) [3]
for the acquisition function.

A Gaussian Process (GP) is a well-known probabilistic
model for functions to real numbers. In our setting, these
functions are maps from parameters to reals, with the type
Rn → R. Also, a GP F is a function-valued random variable
such that for all o ∈ N and parameters xw1, . . . ,wo ∈ Rn,
the results of evaluating F at these parameters

〈F (w1), . . . , F (wo)〉

are distributed according to the o-dimensional Gaussian dis-
tribution6 with mean µ ∈ Ro and covariance matrix Σ ∈
Ro×o, both of which are determined by two hyperparame-
ters to the GP. The first hyperparameter is a mean function
m : Rn → R, and it determines the mean µ of the output of
F at each input parameter:

µ(w) = m(w) for all w ∈ Rn.

The second hyperparameter is a symmetric function k :
Rn × Rn → R, called kernel, and it specifies the smooth-
ness of F : for each pair of parameters w and w′, k(w,w′)
describes how close the outputs F (w) and F (w′) are. If
k(w,w′) is positive and large, F (w) and F (w′) have sim-
ilar values for most random choices of F . However, if

6 A random variable x with value in Ro is a o-dimensional Gaussian random
variable with mean µ ∈ Ro and covariance matrix Σ ∈ Ro×o if it has the
following probability density:

p(x) = (2π)−
o
2 × |Σ|−

1
2 × exp

(
−
(x− µ)T Σ−1(x− µ)

2

)



k(w,w′) is near zero, the values of F (w) and F (w′) do
not exhibit such a close relationship. In our experiments, we
adopted the common choice for hyperparameters and initial-
ized a GP as follows:

m = λw. 0, k(w,w′) = exp(−||w −w′||2/2).

Incorporating data to the GP F with m and k above is
done by computing the so called posterior of F with re-
spect to the data. Suppose that we have evaluated our ob-
jective function with parameters w1, . . . ,wt and obtained
the values of the function s1, . . . , st. The value si repre-
sents the number of proved queries when the static analy-
sis is run with parameter wi over the given codebase. Let
Θ = {〈wi, si〉 | 1 ≤ i ≤ n}. The posterior of F with re-
spect to Θ is a probability distribution obtained by updating
the one for F using information in Θ. It is well-known that
this posterior distribution p(F | Θ) is again a GP and has the
following mean and kernel functions:

m′(w) = kK−1sT

k′(w,w′) = k(w,w′)− kK−1k′T

where

k = [k(w,w1) k(w,w2) . . . k(w,wt)]

k′ = [k(w′,w1) k(w′,w2) . . . k(w′,wt)]

s = [s1 s2 . . . st]

K =

 k(w1,w1) . . . k(w1,wt)
...

. . .
...

k(wt,w1) . . . k(wt,wt)


Figure 1 shows the outcomes of three posterior updates pic-
torially. It shows four regions that contain most of functions
sampled from GPs.

The acquisition function for expected improvement (EI)
is defined as follows:

acq(w,Θ,M) = E[max(F (w)− smax, 0)]. (6)

Here smax is the maximum score seen in the data Θ so far
(i.e., smax = max {si | ∃wi. 〈wi, si〉 ∈ Θ}), and F is a ran-
dom variable distributed according to the GP posterior with
respect to Θ and is our model for the objective function. The
formula max(F (w)− smax, 0) in the equation (6) measures
the improvement in the maximum score when the objective
function is evaluated at w. The right hand side of the equa-
tion computes the expectation of this improvement, justify-
ing the name “expected improvement”. The further discus-
sion on this acquisition function can be found in Section 2.3
of [3].

6. Instances
In this section, we present two instance analyses of our
approach that adapt the degree of flow sensitivity and that
of context-sensitivity, respectively.

6.1 Partially flow-sensitive analysis
We define a class of partially flow-sensitive analyses, and
describe the features used in adaptation strategies for these
analyses.

A class of partially flow-sensitive analyses Given a pro-
gram P , let (C,→) be its control flow graph, where C is the
set of nodes (program points) and (→) ⊆ C×C denotes the
control flow relation of the program.

An analysis that we consider uses an abstract domain that
maps program points to abstract states:

D = C→ S.

Here an abstract state s ∈ S is a map from abstract locations
(namely, program variables, structure fields and allocation
sites) to values:

S = L→ V.

For each program point c, the analysis comes with a function
fc : S → S that defines the abstract semantics of the
command at c.

We assume that the analysis is formulated based on an ex-
tension of the sparse-analysis framework [20]. Before going
into this formulation, let us recall the original framework for
sparse analyses. Let D(c) ⊆ L and U(c) ⊆ L be the def and
use sets at program point c ∈ C. Using these sets, define a
relation ( ) ⊆ C× L× C for data dependency:

c0
l
 cn = ∃[c0, c1, . . . , cn] ∈ Paths, l ∈ L

l ∈ D(c0) ∩ U(cn) ∧ ∀0 < i < n. l 6∈ D(ci)

A way to read c0
l
 cn is that cn depends on c0 on lo-

cation l. This relationship holds when there exists a path
[c0, c1, . . . , cn] such that l is defined at c0 and used at cn,
but it is not re-defined at any of the intermediate points ci.
A sparse analysis is characterised by the following abstract
transfer function F : D→ D:

F (X) = λc. fc
(
λl.

⊔
c0

l
 c

X(c0)(l)
)
.

This analysis is fully sparse because it constructs data de-
pendencies for every abstract location and tracks all these
dependencies accurately.

We extend this sparse-analysis framework such that an
analysis is allowed to track data dependencies only for ab-
stract locations in some set L ⊆ L, and to be flow-sensitive
only for these locations. For the remaining locations (i.e.,
L \ L), we use results from a quick flow-insensitive pre-
analysis [20], which we assume given. The results of this
pre-analysis form a state sI ∈ S, and are stable (i.e., pre-
fixpoint) at all program points:

∀c ∈ C. fc(sI) v sI



The starting point of our extension is to define the data-
dependency with respect to L:

c0
l
 L cn = ∃[c0, c1, . . . , cn] ∈ Paths, l ∈ L.

l ∈ D(c0) ∩ U(cn) ∧ ∀0 < i < n. l 6∈ D(ci)

The main modification lies in a new requirement that in order
for c0

l
 L cn to hold, the location l should be included in the

set L. With this notion of data dependency, we next define
an abstract transfer function:

FL(X) = λc. fc(s
′)

where s′(l) =

{
X(c)(l) (l 6∈ L)⊔

c0
l
 Lc

X(c0)(l) otherwise

This definition says that when we collect an abstract state
right before c, we use the flow-insensitive result sI(l) for a
location not in L, and follow the original treatment for those
in L. An analysis in our extension computes lfpX0

FL, where
the initial X0 ∈ D is built by associating the results of the
flow-insensitive analysis (i.e., values of sI ) with all locations
not selected by L (i.e., L \ L):

X0(c)(l) =

{
sI(l) l 6∈ L
⊥ otherwise

Note that L determines the degree of flow-sensitivity. For
instance, when L = L, the analysis becomes an ordinary
flow-sensitive sparse analysis. On the other hand, when L =
∅, the analysis is just a flow-insensitive analysis. The set L is
what we call abstraction in Section 3: abstraction locations
in L form JP in that section, and subsets of these locations,
such as L, are abstractions there, which are expressed in
terms of sets, rather than boolean functions. Our approach
provides a parameterised strategy for selecting the set L
that makes the analysis comparable to the flow-sensitive
version for precision and to the flow-insensitive one for
performance. In particular, it gives a method for learning
parameters in that strategy.

Features The features for our partially flow-sensitive anal-
yses describe syntactic or semantic properties of abstract lo-
cations, namely, program variables, structure fields and al-
location sites. Note that this is what our approach instructs,
because these locations form the set JP in Section 3 and are
parts of P where we control the precision of an analysis.

In our implementation, we used 45 features shown in Ta-
ble 2, which describe how program variables, structure fields
or allocation sites are used in typical C programs. When
picking these features, we decided to focus on expressive-
ness, and included a large number of features, instead of try-
ing to choose only important features. Our idea was to let
our learning algorithm automatically find out such important
ones among our features.

Our features are grouped into Type A and Type B in the
table. A feature of Type A describes a simple, atomic prop-
erty for a program variable, a structure field or an alloca-
tion site, e.g., whether it is a local variable or not. A feature

Type # Features
A 1 local variable

2 global variable
3 structure field
4 location created by dynamic memory allocation
5 defined at one program point
6 location potentially generated in library code
7 assigned a constant expression (e.g., x = c1 + c2)
8 compared with a constant expression (e.g., x < c)
9 compared with an other variable (e.g., x < y)
10 negated in a conditional expression (e.g., if (!x))
11 directly used in malloc (e.g., malloc(x))
12 indirectly used in malloc (e.g., y = x; malloc(y))
13 directly used in realloc (e.g., realloc(x))
14 indirectly used in realloc (e.g., y = x; realloc(y))
15 directly returned from malloc (e.g., x = malloc(e))
16 indirectly returned from malloc
17 directly returned from realloc (e.g., x = realloc(e))
18 indirectly returned from realloc
19 incremented by one (e.g., x = x + 1)
20 incremented by a constant expr. (e.g., x = x + (1+2))
21 incremented by a variable (e.g., x = x + y)
22 decremented by one (e.g., x = x - 1)
23 decremented by a constant expr (e.g., x = x - (1+2))
24 decremented by a variable (e.g., x = x - y)
25 multiplied by a constant (e.g., x = x * 2)
26 multiplied by a variable (e.g., x = x * y)
27 incremented pointer (e.g., p++)
28 used as an array index (e.g., a[x])
29 used in an array expr. (e.g., x[e])
30 returned from an unknown library function
31 modified inside a recursive function
32 modified inside a local loop
33 read inside a local loop

B 34 1 ∧ 8 ∧ (11 ∨ 12)
35 2 ∧ 8 ∧ (11 ∨ 12)
36 1 ∧ (11 ∨ 12) ∧ (19 ∨ 20)
37 2 ∧ (11 ∨ 12) ∧ (19 ∨ 20)
38 1 ∧ (11 ∨ 12) ∧ (15 ∨ 16)
39 2 ∧ (11 ∨ 12) ∧ (15 ∨ 16)
40 (11 ∨ 12) ∧ 29
41 (15 ∨ 16) ∧ 29
42 1 ∧ (19 ∨ 20) ∧ 33
43 2 ∧ (19 ∨ 20) ∧ 33
44 1 ∧ (19 ∨ 20) ∧ ¬33
45 2 ∧ (19 ∨ 20) ∧ ¬33

Table 2. Features for partially flow-sensitive analysis. Fea-
tures of Type A denote simple syntactic or semantic proper-
ties for abstract locations (that is, program variables, struc-
ture fields and allocation sites). Features of Type B are var-
ious combinations of simple features, and express patterns
that variables are used in programs.



of Type B, on the other hand, describes a slightly complex
usage pattern, and is expressed as a combination of atomic
features. Type B features have been designed by manually
observing typical usage patterns of variables in the bench-
mark programs. For instance, feature 34 was developed after
we observed the following usage pattern of variables:

int x; // local variable

if (x < 10)

... = malloc (x);

It says that x is a local variable, and gets compared with a
constant and passed as an argument to a function that does
memory allocation. Note that we included these Type B fea-
tures not because they are important for flow-sensitivity. We
included them to increase expressiveness, because our lin-
ear learning model with Type A features only cannot express
such usage patterns. Deciding whether they are important for
flow-sensitivity or not is the job of the learning algorithm.

6.2 Partially context-sensitive analysis
Another example of our approach is partially context-sensitive
analyses. Assume we are given a program P . Let Procs be
the set of procedures in P . The adaptation strategy of such an
analysis selects a subset Pr of procedures of P , and instructs
the analysis to treat only the ones in Pr context-sensitively:
calling contexts of each procedure in Pr are treated sep-
arately by the analysis. This style of implementing partial
context-sensitivity is intuitive and well-studied, so we omit
the details and just mention that our implementation used
one such analysis in [18] after minor modification. Note that
these partially context-sensitive analyses are instances of the
adaptive static analysis in Section 3; the set Procs corre-
sponds to JP , and Pr is what we call an abstraction in that
section.

For partial context-sensitivity, we used 38 features in Ta-
ble 3. Since our partially context-sensitive analysis adapts
by selecting a subset of procedures, our features are predi-
cates over procedures, i.e., πk : Procs → B. As in the flow-
sensitivity case, we used both atomic features (Type A) and
compound features (Type B), both describing properties of
procedures, e.g., whether a given procedure is a leaf in the
call graph.

6.3 Combination
The previous two analyses can be combined to an adap-
tive analysis that controls both flow-sensitivity and context-
sensitivity. The combined analysis adjusts the level of ab-
straction at abstract locations and procedures. This means
that its JJ set consists of abstract locations and procedures,
and its abstractions are just subsets of these locations and
procedures. The features of the combined analysis are ob-
tained similarly by putting together the features for our pre-
vious analyses. This combined abstractions and features en-
able our learning algorithm to find a more complex adapta-
tion strategy that considers both flow-sensitivity and context-

Type # Features
A 1 leaf function

2 function containing malloc
3 function containing realloc
4 function containing a loop
5 function containing an if statement
6 function containing a switch statement
7 function using a string-related library function
8 write to a global variable
9 read a global variable
10 write to a structure field
11 read from a structure field
12 directly return a constant expression
13 indirectly return a constant expression
14 directly return an allocated memory
15 indirectly return an allocated memory
16 directly return a reallocated memory
17 indirectly return a reallocated memory
18 return expression involves field access
19 return value depends on a structure field
20 return void
21 directly invoked with a constant
22 constant is passed to an argument
23 invoked with an unknown value
24 functions having no arguments
25 functions having one argument
26 functions having more than one argument
27 functions having an integer argument
28 functions having a pointer argument
29 functions having a structure as an argument

B 30 2 ∧ (21 ∨ 22) ∧ (14 ∨ 15)
31 2 ∧ (21 ∨ 22) ∧ ¬(14 ∨ 15)
32 2 ∧ 23 ∧ (14 ∨ 15)
33 2 ∧ 23 ∧ ¬(14 ∨ 15)
34 2 ∧ (21 ∨ 22) ∧ (16 ∨ 17)
35 2 ∧ (21 ∨ 22) ∧ ¬(16 ∨ 17)
36 2 ∧ 23 ∧ (16 ∨ 17)
37 2 ∧ 23 ∧ ¬(16 ∨ 17)
38 (21 ∨ 22) ∧ ¬23

Table 3. Features for partially context-sensitive analysis.

sensitivity at the same time. This strategy helps the analy-
sis to use its increased flexibility efficiently. In Section 7.2,
we report our experience with experimenting the combined
analysis.

7. Experiments
Following our recipe in Section 6, we instantiated our
approach for partial flow-sensitivity and partial context-
sensitivity, and implemented these instantiations in Sparrow,
a buffer-overrun analysis for real-world C programs [19]. In
this section, we report the results of our experiments with
these implementations.

7.1 Partial flow-sensitivity
Setting We implemented a partial flow-sensitive analysis
in Section 6.1 by modifying a buffer-overrun analyser for C



Training Testing
FI FS partial FS FI FS partial FS

Trial prove prove prove quality prove sec prove sec cost prove sec quality cost
1 6,383 7,316 7,089 75.7 % 2,788 48 4,009 627 13.2 x 3,692 78 74.0 % 1.6 x
2 5,788 7,422 7,219 87.6 % 3,383 55 3,903 531 9.6 x 3,721 93 65.0 % 1.7 x
3 6,148 7,842 7,595 85.4 % 3,023 49 3,483 1,898 38.6 x 3,303 99 60.9 % 2.0 x
4 6,138 7,895 7,599 83.2 % 3,033 38 3,430 237 6.2 x 3,286 51 63.7 % 1.3 x
5 7,343 9,150 8,868 84.4 % 1,828 28 2,175 577 20.5 x 2,103 54 79.3 % 1.9 x

TOTAL 31,800 39,625 38,370 84.0 % 14,055 218 17,000 3,868 17.8 x 16,105 374 69.6 % 1.7 x

Table 4. Effectiveness of our method for flow-sensitivity. prove: the number of proved queries in each analysis (FI: flow-
insensitivity, FS: flow-sensitivity, partial FS: partial flow-sensitivity). quality: the ratio of proved queries among the queries
that require flow-sensitivity. cost: cost increase compared to the FI analysis.

Training Testing
FICI FSCS partial FSCS FICI FSCS partial FSCS

Trial prove prove prove quality prove sec prove sec cost prove sec quality cost
1 6,383 9,237 8,674 80.3 % 2,788 46 4,275 5,425 118.2 x 3,907 187 75.3 % 4.1 x
2 5,788 8,287 7,598 72.4 % 3,383 57 5,225 4,495 79.4 x 4,597 194 65.9 % 3.4 x
3 6,148 8,737 8,123 76.3 % 3,023 48 4,775 5,235 108.8 x 4,419 150 79.7 % 3.1 x
4 6,138 9,883 8,899 73.7 % 3,033 38 3,629 1,609 42.0 x 3,482 82 75.3 % 2.1 x
5 7,343 10,082 10,040 98.5 % 1,828 30 2,670 7,801 258.3 x 2,513 104 81.4 % 3.4 x

TOTAL 31,800 46,226 43,334 80.0 % 14,055 219 20,574 24,565 112.1 x 18,918 717 74.6 % 3.3 x

Table 5. Effectiveness for Flow-sensitivity + Context-sensitivity.

(a) Random sampling (b) Bayesian optimisation

Figure 2. Comparison of Bayesian optimisation with random sampling

programs, which supports the full C language and has been
being developed for the past seven years [19]. This baseline
analyser tracks both numeric and pointer-related informa-
tion simultaneously in its fixpoint computation. For numeric
values, it uses the interval abstract domain, and for pointer
values, it uses an allocation-site-based heap abstraction. The
analysis is field-sensitive (i.e., separates different structure
fields) and flow-sensitive, but it is not context-sensitive. We
applied the sparse analysis technique [20] to improve the
scalability.

By modifying the baseline analyser, we implemented a
partially flow-sensitive analyser, which controls its flow-
sensitivity according to a given set of abstract locations (pro-

gram variables, structure fields and allocation sites) as de-
scribed in Section 6.1. We also implemented our learning
algorithm based on Bayesian optimisation.7 Our implemen-
tations were tested against 30 open source programs from
GNU and Linux packages (Table 6 in Appendix).

The key questions that we would like to answer in our
experiments are whether our learning algorithm produces
a good adaptation strategy and how much it gets benefited
from Bayesian optimisation. To answer the first question,
we followed a standard method in the machine learning lit-
erature, called cross validation. We randomly divide the 30

7 The implementation of our learning algorithm is available at http://
prl.korea.ac.kr/~hakjoo/research/oopsla15/.



benchmark programs into 20 training programs and 10 test
programs. An adaptation strategy is learned from the 20
training programs, and tested against the remaining 10 test
programs. We repeated this experiment for five times. The
results of each trial are shown in Table 4. In these experi-
ments, we set k = 0.1, which means that flow-sensitivity
is applied to only the 10% of total abstract locations (i.e.,
program variables, structure fields and allocation sites). We
compared the performance of a flow-insensitive analysis
(FI), a fully flow-sensitive analysis (FS) and our partially
flow-sensitive variant (partial FS). To answer the second
question, we compared the performance of the Bayesian
optimisation-based learning algorithm against the random
sampling method.

Learning Table 4 shows the results of the training and test
phases for all the five trials. In total, the flow-insensitive
analysis (FI) proved 31,800 queries in the 20 training pro-
grams, while the fully flow-sensitive analysis (FS) proved
39,625 queries. During the learning phase, our algorithm
found a parameter w. On the training programs, the anal-
ysis with w proved, on average, 84.0% of FS-only queries,
that is, queries that were handled only by the flow-sensitive
analysis (FS). Finding such a good parameter for training
programs, let alone unseen test ones, is highly nontrivial. As
shown in Table 2, the number of parameters to tune at the
same time is 45 for flow-sensitivity. Manually searching for
a good parameter w for these 45 parameter over 18 training
programs is simply impossible. In fact, we tried to do this
manual search in the early stage of this work, but most of
our manual trials failed to find any useful parameter (Fig-
ure 2).

Figure 2 compares our learning algorithm based on
Bayesian optimisation against the one based on random sam-
pling. It shows the two distributions of the qualities of tried
parameters w (recorded in the x axis), where the first dis-
tribution uses parameters tried by random sampling over a
fixed time budget (12h) and the second, by Bayesian optimi-
sation over the same budget. By the quality of w, we mean
the percentage of FS-only queries proved by the analysis
with w. The results for random sampling (Figure 2(a)) con-
firm that the space for adaptation parameters w for partial
flow-sensitivity is nontrivial; most of the parameters do not
prove any queries. As a result, random sampling wastes most
of its execution time by running the static analysis that does
not prove any FS-only queries. This shortcoming is absent
in Figure 2(b) for Bayesian optimisation. In fact, most pa-
rameters found by Bayesian optimisation led to adaptation
strategies that prove about 70% of FS-only queries. Figure 3
shows how the best qualities found by Bayesian optimisation
and random sampling change as the learning proceeds. The
results compare the first 30 evaluations for the first training
set of our experiments, which show that Bayesian optimisa-
tion finds a better parameter (63.5%) with fewer evaluations.

Figure 3. Comparison of Bayesian optimisation with ran-
dom sampling

The random sampling method converged to the quality of
45.2%.

Testing For each of the five trials, we tested a parameter
learnt from 20 training programs, against 10 programs in
the test set. The results of this test phase are given in Table
4, and they show that the analysis with the learnt parame-
ters has a good precision/cost balance. In total, for 10 test
programs, the flow-insensitive analysis (FI) proved 14,055
queries, while the full flow-sensitive one (FS) proved 17,000
queries. The partially flow-sensitive version with a learnt
adaptation strategy proved on average 69.6% of the FS-only
queries. To do so, our partially flow-sensitive analysis in-
creases the cost of the FI analysis only moderately (by 1.7x),
while the FS analysis increases the analysis cost by 17.8x.

However, the results show that the analyses with the
learnt parameters are generally less precise in the test set
than the training set. For the five trials, our method has
proved, on average, 84.0% of FS-queries in the training set
and 69.6% in the test set.

Top-10 features The learnt parameter identified the fea-
tures that are important for flow-sensitivity. Because our
learning method computes the score of abstract locations
based on linear combination of features and parameter w,
the learnt parameter w means the relative importance of fea-
tures.

Figure 4 shows the 10 most important features identified
by our learning algorithm from ten trials (including the five
trials in Table 4 as well as additional five ones). For in-
stance, in the first trial, we found that the most important
features were #19, 32, 1, 4, 28, 33, 29, 3, 43, 18 in Table
2. These features say that accurately analysing, for instance,
variables incremented by one (#19) or modified inside a lo-
cal loop (#32), and local variables (#1) are important for
cost-effective flow-sensitive analysis. The histogram on the
right shows the number of times each feature appears in the
top-10 features during the ten trials. In all trials, features #19



Trials
rank 1 2 3 4 5 6 7 8 9 10

1 # 19 # 19 # 19 # 19 # 19 # 11 # 11 # 11 # 13 # 19
2 # 32 # 32 # 32 # 32 # 32 # 19 # 19 # 19 # 19 # 28
3 # 1 # 28 # 37 # 1 # 1 # 28 # 24 # 28 # 28 # 32
4 # 4 # 33 # 40 # 27 # 4 # 12 # 26 # 12 # 32 # 7
5 # 28 # 29 # 31 # 4 # 28 # 1 # 28 # 1 # 26 # 3
6 # 33 # 18 # 1 # 28 # 7 # 32 # 32 # 4 # 7 # 33
7 # 29 # 8 # 39 # 7 # 15 # 26 # 18 # 42 # 45 # 24
8 # 3 # 14 # 27 # 9 # 33 # 21 # 43 # 23 # 3 # 20
9 # 43 # 37 # 20 # 6 # 29 # 7 # 36 # 32 # 33 # 40

10 # 18 # 9 # 4 # 15 # 3 # 45 # 7 # 6 # 35 # 8

Figure 4. (Left) Top-10 features (for flow-sensitivity) identified by our learning algorithm for ten trials. Each entry denotes
the feature numbers shown in Table 2. (Right) Counts of each feature (x-axis) that appears in the top-10 features during the ten
trials. Features #19 and #32 are in top-10 for all trials. The results have been obtained with 20 training programs.

(variables incremented by one) and #32 (variables modified
inside a local loop) are included in the top-10 features. Fea-
tures #1 (local variables), #4 (locations created by dynamic
memory allocation), #7 (location generated in library code),
and #28 (used as an array index) appear more than five times
across the ten trials. We also identified top-10 features when
trained with a smaller set of programs. Figure 5 shows the re-
sults with 10 training programs. In this case, features #1 (lo-
cal variables), #7 (assigned a constant expression), #9 (com-
pared with another variable), #19 (incremented by one), #28
(used as an array index), and #32 (modified inside a local
loop) appeared more than five times across ten trials.

The automatically selected features generally coincided
with our intuition on when and where flow-sensitivity helps.
For instance, the following code (taken from barcode-0.96)
shows a typical situation where flow-sensitivity is required:

1 int mirror[7];

2 int i = unknown;

3 for (i=1;i<7;i++)

4 if (mirror[i-1] == ’1’) ...

Because variable i is initially unknown and is incremented
in the loop, a flow-insensitive interval analysis cannot prove
the safety of buffer access at line 3. On the other hand, if we
analyze variable i flow-sensitively, we can prove that i-1 at
line 3 always has a value less than 7 (the size of mirror).
Note that, according to the top-10 features, variable i has a
high score in our method because it is a local variable (#1),
modified inside a local loop (#32), and incremented by one
(# 19).

The selected features also provided novel insights that
contradicted our conjecture. When we manually identified
important features in the early stage of this work, we con-
jectured that feature #10 (variables negated in a conditional
expression) would be a good indicator for flow-sensitivity,
because we found the following pattern in the program un-
der investigation (spell-1.0):

Figure 5. Top-10 feature frequencies with 10 training pro-
grams.

1 int pos = unknown;

2 if (!pos)

3 path[pos] = 0;

Although pos is unknown at line 1, its value at line 3 must
be 0 because pos is negated in the condition at line 2. How-
ever, after running our algorithm over the entire codebase,
we found that this pattern happens only rarely in practice,
and that feature #10 is actually a strong indicator for flow-
“insensitivity”.

Comparison with the impact pre-analysis approach [18]
Recently Oh et al. proposed to run a cheap pre-analysis,
called impact pre-analysis, and to use its results for deciding
which parts of a given program should be analysed precisely
by the main analysis [18]. We compared our approach with
Oh et al.’s proposal on partial flow sensitivity. Following Oh
et al.’s recipe [18], we implemented a impact pre-analysis
that is fully flow-sensitive but uses a cheap abstract domain,
in fact, the same one as in [18], which mainly tracks whether
integer variables store non-negative values or not. Then, we
built an analysis that uses the results of this pre-analysis for
achieving partially flow-sensitivity.



In our experiments with the programs in Table 4, the
analysis based on the impact pre-analysis proved 80% of
queries that require flow-sensitivity, and spent 5.5x more
time than flow-insensitive analysis. Our new analysis of this
paper, on the other hand, proved 70% and spent only 1.7x
more time. Furthermore, in our approach, we can easily
obtain the analysis that is selective both in flow- and context-
sensitivity (Section 7.2), which is is nontrivial in the pre-
analysis approach.

7.2 Adding partial context-sensitivity
As another instance of our approach, we implemented an
adaptive analysis for supporting both partial flow-sensitivity
and partial context-sensitivity. Our implementation is an ex-
tension of the partially flow-sensitive analysis, and follows
the recipe in Section 6.3. Its learning part finds a good pa-
rameter of a strategy that adapts flow-sensitivity and context-
sensitivity simultaneously. This involves 83 parameters in
total (45 for flow-sensitivity and 38 for context-sensitivity),
and is a more difficult problem (as an optimisation problem
as well as as a generalisation problem) than the one for par-
tial flow-sensitivity only.

Setting We implemented context-sensitivity by inlining.
All the procedures selected by our adaptation strategy get
inlined. In order to avoid code explosion by such inlining,
we inlined only relatively small procedures. Specifically, in
order to be inlined in our experiments, a procedure should
have less-than-100 basic blocks. The results of our exper-
iments are shown in Table 6.3. In the table, FSCS means
the fully flow-sensitive and fully context-sensitive analysis,
where all procedures with less-than-100 basic blocks are in-
lined. FICI denotes the fully flow-insensitive and context-
insensitive analysis. Our analysis (partial FSCS) represents
the analysis that selectively applies both flow-sensitivity and
context-sensitivity.

Results The results show that our learning algorithm finds
a good parameter w of our adaption strategy. The learnt
w generalises well to unseen programs, and leads to an
adaptation strategy that achieves high precision with rea-
sonable additional cost. In training programs, FICI proved
26,904 queries, and FSCS proved 39,555 queries. With a
learnt parameter w on training programs, our partial FSCS
proved 79.3% of queries that require flow-sensitivity or
context-sensitivity or both. More importantly, the parame-
ter w worked well for test programs, and proved 81.2% of
queries of similar kind. Regarding the cost, our partial FSCS
analysis increased the cost of the FICI analysis only by 3.0x,
while the fully flow- and context-sensitive analysis (FSCS)
increased it by 80.5x.

8. Related work and Discussion
Parametric program analysis Parametric program analy-
ses simply refer to a program analysis that is equipped with

a class of program abstractions and analyses a given program
by selecting abstractions from this class appropriately. Such
analyses commonly adopt counter-example-guided abstrac-
tion refinement, and selects a program abstraction based on
the feedback from a failed analysis run [1, 4–6, 8, 9, 31, 32].
Some exceptions to this common trend are to use the results
of dynamic analysis [7, 16] or pre-analysis [18, 29] for find-
ing a good program abstraction.

However, automatically finding such a strategy is not
what they are concerned with, while it is the main goal of
our work. All of the previous approaches focus on design-
ing a good fixed strategy that chooses a right abstraction
for a given program and a given query. A high-level idea of
our work is to parameterise these adaptation (or abstraction-
selection) strategies, not just program abstractions, and to
use an efficient learning algorithm (such as Bayesian opti-
misation) to find right parameters for the strategies. One in-
teresting research direction is to try our idea with existing
parametric program analyses.

For instance, our method can be combined with the im-
pact pre-analysis [18] to find a better strategy for selective
context-sensitivity. In [18], context-sensitivity is selectively
applied by receiving a guidance from a pre-analysis. The
pre-analysis is an approximation of the main analysis un-
der full context-sensitivity. Therefore it estimates the im-
pact of context-sensitivity on the main analysis, identifying
context-sensitivity that is likely to benefit the final analysis
precision. One feature of this approach is that the impact
estimation of the pre-analysis is guaranteed to be realized
at the main analysis (Proposition 1 in [18]). However, this
impact realization does not guarantee the proof of queries;
some context-sensitivity is inevitably applied even when the
queries are not provable. Also, because the pre-analysis is
approximated, the method may not apply context-sensitivity
necessary to prove some queries. Our method can be used
to reduce these cases; we can find a better strategy for se-
lective context-sensitivity by using the pre-analysis result as
a semantic feature together with other (syntactic/semantic)
features for context-sensitivity.

Use of machine learning in program analysis Several
machine learning techniques have been used for various
problems in program analysis. Researchers noticed that
many machine learning techniques share the same goal as
program abstraction techniques, namely, to generalise from
concrete cases, and they tried these machine learning tech-
niques to obtain sophisticated candidate invariants or speci-
fications from concrete test examples [17, 24–28]. Another
application of machine learning techniques is to encode soft
constraints about program specifications in terms of a prob-
abilistic model, and to infer a highly likely specification
of a given program by performing a probabilistic inference
on the model [2, 11, 13, 22]. In particular, Raychev et al.’s
JSNice [22] uses a probabilistic model for describing type
constraints and naming convention of JavaScript programs,



which guides their cleaning process of messy JavaScript
programs and is learnt from an existing codebase. Finally,
machine learning techniques have also been used to mine
correct API usage from a large codebase and to synthesize
code snippets using such APIs automatically [14, 23].

Our aim is different from those of the above works. We
aim to improve a program analysis using machine learning
techniques, but our objective is not to find sophisticated in-
variants or specifications of a given program using these
techniques. Rather it is to find a strategy for searching for
such invariants. Notice that once this strategy is learnt auto-
matically from an existing codebase, it is applied to multiple
different programs. In the invariant-generation application,
on the other hand, learning happens whenever a program is
analysed. Our work identifies a new challenging optimisa-
tion problem related to learning such a strategy, and shows
the benefits of Bayesian optimisation for solving this prob-
lem.

Application of Bayesian optimisation To the best of our
knowledge, our work is the first application of Bayesian op-
timisation to static program analysis. Bayesian optimisation
is a powerful optimisation technique that has been success-
fully applied to solve a wide range of problems such as auto-
matic algorithm configuration [10], hyperparameter optimi-
sation of machine learning algorithms [30], planning, sensor
placement, and intelligent user interface [3]. In this work,
we use Bayesian optimisation to find optimal parameters for
adapting program analysis.

9. Conclusion
In this paper, we presented a novel approach for automat-
ically learning a good strategy that adapts a static analy-
sis to a given program. This strategy is learnt from an ex-
isting codebase efficiently via Bayesian optimisation, and
it decides, for each program, which parts of the program
should be treated with precise yet costly program-analysis
techniques. This decision helps the analysis to strike a bal-
ance between cost and precision. Following our approach,
we have implemented two variants of our buffer-overrun an-
alyzer, that adapt the degree of flow-sensitivity and context-
sensitivity of the analysis. Our experiments confirm the ben-
efits of Bayesian optimisation for learning adaptation strate-
gies. They also show that the strategies learnt by our ap-
proach are highly effective: the cost of our variant analyses
is comparable to that of flow- and context-insensitive anal-
yses, while their precision is close to that of fully flow- and
context-sensitive analyses.

As we already mentioned, our learning algorithm is noth-
ing but a method for generalizing information from given
programs to unseen ones. We believe that this cross-program
generalization has a great potential for addressing open chal-
lenges in program analysis research, especially because the
amount of publicly available source code (such as that in
GitHub) has increased substantially. We hope that our re-

sults in this paper give one evidence of this potential and get
program-analysis researchers interested in this promising re-
search direction.

Acknowledgements This work was supported by the En-
gineering Research Center of Excellence Program of Ko-
rea Ministry of Science, ICT & Future Planning(MSIP) /
National Research Foundation of Korea(NRF) (Grant NRF-
2008-0062609), and by Samsung Electronics Software Cen-
ter. This work was partly supported by Institute for Informa-
tion & communications Technology Promotion(IITP) grant
funded by the Korea government(MSIP) (No. B0101-15-
0557, Resilient Cyber-Physical Systems Research). Yang
was supported by EPSRC.

References
[1] T. Ball and S. Rajamani. The SLAM project: Debugging

system software via static analysis. In POPL, 2002.

[2] Nels E. Beckman and Aditya V. Nori. Probabilistic, modular
and scalable inference of typestate specifications. In PLDI,
pages 211–221, 2011.

[3] Eric Brochu, Vlad M. Cora, and Nando de Freitas. A tuto-
rial on bayesian optimization of expensive cost functions, with
application to active user modeling and hierarchical reinforce-
ment learning. CoRR, abs/1012.2599, 2010.

[4] S. Chaki, E. Clarke, A. Groce, S. Jha, and H. Veith. Modular
verification of software components in C. In ICSE, 2003.

[5] S. Grebenshchikov, A. Gupta, N. Lopes, C. Popeea, and
A. Rybalchenko. HSF(C): A software verifier based on Horn
clauses. In TACAS, 2012.

[6] B. Gulavani, S. Chakraborty, A. Nori, and S. Rajamani. Au-
tomatically refining abstract interpretations. In TACAS, 2008.

[7] Ashutosh Gupta, Rupak Majumdar, and Andrey Rybalchenko.
From tests to proofs. STTT, 15(4):291–303, 2013.

[8] T. Henzinger, R. Jhala, R. Majumdar, and K. McMillan. Ab-
stractions from proofs. In POPL, 2004.

[9] T. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Software
verification with blast. In SPIN Workshop on Model Checking
of Software, 2003.

[10] Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. Se-
quential model-based optimization for general algorithm con-
figuration. In Proceedings of the 5th International Conference
on Learning and Intelligent Optimization, 2011.

[11] Ted Kremenek, Andrew Y. Ng, and Dawson R. Engler. A
factor graph model for software bug finding. In IJCAI, pages
2510–2516, 2007.

[12] Percy Liang, Omer Tripp, and Mayur Naik. Learning minimal
abstractions. In POPL, 2011.

[13] V. Benjamin Livshits, Aditya V. Nori, Sriram K. Rajamani,
and Anindya Banerjee. Merlin: specification inference for
explicit information flow problems. In PLDI, 2009.

[14] Alon Mishne, Sharon Shoham, and Eran Yahav. Typestate-
based semantic code search over partial programs. In OOP-
SLA, pages 997–1016, 2012.



[15] Jonas Mockus. Application of bayesian approach to numerical
methods of global and stochastic optimization. Journal of
Global Optimization, 4(4), 1994.

[16] Mayur Naik, Hongseok Yang, Ghila Castelnuovo, and Mooly
Sagiv. Abstractions from tests. In POPL, 2012.

[17] Aditya V. Nori and Rahul Sharma. Termination proofs from
tests. In FSE, 2013.

[18] Hakjoo Oh, , Wonchan Lee, Kihong Heo, Hongseok Yang,
and Kwangkeun Yi. Selective context-sensitivity guided by
impact pre-analysis. In PLDI, 2014.

[19] Hakjoo Oh, Kihong Heo, Wonchan Lee, Woosuk Lee, and
Kwangkeun Yi. Sparrow. http://ropas.snu.ac.kr/

sparrow.

[20] Hakjoo Oh, Kihong Heo, Wonchan Lee, Woosuk Lee, and
Kwangkeun Yi. Design and implementation of sparse global
analyses for C-like languages. In PLDI, 2012.

[21] Carl Edward Rasmussen and Christopher K. I. Williams.
Gaussian Processes for Machine Learning (Adaptive Compu-
tation and Machine Learning). The MIT Press, 2005.

[22] Veselin Raychev, Martin Vechev, and Andreas Krause. Pre-
dicting program properties from ”big code”. In POPL, 2015.

[23] Veselin Raychev, Martin Vechev, and Eran Yahav. Code com-
pletion with statistical language models. In PLDI, 2014.

[24] Sriram Sankaranarayanan, Swarat Chaudhuri, Franjo Ivancic,
and Aarti Gupta. Dynamic inference of likely data precondi-
tions over predicates by tree learning. In ISSTA, 2008.

[25] Sriram Sankaranarayanan, Franjo Ivancic, and Aarti Gupta.
Mining library specifications using inductive logic program-
ming. In ICSE, 2008.

[26] Rahul Sharma, Saurabh Gupta, Bharath Hariharan, Alex
Aiken, Percy Liang, and Aditya V. Nori. A data driven ap-
proach for algebraic loop invariants. In ESOP, 2013.

[27] Rahul Sharma, Saurabh Gupta, Bharath Hariharan, Alex
Aiken, and Aditya V. Nori. Verification as learning geometric
concepts. In SAS, 2013.

[28] Rahul Sharma, Aditya V. Nori, and Alex Aiken. Interpolants
as classifiers. In CAV, 2012.

[29] Yannis Smaragdakis, George Kastrinis, and George Balat-
souras. Introspective analysis: Context-sensitivity, across the
board. In PLDI, 2014.

[30] Jasper Snoek, Hugo Larochelle, and Ryan P. Adams. Practical
bayesian optimization of machine learning algorithms. In
26th Annual Conference on Neural Information Processing
Systems, 2012.

[31] Xin Zhang, Ravi Mangal, Radu Grigore, Mayur Naik, and
Hongseok Yang. On abstraction refinement for program anal-
yses in datalog. In PLDI, 2014.

[32] Xin Zhang, Mayur Naik, and Hongseok Yang. Finding opti-
mum abstractions in parametric dataflow analysis. In PLDI,
2013.

Programs LOC
cd-discid-1.1 421
time-1.7 1,759
unhtml-2.3.9 2,057
spell-1.0 2,284
mp3rename-0.6 2,466
ncompress-4.2.4 2,840
pgdbf-0.5.0 3,135
cam-1.05 5,459
e2ps-4.34 6,222
sbm-0.0.4 6,502
mpegdemux-0.1.3 7,783
barcode-0.96 7,901
bzip2 9,796
bc-1.06 16,528
gzip-1.2.4a 18,364
unrtf-0.19.3 19,015
archimedes 19,552
coan-4.2.2 28,280
gnuchess-5.05 28,853
tar-1.13 30,154
tmndec-3.2.0 31,890
agedu-8642 32,637
gbsplay-0.0.91 34,002
flake-0.11 35,951
enscript-1.6.5 38,787
mp3c-0.29 52,620
tree-puzzle-5.2 62,302
icecast-server-1.3.12 68,564
aalib-1.4p5 73,412
rnv-1.7.10 93,858
TOTAL 743,394

Table 6. Benchmark programs.

A. Benchmarks
Table 6 presents the list of 30 benchmark programs used in
our experiments. The benchmark programs are mostly from
GNU and Linux packages.


