
Step-Indexed Kripke Models over Recursive Worlds

Lars Birkedal
IT University of Copenhagen, Denmark

birkedal@itu.dk

Bernhard Reus
University of Sussex, UK

bernhard@sussex.ac.uk

Jan Schwinghammer
Saarland University, Germany

jan@ps.uni-saarland.de

Kristian Støvring
IT University of Copenhagen, Denmark

kss@itu.dk

Jacob Thamsborg
IT University of Copenhagen, Denmark

thamsborg@itu.dk

Hongseok Yang
Queen Mary University London, UK

hyang@dcs.qmul.ac.uk

Abstract
Over the last decade, there has been extensive research on mod-
elling challenging features in programming languages and program
logics, such as higher-order store and storable resource invariants.
A recent line of work has identified a common solution to some of
these challenges: Kripke models over worlds that are recursively
defined in a category of metric spaces. In this paper, we broaden
the scope of this technique from the original domain-theoretic set-
ting to an elementary, operational one based on step indexing. The
resulting method is widely applicable and leads to simple, succinct
models of complicated language features, as we demonstrate in our
semantics of Charguéraud and Pottier’s type-and-capability sys-
tem for an ML-like higher-order language. Moreover, the method
provides a high-level understanding of the essence of recent ap-
proaches based on step indexing.

1. Introduction
Over the last decade, there has been extensive research on mod-
elling challenging features in programming languages, type sys-
tems and program logics, such as higher-order store and storable
resource invariants, where modelling involves constructing recur-
sively defined structures [15, 22, 28, 31, 38, 39]. One of the main
aims of this research has been to develop a method for building
semantic models such that (1) the method is simple enough to be
understood by the designers of a type system or a program logic
(who might have only limited knowledge of domain theory) but (2)
the method is powerful enough to resolve the issue of constructing
recursive structures.

Unfortunately, existing methods do not fully achieve this aim.
Methods based on classical domain theory provide techniques for
constructing recursive structures, but they require non-trivial math-
ematical knowledge from users. Methods based on step index-
ing [2, 4, 6, 11, 12], on the other hand, do not require sophisticated
mathematics from the users; usually, the prerequisite is just famil-
iarity with standard operational semantics of programs. However,
the step-indexed methods only partially address the issue of con-

[Copyright notice will appear here once ’preprint’ option is removed.]

structing recursive structures. They change the original recursive
equations that solutions have to satisfy to easier approximate ones,
and construct structures that satisfy the approximate equations. We
point out that solving the original recursive equations is crucial in
some applications, such as the semantics of various higher-order
frame and anti-frame rules [41, 42]. Hence, in those applications,
only domain-theoretic models, not step-indexed ones, have been
developed.

In this paper, we propose a new method that brings together
the benefits of both domain-theoretic and step-indexing methods.
Our approach is based on a recent line of work where challenging
features of programming languages and logics are modelled using
a common solution: Kripke models over worlds that are recursively
defined in a category of metric spaces [21, 41, 42]. This method
transfers those worlds from the original domain-theoretic setup to
an elementary, operational one based on step indexing.

Although our method does involve a modicum of metric space
theory, it retains the flavour and simplicity of traditional step-
indexed methods [2, 4, 6, 11, 12]. Unlike these step-indexed mod-
els, which only provide solutions to approximated versions of re-
cursive equations, our approach provides solutions to the equations
proper, i.e., we solve the equation up to isomorphism. In the pa-
per, we demonstrate the benefits of our method by presenting the
first semantic model of Charguéraud and Pottier’s capability calcu-
lus [24]. This calculus is a substructural type system for a higher-
order ML-like language with state, and imposes a nontrivial sound-
ness issue, because a model needs to involve a recursively defined
operation on a recursively-defined set of worlds. Our semantics jus-
tifies the typing rules of the calculus, and it also suggests a sound
extension of the type system with a higher-order (deep) frame rule.1

Our method also provides a high-level understanding of the
essence of step-indexed models. In particular, we show that the
method can be specialized to Hobor et al.’s recent abstract descrip-
tion of step-indexed models [29], and explain the benefits of taking
the metric viewpoint we suggest.

The remainder of the paper is organized as follows. In Section 2,
we give an extensive introduction of our method, by developing
a step-indexed Kripke model for ML references. In Section 3,
we address the challenging problem of modelling Charguéraud
and Pottier’s capability type system, and show how our method
gives rise to a step-indexed Kripke model of the calculus. Next, in

1 We have also used the new method to give an elementary operational
model for a program logic for reasoning about higher-order store; this yields
an alternative soundness proof to the earlier non-trivial domain-theoretic
one [41]. Please see the appendix of the long version of the paper for this
model.

1 2010/10/13

Section 4, we consider the connection with the indirection theory
of Hobor et al. [29], and point out what new insights our method
brings to the work on step indexing. Finally, in Sections 5 and 6,
we discuss related work and conclude the paper.

For space reasons, some proofs and details have been omitted.
These can be found in the appendices of the long version of the
paper, which is available at:

http://www.itu.dk/people/thamsborg/longessence.pdf

2. Introductory Example: ML References
In this section, we give an extensive introduction of our method,
using a programming language with impredicative polymorphism
and general ML-like references, i.e., an extension of the call-by-
value polymorphic lambda calculus with higher-order store. We
do not give the syntax of this language as it is standard but point
out that we use v for values, e for expressions and τ for types, in
particular e[τ] is application of a polymorphic term to a type.

First, we describe the general idea of interpreting the program-
ming language with a Kripke-style possible-worlds model, where
the set of worlds is recursively defined. Then, we review an existing
model that realizes the idea in a domain-theoretic setting (based on
an adequate denotational semantics of the language). Finally, we
present a new step-indexed model (based purely on the operational
semantics), and compare it with the domain-theoretic one.

A simple approach for modelling the polymorphic lambda cal-
culus, without general references, is to interpret types as predicates
(subsets) on some fixed set of values. To model the programming
language of interest now, however, we need to extend this approach,
because the language includes dynamic allocation of general refer-
ences. Following earlier work on the semantics of dynamic allo-
cation of simple integer cells [14, 31, 37, 44], we use an exten-
sion with Kripke-style possible worlds. In this extension, a type
is interpreted as a predicate on values parameterized over worlds,
and a world describes the type for each allocated location—a world
w ∈ W is a finite map from locations (modelled as natural num-
bers) to semantic types in T . The extension is described by the
following recursive equations on the set W of worlds and the set T
of semantic types:

V = set of values, including locations
W = N ⇀fin T T = W →mon Pred(V)

(1)

Note that in the equation for T , we impose a monotonicity require-
ment (with respect to an extension ordering of worlds). Intuitively,
this requirement means that validity of semantic types is preserved
in presence of a growing heap. The formal meaning of the mono-
tonicity will be explained later in Section 2.2.

Once we are given the semantic domains W and T satisfying
the above equations, we can interpret types as elements in T . In
particular, the meaning of a reference type ref τ can be defined
roughly as

(ref τ)w = {l | w(l) = τ},
i.e., for a world w, it is the set of locations l such that the semantic
type recorded in the world at l is the same as τ .2

Observe that the natural model of types here is a Kripke model
over a recursively-defined set of worlds. It is a Kripke model be-
cause the semantic types are parameterized over W . The problem
is, of course, that for cardinality reasons there are no solutions to
the above equations in the category of sets; unfolding the above
equations we get W = N ⇀fin (W →mon Pred(V)) with W in a
negative position, see also Ahmed [2].

2 In both of the concrete models to be presented next, the interpretation of
reference types is actually more complicated and involves certain “approx-
imate equality” relations on semantic types.

To address this cardinality issue, existing methods based on step
indexing, including the recent work by Hobor et al. [29], propose
that we should give up solving the original recursive equations
and instead solve approximate versions. As Hobor et al. show,
solutions of the approximate equations are often sufficient for the
applications of interest.

In this paper, we follow a different approach, which involves
finding an appropriate simple category of metric spaces and solving
the original recursive equations in the category. This approach has
been developed in the setting of denotational semantics and domain
theory. We show that the same approach can also be applied to
operational semantics and step indexing. In the next subsections,
we explain this point by giving a Kripke model of ML references,
first using domain-theoretic methods, and then step indexing.

2.1 Review of Metric Spaces
Before describing our Kripke models, we review basic facts on the
metric spaces, which will be used in the models. A 1-bounded
ultrametric space (X, d) is a metric space where the distance
function d : X × X → R takes values in the closed inter-
val [0, 1] and satisfies the strong triangle inequality d(x, y) ≤
max{d(x, z), d(z, y)}. An (ultra-)metric space is complete if ev-
ery Cauchy sequence has a limit. A function f : X1 → X2 be-
tween metric spaces (X1, d1) and (X2, d2) is non-expansive if
d2(f(x), f(y)) ≤ d1(x, y) for all x, y ∈ X1. It is contractive if
there exists some δ < 1 such that d2(f(x), f(y)) ≤ δ · d1(x, y)
for all x, y ∈ X1.

The complete, 1-bounded, non-empty, ultrametric spaces and
non-expansive functions between them form a Cartesian closed
category CBUltne. Products are given by the set-theoretic prod-
uct where the distance is the maximum of the componentwise dis-
tances. The exponential (X1, d1) → (X2, d2) has the set of non-
expansive functions from (X1, d1) to (X2, d2) as underlying set,
and distance function: dX1→X2(f, g) = sup{d2(f(x), g(x)) |
x ∈ X1}. For any set S and space (X, d) ∈ CBUltne, the set of
finite partial functions S ⇀fin X from S to X is again a com-
plete, 1-bounded ultrametric space with distance function given
by d(f, g) = 1, if the domains of f and g are not equal, and
d(f, g) = max{d(f(s), g(s)) | s ∈ dom(f)}, if the domains
of f and g are equal.

A functor F : CBUltopne ×CBUltne −→ CBUltne is locally non-
expansive if d(F (f, g), F (f ′, g′)) ≤ max{d(f, f ′), d(g, g′)} for
all non-expansive f, f ′, g, g′. It is locally contractive if there exists
δ < 1 such that d(F (f, g), F (f ′, g′)) ≤ δ·max{d(f, f ′), d(g, g′)}
for all non-expansive f, f ′, g, g′. By multiplication of the distances
of (X, d) with a non-negative shrinking factor δ < 1, one obtains
a new ultrametric space, δ · (X, d) = (X, d′) where d′(x, y) =
δ · d(x, y). By shrinking, a locally non-expansive functor F yields
a locally contractive functor (δ · F)(X1, X2) = δ · (F (X1, X2)).
For a less condensed introduction to ultrametric spaces we refer
to [43].

It is well-known that one can solve recursive domain equations
in CBUltne by an adaptation of the inverse-limit method from
classical domain theory:

Theorem 2.1 (America-Rutten [9]). LetF : CBUltopne ×CBUltne →
CBUltne be a locally contractive functor. Then there exists a unique
(up to isomorphism) (X, d) ∈ CBUltne such that (X, d) ∼=
F ((X, d), (X, d)).

All the metric spaces we consider satisfy the following property:

Definition 2.2. A metric space is bisected if all non-zero distances
are of the form 2−n for some natural number n ≥ 0.

The following notation is convenient when working with bi-
sected metric spaces: in such a space, x n

= y means that d(x, y) ≤

2 2010/10/13

2−n. We use two facts on n
=. First, each relation n

= is an equiva-
lence relation because of the ultrametric inequality. We are there-
fore justified in referring to the relation n

= as “n-equality.” Second,
the distance of a bisected metric space is bounded by 1. In other
words, the relation x 0

= y always holds.

Proposition 2.3. Let (X1, d1) and (X2, d2) be bisected metric
spaces. A function f : X1 → X2 is non-expansive if and only
if x1

n
= x′1 ⇒ f(x1)

n
= f(x′1) holds for all x1, x

′
1 ∈ X1 and all

natural numbers n ≥ 0.

2.2 General Recipe and Domain-Theoretic Model
We now follow the idea outlined earlier and reformulate the recur-
sive equations (1) in CBUltne to find solutions within this category.
Concretely, the proposal suggests to use the recipe below:

1. Define a set V with a structure. The structure can be a pre-
order, or a uniform complete partial order, but does not have to
be. Intuitively, V is a domain for semantic values.

2. Define an object Pred(V) in CBUltne. Elements in this object
represent predicates on values.

3. Solve the recursive domain equation below in CBUltne:

T̂ ∼= 1
2
· ((N ⇀fin T̂) →mon Pred(V)) . (2)

4. Define T and W using T̂ :

W = N ⇀fin T̂ , T = W →mon Pred(V). (3)

The function space in the equivalence in the third step consists
of non-expansive and monotone functions, where monotonicity is
imposed with respect to the following extension order on N ⇀fin

T : For w,w′ ∈ N ⇀fin T , we have w v w′ iff the domain of w
is included in the domain of w′, and w and w′ agree on the former.
The 1

2
is an example of a shrinking factor and, technically, ensures

that the functor is locally contractive; it is a standard technique [9].
The equivalence is well-formed in CBUltne, and it has a unique
solution up to isomorphism by Theorem 2.1.

The recipe has been used by Birkedal, Støvring and Thams-
borg [21], when they gave a relationally-parametric domain-
theoretic model of a call-by-value language with impredicative
polymorphism, general references and recursive types. They con-
structed the parameters V and Pred(V) of the recipe using domain
theory, choosing for V the cpo of values that is used in the standard
“untyped” domain-theoretic interpretation of the language. This
domain V comes with a family of projections πn : V → V⊥ satis-
fying certain properties (so it becomes a uniform cpo). For the next
parameter Pred(V), Birkedal et al. used these projections to define
Pred(V) as the collection of complete uniform subsets of V . Com-
pleteness says that a subset P is closed under least upper bounds
of chains, and uniformity that P is closed under all the projections
(i.e., ∀v ∈ P. ∀n > 0. πn(v) ∈ P⊥). The set Pred(V) can be
viewed as a metric space in CBUltne, by giving it an appropriate
distance function along the lines of earlier work on interpreting
recursive types and impredicative polymorphism [1, 7, 8, 23, 32].

Now, by simply following the recipe from the given ingredients
(i.e. parameters V and Pred(V)) one obtains metric spaces T for
semantic types and W for possible worlds, respectively. With this
indexed semantic model of types, Birkedal et al. gave an interpre-
tation of all the types of the programming language, and defined
the typed meaning of expressions by proving the fundamental the-
orem of logical relations wrt. the untyped semantics of expressions.
See [21] for a detailed treatment.3

3 Notice that we use a small “trick” to construct the space of worlds W
using Theorem 2.1. By solving the equation (2) we first obtain the space

2.3 Step-Indexed Model
Our new insight is that the recipe presented in Section 2.2 is not tied
to domain theory and denotational semantics, but it can also be used
with operational semantics. In this case, the first parameter of the
recipe is the set Val of closed syntactic values from the operational
semantics. The second parameter is the set of predicates on step-
approximated values. Precisely, it is the collection UPred(Val) of
subsets of N × Val that are downwards closed in the first step (N)
component:

UPred(Val) = {p ⊆ N×Val | ∀(k, v) ∈ p.∀j ≤ k. (j, v) ∈ p}.
We call p ∈ UPred(Val) a uniform predicate on Val.

The idea of considering predicates on step-approximated val-
ues is from step-indexed models [2, 6, 11, 12]. Here we go “a step
further” and show that the collection UPred(Val) of such predi-
cates can always be made into an object in CBUltne. To do this, for
p ∈ UPred(Val) and k ∈ N, we use the notation p[k] = {(m, v) ∈
p | m < k}, representing the k-th approximation of p. With this
notation, we define a distance function d on UPred(Val), which
measures “up-to-what-level” two predicates agree:

d(p, q) =

2−max{k | p[k]=q[k]} if p 6= q
0 otherwise.

Lemma 2.4. (UPred(Val), d) is a well-defined object in CBUltne.
In fact, the construction in UPred(Val) does not depend on our
choice of Val, and can be applied to any set X , giving a metric
space UPred(X) in CBUltne.

Note that because of this lemma, we can consider uniform
predicates p ∈ UPred(X) on any set X .

Hence, the recipe in Section 2.2 is applicable for Val and
UPred(Val), and gives rise to semantic domains T̂ , W and T that
satisfy the recursive equations in (2) and (3). Note that by work-
ing in CBUltne, we have solved the desired equations, even for a
setting based on operational semantics. In the rest of this section,
we use these domains and model the programming language with
impredicative polymorphism and ML references.

For concreteness, we consider a language as in Dreyer et
al. [27], except that we do not consider recursive types and we
split the context for type variables and term variables in two. Term
judgments take the form

Ξ; Γ;Σ ` M : τ

where Ξ is a context of type variables α1, . . . , αn; Γ is a context
of typed term variables x1 : τ1, . . . , xm : τm; and Σ is a context
of typed locations l1 : τ1, . . . , lk : τk. Detailed typing judgments
and operational semantics can be found in the online appendix to
Dreyer et al.

Types in this language are interpreted similar to those used
in existing step-indexed models [2], but one can exploit the fact
that W and T are solutions to the recursive equations above. The
semantics of types in context is defined as a non-expansive function

JΞ ` τK : T |Ξ| → T

in CBUltne. The definition is shown in Figure 1. In the figure, we
use η for environments for Ξ, i.e., elements in the product space
T |Ξ| in CBUltne. Notice that in the case for JΞ ` ref τK, we use
k-equality in the space T and that E [[Ξ ` τ]] generalizes JΞ ` τK
from values to expressions.

Lemma 2.5. JΞ ` τK is well-defined. In particular,

of semantic types, and we then define worlds in terms of semantic types. It
is also possible to obtain W directly, as a solution of a recursive equation
in a category of pre-ordered ultrametric spaces [20]. The latter technique is
more general, but for this paper we do not need such pre-ordered spaces.

3 2010/10/13

JΞ ` τKη : W →mon UPred(Val)

JΞ ` 1Kηw = {(k, ()) | k ∈ N}

JΞ ` ref τKηw = {(k, l) | l ∈ dom(w) ∧ w(l)
k
= JΞ ` τKη}

JΞ ` αKηw = η(α)(w)

JΞ ` ∀α.τKηw = {(k, v) | ∀τ ′ ∈ SyntacticType. ∀r ∈ T. ∀w′ w w.

∀i ≤ k. (i, v[τ ′]) ∈ E[[Ξ, α ` τ]]η[α 7→r]w
′}

q
Ξ` τ → τ ′

y
η
w = {(k, v) | ∀v′ ∈ Val. ∀w′ w w. ∀i ≤ k.

(i, v′)∈ JΞ` τKηw′ ⇒ (i, v v′)∈E[[Ξ` τ ′]]ηw′}

E[[Ξ ` τ]]ηw = {(k, t) | ∀i ≤ k. ∀h, h′. ∀e′.
`
h :k w ∧

(t |h) 7−→i (e′ |h′) ∧ (e′, h′) irreducible
´
⇒`

∃w′ w w. h′ :k−i w′ ∧ (k− i, e′) ∈ JΞ ` τKηw′´}
h :k w ⇐⇒ dom(h) = dom(w) ∧

∀i < k. ∀l ∈ dom(w). (i, h(l)) ∈ w(l)(w)

(where () is the unique element in the empty product, SyntacticType is
the set of syntactic types, Exp is the set of closed syntactic expressions, and
(t |h) is a configuration of an expression t and a heap h. A heap h is a finite
function from locations to closed syntactic values.)

Figure 1. Interpretation of types

JΞ ` ΓKη : W → UPred(Val|Γ|)

JΞ ` ∅Kηw = {(k, ()) | k ∈ N}

JΞ ` Γ, x : τKηw = {(k, ρ[x 7→ v]) | (k, ρ) ∈ JΓKηw ∧

(k, v) ∈ JΞ ` τKηw}

JΣK : UPred(W)

JΣK = {(k, w) | ∀(l : τ) ∈ Σ. (k, l) ∈ J∅ ` ref τK()w}

Ξ; Γ;Σ ` t :log τ ⇐⇒
∃α1, . . . , αn. Ξ = α1, . . . , αn ∧
∀τ1, . . . , τn. ∀k ≥ 0. ∀η. ∀ρ. ∀w.`

η ∈ T |Ξ| ∧ (k, ρ) ∈ JΞ ` ΓKηw ∧ (k, w) ∈ JΣK
´

⇒
`
(k, (ρ(t))[α1:=τ1, . . . , αn:=τn]) ∈ E[[Ξ ` τ]]ηw

´
(where () is the unique environment for the empty context, and both
(−)[α1:=τ1, . . . , αn:=τn] and ρ(−) represent the applications of sub-
stitutions.)

Figure 2. Interpretation of contexts and well-typed expressions

• for all η ∈ T |Ξ|, JΞ ` τKη is non-expansive and monotone; and
• JΞ ` τK is a non-expansive map on η’s.

In Figure 2 we define interpretations of contexts and the log-
ical relation interpretation of well-typed expressions. Using those
definitions, we are ready to prove the main soundness result:

Theorem 2.6 (Fundamental Theorem of Logical Relations). If
Ξ; Γ;Σ ` t : τ , then Ξ; Γ;Σ ` t :log τ .

One oddity is worth explaining: there is no coherence between
the syntactic types that we substitute for type variables and the
corresponding semantic types in the environment; this is the case
both for the interpretation of universal types and in the definition
of the logical relation. The explanation is simply that the syntactic

types in values and expressions do not influence the computation;
indeed, we could equally well have worked with a language without
type-decorations as, e.g., Ahmed [5] does.

We finally remark that it is not surprising that there is a con-
nection between metric spaces and step-indexed models; this was
already pointed out in [11]. The point is that it is useful not to for-
get this connection because it, e.g., allows us to define solutions to
recursive world equations such as the ones in this section. (See also
the discussion in Section 4.2.)

We do not present a formal relationship to existing models for
this particular example, but rather show, in Section 4, how all the
step-indexed models described via the indirection theory of Hobor
et al. can be obtained by a specialization of our general approach.
In Section 4.2, we will also highlight the advantages of using
metric spaces. Next, however, we consider another more substantial
application to illustrate our method.

3. Application: A Step-indexed Model of
Capabilities

Reasoning about higher-order stateful programs is notoriously dif-
ficult, and often involves the need to track aliasing information.
A particular line of work that has been proposed to this end are
substructural type systems with regions, capabilities and singleton
types [3, 24, 26]. In this section, we give a step-indexed model for a
substantial fragment4 of Charguéraud and Pottier’s capability cal-
culus [24]. Our model provides an alternative soundness proof to
the translation and progress and preservation results in [24, 36],
and allows for the analysis of soundness of extensions. We illustrate
this latter point by proving sound an extension of the language with
higher-order frame rules [19, 41], and establish an explicit connec-
tion with models of separation logic qua our model, which shows
that capabilities can be understood semantically as separation logic
predicates, i.e., as predicates on heaps.

We believe that this step-indexed model provides an interesting
application of the metric point of view that has been emphasized
in the previous section. The model construction takes advantage
of the fact that the recursive world equation can be solved (up to
isomorphism), rather than merely approximated: the higher-order
frame rules are modelled with the help of a recursive operation on
worlds, and this operation is defined using the metric structure.

3.1 A Calculus of Capabilities
In the following presentation, we keep close to the notation of
Charguéraud and Pottier [24, 36]. Figures 3 and 4 give the syntax
and operational semantics of the programming language that we
consider. It is a standard call-by-value, higher-order language with
general references, and polymorphic and recursive types. The only
noteworthy point about the syntax is that expressions are restricted
so that all sequencing is made explicit; this simplifies the presenta-
tion of the typing rules and semantics but is no real restriction. The
term µf.λx.t stands for the recursive procedure f with body t and
argument x. If f does not appear in t, we may simply write λx.t.

The operational semantics is defined between configurations
(t |h) that consist of a (closed) expression t and a heap h. As in
the previous section, a heap h is a finite map from locations to
closed values. Also, we remind the reader of our notation t[x:=v]
that means the substitution of v for x in t. We use the notation h#h′

to indicate that two heaps h and h′ have disjoint domains, and we
write h · h′ for the union of two such heaps.

The types used in the system are given by the grammar in
Figure 5. Capabilities C describe heap properties (much like the
assertions of a Hoare-style program logic), value types τ classify

4 We do not consider group regions.

4 2010/10/13

Variables ξ ::= α | β | γ | σ
Capabilities C ::= C ⊗ C | ∅ | C ∗ C | {σ : θ} | ∃σ.C | γ | µγ.C | ∀ξ.C
Value types τ ::= τ ⊗ C | 0 | 1 | int | τ + τ | τ × τ | χ→ χ | [σ] | α | µα.τ | ∀ξ.τ
Memory types θ ::= θ ⊗ C | τ | θ + θ | θ × θ | ref θ | θ ∗ C | ∃σ.θ | β | µβ.θ | ∀ξ.θ
Computation types χ ::= χ⊗ C | τ | χ ∗ C | ∃σ.χ
Value environments ∆ ::= ∆⊗ C | ∅ | ∆, x:τ
Linear environments Γ ::= Γ⊗ C | ∅ | Γ, x:χ | Γ ∗ C

Figure 5. Capabilities and types

v ::= x | () | inji v | (v1, v2) | µf.λx.t | l
t ::= v | (v t) | case(v1, v2, v) | proji v | ref v | get v | set v

Figure 3. Syntax of values and expressions

(µf.λx.t) v |h 7−→ t[f := µf.λx.t, x := v] |h
proji(v1, v2) |h 7−→ vi |h for i = 1, 2

case(v1, v2, injiv) |h 7−→ vi v |h for i = 1, 2

ref v |h 7−→ l |h·[l 7→ v] if l /∈ domh

get l |h 7−→ h(l) |h if l ∈ domh

set (l, v) |h 7−→ () |h[l := v] if l ∈ domh

v t |h 7−→ v t′ |h′ if t |h 7−→ t′ |h′

Figure 4. Operational semantics

values, and memory types θ (and the subset of computation types)
describe properties of expressions and how their evaluation affects
the heap. Because of the heap dependency, capabilities and memory
types are linear, and correspondingly there is a distinction between
value type environments and the more general linear environments.

A region σ is a static name that represents a value, and [σ] is
a singleton type that contains only this particular value. Capabil-
ities are formed from singleton capabilities {σ : θ} by separat-
ing conjunction and existential quantification over regions. We also
include capability variables γ and permit recursively defined ca-
pabilities. A singleton capability {σ : θ} asserts that the value
denoted by σ has type θ, and moreover it represents the owner-
ship of both this value and the fragment of the heap described by
θ. Thus, it is similar to the points-to predicate of separation logic:
for example, the capability {σ : ref τ} means that σ denotes the
address of a reference cell, and that the “owned” part of the heap
stores a value of type τ at this address. Apart from singleton types,
the value types include base types (here an empty type 0, the unit
type 1, and int) and are closed under products, sums, and universal
quantification over singletons, types and capabilities. The memory
types extend value types by a type of references, and by the pos-
sibility to ∗-conjoin a capability. Like the pre- and postconditions
used in Hoare logic, the arrow types make explicit which part of
the heap is accessed when a procedure is called. For instance, the
type ∀σ, σ′. [σ] ∗ {σ : ref [σ′]} → [σ′] ∗ {σ : ref [σ′]} can be given
to a procedure that dereferences its argument.

Recursive capabilities and types are subject to a syntactic re-
striction: C must be formally contractive in γ for µγ.C to be well-
formed. By this we mean that the recursion must go through one of
the type constructors +,×,→ or ref, or through the right-hand side
of⊗. This restriction ensures that the capability µγ.C is the unique

solution of the capability equation γ = C. Corresponding restric-
tions apply to recursively defined types µα.τ and µβ.θ. We omit
the straightforward inductive definition of formal contractiveness.

One interesting aspect of the type system is that each of the
syntactic categories is equipped with an invariant extension oper-
ation, · ⊗ C. Intuitively, this operation conjoins C to the domain
and codomain of every arrow type that occurs within its left hand
argument, which means that the capability C is preserved by all
functions of this type. This intuition is made precise by regarding
capabilities and types modulo the structural equivalence given in
Figure 6. This equivalence subsumes the “distribution axioms” for
⊗ that are used to express generic higher-order frame rules [19].
The first two groups of equations, equivalences (4)–(11), state that
both ∗ and the derived operation ◦ on capabilities satisfy the ax-
ioms of a monoid, and that ∗ and ⊗ are actions of these monoids.
Equivalences (15)–(30) describe the action by ⊗ on types. In par-
ticular, (25) shows the key case of the invariant extension described
informally above.5 Finally, the equivalences (34)–(38) for focusing
let us build and deconstruct the capabilities over complex types in
terms of capabilities over more primitive types.

The system also uses a subtyping relation, and Figure 7 gives
some of the subtyping axioms. The typing rules are shown in
Figure 8. Due to the use of linear environments and computation
types (which in general contain embedded capabilities), the typing
judgement Γ t : χ is similar to a Hoare triple where Γ serves
as a precondition and χ as a postcondition. This view explains the
rules SHALLOW-FRAME and DEEP-FRAME; as in separation logic,
these rules can be used to add an invariant C to a specification. The
difference between SHALLOW-FRAME and DEEP-FRAME is that
the former adds C only on the top-level, whereas the latter also
extends all arrow types nested inside Γ and χ, via · ⊗ C. As with
the higher-order frame rules in separation logic, this is useful for
reasoning about information hiding [19].

3.2 Upwards Closed Uniform Predicates and Worlds
The main idea of the model that we present next is that types
(as well as type contexts and capabilities) are parameterized by
invariants. Thus, in this case the worlds will be predicates that, like
the syntactic capabilities of the calculus, describe properties of the
heap that all computations must preserve.

Recall that the set UPred(X) of uniform predicates on a set X
is defined by

UPred(X) = {p ⊆ N×X | ∀(k, v) ∈ p.∀j ≤ k. (j, v) ∈ p}.
The interpretation of types and capabilities is based on a variation
on these uniform predicates. Let (A,v) be a partially ordered set.
An upwards closed uniform predicate p on A is a predicate in
UPred(A) that is also upward closed in the second argument, i.e.
if (k, a) ∈ p and a v b then (k, b) ∈ p. We write UPred↑(A) for

5 Note that (13) and (14) let us move capabilities between assumptions – a
form of ownership transfer.

5 2010/10/13

VAR
(x : τ) ∈ ∆

∆ ` x : τ

UNIT

∆ ` () : 1

INJ
∆ ` v : τi

∆ ` (inji v) : (τ1+τ2)

PAIR
∆ ` v1 : τ1 ∆ ` v2 : τ2

∆ ` (v1, v2) : (τ1 × τ2)

RECFUN
∆, f : χ1→χ2, x : χ1 t : χ2

∆ ` µf.λx.t : χ1→χ2

VAL
∆ ` v : τ

∆ v : τ

APP
∆ ` v : χ1 → χ2 ∆,Γ t : χ1

∆,Γ (v t) : χ2

PROJ-1
Γ v : [σ] ∗ {σ : τ1 × θ2}

Γ proj1 v : τ1 ∗ {σ : τ1 × θ2}

PROJ-2
Γ v : [σ] ∗ {σ : θ1 × τ2}

Γ proj2 v : τ2 ∗ {σ : θ1 × τ2}
CASE
∆ ` v1 : (∃σ1.[σ1] ∗ {σ : [σ1] + 0} ∗ {σ1 : θ1} ∗ C) → χ
∆ ` v2 : (∃σ2.[σ2] ∗ {σ : 0 + [σ2]} ∗ {σ2 : θ2} ∗ C) → χ

∆,Γ v : [σ] ∗ {σ : θ1 + θ2} ∗ C
∆,Γ case(v1, v2, v) : χ

∀-INTRO
∆ ` v : τ

∆ ` v : ∀ξ.τ ξ /∈ ∆

∀-ELIM-1
∆ ` v : ∀α.τ

∆ ` v : τ [α := τ ′]

REF
Γ v : τ

Γ ref v : ∃σ.[σ] ∗ {σ : ref τ}

GET
Γ v : [σ] ∗ {σ : ref τ}

Γ get v : τ ∗ {σ : ref τ}

SET
Γ v : ([σ]× τ2) ∗ {σ : ref τ1}

Γ set v : 1 ∗ {σ : ref τ2}

SHALLOW-FRAME
Γ t : χ

Γ ∗ C t : χ ∗ C

DEEP-FRAME
Γ t : χ

(Γ⊗ C) ∗ C t : (χ⊗ C) ∗ C

SUB
Γ t : χ1 χ1 ≤ χ2

Γ t : χ2

Figure 8. Typing of values and expressions

the set of all upwards closed uniform predicates on A, and define

p[k] = {(j, a) ∈ p | j < k}.
As in Section 2.3 on UPred(V), this restricts p to pairs with first
component less than k. Note that p[k] is again upwards closed and
uniform, so it belongs to UPred↑(A) as well. We equip UPred↑(A)
with the same distance function d as UPred(A) in Section 2.3. This
makes (UPred↑(A), d) an object of CBUltne.

In our model, we use UPred↑(A) with the following concrete
instances for the partial order (A,v):

• (Heap,v) where h v h′ iff h′ = h · h0 for some h0#h,
• (Val,v) where u v v iff u = v,
• (Val× Heap,v) where (u, h) v (v, h′) iff u = v and h v h′.

We also use variants of the latter two instances where the set Val
is replaced by the set of value substitutions, Env, and by the set of
expressions, Exp.

On UPred↑(Heap), ordered by subset inclusion, we have a com-
plete Heyting BI algebra structure [17]. Meets and joins are given
by set-theoretic intersections and unions, resp., and implication,
separating conjunction and separating implication are given by

(k, h) ∈ p→ q ⇔ ∀j ≤ k. ∀h′ w h. (j, h′) ∈ p⇒ (j, h′) ∈ q
(k, h) ∈ p1 ∗ p2 ⇔ ∃h1, h2. h = h1·h2 ∧ (k, hi) ∈ pi

(k, h) ∈ p−∗ q ⇔ ∀j ≤ k. ∀h′#h. (j, h′) ∈ p⇒ (j, h·h′) ∈ q
The unit for ∗ is given by I = N× Heap = >. Up to the natural
number indexing, this is just the standard intuitionistic (in the sense
that it is not “tight”) model of separation logic [40].

Since the worlds are to represent invariants (for instance, de-
scribing the shape of data structures laid out in the heap) and since
the language of Section 3.1 has general references (so these in-
variants talk about stored procedures and are themselves world-
dependent), it is natural that worlds w ∈ W must also double-
act as functions W → UPred↑(Heap). Consequently, we solve in
CBUltne the following recursive world equation:

W ∼= 1
2
·W → UPred↑(Heap) . (46)

Here, the function space is that of CBUltne and the 1/2 denotes
the scaling of the distance function on W . That W exists (and

is uniquely determined up to isomorphism) follows from Theo-
rem 2.1, applied to the locally contractive functor F (X,Y) =
1
2
· X → UPred↑(Heap) on CBUltne. Worlds are thus essentially

contractive functions from worlds to UPred↑(Heap), i.e. world de-
pendent heap predicates. We define

Cap = 1
2
·W → UPred↑(Heap),

and write ι : Cap → W for the isomorphism in (46), and ι−1 for
its inverse. By ordering the elements of Cap pointwise,

p ≤ q ⇔ ∀w. p(w) ⊆ q(w),

we can lift the algebra structure on UPred↑(Heap).

Lemma 3.1. With the above ordering and the pointwise lifting of
the algebra operations on UPred↑(Heap), the set Cap is a complete
Heyting BI algebra.

The fact that Cap is a complete BI algebra immediately gives us
a sound interpretation of ∗ on capabilities. (Moreover, it suggests
that the syntax of capabilities could be extended with all the logical
connectives of separation logic.) However, to interpret recursive
capabilities we also need to know that the operations are non-
expansive:

Lemma 3.2. The BI algebra operations on Cap are non-expansive
functions, i.e., they are morphisms in CBUltne:

∧,∨,→, ∗,−∗ : Cap× Cap → CapV
I ,

W
I : (I → Cap) → Cap

(For the last two operations, the indexing set I is given the discrete
metric, i.e., the distance of any two different elements is 1.)

Proof sketch. One can first show the corresponding property for
the operations on UPred↑(Heap) which is straightforward; the re-
sult then follows from the pointwise definition and the use of
the sup-metric on Cap. To illustrate the non-expansiveness on
UPred↑(Heap), we consider the case of separating conjunction: It
suffices to show that p n

= p′ and q n
= q′ implies p ∗ q n

= p′ ∗ q′.
By definition of the n-equality, p ∗ q n

= p′ ∗ q′ is equivalent to
(j, h) ∈ p ∗ q ⇔ (j, h) ∈ p′ ∗ q′ for all j < n, which follows
easily from the assumptions that p n

= p′ and q n
= q′.

6 2010/10/13

monoids

C1 ◦ C2
def
= (C1 ⊗ C2) ∗ C2 (4)

(C1 ◦ C2) ◦ C3 = C1 ◦ (C2 ◦ C3) (5)

C ◦ ∅ = C (6)

(C1 ∗ C2) ∗ C3 = C1 ∗ (C2 ∗ C3) (7)

C ∗ ∅ = C (8)

C1 ∗ C2 = C2 ∗ C1 (9)

monoid actions

(· ⊗ C1)⊗ C2 = · ⊗ (C1 ◦ C2) · ⊗ ∅ = · (10)

(· ∗ C1) ∗ C2 = · ∗ (C1 ∗ C2) · ∗ ∅ = · (11)

action by ∗ on singleton

{σ : θ} ∗ C = {σ : θ ∗ C} (12)

action by ∗ on linear environments

(Γ, x:χ) ∗ C = Γ, x:(χ ∗ C) (13)

= (Γ ∗ C), x:χ (14)

action by ⊗ on capabilities, types, and environments

(· ∗ ·)⊗ C = (· ⊗ C) ∗ (· ⊗ C) (15)

(∃σ.·)⊗ C = ∃σ.(· ⊗ C) if σ /∈ RegNames(C) (16)

∅ ⊗ C = ∅ (17)

{σ : θ} ⊗ C = {σ : θ ⊗ C} (18)

0⊗ C = 0 (19)

1⊗ C = 1 (20)

int⊗ C = int (21)

(θ1 + θ2)⊗ C = (θ1 ⊗ C) + (θ2 ⊗ C) (22)

(θ1 × θ2)⊗ C = (θ1 ⊗ C)× (θ2 ⊗ C) (23)

(∀ξ.θ)⊗ C = ∀ξ.(θ ⊗ C) if ξ /∈ fv C (24)

(χ1 → χ2)⊗ C = (χ1 ◦ C) → (χ2 ◦ C) (25)

[σ]⊗ C = [σ] (26)

(ref θ)⊗ C = ref (θ ⊗ C) (27)

∅⊗ C = ∅ (28)

(Γ, x:χ)⊗ C = (Γ⊗ C), x:(χ⊗ C) (29)

(Γ ∗ C1)⊗ C2 = (Γ⊗ C2) ∗ (C1 ⊗ C2) (30)

region abstraction

∃σ1.∃σ2.· = ∃σ2.∃σ1.· (31)

· ∗ (∃σ.C) = ∃σ.(· ∗ C) (32)

{σ1 : ∃σ2.θ} = ∃σ2.{σ1 : θ} where σ1 6= σ2 (33)

focusing

{σ1 : ref θ} = ∃σ2.{σ1 : ref [σ2]} ∗ {σ2 : θ} (34)

{σ : θ1 × θ2} = ∃σ1.{σ : [σ1]× θ2} ∗ {σ1 : θ1} (35)

{σ : θ1 × θ2} = ∃σ2.{σ : θ1 × [σ2]} ∗ {σ2 : θ2} (36)

{σ : θ1 + 0} = ∃σ1.{σ : [σ1] + 0} ∗ {σ1 : θ1} (37)

{σ : 0 + θ2} = ∃σ2.{σ : 0 + [σ2]} ∗ {σ2 : θ2} (38)

recursion

µγ.C = C[γ:=µγ.C] (39)

µα.τ = τ [α:=µα.τ] (40)

µβ.θ = θ[β:=µβ.θ] (41)

Figure 6. Structural equivalence

(first-order) frame axiom
χ1 → χ2 ≤ (χ1 ∗ C) → (χ2 ∗ C) (42)

free
C1 ∗ C2 ≤ C1 (43)

singletons
τ ≤ ∃σ.[σ] ∗ {σ : τ} (44)

[σ] ∗ {σ : τ} ≤ τ ∗ {σ : τ} (45)

Figure 7. Some subtyping axioms

Next, we define a ‘composition’ operation on the worlds W .
This operation plays a role similar to the ordering by extension in
the case where worlds are finite maps from locations to semantic
types (cf. Section 2). However, it is more involved than a simple
extension of worlds; rather, it corresponds to the syntactic abbrevi-
ation C1 ◦ C2 = C1 ⊗ C2 ∗ C2 from Figure 6, of conjoining C1

and C2 and additionally applying an invariant extension · ⊗ C2 to
C1. Formally, ◦ : W ×W →W is a non-expansive operation that
for all p, r, w ∈W satisfies

ι−1(p ◦ r)(w) = ι−1(p)(r ◦ w) ∗ ι−1(r)(w) .

Using the metric-space setup, we can define this operation by
an easy application of Banach’s fixed point theorem, as in [41].
Observe that it is here where we exploit that we have obtained a
proper solution to the world equation (46) in CBUltne.

We write emp for the image ι(λw.I) of the BI unit under ι. Then
it turns out that ◦ is associative and p ◦ emp = emp ◦ p = p holds
for all p, so (W, ◦, emp) is a monoid in CBUltne. Now let (X, d) be
an arbitrary ultrametric space. Using the composition operator on
worlds, we consider a semantic analogue of the invariant extension
operation, ⊗ : X(1

2 ·W) ×W → X(1
2 ·W) defined by

(f ⊗ w0)(w) = f(w0 ◦ w) .

The following proposition is a slight generalization of [41, Lemma
5], and summarizes the key properties of ◦ and⊗. In the following,
these properties are used to justify some of the equivalences given
in Figure 6.

Proposition 3.3 (Monoid and monoid action). Let (X, d) be an
ultrametric space. Then (W, ◦, emp) is a monoid in CBUltne, and
the operation ⊗ : X(1

2 ·W) ×W → X(1
2 ·W) is a (non-expansive)

action of the monoid W on the ultrametric space of non-expansive
functions from 1

2
·W toX , i.e., f⊗emp = f and (f⊗w1)⊗w2 =

f ⊗ (w1 ◦ w2).

3.3 Semantic Domains and Interpretation
In this section we give the interpretation of the capabilities, types
and environments of the type system. The semantic domain corre-
sponding to each syntactic category is a set of (contractively world-
dependent) upwards closed and uniform predicates:

VT = 1
2
·W → UPred↑(Val)

MT = 1
2
·W → UPred↑(Val× Heap) .

In particular, in each case there is an action of W by the operation
⊗, as described in Proposition 3.3. Note that Cap = 1

2
·W →

UPred↑(Heap) acts on itself, via the isomorphism ι between W
and Cap. This operation plays a key role in explaining the higher-
order frame (and also anti-frame) inference rules and the associated
distribution axioms [41, 42]. Moreover, due to the shrinking factor
δ = 1

2
, this action is contractive in its right-hand side: for all p, r ∈

Cap, the assignment r 7→ p⊗ι(r) is a contractive endomap on Cap.
This observation explains why the (syntactic) invariant extension
can be assumed formally contractive in its second argument.

7 2010/10/13

We also consider a further overloading of the separating con-
junction. It is the below generalization S ∗ q to sets of the form
S ∈ UPred↑(A× Heap) and q ∈ UPred↑(Heap):

S ∗ q = {(k, (a, h · h′)) | (k, (a, h)) ∈ S ∧ (k, h′) ∈ q ∧ h#h′}.

As for the separating conjunction on UPred↑(Heap), this operation
can be lifted pointwise to give a non-expansive operation on S ∈
1
2
·W → UPred↑(A× Heap) and r ∈ Cap,

(S ∗ r)(w) = S(w) ∗ r(w) . (47)

This provides a second monoid action, with respect to the monoid
structure given by the separating conjunction on Cap.

Proposition 3.4 (Monoid and monoid action). (Cap, ∗, I) is a
commutative monoid, and for any (pre-ordered) setA the operation
in (47) is an action of this monoid on the space of non-expansive
functions from 1

2
·W to UPred↑(A × Heap), i.e., S ∗ I = S and

(S ∗ p) ∗ q = S ∗ (p ∗ q).

The interpretation of capabilities and types is given in Figure 9.
This interpretation depends on an environment η, which maps re-
gion names σ ∈ RegName to closed values η(σ) ∈ Val, capability
variables γ to semantic capabilities η(γ) ∈ Cap, and type vari-
ables α and β to semantic types η(α) ∈ VT and η(β) ∈ MT. As
indicated above, the semantics of capabilities is defined in terms of
the BI structure on Cap. The semantics of memory types uses the
action of Cap on MT described in (47). It also makes explicit the
aliasing information contained in memory types: for instance, the
two components of a pair of type θ1 × θ2 cannot overlap in the
heap (a similar exclusion of sharing holds for referenced cells). In
the interpretation of a value type τ considered as memory type, JτK
on the right-hand side refers to the value type interpretation. Note
that the computation types χ form a subset of the memory types,
and thus obtain their interpretation in MT.

Let Env denote the finite maps from variables to closed val-
ues. Duplicable (heap-independent) environments are interpreted
as contractive maps fromW to UPred↑(Env). Linear environments
are modelled as contractive maps fromW to UPred↑(Env×Heap).
Conceptually, each of the entries in a linear environment owns a
part of the heap, disjoint from that of the other entries.

With the exception of arrow types, the semantics of value types
deserves little explanation; in all cases, the world is simply passed
through, and the index is decreased (whenever justified by the oper-
ational semantics) to ensure that type constructors become contrac-
tive. The definition of arrow types is more intricate, and uses the
following extension of memory types from values to expressions.

Definition 3.5. Let S ∈ MT. Then the function E(S) : W →
UPred↑(Exp× Heap) is defined by (k, (t, h)) ∈ E(S)(w) iff

∀j ≤ k, t′, h′. (t |h) 7−→j (t′ |h′) ∧ (t′ |h′) irreducible

⇒ (k − j, (t′, h′)) ∈ S(w) ∗ ι−1(w)(emp) .

Note that there is no scaling by 1
2

, i.e., E(S) is a non-expansive,
but not a contractive, function of worlds. However, we do have a
form of contractiveness on non-values:

Lemma 3.6. For all S1, S2 ∈ MT, expressions t and h ∈ Heap, if
w1

n
= w2 in W , S1

n−1
= S2 and t /∈ Val, then for all k ≤ n,

(k, (t, h)) ∈ E(S1)(w1) ⇔ (k, (t, h)) ∈ E(S2)(w2) .

Proof. Let w1
n
= w2, and observe that this implies S1(w1)

m
=

S2(w2) and ι−1(w1)(emp)
m
= ι−1(w2)(emp) for any m < n.

Now assume that (k, (t, h)) ∈ E(S1)(w1) for some k ≤ n. We
must show that (k, (t, h)) ∈ E(S2)(w2). For this, suppose that
(t |h) 7−→j (t′ |h′) for some j ≤ k where (t′ |h′) is irreducible.

The assumption (k, (t, h)) ∈ E(S1)(w1) yields (k − j, (t′, h′)) ∈
S1(w1)∗ι−1(w1)(emp). In particular, t′ ∈ Val and therefore t 6= t′

by the assumption that t /∈ Val. Thus we must have j > 0, and
therefore k − j < k ≤ n which by the above observations means
that (k − j, (t′, h′)) ∈ S2(w2) ∗ ι−1(w2)(emp).

The direction from right to left is symmetric.

We now explain the ideas behind the definition of arrow types
in Figure 9 in more detail. First, the basic idea of our Kripke
style semantics is that invariants added by the context are collected
in the worlds. Thus, for a procedure application we realize this
idea by interpreting the current world as a predicate ι−1(w)(emp)
on heaps, which is conjoined to the actual argument (computa-
tion) type Jχ1Kη (w), as well as to the result (computation) type
Jχ2Kη (w) through the definition of E . Second, by additionally con-
joining r as an invariant we bake in the first-order frame prop-
erty. Finally, the quantification over indices j less than k achieves
that Jχ1 → χ2Kη w is in UPred↑(Val). There are two explana-
tions why we require that j be strictly less than k in the defini-
tion of Jχ1 → χ2K. Technically, the use of ι−1(w) in the defini-
tion “undoes” the scaling by 1

2
, and the strictly smaller index is

needed to ensure the non-expansiveness of Jχ1 → χ2K as a func-
tion 1

2
·W → UPred↑(Val). Moreover, the smaller index allows us

to prove the typing rule for recursive functions, by induction on k.
Intuitively, the use of j < k for the arguments suffices since each
procedure application consumes a step.

Proposition 3.7. The interpretation in Figure 9 is well-defined: all
the J·K’s map into the declared sets, and the recursive definitions of
capabilities and types have unique solutions.

Proof sketch. We equip the set of values with the discrete metric,
and then obtain a complete 1-bounded ultrametric on environments:

d(η, η′) = supξ d(η(ξ), η
′(ξ)) . (48)

We then show by simultaneous induction on C, τ , and θ, the
following properties:

1. JCKη w, JτKη w, and JθKη w are upwards closed and uniform
predicates;

2. JCKη w, JτKη w, and JθKη w are non-expansive functions of η
(with respect to the distance in (48)) and w (with respect to the
metric on 1

2
·W);

3. ifC is formally contractive in ξ then JCKη[ξ:=(·)] is contractive;
4. if θ is formally contractive in ξ then JθKη[ξ:=(·)] is contractive.

These properties can be verified by a straightforward (but tedious)
simultaneous induction, for instance using Lemma 3.6 and the
non-expansiveness of separating conjunction to show the non-
expansiveness of arrow types. The interpretation of recursive types
and capabilities relies on our restriction to formally contractive
equations, so that they are uniquely defined from Banach’s fixed
point theorem by the above properties 3 and 4.

This interpretation respects the structural equivalence, i.e.,
whenever C1 and C2 are equivalent capabilities then JC1K = JC2K
(and similarly for value and memory types). The proofs of these
facts are easy consequences of the definition of JCK and Proposi-
tions 3.3 and 3.4. Moreover, the interpretation validates the subtyp-
ing axioms, i.e., whenever θ1 ≤ θ2 then Jθ1Kη w ⊆ Jθ2Kη w holds
for all η and w. These proofs can be found in the appendix of the
long version of the paper.

Recall that we have two kinds of judgments, one for typing of
values and the other for the typing of expressions:

∆ ` v : τ Γ t : χ

8 2010/10/13

Capabilities, JCKη : 1
2
·W → UPred↑(Heap)

JC1 ⊗ C2Kη w = (JC1Kη ⊗ ι(JC2Kη))w

J∅Kη w = N× Heap

JC1 ∗ C2Kη w = (JC1Kη ∗ JC2Kη)w

J{σ : θ}Kη w = {(k, h) | (k, (η(σ), h)) ∈ JθKη w}

J∃σ.CKη w =
S

v∈Val JCKη[σ:=v] w

JγKη w = η(γ)(w)

Jµγ.CKη w = fix(λr. JCKη[γ:=r])w

Value types, JτKη : 1
2
·W → UPred↑(Val)

Jτ ⊗ CKη w = (JτKη ⊗ ι(JCKη))w

J0Kη w = ∅

J1Kη w = N× {()}

JintKη w = N× {n | n ∈ Z}

Jτ1 + τ2Kη w = {(k, injiv) | k > 0 ⇒ (k−1, v) ∈ JτiKη w}

Jτ1 × τ2Kη w = {(k, (v1, v2)) | k > 0 ⇒ (k−1, vi) ∈ JτiKη w}

Jχ1 → χ2Kη w = {(k, v) | ∀j < k. ∀r∈Cap.

∀(j, (v′, h)) ∈ (Jχ1Kη ∗ r)(w) ∗ ι−1(w)(emp).

(j+1, (v v′, h)) ∈ E(Jχ2Kη ∗ r)(w)}

J[σ]Kη w = N× {η(σ)}

JαKη w = η(α)(w)

Jµα.τKη w = fix(λS. JτKη[α:=S])w

J∀α.τKη w =
T

a∈VT JτKη[α:=a] w

Memory types, JθKη : 1
2
·W → UPred↑(Val × Heap)

Jθ ⊗ CKη w = (JθKη ⊗ ι(JCKη)) w

JτKη w = {(k, (v, h)) | h ∈ Heap, (k, v) ∈ JτKη w}

Jθ1 + θ2Kη w = {(k, (injiv, h)) | k>0 ⇒ (k−1, (v, h)) ∈ JθiKη w}

Jθ1 × θ2Kη w = {(k, (v1, v2), h1·h2) | k>0⇒ (k−1, (vi, hi))∈ JθiKηw}

Jref θKη w = {(k, (l, h·[l 7→ v])) | k>0 ⇒ (k−1, (v, h))∈ JθKηw}

Jθ ∗ CKη w = (JθKη w) ∗ (JCKη w)

J∃σ.θKη w =
S

v∈Val JθKη[σ:=v] w

JβKη w = η(β)(w)

Jµβ.θKη w = fix(λS. JθKη[β:=S])w

Duplicable environments, JθKη : 1
2
·W → UPred↑(Env)

J∆⊗ CKη w = (J∆Kη ⊗ ι(JCKη))w

J∅Kη w = N× {[]}

J∆, x:τKη w = {(k, ρ[x 7→ v]) | (k, ρ) ∈ J∆Kη w ∧ (k, v) ∈ JτKη w}

Linear environments, JθKη : 1
2
·W → UPred↑(Env × Heap)

JΓ⊗ CKη w = (JΓKη ⊗ ι(JCKη))w

J∅Kη w = N× ({[]} × Heap)

JΓ, x:χKη w = {(k, (ρ[x 7→ v], h · h′)) |
(k, (ρ, h)) ∈ JΓKη w ∧ (k, (v, h′)) ∈ JχKη w}

JΓ ∗ CKη w = (JΓKη w) ∗ (JCKη w)

Figure 9. Interpretation

The semantics of a value judgement simply establishes truth with
respect to all worlds w, all environments η and all k ∈ N:

|= (∆ ` v : τ)
def⇐⇒

∀η. ∀w ∈W. ∀k ∈ N. ∀(k, ρ) ∈ J∆Kη w. (k, ρ(v)) ∈ JτKη w .

Here ρ(v) means the application of the substitution ρ to v. The
judgement for expressions mirrors the interpretation of the arrow
case for value types, in that there is also a quantification over heap
predicates r ∈ Cap:

|= (Γ t : χ)
def⇐⇒

∀η. ∀w ∈W. ∀k ∈ N. ∀r∈Cap.

∀(k, (ρ, h)) ∈ (JΓKη ∗ r)w ∗ ι
−1(w)(emp).

(k, (ρ(t), h)) ∈ E(JχKη ∗ r)(w).

The universal quantifications allow us to have frame rules: the
universal quantification over worldsw ensures the soundness of the
deep frame rule, and the universal quantification over capabilities r
validates the shallow frame rule.

We can now give the main result of this section, which expresses
that the extension of the capability system with higher-order frame
rules is sound. In particular, the below theorem implies type safety.

Theorem 3.8 (Soundness). If ∆ ` v : τ then |= (∆ ` v : τ), and
if Γ t : χ then |= (Γ t : χ).

To prove the theorem, we show that each typing rule preserves
the truth of judgements. These proofs are given in the appendix of
the long version of the paper.

3.4 Observations
We conclude this section with some remarks on the model.

Structural equivalence. In previous work, where Pottier first in-
troduced the anti-frame rule [36], the syntactic types are considered
modulo the structural equivalence. This means that they are not in-
ductively defined, and consequently Pottier avoids inductive proofs
on their syntax. In contrast, our interpretation is given by induc-
tion on the structure of types and capabilities, and only after having
established the interpretation do we consider the structural equiva-
lence (and prove that our interpretation respects it).

Unique solutions proof principle. In practice, one may have to
show type equivalences that do not easily follow from the structural
equivalence. The metric structure of our model suggests a proof
principle for this, by the uniqueness of solutions of contractive type
equations: if two types are solutions of a common contractive fixed
point equation, then we can conclude that they are equal.

Additional subtyping axioms. Our model satisfies some addi-
tional subtyping axioms that have not been mentioned in the litera-
ture before. These refer, e.g. to the duplication of value capabilities.
In particular, our model implies the soundness of the axiom

[σ] ∗ {σ : τ} ≤ [σ] ∗ {σ : τ} ∗ {σ : τ}.

A possible explanation why these axioms have not been noted
before may be that previous soundness proofs for capability type
systems (e.g. by translation [24] or progress and preservation [36])
rest on invariants that are stronger than necessary.

Classical interpretation. The capability calculus of Crary et al.
[26] has a memory deallocation construct, and satisfies a “complete
collection” property. Essentially, if a program of type τ ∗ ∅ termi-
nates, then it does so in an empty heap. After dropping the sub-
typing axiom C1 ∗ C2 ≤ C1 and adding a deallocation construct
to our calculus, it would also satisfy this property. Our approach

9 2010/10/13

is flexible enough so that this can be shown by modifying the se-
mantics and using the “classical” interpretation of separation logic.
That is, the definition of worlds and capabilities would be based on
UPred(Heap) where Heap is discretely ordered, and where the BI
structure is given by ∗ and −∗ as above but with unit I = ω × {[]}.
However, this complete collection property is not only destroyed by
the axiom C1 ∗C2 ≤ C1 but also by the inclusion of an anti-frame
rule (which we do not consider in this paper, though).

Aliasing. Even though our model is based on the operational
semantics, it gives a semantic understanding of capabilities. Let θ
be any memory type, and consider the recursively defined memory
type mlist = µβ.ref 1 + θ × β of mutable lists from [24]. In loc.
cit. it is mentioned (without proof) that this is the type of mutable
non-aliased lists, and our semantics shows very directly that this is
indeed the case: From the semantics of memory types in Figure 9,
we see (for k large enough) that (k, (l1, h)) ∈ JmlistK just in case
that for some n < k, heap h can be split up into 2n disjoint parts:

h = [l1 7→ (v1, l2)] · h1 · [l2 7→ (v2, l3)] · h2 · · · · [ln 7→ ()] · hn,

with (k−i, (vi, hi)) ∈ JθK, for all 1 ≤ i < n. Thus, all list entries
live in disjoint parts of the heap and all locations li must be distinct;
in particular, mlist cannot contain cyclic lists.

4. Specialization to Indirection Theory
Hobor, Dockins and Appel [29] present a general theory of indi-
rection for giving set-theoretic models of recursively defined struc-
tures. Faced with a recursive equation, Hobor et al. provide an ap-
proximate solution: this is a set together with a pair of functions
characterized by the two axioms of indirection theory that elegantly
capture the approximative nature of the solution.

Our approach to recursive equations is different. We provide an
exact solution, but in a category of metric spaces instead of the
category of sets and functions. In this section we argue that our
approach is more general in the sense that, for the same recursive
equation, one may build the approximative solution of Hobor et al.
from our solution.

Before starting, we point out that this specialization to indirec-
tion theory is not unconditional. The construction presented by Ho-
bor et al. is parameterized over a set-theoretic functor F : Set →
Set, and this functor must in a suitable sense have an extension to
CBUltne in order for our approach to apply. Fortunately, this con-
dition holds for functors on Set built with standard constructors.
In return for requiring this extra condition, we can obtain an ap-
proximate solution that improves on the one constructed in Hobor
et al.: the metric-space setup guarantees that all the predicates we
consider are so-called hereditary.

We now sketch how the specialization to indirection theory
proceeds. The full story, including proofs, can be found in the
appendix of the long version of the paper.

4.1 Indirection Theory
Assume that we are given a functorF : Set → Set and a non-empty
setO. Let 2 = {0, 1} be the set of “truth values.” Indirection theory
begins from the desire to solve the equation

K ∼= F (K ×O → 2) (49)

in Set, which is often impossible for cardinality reasons.6 Instead,
one obtains an approximate solution

K
unsquash // N× F (K ×O → 2)
squash

oo

6 Unlike Hobor et al. we do not parameterize over the set of truth values.
The generalization, while probably technically feasible, does not appear
necessary for applications.

consisting of a set K and functions squash and unsquash satisfy-
ing:

1. squash(unsquash k) = k.

2. unsquash(squash(m, ν)) = (m,F (approxm)(ν)) .

Here level = fst ◦ unsquash : K → N, and the map approxm :
(K ×O → 2) → (K ×O → 2) is defined, for each m ∈ N, by

approxm(ψ)(k, o) = (ψ(k, o) ∧ level(k) < m).

The idea is that elements of K have “levels,” and that the func-
tion approxm transforms a predicate on K to one that only
holds for elements of level less than m. Notice that squash is
a left inverse of unsquash, but in general not a right inverse:
unsquash(squash(m, ν)) is in some sense an approximation of
(m, ν).

4.2 From Metric Spaces to Indirection Theory
Every set can be considered as a metric space by giving it the dis-
crete metric d (i.e., d(x, y) = 1 if x 6= y). In this way, the category
of non-empty sets can be viewed as a subcategory of CBUltne. We
now assume that the functor F : Set → Set considered above has a
so-called plain lift F̂ : CBUltne → CBUltne. This means that F̂ is
a locally non-expansive functor which agrees with F on non-empty
sets (and functions between them), and also that F̂ satisfies some
technical conditions given in the appendix of the long version of
the paper. As noted above, plain lifts exist for all the standard con-
structors (see the long version of the paper). In particular we have
plain lifts of the functors of all the examples of Hobor et al.7

From Theorem 2.1 and Lemma 2.4, we easily obtain:

Theorem 4.1. There is a non-empty, complete, 1-bounded ultra-
metric space X and an isomorphism

Φ : X ∼= F̂
`

1
2

(X → UPred(O))
´
,

where the function space consists of non-expansive maps.

We now show that one can use such an isomorphism to construct
an approximate solution in the sense of indirection theory.

We deviate from Hobor et al. by building a solution that features
only so-called hereditary maps from K × O to 2. This is a direct
consequence of the downwards closedness required of members
of UPred(O), since hereditary predicates are, intuitively, “closed
under approximation” in the K component. As mentioned above,
we regard this difference as an improvement. Indeed, Hobor et al.
state a clear desire to consider hereditary predicates only (Section
5.3) and briefly mention an alternative, more complicated construc-
tion of approximate solutions that guarantees that all predicates are
hereditary (Section 10). Here we obtain such a guarantee directly
from the metric-space setup.

Theorem 4.2. Let F : Set → Set be a functor with a plain lift F̂ :
CBUltne → CBUltne. We can, from the isomorphism of Theorem
4.1, build a set K, a subset of hereditary maps K × O →her 2 of
the full function space K ×O → 2 and two maps

K
unsquash // N× F (K ×O →her 2)
squash

oo

satisfying Hobor et al.’s requirements for an approximate solution
(items 1 and 2 above).

Advantages of metric solution approach. Having proved that our
metric-space approach specializes to the indirection theory, we now
proceed to argue some advantages of our approach in general.

7 With the possible exception of Example 2.7. The functor in that example
is complex, and the presentation is a bit dense, so we are not sure whether
the functor has a plain lift.

10 2010/10/13

Firstly, although we do not think that the step-indexed version
of our metric-space approach is more expressive than standard step-
indexed models, we believe that our version provides a good frame-
work for doing step-indexing with useful conceptual guidelines.
This holds even if we disregard recursively defined worlds. Con-
sider the interpretation of recursive types in Section 3. The idea
of ’stepping one down’ when interpreting recursive types seems
natural to anyone familiar with step-indexed models. But coming
up with the correct criteria on the interpretation function for this
to work out properly, also with nested recursive types, is not so
easy a priori. If, however, we employ the metric approach, includ-
ing Banach’s fixed-point theorem, then writing down the require-
ments as done in the section is straightforward. Another example
is the ⊗ operator in the same section, which is constructed using
Banach’s fixed-point theorem. A similar construction could possi-
bly be pushed through either with hand-built approximate worlds
as employed by Ahmed et al. [4] or with the indirection theory of
Hobor et al. [29]. But the precise course of action is much less im-
mediate.

Secondly, in comparison with the indirection theory [29], our
approach of solving recursive metric equations allows one to use
a body of supporting theory on metric spaces and to construct
a wider variety of possible worlds to be used in Kripke models.
To illustrate this point, let us focus on the step-indexed model of
ML references discussed in Section 2.3 and in Sections 2.1, 4.1
and 5 of [29]. In the model provided by indirection theory, types
are arbitrary maps from worlds to values, modulo currying and
nomenclature. But, as argued in [29, Section 5.1], we really want
types that are both hereditary and monotone. In [29, Section 5.1],
such types are elegantly identified using modal operators, but this
does not change the problem that the types in a world may fail to
meet these criteria. This is addressed in the last paragraph of [29,
Section 10] where an alternative, and less straightforward, model
with only hereditary types in the worlds is sketched. Alas, this
means that one has to start the model construction all over again
from scratch and it does not buy us monotonicity. On the other
hand, to obtain hereditary types with the metric approach we just
use the downwards-closure condition on UPred(V), verify Lemma
2.4 and apply Theorem 2.1. And to work with monotone types, we
can apply a slightly stronger existence result [20, Proposition 5.4]
for pre-ordered metric spaces. By a similar argument one can
extend the approach to mixed variance functors discussed in [29,
Section 10]: Indeed, in unpublished work we have used mixed-
variance functors to verify that the metric-space approach scales
to the elaborate worlds of [4].

Finally, we think that it is advantageous that the metric approach
applies both to models based on domain theory and to models based
on operational semantics.

5. Related and Future Work
Relational reasoning. We have focused on unary reasoning in
this paper, but the techniques developed here also apply to rela-
tional reasoning. Relational reasoning principles about programs
with higher-order store, such as logical relations for reasoning
about contextual equivalence of programs, have been developed
both based on domain theory (e.g., [15, 21]), and on step-indexed
models (e.g., [4]). For such relational reasoning, the worlds are typ-
ically more sophisticated than the worlds we have discussed so far.
This is because for relational reasoning worlds need to describe sit-
uations in which programs are contextually equivalent even though
they use local states in different ways. One of us (Thamsborg) has
recently phrased the state-of-the-art world model from [4] as a re-
cursive world equation over a domain-theoretic model. He did this
to obtain more abstract proof principles for program equivalences,
which does not involve reasoning about step indices. Alternatively,

Dreyer et al. [27] have shown how to extend the relational step-
indexed model [4] to a model of a modal logic for more abstract
reasoning about program equivalences. The latter modal logic has
been derived from the step-indexed model. Even with this devel-
opment, it is still a challenge to develop relational step-indexed
models of Hoare Type Theory [33] and its new developments. It
would be interesting to see whether the step-indexed metric space
approach can be used to address this challenge.

Formalization. An often mentioned advantage of the traditional
step-indexed approach is that it lends itself well to formalization in
theorem provers. Indeed, impressive formalization work has been
carried out in, e.g., Coq [10].

Thus, one may wonder whether our proposed metric approach
hinders formalizations. It does not. Following the treatment in [20],
Varming et. al. have recently formalized the solutions of recursive
metric-space equations in Coq [16] and the step-indexed model of
ML references from Section 2.3.

Capabilities. In [3], Ahmed et al. presented a step-indexed model
of a substructural type system, which is similar to the capability
calculus considered in this paper. However, their model did not
provide a satisfactory semantic analysis of capabilities. Ahmed et
al. instrumented the operational semantics with abstract run-time
entities corresponding to capabilities, and their model included
those abstract entities, instead of giving a semantic analysis of what
they really should denote. Moreover, they did not consider non-
trivial combinations of capabilities such as C1 ∗ C2 and did not
include frame rules, etc. The step-indexed model in this paper does
not alter the operational semantics, interprets capabilities including
C1 ∗ C2 and justifies (shallow and deep) frame rules.

We point out that an alternative semantic model of the basic
capability system could be obtained by combining the functional
translation of Charguéraud and Pottier [24] with a semantic model
of their purely functional target calculus. The functional translation
in [24] does not, however, include higher-order frame rules and it
is not immediate how to include those rules.

To extend our semantics to group regions is future work. Note
that group regions are non-trivial, since they might grow over time
but types need to be invariant (monotone) with respect to this
growth. Further extensions will address, for instance, frame rules
for more general (parameterized) invariants on local state [35].

Other operational techniques. We briefly mention two tech-
niques other than step indexing that can be used to define logical
relations based on operational semantics. First, syntactic minimal
invariance [18, 25] is based on operational counterparts of the pro-
jection functions one obtains from solutions to recursive domain
equations. As far as we know, this technique has not been devel-
oped for languages with store. Second, biorthogonality [13, 30, 34]
is based on syntactically defined closure operators on relations.
Biorthogonality has been developed for a language with integer
store [34], but not (without also using step indexing) for languages
with general recursive types or higher-order store. Voullion and
Melliès [46] give an axiomatic setup that incorporates both of these
techniques (for a language without store).

As an alternative to logical relations, techniques based on bisim-
ulation can be used to show contextual equivalences for languages
with store [45]. However, such techniques do not seem helpful for
modelling expressive type systems such as the one considered in
Section 3.

6. Conclusion
In this paper, we have argued that recursive features of program-
ming languages, type systems and program logics, such as higher-
order store, can be naturally interpreted via Kripke models over

11 2010/10/13

worlds that are recursively defined in a category of metric spaces.
Interestingly, this can be carried out not only denotationally but also
using operational semantics. Our method combines the simplic-
ity of existing step-indexed models with the accuracy of domain-
theoretic approaches for recursive domain equations. Unlike other
step-indexed models, our method uses solutions of the original re-
cursive equations, not their approximated versions. The benefits of
this technique have been demonstrated in our new semantics of
Charguéraud and Pottier’s type-and-capability system [24], where
solving an original recursive equation over worlds played a crucial
role in modelling a recursively defined operator on worlds.

Additionally, we have shown that our metric approach can be
specialized to Hobor et al.’s recent proposal [29] and argued that
the metric approach has some advantages.

Acknowledgments
We would like to thank François Pottier, Aquinas Hobor, Robert
Dockins, Andrew W. Appel and Carsten Varming for helpful dis-
cussions and insightful comments. Yang and Reus acknowledge
support from the EPSRC.

References
[1] M. Abadi and G. D. Plotkin. A per model of polymorphism and recursive types.

In Proceedings of LICS, pages 355–365, 1990.

[2] A. Ahmed. Semantics of Types for Mutable State. PhD thesis, Princeton
University, 2004.

[3] A. Ahmed, M. Fluet, and G. Morrisett. L3: A linear language with locations.
Fundam. Inf., 77(4):397–449, 2007.

[4] A. Ahmed, D. Dreyer, and A. Rossberg. State-dependent representation inde-
pendence. In Proceedings of POPL, pages 340–353, 2009.

[5] A. J. Ahmed. Step-indexed syntactic logical relations for recursive and quanti-
fied types. In P. Sestoft, editor, ESOP, volume 3924 of Lecture Notes in Com-
puter Science, pages 69–83. Springer, 2006. ISBN 3-540-33095-X.

[6] A. J. Ahmed, A. W. Appel, and R. Virga. A stratified semantics of general
references. In Proceedings of LICS, pages 75–84, 2002.

[7] R. M. Amadio. Recursion over realizability structures. Information and Com-
putation, 91(1):55–85, 1991.

[8] R. M. Amadio and P.-L. Curien. Domains and Lambda-Calculi. Cambridge
University Press, 1998.

[9] P. America and J. J. M. M. Rutten. Solving reflexive domain equations in a
category of complete metric spaces. J. Comput. Syst. Sci., 39(3):343–375, 1989.

[10] A. Appel, R. Dockins, and A. Hobor. Mechanized semantic library.
http://msl.cs.princeton.edu/, 2009.

[11] A. W. Appel and D. A. McAllester. An indexed model of recursive types for
foundational proof-carrying code. ACM Trans. Program. Lang. Syst., 23(5):
657–683, 2001.

[12] A. W. Appel, P. Melliès, C. D. Richards, and J. Vouillon. A very modal model of
a modern, major, general type system. In Proceedings of POPL, pages 109–122,
2007.

[13] N. Benton and C.-K. Hur. Biorthogonality, step-indexing and compiler correct-
ness. In Proceedings of ICFP, pages 97–108, 2009.

[14] N. Benton and B. Leperchey. Relational reasoning in a nominal semantics for
storage. In Proceedings of TLCA, pages 86–101, 2005.

[15] N. Benton, L. Beringer, M. Hofmann, and A. Kennedy. Relational semantics
for effect-based program transformations: Higher-order store. In Proceedings of
PPDP, pages 301–312, 2009.

[16] N. Benton, A. Kennedy, C. Varming, and L. Birkedal. Formalizing domains, ul-
trametric spaces and semantics of programming languages. Manuscript. Avail-
able at http://www.itu.dk/people
/birkedal/papers/formalizing-semantics.pdf, 2010.

[17] B. Biering, L. Birkedal, and N. Torp-Smith. Bi-hyperdoctrines, higher-order
separation logic, and abstraction. ACM Trans. Program. Lang. Syst., 29(5), 2007.

[18] L. Birkedal and R. W. Harper. Constructing interpretations of recursive types in
an operational setting. Information and Computation, 155:3–63, 1999.

[19] L. Birkedal, N. Torp-Smith, and H. Yang. Semantics of separation-logic typing
and higher-order frame rules for Algol-like languages. LMCS, 2(5:1), 2006.

[20] L. Birkedal, K. Støvring, and J. Thamsborg. The category-theoretic solution of
recursive metric-space quations. Technical Report ITU-2009-119, IT University
of Copenhagen, 2009.

[21] L. Birkedal, K. Støvring, and J. Thamsborg. Realizability semantics of paramet-
ric polymorphism, general references, and recursive types. In Proceedings of
FOSSACS, pages 456–470, 2009.

[22] N. Bohr and L. Birkedal. Relational reasoning for recursive types and references.
In Proceedings of APLAS, pages 79–96, 2006.

[23] F. Cardone. Relational semantics for recursive types and bounded quantification.
In Proceedings of ICALP, pages 164–178, 1989.

[24] A. Charguéraud and F. Pottier. Functional translation of a calculus of capabili-
ties. In Proceedings of ICFP, pages 213–224, 2008.

[25] K. Crary and R. Harper. Syntactic logical relations for polymorphic and recur-
sive types. Electronic Notes in Theoretical Computer Science, 172:259–299,
2007.

[26] K. Crary, D. Walker, and G. Morrisett. Typed memory management in a calculus
of capabilities. In Proceedings of POPL, pages 262–275, 1999.

[27] D. Dreyer, G. Neis, A. Rossberg, and L. Birkedal. A relational modal logic for
higher-order stateful ADTs. In Proceedings of POPL, pages 185–198, 2010.

[28] A. Hobor, A. Appel, and F. Nardelli. Oracle semantics for concurrent separation
logic. In Proceedings of ESOP, pages 353–367, 2008.

[29] A. Hobor, R. Dockins, and A. Appel. A theory of indirection via approximation.
In Proceedings of POPL, pages 171–184, 2010.

[30] P. Johann and J. Voigtländer. A family of syntactic logical relations for the
semantics of haskell-like languages. Informantion and Computation, 207(2):
341–368, 2009.

[31] P. B. Levy. Possible world semantics for general storage in call-by-value. In
Proceedings of CSL, pages 232–246, 2002.

[32] D. B. MacQueen, G. D. Plotkin, and R. Sethi. An ideal model for recursive
polymorphic types. Information and Control, 71(1/2):95–130, 1986.

[33] A. Nanevski, G. Morrisett, and L. Birkedal. Polymorphism and separation in
hoare type theory. In Proceedings of ICFP, pages 62–73, 2006.

[34] A. M. Pitts and I. D. B. Stark. Operational reasoning for functions with local
state. In A. D. Gordon and A. M. Pitts, editors, Higher-Order Operational
Techniques in Semantics, Publications of the Newton Institute, pages 227–273.
Cambridge University Press, 1998.

[35] F. Pottier. Generalizing the higher-order frame and anti-frame rules. Unpub-
lished, July 2009.

[36] F. Pottier. Hiding local state in direct style: a higher-order anti-frame rule. In
Proceedings of LICS, pages 331–340, 2008.

[37] U. S. Reddy and H. Yang. Correctness of data representations involving heap
data structures. Science of Computer Programming, 50(1–3):129–160, March
2004.

[38] B. Reus and J. Schwinghammer. Separation logic for higher-order store. In
Proceedings of CSL, pages 575–590, 2006.

[39] B. Reus and T. Streicher. Semantics and logic of object calculi. In Proceedings
of LICS, pages 113–124, 2002.

[40] J. C. Reynolds. Separation logic: A logic for shared mutable data structures. In
Proceedings of LICS, pages 55–74, 2002.

[41] J. Schwinghammer, L. Birkedal, B. Reus, and H. Yang. Nested Hoare triples
and frame rules for higher-order store. In Proceedings of CSL, pages 440–454,
2009.

[42] J. Schwinghammer, H. Yang, L. Birkedal, F. Pottier, and B. Reus. A semantic
foundation for hidden state. In Proceedings of FOSSACS, pages 2–17, 2010.

[43] M. B. Smyth. Topology. In S. Abramsky, D. Gabbay, and T. S. E. Maibaum,
editors, Handbook of Logic in Computer Science. Oxford University Press, 1992.

[44] I. Stark. Categorical models for local names. LISP and Symbolic Computation,
9(1):77–107, Feb. 1996.

[45] E. Sumii. A complete characterization of observational equivalence in polymor-
phic lambda-calculus with general references. In Proceedings of CSL, pages
455–469, 2009.

[46] J. Vouillon and P.-A. Melliès. Semantic types: a fresh look at the ideal model for
types. In Proceedings of POPL, pages 52–63, 2004.

12 2010/10/13

