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Abstract

The core challenge in designing an effective static program analysis
is to find a good program abstraction — one that retains only details
relevant to a given query. In this paper, we present a new approach
for automatically finding such an abstraction, by using guidance
from a probabilistic model, which itself is tuned by observing prior
runs of the analysis. Our approach applies to parametric static
analyses implemented in Datalog, and is based on counterexample-
guided abstraction refinement. For each untried abstraction, our
probabilistic model provides a probability of success, while the
size of the abstraction provides an estimate of its cost in terms
of analysis time. Combining these two metrics, probability and
cost, our refinement algorithm picks an optimal abstraction. Our
probabilistic model is a variant of the Erd6s—Rényi random graph
model, and it is tunable by what we call hyperparameters. We
present a method to learn good values for these hyperparameters,
by observing past runs of the analysis on an existing codebase. We
implemented our approach on an object-sensitive pointer analysis
for Java programs with two client analyses (PolySite and Downcast).
Experiments show the benefits of our approach on reducing the
runtime of the analysis.

1. Introduction

We wish that static program analyses would become better as
they see more code. Starting from this motivation, we designed
an abstraction refinement algorithm that incorporates knowledge
learnt from observing its own previous runs, on an existing codebase.
For a given query about a program, this knowledge guides the
algorithm towards a good abstraction that retains only the details of
the program relevant to the query. Similar guidance also features in
existing abstraction refinement algorithms [4, 10, 18], but is based
on nontrivial heuristics that are developed manually by analysis
designers. These heuristics are often suboptimal and difficult to
transfer from one analysis to another. Our algorithm attempts to
avoid these shortcomings by automatically learning an effective
heuristic for finding a good abstraction, given a static analysis and a
codebase with typical programs.

In this paper we present our abstraction refinement algorithm
and its companion probabilistic model. Our algorithm applies to any
parametric static analysis implemented in Datalog, provided that
its precision increases when the values of the parameters increase.
Such analyses are typically run in a loop that iteratively refines
the parameter setting. Our idea is to equip such an analysis with a
probabilistic model that can predict, for every untried parameter
setting, what would happen if the analysis were run with the
setting. The model makes this prediction using information found
by the analysis in the failed iterative process so far, and guides the
analysis when it chooses a next parameter setting. The probabilistic
model itself is parametrised. To distinguish the parameters of the

analysis from those of the probabilistic model, we call the latter
hyperparameters. Good values for the hyperparameters are learnt by
observing runs of the analysis on an existing codebase, and are later
used when new unseen programs are analysed.

In other approaches to program analysis that are based on
learning [38, 50], the analysis designer must choose appropriate
features. A feature is a measurable property of the program, usually
a numeric one. Choosing features that are effective for program
analysis is nontrivial, and involves knowledge of both the analysis
and the probabilistic model. In our approach, features are not
required: the model is derived fully from the specification of the
corresponding analysis.

Instead of observing features, our models observe directly the
internal representations of analysis runs. Parametric static analyses
implemented in Datalog consist of universally quantified Horn
clauses, and work by instantiating the universal quantification of
these clauses, while respecting the constraints on instantiation
imposed by a given parameter setting. These instantiated Horn
clauses are typically implications of the form

h(—thtz,,.-,tn

and can be understood as a directed (hyper) arc from the source
vertices t1,...,t, to the target vertex h. Thus, the instantiated
Horn clauses taken altogether form a hypergraph. This hypergraph
changes when we try the analysis again with a different parameter
setting. Given a hypergraph obtained under one parameter setting,
we build a probabilistic model that predicts how the hypergraph
would change if a new and more precise parameter setting were
used. In particular, the probabilistic model estimates how likely it
is that the new parameter setting will end the refinement process,
which happens when the new hypergraph includes evidence that
the analysis will never prove a query. Technically, our probabilistic
model is a variant of the Erd6s—Rényi random graph model [13]:
given a template hypergraph G, each of its subhypergraphs H
is assigned a probability, which depends on the values of the
hyperparameters. Intuitively, this probability quantifies the chance
that H correctly describes the changes in G when the analysis
is run with the new and more precise parameter settings. The
hyperparameters quantify how much approximation occurs in each
of the quantified Horn clauses of the analysis. We provide an
efficient method for learning hyperparameters from prior analysis
runs. Our method uses certain analytic bounds in order to avoid
the combinatorial explosion of a naive learning method based on
maximum likelihood; the explosion is caused by H being a so called
latent variable, which can be observed only indirectly.

The next parameter setting to try is chosen by our refinement
algorithm based on predictions of the probabilistic model but also
based on an estimate of the runtime cost. For each parameter setting,
the probability of successfully handling the query is evaluated by our
model, and the runtime is estimated to increase with the precision of
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Figure 1. Architecture

the parameter setting. We prove that our method of integrating these
two metrics is optimal, under reasonable assumptions. We have
implemented our algorithm and probabilistic model on an object-
sensitive pointer analysis for Java programs. Experiments show that
our algorithm substantially reduces the runtime of the analysis.
The paper starts with an informal overview of our approach
(Section 2) and a review of notations from probability theory
(Section 3), and is followed by a description of our probabilistic
model (Section 4) and its learning algorithm (Section 5). The
probabilistic model is then used to implement a refinement loop that
optimally chooses the next parameter setting (Section 6). Section 7
positions our work in the various attempts to combine probabilistic
reasoning and static analyses, and Section 8 concludes the paper.

2. Overview

Figure 1 gives a high level overview of our abstraction refinement
algorithm, and in particular it shows the role of our probabilistic
model. The refinement loop is standard, with analysis on one side
and refinement on the other. Our contribution lies in the refinement
part, which receives guidance from a learnt probabilistic model and
chooses the next abstraction by balancing the model’s prediction and
the estimated cost of running the analysis under each abstraction.
We assume that the analysis is given and obeys two constraints.
The first is that the analysis is implemented in Datalog — it is
specified in terms of universally quantified Horn clauses, such as
pointsto(q, ) « precise(a),pointsto(f,£), .
assignTo(f, a) M
in which all the free variables «, 3, ¢ are implicitly universally
quantified. We call these clauses Datalog rules. The analysis works
by instantiating the quantification of these rules, and thus deriving
new facts. A query is a particular fact such as pointsto(z, h),
which is an instantiation of the left side of the rule (1). The query
represents an undesirable situation in the program being analysed.
The analysis could derive the query because the undesirable situation
really occurs at runtime. But, the analysis could also derive the query
because it approximates the runtime semantics. Our task is to decide
whether it is possible to avoid deriving the query by approximating
less. If the query is derived, then the set of all instances of Datalog
rules constitute a counterexample, which is then used for refinement.
The second constraint is that the analysis is parametric. For
instance, it might have a parameter for each program variable,
which specifies whether the variable should be tracked precisely
or not. The analysis would encode a setting of these parameters
in Datalog by using relations cheap and precise. In fact, the
Datalog rule (1) assumes such parametrisation and fires only when
the parameter setting dictates the precise tracking of the variable a.

object x, y, z, Vv
assume x.dirty

x.value := 10
0: smudge2(x, y)
0’: y.value := y.value + 2 * x.value

1: smudge3(y, z)
if z.dirty && y.value > 5
v.value := x.value + y.value
2: smudge3(z, v)

3: smudge5(x, y)

4: smudge7(y, v)
assert !v.dirty

Figure 2. Example program to analyse

For a parametric analysis, an abstraction can be specified by a
parameter setting, and so we use these two terms interchangeably.

The refinement part analyses a counterexample, and suggests a
new promising parameter setting. When it receives a counterexample
from the analysis (that is, a collection of instantiated Datalog rules),
it first checks whether using a more precise parameter settings could
remove this counterexample. If not, the refinement part reports
impossibility (or irrefutability) and stops [46, 51, 52]. Otherwise,
it moves on to its main task of choosing a next parameter setting.
The refinement part consults our probabilistic model, which uses the
counterexample and predicts, for each untried parameter setting, the
probability that the analysis under that setting ends the refinement
loop. Based on the outcome of this consultation, the refinement part
formulates an optimisation goal that balances these probabilities and
the estimated costs of running the analysis under untried parameter
settings. The resulting optimisation problem is then solved by
a weighted MAXSAT solver, and its solution becomes the next
parameter setting that the analysis tries.

Consider now the example program in Figure 2. The language
is idiosyncratic, and so will be the analysis. The language and the
analysis are chosen to allow a concise rendering of the main ideas. In
this toy language, each object has two fields, the boolean dirty and
the integer value. Initially, all value fields are 0. Object x is dirty
at the beginning, and we are interested in whether object v is dirty
at the end. Dirtiness is propagated from one object to another only
by the primitive commands smudgeK. The effect of the command
smudgeK(z, y) is equivalent to the following pseudocode:

if (z.value + y.value) mod K =0
y.dirty = x.dirty V y.dirty

That is, if the sum of the values of objects x and y is a multiple
of K, then dirt propagates from x to y.

To decide whether object v is dirty at the end, an analysis may
need to track the values of multiple objects. The values can be
changed by guarded assignments. The guard of an assignment can
be any boolean expression; the right hand side of an assignment can
be any integer expression. In short, tracking values and relations
between values could be very expensive.

However, tracking all values may also be unnecessary. In the
first iteration, the analysis treats all non-smudge commands as skip.
As a result, the analysis knows nothing about the value fields. To
remain sound, it assumes that smudge commands always propagate
dirtiness; that is, it treats the command smudgeK(x, y) as equivalent
to the following pseudocode, dropping the guard:

y.dirty = x.dirty V y.dirty

If, using these approximate semantics, the analysis concluded that
v is clean at the end, then it would stop. But, in our example, v could
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Figure 3. Abstract view of the program in Figure 2. Each label on
the left identifies a smudge command. The dashed, vertical lines
signify that once an object is dirty it remains dirty. The solid, oblique
lines signify that smudge commands might propagate dirtiness.
Depending on the values of the objects, a smudgeK command
propagates dirtiness with probability 1/K. The highlighted path
illustrates one way in which dirtiness could propagate from object x
to object v, thus violating the assertion.

be dirty at the end, for example because of the smudge commands
on lines 0 and 4: the smudge on line 0 propagates dirtiness from x
to y, and the smudge on line 4 propagates dirtiness from y to v. This
scenario corresponds to the highlighted path in Figure 3.

Before seeing what happens in the next iteration, let us first
describe the analysis in more detail. The approximate semantics of
the command smudge2 are modelled by the following Datalog rule:

dirty(¢', B) < cheap(f),dirty(f, «), flow(¢, £')

smudge2(¢, a, B) @

The rule makes use of the following relations:

flow(l, £

) the control flow goes from £ to £’
smudge2 (¥, v, 3) the command at ¢ is smudge2(«, /3)

)

)

cheap(¢) the command at £ should be approximated

dirty(¢,«) «.dirty is true before the command at ¢
The relations flow and smudge2 encode the program that is being
analysed. The relation cheap parametrises the analysis, by allowing
it or disallowing it to approximate the semantics of particular com-
mands. Finally, the relation dirty expresses facts about executions
of the program that is being analysed. From the point of view of
the analysis, f1ow, smudge2, and cheap are part of the input, while
dirty is part of the output. The relations flow and smudge2 are
simply a transliteration of the program text. The relation cheap is
computed by a refinement algorithm, which we will see later.

The precise semantics of smudge?2 can also be encoded with a
Datalog rule, albeit a more complicated one.

dirty (¢, B) < precise(£),dirty(¢, o), flow(f, L),
smudge2 (¢, a, ), value(, o, a), 3)
value(¥, 3,b), (a +b) mod 2 =0

This rule makes use of two further relations:

precise({) the command at £ should not be approximated

value({,,a) «.value = a holds before the command at ¢

Like cheap, the relation precise is part of the input. If the input
relation precise activates rules like the one above, then the analysis
takes longer not only because the rule is more complicated, but also
because it needs to compute more facts about the relation value.

The refinement algorithm ensures that for each program point ¢
exactly one of cheap(¢) and precise(¥) holds. In the first iteration,
cheap(¢) holds for all ¢, and precise holds for no £. In each of
the next iterations, the refinement algorithm switches some program
points from cheap to precise semantics.

Let us see what happens when one program point is switched
from cheap to precise. In the first iteration, cheap(0) is part of the
input, and the following rule instance derives dirty(0’,y):

dirty(0’,y) < cheap(0),dirty(0,x), flow(0,0")
smudge2(0, x,y)

Let us now look at the scenario in which for the second iteration
the fact cheap(0) is replaced by the fact precise(0). In this case,
dirty(0',y) is still derived, this time by the following rule instance:

dirty(0',y) < precise(0),dirty(0,x), £low(0,0"),
smudge2(0, x, y), value(0, x, 10),
value(0,y,0), (10 + 0) mod 2 =0

To be able to apply this rule, the analysis had to work harder, to
derive the intermediate results value(0, x, 10) and value(0,y, 0).
Using precise(0) influences other Datalog rules as well, and forces
the analysis to derive these intermediate results, so that dirty(0’,y)
is still derived. This is not always the case. For example, the
smudge3 command at program point 1 will not propagate dirtiness
if the precise semantics is used.

Let us now step back and see which parts of the example
generalise.

Model. If we replace cheap({) by precise(¥), then the set of
Datalog rule instances could change unpredictably. Yet, we observe
empirically that the change is confined to one of two cases:

(a) precise({) eventually derives facts similar to those facts that
cheap(¢) derives, but with more work; or

(b) precise(?) no longer derives the facts that cheap(¢) derived.

This dichotomy is by no means necessary. Intuitively, it holds
because the Datalog rules are not arbitrary: they are implementing a
program analysis. In our example, case (a) occurs when cheap(0)
is replaced by precise(0), and case (b) occurs when cheap(1) is
replaced by precise(1). In general, we formalise this dichotomy by
requiring that a certain predictability condition holds. The condition
is flexible, in that it allows one to choose the meaning of ‘similar’ in
case (a) by defining a so called projection function. In our example,
no projection is necessary. In context sensitive analyses, projection
corresponds to truncating contexts. In general, by adjusting the
definition of the projection function we can exploit more knowledge
about the analysis, if we so wish. If we do not, then it is always
possible to choose a trivial projection for which the meaning of
‘similar’ is ‘exactly the same’.

Provided that the predictability condition holds, which is a
formal way of saying that the dichotomy between cases (a) and (b)
holds, it is natural to define the probabilistic model as a variant of
the Erd6s—Rényi random graph model. Our sets of Datalog rule
instances are seen as sets of arcs of a hypergraph. Each arc of the
hypergraph is either selected or not, with a certain probability. Being
selected corresponds to case (a) — having a counterpart in the precise

2015/10/7



hypergraph; being unselected corresponds to case (b) — not having a
counterpart in the precise hypergraph.

Learning. The model predicts that each rule instance is selected
(that is, has a precise counterpart) with some probability. How to
pick this probability? Figure 3 gives an intuitive representation of
a set of instances. In particular, each dashed arc and each solid arc
represents some rule instance. We assume that instances represented
by dashed arcs are selected with probability 1. These are instances
of some rule which says that a dirty object remains dirty. We also
assume that instances represented by solid arcs are selected with
probability 1/ K. These are instances of rules of the form (2), which
describe the semantics of smudgeK commands. These probabilities
make intuitive sense. In particular, we do expect that a number is a
multiple of K with probability of about 1/K.

But, how can we design an algorithm to find these probabilities,
without appealing to intuition and knowledge about arithmetic?
The answer is that we run the analysis on many programs, and
observe whether rule instances have precise counterparts or not.
In our example, if the training sample is large enough, we would
observe that instances of the form (2) do indeed have counterparts of
the form (3) in about 1/ K of cases. In general, it is not possible to
observe directly which rules have precise counterparts. It is difficult
to decide which rule is a counterpart of which rule. Instead, we
make indirect observations based on which similar facts are derived.
This complicates the algorithm that learns probabilities, but we have
found an efficient solution.

Refinement. In terms of Figure 3, refinement can be understood
intuitively as follows. We are interested in whether there is a path
from the input on the top left to the output on the bottom right.
We know the dashed arcs are really present: they have a precise
counterpart with probability 1. We do not know if the solid arcs
are really present: we see them only because we used a cheap
parameter setting, and they have a precise counterpart only with
probability 1/K. We can find out whether the solid arcs are really
present or just an illusion, by running the analysis with a more
precise parameter setting. But, we have to pay a price, because more
precise parameter settings are also more expensive.

The question is then which of the solid arcs should we enquire
about, such that we decide quickly whether there is a path from input
to output. There are several possible strategies, in particular there
is an optimistic strategy and a pessimistic strategy. The optimistic
strategy hopes that there is no path, so object v is clean at the end.
Accordingly, the optimistic strategy considers asking about those
sets of solid arcs that could disconnect the input from the output,
if the arcs were not really there. The pessimistic strategy hopes
that there is a path, so object v is dirty at the end. Accordingly, the
pessimistic strategy considers asking about those sets of solid arcs
that could connect the input to the output, if the arcs were really there.
The highlighted path in Figure 3 corresponds to replacing cheap(0)
by precise(0), and also cheap(4) by precise(4). Thus, let us
denote its set of arcs as 04. There are two other paths that the
pessimistic strategy will consider, whose sets of arcs are 012 and 34.
The path 04 gets a probability 1/2 x 1/7 of surviving; the path 012
gets a probability 1/2 x 1/3 x 1/3 of surviving; the path 34 gets a
probability 1/5 x 1/7 of surviving. According to probabilities, the
path 04 has the highest chance of showing that v is dirty at the end.

We designed an algorithm which uses the pessimistic strategy
described above but also takes into account unions of paths and
also the runtime cost of trying a parameter setting. Our refinement
algorithm has to work in a more general setting than suggested by
Figure 3. In particular, it must handle hypergraphs, not just graphs.

3. Preliminaries and Notations

In this section we recall several basic notions from probability
theory. At the same time, we introduce the notation used throughout
the paper.

A finite probability space is a finite set () together with a
function Pr : © — R such that Pr(w) > 0 for all w € £, and
> weq Pr(w) = 1. An event is a subset of Q2. The probability of
an event A is

Pr(A) := Z Pr(w) = Z Pr(w)w € A]

wEA weN

The notation [¥] is the Iverson bracket: if W is true it evaluates
to 1, if W is false it evaluates to 0. A random variable is a
function X : Q — X. For each value z € X, the set X ()
is an event, traditionally denoted by (X = x). In particular, we
write Pr(X = z) for its probability; occasionally, we may write
Pr(x = X) for the same probability. A boolean random variable is
a function X :  — {0, 1}. For a random variable X with X C R,
we define its expectation E X by

EX := Z zPr(X=z)= Z Pr(w)X(w)

TEX wen
In particular, if X is a boolean random variable, then
EX=Pr(X=1)

Events A1, ..., A, are said to be independent when
Pr(Ain...NA,) =[] Pr(A:)
i=1

Note that n events could be pairwise independent, but still dependent
when taken altogether. Random variables X1, ..., X,, are said to
be independent when the events (X1 = z1),...,(Xn = zn)
are independent for all z1,...,x, in their respective domains.
In particular, if X,,...,X,, are independent boolean random
variables, then X1 A ... A X, is also a boolean random variable,
and

n
BE(XiA...AXy) =]][EX:
=1

Events A and B are said to be incompatible when they are disjoint.
In that case, Pr(A U B) = Pr(A) + Pr(B). In particular, if
Xi4,...,X, are boolean random variables such that the events
(X1 =1),...,(X, = 1) are pairwise incompatible, then

E(X1V...VX,) =Y EX,
=1

4. Probabilistic Model

The probabilistic model predicts what analyses would do if they
were run with precise parameter settings. To make such predictions,
the model relies on several assumptions: the analysis must be im-
plemented in Datalog (Section 4.1), the analysis must be parametric
(for instance, it may have parameters for controlling the degree of
context sensitivity) (Section 4.2), and the results obtained with pre-
cise parameter settings are compatible with the results obtained with
cheap parameter settings (Section 4.3). Given these assumptions,
the probabilistic model assigns a probability to a subset of the arcs
of a directed hypergraph (Section 4.4).

4.1 Datalog Programs and Hypergraphs

We shall use a simplified model of Datalog programs, which is
essentially a directed hypergraph. The semantics will then be given
by reachability in this hypergraph. For readers already familiar with
Datalog, it may help to think of vertices as elements of Datalog
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relations, and to think of arcs as instances of Datalog rules with
non-relational constraints removed. For readers not familiar with
Datalog, simply thinking in terms of the hypergraph introduced
below will be sufficient to understand the rest of the paper.

We assume a finite universe of facts. An arc is a pair (h, B)
of a head h and a body B; the head is a fact; the body is a set of
facts. A hypergraph is a set of arcs. The vertices of a hypergraph
are those facts that appear in its arcs. If a hypergraph G contains an
arc (h, B), then we say that h is reachable from B in G. In general,
given a hypergraph G and a set T" of facts, the set RgT of facts
reachable from 7" in G is defined as the least fixed-point of the
following recursive equation:

{h|(h,B)e Gand BC RcT}UT C RaT
The following monotonicity properties are easy to check.

Proposition 1. Let G, G1 and G2 be hypergraphs; let T, Ty and T»
be sets of facts.

(a) Ile - Ty, then RaTh C RaTs.
(b) IfG1 C Ga, then R, T C R, T.

Given a hypergraph G and a set T of facts, the induced sub-
hypergraph G[T) retains those arcs that mention facts from 7°:

GT):={(h,B)e G|heTand BC T}

4.2 Analyses

We use Datalog programs to implement static analyses that are
parametric and monotone. Thus, the Datalog programs we consider
have additional properties:

1. Because the Datalog program implements a static analysis, a
subset of facts encode queries, corresponding to assertions in
the program being analysed.

2. Because the static analysis is parametric, a subset of facts encode
parameter settings.

3. Because the static analysis is monotone, parameter settings
that are more expensive are also more precise. In particular,
increasing the value of a parameter will not cause an assertion
to change from pass to fail.

If we only assume that the analysis is parametric, monotone, and
implemented in Datalog, then we can already make good predictions
in some cases, such as the case of the analysis in Section 2. In other
cases, however, we require more information about the relationship
between what the analysis does when run in a precise mode and
what the analysis does when run in an imprecise mode. We assume
that this information comes in the form of a partial function that
projects facts. The technical requirements on the projection function
are very mild, so the analysis designer has considerable leeway in
choosing an appropriate projection. In some cases, the choice is
straightforward. For example, if the analysis is a k-object sensitive
aliasing analysis and tracks calling contexts using sequences of
allocation sites, then a good choice of projection corresponds to
truncating these sequences.

An analysis A is a tuple (G, Q, P,po,p1,m), where G is a
hypergraph called the global provenance, Q) is a set of facts called
queries, P is a finite set of parameters, the encoding functions
po and p; map parameters to facts, and 7 is a partial function
from facts to facts called projection. A parameter setting a of an
analysis A is an assignment of booleans to the parameters P. We
sometimes refer to parameter settings as abstractions, for brevity.
We encode the abstraction a as two sets of facts, Po(a) and P (a),
defined by

Py(a) :={pr(z) |z € Panda(z) =k} forke {0,1}

The set A(a) of facts derived by the analysis .4 under abstraction a
is defined to be R (Po(a) U Pi(a)). Abstractions form a complete
lattice with respect to the pointwise order: a < a’ iff a(x) < a’(z)
for all z € P. We write L for the cheapest abstraction that
assigns O to all parameters, and T for the most precise abstraction
that assigns 1 to all parameters.

For an analysis .4, we sometimes consider the restriction of
its hypergraph to those facts derived under a given abstraction a:
G* := G[A(a)]. In particular, G* is called the cheap provenance,
and G is called the precise provenance.

An analysis is well formed when it obeys further restrictions:
(i) facts derived under the cheapest abstraction are fixed-points of
the projection, w(xz) = z for x € A(L), (i) the image of the
projection 7 is included in .A(L), (iii) for each query g, only q itself
can be projected on ¢ (i.e., 7~ ({g}) C {g}), (iv) the encoding
functions po and p; are injective and have disjoint images, and
(v) projection is compatible with parameter encoding, m o p1 = po.
From (i) and (ii) it follows that 7 is idempotent. These conditions
are technical: they ease the treatment that follows, but do not restrict
which analyses can be modelled.

An analysis A is said to be monotone when the set of derived
queries decreases as a function of the abstraction: a < a’ implies
(QNA(a)) 2 (QNA(a")).

In practice, all analyses are well formed and many are monotone.
In what follows, all analyses are assumed to be both well formed
and monotone.

We can now formally define the main problem.

Problem 2. Given are a well formed, monotone analysis .4, and a
query g for A. Does there exist an abstraction a such that ¢ ¢ A(a)?

Because the analysis is monotone, g € A(a) for all @ if and only
if ¢ € A(T). Thus, one way to solve the problem is to check if g is
derived by A under the most precise abstraction T. However, this
is typically too expensive. Instead, we consider a class of solutions
called monotone refinement algorithms. A monotone refinement
algorithm evaluates the analysis for a sequence a1 < --- < ap, of
abstractions. Based on empirical observations, we estimate the total
running time of such an algorithm to be ¢(a1) + - - - + ¢(a» ), where
c(a) = exp(a(}_,cp a(z))) for some o > 0. This means that the
cost of running an analysis under an abstraction a is exponential
in the number of parameters set to 1 in a. Refinement algorithms
terminate when one of two conditions holds: (i) ¢ ¢ A(a,) and
the answer is ‘yes’, or (ii) ¢ € Rgan (Pi(an)) and the answer
is ‘no’. The first termination condition is trivial, and corresponds
to the successful verification of the query ¢ by the analysis. The
second condition is more subtle. It says that the query g is derived
by the analysis under the abstraction a,, but that this derivation does
not depend on the parameters set to 0 in a,,. When this happens,
the analysis concludes that ¢ cannot be proved by any abstraction,
including T. This reasoning is based on the following lemma:

Lemma 3. Let g be a query for a well formed, monotone analysis A.
If g € Raa (Pi(a)) for some abstraction a, then q € A(a’) for all
abstractions a’.

Proof. By Proposition 1(a), ¢ € Raa (Pi(a)) = Ra(Pi(a)) C
Ra (P1 (T)) = A(T). We conclude by noting that the analysis is
monotone. O

4.3 Empirical Observation

The precise provenance G contains all the information necessary
to answer Problem 2. Unfortunately, the precise provenance G '
is typically very large and hard to compute. In contrast, the cheap
provenance G is typically smaller and easier to compute. In fact,
most refinement algorithms start with the cheapest abstraction,
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a1 = L. Fortunately, we observed empirically that G and G are
compatible, in a way made precise next.
We begin by lifting the projection 7 to sets 1" of facts as follows:

w(T) :={t' |t' =n(t)andt € T}

In particular, if the partial function 7 is not defined for any ¢ € T',
then 7(7") = (). Our empirical observation is that

ToRgroPi=RuyomoP, forsome HC G"  (4)

An analysis .A that obeys condition (4) is said to be predictable. A
hypergraph H that witnesses condition (4) is said to be a predictive
provenance of analysis A. For a predictable analysis, reachability
and projection almost commute on the image of P;, except that if
projection is done first, then reachability must ignore some arcs.

All the analyses we tried turned out to be predictable, for a
simple choice of projection 7. We do not know a simple theoretical
explanation of why it should be so. Intuitively, though, condition (4)
makes sense. When run with the cheap abstraction, the analysis
approximates the semantics of the programming language being
analysed. Some of these approximations turn out to be correct,
and some turn out to be wrong. Correspondingly, some arcs of the
cheap provenance are retained in the predictive provenance, and
some arcs of the cheap provenance are not retained in the predictive
provenance.

Recall that refinement algorithms use two termination conditions:
q ¢ A(a) and ¢ € Rga (Pi(a)). Predictive provenances help us
evaluate the termination conditions of refinement algorithms.

Lemma 4. Let A be a well formed, monotone analysis. Let a be an
abstraction, and let H be a predictive provenance. Finally, let q be
a query derived by A under the cheapest abstraction L.

(a) If g ¢ Aa), then q ¢ R (Po(a)) and q & Ru(m(Fi(a))).
(b) Also, ¢ € Raa (Pi(a)) ifand only if ¢ € Ry (m(Pi(a))).

Part (a) lets us approximate the termination condition q ¢ A(a);
part (b) lets us evaluate the termination condition ¢ € Rge (Pl (a)).
In both cases, only small parts of the global provenance G are
used, namely G and H. The assumption ¢ € A(L) is reasonable:
otherwise the refinement algorithm would have terminated after the
first iteration.

Proof. Assume that ¢ € Ry (m(P1(a))). We have
Ru((Pi(a)) = m(Rg (Pi(a))) by (4)

gen(Rg7(P1(a) & q€Rgr (Pi(a)) byn ' ({g})={q}
Rer(Pi(a)) = Raa(Pi(a)) € Ala) by Prop. 1(a)

Putting these together, we conclude that ¢ € A(a). Using a very
similar argument we can show that ¢ € R (Po(a)) implies
q € A(a). This concludes the proof of part (a).

The proof of part (b) is similar. O

Lemma 4 tells us that we could evaluate termination conditions
more efficiently if we knew a predictive provenance. Alas, we do
not know a predictive provenance.

4.4 Probabilities

If we do not know a predictive provenance, then a naive way forward
is as follows: enumerate each possible predictive provenance, see
what it predicts, and take an average of the predictions. Our model
is only marginally more complicated: it considers some possible
predictive provenances as more likely than others. On the face of it,
enumerating all possible predictive provenances takes us back to an
inefficient algorithm. We will see later how to deal with this problem
(Section 6). Now, let us define the probabilistic model formally.

The blueprint of the probabilistic model is given by a cheap
provenance G*. To each arc e € G+, we associate a boolean
random variable S., and call it the selection variable of e. Recall
that an expectation of S. is just the probability of S. = 1. Selection
variables are independent but may have different expectations.
We partition G into types G1, ..., Gy, and we do not require
selection variables to have the same expectation unless they have
the same type. Each type Gi has an associated hyperparameter 0y
if e € G, then we say that e has type k, and we require that
E Se = 0x. We define, in terms of the selection variables, a random
variable H whose values are predictive provenances:

(H=H)ifandonlyif (e € H < S. = 1 foralle € G*)

In other words, H is defined such that S. = [e € H]. Thus, the
probability of a predictive provenance H is

t
Pr(H = H) = [[ 0.7 " (1 — g,)/o%\ 1| )
k=1

For example, if all arcs have the same type, then the model has only
one hyperparameter 6, and Pr(H = H) is 0!17!(1 — 0)|GL\H‘. If
0 = 1/2, then all predictive provenances are assigned the probability
9-1G 1 At the other extreme, if all arcs have their own type, then
the model has one hyperparameter 6, for each arc e € G+, and
Pr(H = H)is [,cqr 05711 — ge) M),

This concludes the formal presentation of the probabilistic model.
But, one question presents itself: How should we group arcs into
types? To see why the answer is important, consider two extreme
situations: if all arcs have the same type, then the model is very
inflexible, and it will likely underfit empirical data; if each arc has
its own type, then the model is very flexible, and it will likely overfit
empirical data. There is a natural choice for how to define types.
Recall that arcs are instances of Datalog rules. The natural choice
is to define types to be sets of instances of the same Datalog rule.
This natural choice is the one used in experiments (Section 5.4 and
Section 6.5), and the results are good. Intuitively, defining types in
terms of Datalog rules amounts to using the same granularity as
was deemed appropriate by whoever implemented the analysis in
Datalog. With such a definition of types, one can affect the flexibility
of the probabilistic model by refactoring the Datalog implementation
of the given analysis. We did not need to do so.

Finally, recall ‘all models are wrong, but some are useful” [7].

4.5 Use of the Model

Before using the probabilistic model in a refinement algorithm,
we must choose appropriate values for hyperparameters. This is
done offline, in a learning phase (Section 5). After learning, each
Datalog rule has an associated probability — its hyperparameter. To
use the probabilistic model, it is also necessary to know the cheap
provenance G-.

After the first iteration, the model can predict what the analysis
would do for abstractions not yet tried. In particular, it can predict
whether ¢ € Rga(P1(a)), which is one of the two conditions
under which refinement algorithms terminate. The hypergraph G* is
unknown, and thus we model it by a random variable G*. However,
we do know from Lemma 4(b) that ¢ € Rga (P1(a)) if and only if
q € Ru(m(Pi(a))). Thus,

Pr(q € Rge(Pi(a))) = Pr(q € Ru(r(Pi(a))))
= Z PI‘(R = RH(ﬂ'(Pl(a))))
R
g€R
where R ranges over subsets of vertices of G. It remains to
compute a probability of the form Pr(R = RHT). Explicit
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expressions for such probabilities are also needed during learning,
so they are discussed later (Section 5).

Intuitively, one could think that the refinement algorithm runs
a simulation in which the static analyser is approximated by the
probabilistic model. However, it would be inefficient to actually run
a simulation, and we will have to use heuristics that have a similar
effect (Section 6), namely to minimise the expected total runtime.

5. Learning

The probabilistic model (Section 4) lets us compute the probability
that a given abstraction will provide a definite answer, and thus
terminate the refinement. These probabilities are computed as a
function of hyperparameters. The values of the hyperparameters,
however, remain to be determined. To find good hyperparameters,
we shall use a standard method from machine learning, namely MLE
(maximum likelihood estimation).

MLE works as follows. First, we set up an experiment. The result
of the experiment is that we observe an event O. Next, we compute
the likelihood Pr(O) according to the model, which is a function
of the hyperparameters. Finally, we pick for hyperparameters values
that maximise the likelihood.

The standard challenge in deploying the MLE method is in the
last phase: the likelihood is typically a complicated function of
the hyperparameters, and it cannot be maximised using analytic
methods. Even numeric methods can be unstable or inefficient. This
is indeed the case for our model: analytic methods do not apply,
some numeric methods are unstable, and some numeric methods are
inefficient. But, we did find one numeric method that is both stable
and efficient (Section 5.3).

In addition to the standard challenge, our setting presents two
additional difficulties, both of them related to the computation of
the likelihood. Usually, O has the form O1 N ... N O,,, where the
events O1, ..., O, are independent. In our setting, the event O does
indeed have the form O; N ... N O,, but the events O1,...,0,
are not independent. We will handle this difficulty by finding a way
to compute Pr(O) other than the factorisation [[}*_, Pr(O;). Even
so, a second difficulty will arise: the expression of Pr(O) does not
fit in the memory of a typical computer if the cheap provenance
has cycles. We will handle this difficulty by finding bounds that
approximate Pr(O). In short, the difficulties we need to overcome
are: (1) there are dependencies among O1, . .., Oy, which we need
to account for, and (2) the cycles of the cheap provenance make it
infeasible to compute the likelihood exactly.

5.1 Training Experiment

For the training experiment, we collect a set of programs. For
the formal development, it is convenient to consider the set of
programs as one larger program. We run the analysis on this
large training program several times, each time under a different
abstraction. The abstractions a1, . . ., a, are chosen randomly, but
they have to be cheap enough so that the analysis terminates in
reasonable time. As a result of running the analysis, we observe the
provenances G**, ..., G". To connect these observed provenances
to a probabilistic event, we shall use the predictability condition (4)
together with the following simple fact.

Proposition 5. Let G be a hypergraph, and let Ty and T5 be sets of
facts. If Ty C Ty, then RaTh = Rg'Th, where G' = G[Ra T3]

Corollary 6. Let a be an abstraction for analysis A. We have
ReT(Pi(a)) = Raa(Pi(a)).

Given an efficient way to compute the projection 7w, we can
compute the sets of facts Ry := m(Rgax (P1(ax))), for each
k € {1,...,n}. Using Corollary 6 and condition (4), we have
that Ry = Ru(m(Pi(ax))), for k € {1,...,n}. We define the

following events:
Oy = (Rk :RH(W(P1(ak))))
O = (01N...N0y)

The event O is what we observe. It is completely described by
the pairs (ax, Ri). The abstraction a is sampled at random. The
set Ry, of facts is easily computed from G**. The provenance G*¥
is obtained from the set of instantiated Datalog rules during the
analysis under abstraction ay, and it records all the reasoning steps
of the analysis.

In practice, we do not analyse all training programs at once, but
rather one at a time. This optimisation is straightforward, and does
not warrant additional explanation.

fork € {1,...,n}

5.2 Likelihood

There appears to be no simple and general formula that computes the
likelihood Pr(O). However, there exist reasonably simple formulas
that provide lower and upper bounds. We shall use the lower bound
for learning, and we shall use both bounds to evaluate the quality of
the model.

To state the main result on likelihood computation, we need
to define forward arcs. Given a hypergraph GG, we define the
distance d(TG>(h) from vertices T to vertex h by requiring d(TG)
to be the unique fixed-point of the following equations:

() =0 iftheT
d\P (h) = o0 it h ¢ ReT
d(TG)(h) = min max(d(TG)(b) +1)  otherwise

e=(h,B)€G bEB

We omit the superscript when the hypergraph is clear from context.
A forward arc with respect to T is an arc e = (h, B) € G such that
dr(h) > dr(b) forevery b € B.

Theorem 7. Consider the probabilistic model associated with the
cheap provenance G+ of some analysis A. Let Ty, ..., T, and
R1,..., Ry be subsets of vertices of G*. If h ¢ B for all arcs
(h,B) in G* and R, C R Ty for all k, then we have the
following lower and upper bounds for Pr((;_, (Rx = RuTk)):

[TES I > []ES. ] ES.
eEN h E; ecEq ec AR\ E1
Cp#0 E1CA),
VkEC), E1NFp#0

< Pr(ﬁ (R = RuTy))

k
<I[es. I X Iles
eEN h E; ecE;
Cr#0  E1CA,
VkeCy, E1NDy#0

H ES.

ecAp\E1

where
N:={(h,B)e G| B C Ry and k' ¢ Ry, for some k" }
Ch:={k|heRu\Tw} An:={(h,B)eG }\N
Dy:={(W,B)eG | B CRy}
Fy,:={e= (h',B’) € Dy | eis aforward arc w.r.t. Tj, }

The proof is fairly technical, and so it is given in Appendix A.
Also in Appendix A, one can find an exact formula for computing
the likelihood. However, the exact formula is exponential in the size
of G, not only in the worst case but also in all of our experiments.
The bounds given in Theorem 7 are much smaller than the exact

formula, but still too big to be used in practice. Further reduction
is needed.
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The following result yields a lower bound formula that is small
enough to be practical.

Proposition 8. Let Ay be a set of arcs; let S. be a selection
variable, for each e € Ay. Let Cy, be a set of indices; let Fi
be a set of arcs, for each k € Ch,. Then

> JIES-J[ES. = > J]ES]J]ES:

E1 e€Eq e€cAp\Eq Ey e€Ey e€Fh\E;
E1CAy E,CFh
VkeC, E1NFL#0 VkEC), E1NFL#0

where F" := A, N (UkGC;L Fk)

Proof. Let us write S(X) for

> I]ES [] ES
Ey e€Ey eeX\E;
E1CX
VYkEC),, BE1NF)#D

We want to show that S(A,) = S(F"). We will show that
S(X1) = S(X2) whenever X1 and X, agree inside Ukech Fy.
For this, it is sufficient to consider the case in which X; U{e} = X>
ande ¢ X1UU,cq, Fr- Consider some subset E of X; such that
Ei1NFy # Oforall k € Cy. Then F1 and E7 U {e} are subsets
of X3 with the same property. Thus, S(X1) = (ES¢) - S(X1) +
(ESe) - S(X1) = S(X2). O

Proposition 8 reduces the size of the formula from O (Q‘Ah ‘) to

O(2|Fh|). In our experiments, it is often the case that |Ay| > 20
and it is sometimes the case that |A;| > 900. On the other hand,
it is often the case that || < 5 and it is always the case that
|F"| < 20. Of course, Proposition 8 can also be used to reduce
the size of the upper bound from Theorem 7, by substituting Dy,
for F}. Unfortunately, the sets Dy, tend to be significantly larger
than the sets Fj,. However, we will only need an upper bound for
the situation in which all hyperparameters have the value 1/2. In
this case, the following result suffices.

Proposition 9. Given are sets Ay, and Ch, as well as the sets Dy
indexed by k € Cy,. We have

D
21Anl — ominge oy, [4nNDkl
Ey
E1CAp
VkeC),, E1NDy#0

Proof. Let n be the number of subsets £ of A}, that do not satisfy
the condition that £y N Dy, # @ for all k € C),. We want to prove
that (2/4r] —n)/2!4rl <1 —1/2/4n0Pwl for all k' € C),. This is
equivalent to n > 214n\Pyr| Byt this is obvious, because none of
the subsets F1 of Ap, \ Dy satisfies the condition that E1 N Dy, # ()
forall k € Cy,. O

Proposition 9 can be used in an obvious way to weaken the upper
bound from Theorem 7. The benefit is that the resulting formula has
polynomial size relative to |G|, and therefore the corresponding
upper bound is easy to compute.

Although the probabilistic model is simple, computing the
likelihood of an event of the form ‘R; = Rg7: and ... and
R, = RuT,’ is not easy. Appendix A gives an exact formula
that has size exponential in the number of vertices of the cheap
provenance, but also points to evidence that a significantly smaller
formula is unlikely to exist. The size explosion is caused mainly
by the cycles of the cheap provenance. Theorem 7 gives lower and
upper bounds for the likelihood, which are exponential only in the
maximum in-degree of the cheap provenance. The lower bound is
small enough to be practical, after reducing its size further using

Algorithm Log Lower Bound  Time [min]
tnc fail 1
slsqgp —335.878 1
basinhopping —2164.416 48
hill —341.852 3
coord —335.844 1

Table 1. The logarithms of maximum lower bounds obtained by
different optimisers.

Proposition 8. But, the upper bound needs to be weakened, by using
Proposition 9. The resulting upper bound formula has polynomial
size, and therefore its corresponding algorithm computes an upper
bound in polynomial time. We use the reduced lower bound for
learning hyperparameters, and the upper bound in Proposition 9 for
measuring the quality of the learnt hyperparameters.

5.3 Numeric Optimisation

We ran two analyses (Downcast and PolySite) on 6 programs using
22000 abstractions. We recorded the sets N, C,, A, Dy, and F},
as defined in Theorem 7; this amounts to 2.3 GiB of data. Using
this training data we optimised the lower bound by using several
numeric optimisers. Table 1 shows the logarithms of maximum
lower bounds found by five optimisers, which are interesting because
they represent different approaches: tnc, slsqp, basinhopping,
hill, and coord.

The optimisers tnc, s1lsqp and basinhopping are off-the-shelf
optimisers, which are part of the SciPy toolkit [21]. The optimiser
tnc implements Newton’s method, but also has support for bounds,
so that the resulting hyperparameters are always in the interval [0, 1].
The optimiser s1lsqp uses sequential least squares programming.
The optimiser basinhopping uses the Metropolis algorithm, but
also improves proposals using a local search algorithm; we used
s1sqgp as the local search algorithm.

The optimisers hill and coord are implemented by us. The
optimiser hill implements gradient ascent with an exponentially
decreasing step, and with support for the bounds [0, 1]. The op-
timiser coord implements cyclic coordinate ascent, and uses
basinhopping with s1sqp for line search.

Out of all five optimisers, basinhopping is the only one specif-
ically designed to look for a global maximum, rather than a local
maximum.

In addition to the dataset for which results are given in Table 1,
we also tried several other smaller training datasets. The results were
consistent across multiple datasets.

We found that tnc usually failed to give any reasonable answer.
The optimiser s1sqp often finds a very good solution quickly, as
seen in the table. However, it also has non-convergent behaviour: if
left to run for more iterations, the results worsen significantly. The
optimiser basinhopping is significantly slower than the others.
The table reports the result for ~ 50 min, but it is true that better
results would be found if more time were available. Our optimiser
hill typically converges to a local optimum.

As can be seen in Table 1, coord performed as good as s1sqp.
Unlike in the case of slsqp, we did not notice any convergence
issue. Intuitively, coord behaves well because the likelihood tends
to be concave along a coordinate, and tends to not be concave along
an arbitrary direction. Concave functions are much easier to optimise
than non-concave functions, and so the line search algorithm has an
easier task when applied along coordinates.

In short, we found empirically that for this particular problem,
coordinate ascent is the numerical optimisation method of choice.
Next come sequential least squares programming (slsqp) and
gradient ascent (hill). We found that s1sqp sometimes does not
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Figure 4. Model quality. Note that the y-axis gives log L /Lo on a
logarithmic scale; thus, it has double-logarithmic scale with respect
to L / Lo.

converge, at least with the implementation in SciPy, and hill
almost always finds a local optimum but not a global optimum.
Next comes a method based on Markov chains (basinhopping),
which is extremely slow. Finally, Newton’s method always fails, at
least with the implementation in SciPy.

5.4 Evaluation

One way to evaluate a probabilistic model is the following. We begin
by observing a sequence of events of the kind we want to predict.
For each of these events we compute L and Lg: the probability
of the event according to our model, and the probability of the
event according to random guessing. In our case, random guessing
corresponds to setting all hyperparameters to the value 1/2. The
model is good when L/ Ly is large.

In our case, we do not have an efficient algorithm for computing
L/Lo, nor L or Ly individually. But, to ensure that L/L¢ is
large, we only need to compute a lower bound. If L' < L and
L§P > Lo, then L/Lo > L'™/L§". We compute L' using the
lower bound formula in Theorem 7 improved with the simplification
in Proposition 8, as before. We compute LS° using the upper
bound formula in Theorem 7 weakened and simplified by using
Proposition 9.

We find that for the training event we have (L/Lg) > e
1.5 x 10%9%3, A large gain is to be expected for the training event.
The question is whether we observe large gains for other events we
are interested in predicting.

We chose 1000 abstractions at random. For each abstraction a,
we computed 7' := 7(Pi(a)) and R := 7(RgT (Pi(a))). For
each such pair (R, T), we checked what is the likelihood gain
for the event R = RuT. Figure 4 shows lower bounds for the
likelihood gain, where the lower bound is computed as described
above. For more than 70% of events, the gain L/ Lo is greater than
e ~ 2.6 x 10%3,

13109
~

6. Refinement

The probabilistic model is interesting from a theoretical point of
view (Section 4). The learning algorithm is already useful, because
it lets us find which rules of a static analysis approximate the
concrete semantics, and by how much (Section 5). In this section
we explore another use of the learnt probabilistic model: to speed
up the refinement of abstractions.

We consider a refinement algorithm that is applicable to analyses
implemented in Datalog (Section 6.1). The key step of refinement is
choosing the next abstraction to try. Abstractions that make good
candidates share several desirable properties. In particular, they are

Given: A well formed, monotone analysis A, and a query gq.
SOLVE

1 a:=1 // L as initial abstraction

2 repeat

3 G := G[A(a)] // invokes analysis

4 if ¢ ¢ A(a) then return “yes”

5 if ¢ € Rga(Pi(a)) then return “no”

6 a := CHOOSENEXTABSTRACTION(G?, ¢, a)

Figure 5. The refinement algorithm used to solve Problem 2.

likely to answer the posed query (Section 6.2), and they are likely
to be cheap to try (Section 6.3). These two desiderata need to be
balanced (also Section 6.3). Once we formalise how desirable an
abstraction is, the next task is to search for the most desirable one
(Section 6.4).

6.1 Refinement Algorithm

The refinement algorithm is straightforward (Figure 5). It repeatedly
obtains the provenance G by running the analysis under abstrac-
tion a (line 3), checks if one of the two termination conditions
holds (lines 4 and 5), and invokes CHOOSENEXTABSTRACTION to
update the current abstraction (line 6). The correctness of this algo-
rithm follows from the discussion in Section 4.2, and in particular
Lemma 3.

Let a’ be the result of CHOOSENEXTABSTRACTION(G?, g, a).
For termination, we require that a’ is strictly more precise than a.
This is sufficient because the lattice of abstractions is finite. The
next abstraction to try should satisfy two further requirements:

1. The termination conditions are likely to hold for a’.
2. The estimated runtime of .4 under a’ is small.

Next, we discuss these two requirements in turn. To some degree, we
will make each of them more precise. But, we caution that from now
on the discussion leaves the realm of hard theoretical guarantees,
and enters the land of heuristic reasoning, where discussions about
static program analysis are typically found.

6.2 Making Termination Likely

The key step of the refinement algorithm (Figure 5) is the procedure
CHOOSENEXTABSTRACTION. The simplest implementation that
would ensure correctness is the following: return a random element
from the set of feasible abstractions
{d'|d >a}

Note that if @ were the most precise abstraction then the procedure
CHOOSENEXTABSTRACTION would not be called, so the feasible
set from above is indeed guaranteed to be nonempty.

One idea to speed up refinement is to restrict the set of feasible
solutions to those abstractions that are likely to provide a definite
answer. Let A, and A, be the sets of abstractions that will lead
the refinement algorithm to terminate on the next iteration with the
answer ‘yes’ or, respectively, ‘no’:

Ay = {d |d >aandq ¢ A(a')}
An = {d |d >aandq € R, (Pi(a’))}
Of course, exactly one of the two sets Ay and A,, is nonempty, but
we do not know which. More generally, we cannot evaluate these
sets exactly without running the analysis. But, we can approximate
them, because CHOOSENEXTABSTRACTION has access to G*. For
Ay we can compute an upper bound A%; for A, we use a heuristic
approximation A% .
)
Ay
AT

{d' |d' >aandq ¢ Rga(Po(a’)) }
{d"|d' >aandq € Ru(T(a,a’))}
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for some H C G, where
T(a,a’) := Pi(a) Un(Pi(a’)\ Pi(a))

It is easy to see why Ay2 D Ay;itis less easy to see why AL = A,,.

Let us start with the easy part.

Lemma 10. Let A7 and Ay be defined as above. Then A3 D A,.
Proof. Assume that ' > a, as in the definitions of AZ and Ay.
Then Py(a’) C Py(a). By Proposition 5 and Proposition 1,

Raa(Po(a')) = Ra(Po(a')) = Rear (Po(a’)) € A(a')
The claimed inclusion now follows. O

Let us now discuss the less obvious claim that AY ~ A,. One
could wonder why we did not define A by

{d'|a' >aandq € Ru(n(Pi(a)))}

for some H C G. This definition is simpler and is also guaranteed
to be equivalent to A,, by the predictability condition (4). In
the implementation, we use the more complicated definition of
AL for two reasons. First, we note that (4) implies AY = A,
if @ = L. Thus, the claim that Ay = A, can be seen as a
generalisation of (4). We did not use this generalisation of (4)
in the more theoretical parts (Section 4 and Section 5) because
it would complicate the presentation considerably. For example,
instead of one projection 7, we would have a family of projections
that compose. In principle, however, it would be possible to take
AL = A, as an axiom, from the point of view of the theoretical
development. Second, the more complicated definition of AL
exploits all the information available in G®. The simpler version
can also incorporate information from G by conditioning H to be
compatible with G, via (4). However, this conditioning would only
use the projected set of vertices of G, rather than its full structure.

Furthermore, the definition of AY’ used in the implementation has
the following intuitive explanation. The condition A} ~ A, tells us
that in order to predict R .+ (P1(a’)) by using G* we should do the
following: (i) split P (a’) into P1(a) and Pi(a’) \ Pi(a); (ii) use
the facts Pi(a) as they are, because they already appear in G%;
(iii) approximate the facts in P (a’) \ Pi(a) by their projections,
because they do not appear in G*; and (iv) define the predictive
provenance H with respect to G, because it is the most precise
provenance available so far.

We defined two possible restrictions of the feasible set, namely
A}? and AZ’. The remaining question is now which one should we
use, or whether we should use some combination of them such as
A}? N AZ. The restriction to A}? could be called the optimistic
strategy, because it hopes the answer will be ‘yes’; the restriction
to A could be called the pessimistic strategy, because it hopes
the answer will be ‘no’. The optimistic strategy has been used
in previous work [51]. The pessimistic strategy is used in our
implementation. We found that it leads to fewer iterations and
smaller runtime (Section 6.5). It would be interesting to explore
combinations of the two strategies, as future work.

In the optimistic strategy, one needs to check whether A; =0.
In this case, it must be that A, = @ and thus the answer is ‘no’.
In other words, the main loop of the refinement algorithm needs
to be slightly modified to ensure correctness. In the pessimistic
strategy, it is never the case that AY = (), and so the main loop
of the refinement algorithm is correct as given in Figure 5. The
pessimistic restriction A% is nonempty because it always contains T,
by choosing H = G (see Lemma 17).

The set AL is defined in terms of an unknown predictive
provenance H. Thus, we work in fact with the random variable

AT :={d |d >aandq € Ra(T(a,a))}

defined in a probabilistic model with respect to G¢, not G*. We
wish to choose an abstraction a’ that is likely in A%. In other
words, we want to maximise Pr(a’ € AZY). There is no simple
expression to compute this probability. For optimisation, we will
use the following lower bound.

Lemma 11. Let A7 be defined as above, with respect to an
analysis A, an abstraction a, and a query q. Let a’ be some
abstraction such that ' > a. Let H be some subgraph of G*
such that ¢ € Ru(T(a,a’)). Then

Pr(a’ € AY) > H ES.
ecH

where S, is the selection variable of arc e.

Proof. The proof is a straightforward calculation.

Pr(a’ € AY) = > [q€ Ru(T(a,a")]Pr(H)

!
H' CG®

>

H/
HCH'CG*

= > Pr(H)=]]ES.

H' ecH
HCH'CG*

Y

l[¢ € Ry (T(a,a))] Pr(H')

The second equality uses two facts: (i) ¢ € Ru(T(a,a’)), and
(i) Ru(T(a,a")) € Ry (T(a,a’)) forall H' O H. O

Before describing the search procedure (Section 6.4), we must
see how to balance maximising the probability of termination with
minimising the running cost.

6.3 Balancing Probabilities and Costs

The next abstraction a’ should be more precise than the last ab-
straction a. It is desirable that a’ is likely to lead to termination:
Pr(a’ € AY) should be big. At the same time, it is desirable that
a’ is cheap: c(a’) = exp(ad,.pa'(x)) should be small. This
raises the question of how to integrate these two metrics.

Definition 12 (Action Scheduling Problem). Suppose that we have
a list of m actions for m > 1, which can succeed or fail. The success
probabilities of these actions are p1, . .., pm € (0, 1], and the costs
for executing these actions are ci, . . ., ¢, > 0. Find a permutation
oon{l,...,m} that minimises the cost C(o):

o)=Y a)eotr  arlo) = [L01=p):

Intuitively, C'(o) represents the average cost of running actions
according to o until we hit success.

In the setting of our algorithm, the m actions correspond to all the
possible future abstractions af, . .., a,. The p; is Pr(a; € AY),
and c; is the cost of running the analysis under abstraction a;. Hence,
a solution to this action scheduling problem tells us how we should
combine probability and cost, and select the next abstraction a’.

We prove that under some independence assumption, we can
solve the action scheduling problem:

Lemma 13. Consider an instance of the action scheduling problem
(Definition 12). Assume the success probabilities of the actions are
independent. A permutation o has the minimal cost C(c) if and
onlyifforalll1 <i,j <m,

Coli) o Coli)

1<j = <
Po(i) — Po(y)

(6)
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For the proof, see Appendix B.

Corollary 14. Under the conditions of Lemma 13, for every permu-
tation o, if o has the minimal cost then o(1) € arg max; p;/c;.

6.4 MAXSAT encoding

We saw a refinement algorithm (Section 6.1) whose key step chooses
an abstraction to try next. Then we saw how to estimate whether
an abstraction a’ is a good choice (Section 6.2 and Section 6.3): it
should have a high ratio between success probability and runtime
cost. But, since the number of abstractions is exponential in the
number of parameters, it is infeasible to enumerate all in the search
for the best one. Instead of performing a naive exhaustive search,
we encode the search problem as a MAXSAT problem.

Let us summarise the search problem. Given are a query g, an
abstraction a and its local provenance G*. We want to find an
abstraction a’ > a that maximises the ratio Pr(a’ € AY)/c(a’)
(see Corollary 14). In doing so, we will approximate Pr(a’ € AY)
by a lower bound (see Lemma 11). In short, we want to evaluate the

following expression:
H ESe)/exp(a Z a'(m)))

arg max ((
a’ ecH zeP

a’>a

max
H
HCG®
9€R (T (a,a’))
Or, after absorbing max in arg max, taking the log of the resulting
objective value, and simplifying the outcome:

arg max (Z log(E Se) — Z a) @)
, a/\H e€H zEP
a'>a, HCG® o/ (z)=1

9€R (T (a,a’))

We shall evaluate this expression by using a MAXSAT solver. The
idea is to encode the range of arg max as hard constraints, and the
objective value as soft constraints.

There exist several distinct versions of the MAXS AT problem.
We define here a version that is most convenient to our development.
We consider arbitrary boolean formulas, not necessarily in some
normal form. We view assignments as sets of variables; in particular,

MEzx iff reM
MEz iff r¢ M
M':¢1A¢)2 iff M|:¢1andM):¢2

The evaluation rules for other boolean connectives are as expected.
If M = ¢ holds, we say that the assignment M is a model of
formula ¢.

Problem 15 (MAXSAT). Given are a boolean formula ® and a
weight w(z) for each variable x that occurs in ®. Find a model M
of ® that maximises » . ,, w(z).

We refer to @ as the hard constraint.

Remark 16. Technically, Problem 15 is none of the standard
variations of MAXSAT. It is easy to see, although we do not prove
it here, that Problem 15 is polynomial-time equivalent to partial
weighted MAXSAT [3, 34]: the reduction in one direction uses the
Tseytin transformation, while the reduction in the other direction
introduces relaxation variables.

The idea of the encoding is to define the hard constraint ®
such that (i) the models of & are in one-to-one correspondence
with the possible choices of H and T such that H C G° and
Py(a) €T C Py(a) U Pi(a), and moreover (ii) each model also
encodes the reachable set R gT". To construct a hard constraint ®
with these properties, we use the same technique as we used for
computing the likelihood (Section 5.2 and Appendix A). As was the
case for likelihood, cycles lead to an exponential explosion. We deal

with cycles by retaining only forward arcs:
G?, = {e € G"|eisaforward arc w.rt. Py(a) U Pi(a) }

The hard constraint is a formula whose variables correspond to
vertices and arcs of G%,. More precisely, its set of variables is
Xv(G%) U Xg(G,), where

Xv(G) :={xy | uvertex of G} Xg(G) := {x. | earc of G}

‘We construct the hard constraint ® as follows:

® = 3y (@l/\%/\@g)
e€Ge,
®; = /\ ((ye A ($e A /\ irb)) A (Ye — xh))
e=(h,B)EG® beB
Oy = /\ <-Th — ( \/ ye)> (8)
e=(h,B)eGa,
vertex of G,
hgPy(a)UPy(a)
[OPEE xq/\( /\ a:u)/\( \/ xu)

u€Py(a) u€ Py (a)

The notation Jee e, Ye stands for several existential quantifiers, one
for each variable in the set {ye }ceca, . Intuitively, the constraints
®; and P, ensure that the models correspond to reachable sets,
and the constraint ®3 ensures that the query is reachable and that
a > a.

The formula ® defined above has several desirable properties: its
size is linear in the size of the local provenance G, it is satisfiable,
and each of its models represents a pair (a’, H) that satisfies the
range conditions of (7). To state these properties more precisely, let
us denote the range of (7) by F'(G*) where

F(G):={(ad',H)|d >aand HC Gandq € Ru(T(a,a’))}

(©)
Lemma 17. Let a be an abstraction, and let q be a query, for some
analysis A. Let F(G) and G2, be defined as above. If a < T and
q € A(a), then (T,G%,) € F(G%,) C F(G*).

The conditions @ < T and ¢ € A(a) are guaranteed to hold
when CHOOSENEXTABSTRACTION is called on line 6 of Figure 5.

Proof. The inclusion F/(G?,) C F(G*) follows from G%, C G*°.
We have (T,G%,) € F(G2,) because (a) T > a by assumption,
(b) G2, C G2, trivially, and (¢) ¢ € Rga, (T'(a, T)). To see why
(c) holds, notice that removing nonforward arcs with respect to
T(a, T) = Po(a) U Pi(a) preserves distances and reachability
from T'(a, T), and so Rga, (T'(a, T)) = Rga(T(a, T)). O

Lemma 18. Let a be an abstraction, and let q be a query, for some
analysis A. Let the hard constraint ® be defined as in (8): let the
feasible set F(G2,) be defined as in (9). There is a bijection between
the models M of ® and the elements (a', H) of F(G%,). According
to this bijection,

M N XE(G:) = Xgp(H)
M N Xv(GY) = Xv(Ru(T(a,d)))

The proof of this lemma, given in Appendix B, relies on tech-
niques very similar to those used to prove Theorem 7.

At this point, we know how to define the hard constraint @,
so that its models form a subrange of the range of (7). It remains
to encode the value ), log(ES.) — >  zep « by assigning

a’(z)=1
weights to variables. This is very easy. Eac(h >arc variable x. is
assigned the weight w(z.) = log(E S.). Each vertex variable x,,
corresponding to u € Py(a) U Pyi(a) is assigned the weight
w(zy) = —a. All other variables are assigned the weight 0.
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Figure 6. Comparison between an existing algorithm (old) and
ours (new). The old algorithm, of Zhang et al. [51], uses an
optimistic refinement strategy. Our new algorithm uses a pessimistic
refinement strategy and also a probabilistic model.

6.5 Evaluation

To evaluate the refinement algorithm, we use it to perform pointer
analysis on 6 programs taken from the benchmark suites Ashes [47]
and DaCapo [6]: antlr (a parser generator), hedc (a web crawler),
javasrc-p (pretty printer for Java code), schroeder-m (audio editing
tool), toba-s (translates Java bytecode into C code), and weblech
(website download tool).

Our implementation is based on that of [51]. In particular, we
use the same Datalog implementation of the static analysis, and the
same open-source Datalog and MAXS AT solvers (see [20, 49]). But,
we have re-implemented their refinement algorithm and, alongside,
we implemented our own refinement algorithm. This way, as much
code as possible is shared.

The pointer analysis is flow insensitive but object sensitive. It
determines for each expression in the program a set of possible
dynamic types. The more precise the analysis, the more restricted
the set of possible dynamic types. Based on these sets, the analysis
answers two types of queries. A PolySite query asks whether the
receiver of a method invocation has at most one possible dynamic
type; a Downcast query asks whether all possible types of an
expression being cast to 7" are subtypes of 7.

Figure 6 shows the total runtime, for the solved queries. For each
testcase, the following limits were enforced: 100 GiB of space and
15 minutes of time. Within these limits, our algorithm solves many
more queries than the baseline algorithm.

7. Related work

The potential of using machine learning techniques or probabilistic
reasoning for addressing challenges in static analysis [4, 12] has
been explored by several researchers in the past ten years. Three
dominant directions so far are: to infer program specifications au-
tomatically using probabilistic models or other inductive learning
techniques [5, 24, 30, 33, 38, 39, 41], to guess candidate program
invariants from test data or program traces using generalisation
techniques from machine learning [31, 36, 43], and to predict prop-
erties of potential or real program errors, such as true positiveness
and cause, probabilistically [27, 28, 50, 53]. Our work brings a
new dimension to this line of research by suggesting the use of
a probabilistic model for predicting the effectiveness of program
abstractions: a probabilistic model can be designed for predicting
how well a parametric static analysis would perform for a given
verification task when it is given a particular abstraction, and this
model can help the analysis to select a good program abstraction for
the task in the context of abstraction refinement. Another important

message of our work is that the derivations computed during each
analysis run include a large amount of useful information, and ex-
ploiting this information could lead to more beneficial interaction
between probabilistic reasoning and static analysis.

A typical bottleneck in combining techniques from probabilistic
reasoning with techniques from static analysis is that the former
are inherently numeric while the latter are not. To bridge the gap,
one needs to design so called features, which essentially translate
between the non-numeric world of static analysis to the numeric
world of probabilities and machine learning. But, designing such
features is no easy task. Our work shows that it is possible to obtain
good results without designing any feature at all, provided only that
the analysis is implemented in Datalog.

Several probabilistic models for program source code have
been proposed in the past [1, 2, 19, 23, 32, 38, 39], and used for
extracting natural coding conventions [1], helping the correct use
of library functions [39], translating programs between different
languages [23], and cleaning program source code and inferring
likely properties [38]. These models are different from ours in
that they are not designed to predict the behaviours of program
analyses under different program abstractions, the main task of our
probabilistic models.

Our probabilistic models are examples of first-order probabilistic
logic programs studied in the work on statistical relational learning
[14, 15, 42]. In this line of work, using one hyperparameter 6
for all arcs of the same type is a commonly used technique for
fighting against overfitting to training data and for learning good
hyperparameters. In our case, models are large, and training data
provide only partial information about the random variable H
used in the models. Learning hyperparameters in such cases is
generally intractable, and we have overcome this intractability by
analytically deriving the lower bound of probabilities in Theorem 7
and optimising this lower bound. Using such a proxy during learning
is common in machine learning, in particular, in the work on
variational inference [22, 48].

Our work builds on a large amount of research for automatically
finding good program abstraction, such as CEGAR [4, 9-11, 18, 40],
parametric static analysis with parameter search algorithms [26, 35,
51, 52], and static analysis based on Datalog or Horn solvers [8, 16,
17, 44, 49]. The novelty of our work lies in the use of adding a bias
in this abstraction search using a probabilistic model, which predicts
the behaviour of the static analysis under different abstractions.

Recently, non-probabilistic approaches for estimating the im-
pacts of different program abstractions on a given analysis or ver-
ification task have been proposed [37, 45]. One interesting future
direction is to revisit these approaches from the perspective of proba-
bilistic modelling explained in this paper, with the goal of obtaining
probabilistic variants of their approaches that replace the current
hard-coded heuristics for prediction by adaptable ones.

8. Conclusion

We have presented a new approach to abstraction refinement, one
that receives guidance from a learnt probabilistic model. The model
is designed to predict how well would the static analysis perform
for a given verification task under different parameter settings. The
model is fully derived from the specification of the analysis, and
does not require manually crafted features. Instead, our model’s
prediction is based on all the reasoning steps performed by the
analysis in a failed run. To make these predictions, the model needs
to know how much approximation is involved in each Datalog rule
that implements the static analysis. We have shown how to quantify
the approximation, by using a learning algorithm that observes the
analysis running on a large codebase. Finally, we have shown how
to combine the predictions of the model with a cost measure in order
to choose an optimal next abstraction to try during refinement. Our
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empirical evaluation with an object-sensitive pointer analysis shows
the promise of our approach.
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A. Proof of Theorem 7

We begin by restating in our notation a standard result from logic
programming. A dependency graph of a hypergraph G is a directed
graph that includes an arc (h, b) whenever (h, B) € G andb € B
for some B. A loop L of a hypergraph G is a nonempty subset of its
vertices that are strongly connected in the corresponding dependency
graph. Note that loops are not required to be maximal. In particular,
sets that contain single vertices are loops, called trivial loops. The
set Jo (L) of justifications for loop L in G is defined as follows:

Jo(L):={(h,B)e G|he Land BNL =0}

For a hypergraph G we define its forward formula ¢_, (G) and its
backward formula ¢ (G) as follows:

o (G) = /\ (((/\ ) < xe) A (ze — xh))
e=(h,B)EG *  bEB

6@ = A ((Az)>(V =)
loopI(;fG vek e€Je(D)

Both formulas are defined over the following set of variables:
{zu |uvertex of G} U{z. | earcof G}
We define the formula ¢(G) of a hypergraph G by
9(G) = 3z (9-(G) N o(G))

The notation J.c ¢ x. stands for several existential quantifiers, one
for each variable in the set {x. }cc indexed by G. In the definition
of ¢(G) from above, the existential quantification is not strictly
necessary, but convenient: Because the remaining free variables
correspond to vertices, sets of variables are isomorphic to sets
of vertices.

We view models M of a formula ¢ as sets of variables; that is,

MEz iff zeM

MEz iff o ¢ M

ME @1 — @2 iff M |= @1 implies M = o
ME3ze iff M Eplz:=0 o MEp[z:=1]

and so on, in the standard way. There is an obvious one-to-one
correspondence between sets of vertices and models; if S is a set of
vertices, we write X S for the corresponding model, which is a set
of variables:

XS = {zs|s€S}

The following result is stated in [25, Section 3], in a slightly more
general form and with slightly different notations:

Lemma 19. Let G be a hypergraph, and let $(Q) be its formula,
defined as above. Then X (RG(D) is the unique model of ¢(G).

For the proof, we refer to [25].

Remark 20. We note that ¢_, (G) is linear in the size of G, while
¢ (G) is exponential in the size of G in the worst case. One could
wonder whether it is possible to define ¢(G) in a way that does
not lead to exponentially large formulas but Lemma 19 still holds.
It turns out there are reasons to suspect that such an alternative
definition does not exist [29].

Here, we shall need a more flexible form of Lemma 19. Let S

be a distinguished subset of vertices, none of which occurs in the
head of an arc. Define

oz@ = A (A= (V=)
loopl(;fG vek e€Ja(l)
LNS=0
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and
¢°(G) =

Corollary 21. Let G be a hypergraph, let S be a subset of vertices
such that none of them occurs in the head of an arc, and let
¢° (G) be defined as above. For each subset T of S, there exists a
unique model M of ¢° (G) such that X (M) N S = T, namely
M = X (ReT).

S
3,7 (6= (@) N oZ(@) (10)

Proof. For a fixed but arbitrary T' C .S, construct the graph
Gr = GU{(¢,0)|teT}

It is easy to check that R¢T = R, 0. From Lemma 19, we know
that X (R 0) is the unique model of ¢(Gr). Since the vertices
of S do not occur in the heads of arcs, they appear only in trivial
loops. Thus, we have

0-(Gr) = 6@ A (N =)
0 (Gr) = o2 (@G A (N @)
seS\T

(The formulas above eliminate via existential quantification the
variables corresponding to the dummy arcs (¢, ) of G, but this is
of little consequence.) And finally

¢ (Gr) A b (Gr) = 65(G) A Z(G)
SCA )M (A)

This concludes the proof. O

‘We now take a special case of Corollary 21.

Corollary 22. Let G be a hypergraph. Let (S, V) be a partition of
its vertices such that no vertex in S occurs as the head of an arc. Let
3 (G) be defined as above. Let R be a subset of V. Define

(o) (4, )

Forall T C S, we have that X'T is a model of ¢°*%(G) if and only
ifReT = T U R.

o> (@) =

d Tu
ueV

Proof. Let T be a subset of S. Then, X T is a model of ¢ %(G) if
and only if X (T U R) is a model of #° (G). But by Corollary 21,
this is equivalent to R¢T =T U R. O

The key idea of our proof is to use Corollary 22 in such a way
that subsets of .S correspond to predictive provenances H. To this
end, we define the extended cheap provenance G+ with respect to
the set 1" of vertices by

GE = {(h,BU{s:)) |e=(h,B) e G- }U{(1,0)|teT}

Recall our notation G- for the cheap provenance. For a predictive
provenance H C G, let us write SH for { s. | e € H }. All the
vertices of SG are fresh: they appear in G but not in G*. The
extended cheap provenance has the property that

’RG%(SH):(SH)URHT (11)
for all predictive provenances H C G and all sets of vertices 7.

Suppose the cheap provenance G and two subsets 7" and R of
its vertices are given. The following lemma shows how to construct
a boolean formula whose models are in one-to-one correspondence
with the cheap provenances H C G~ for which R = RgT.

Lemma 23. Let G be a cheap provenance, and let R and T be
two subsets of its vertices. Define the extended cheap provenance
G with respect to T as above. We have that R = Ry T if and only

if X(SH) is a model oquSGL’R(G%).

Proof. In Corollary 22, set S := SG* and T := SH and

G := G+. We obtain that
X(SH) | ¢°¢ "(GF) iff Rgy(SH)=(SH)UR
Combining this with (11) we obtain
X(SH) = ¢°9 B(G#) iff (SH)URyT = (SH)UR
Finally, since all the vertices in S H are fresh, we are done. O

What remains to be done is to make explicit the formula

€L
#3¢ R (G7) mentioned in Lemma 23. This is only a matter of
calculation. We begin by unfolding the definition of ¢° G+ B(GF),

L
and then that of $°“~ (G ). Below, the notation @[z := v] means
that in ¢ we substitute the variable x,, with value v for all indices
u € R. Also, we write V for the vertex set of G*.

¢SGL,R(G%)
(s 6 (A =) A (

= 659 (GF)er = Ulzy\g = 0]
3 e (6-(GF) A 025 (GF)) [ 1= 1wy = 0]

= dxy
ueV

e€GH
= 3 2 (V5 AT
e€GH
where
v, = ¢ﬁ(G%)hR::]J@V\R::(ﬂ
Ve = ¢ (G [en = ay\g = 0]

Now we calculate ¥_, and ¥, in turn. We begin with W_,. First
we unfold the definition of ¢_, (G ), then we unfold the definition
of GF, and finally we apply the substitutions. During the calculation,
we identify x;, with Se. This is partly notational convenience (to
avoid double subscripts), but it will also allow us to weigh models
according to the probabilistic model.
TR = 1
TV\R ‘= 0

V., = 6 (Gr)er == 1][zv\r = 0]
( /\ xb) PR :ce) A(ze — xh)>

ceGE N bEB
e=(h,B)

(A (0

e'eGt
e=(h,BU{s_/})

e’=(h,B)
A /\ (ze A wt))

rzr =1
teT l’v\R =0
e=(t,0)

= A (((Se/ A B CR]) :c) A(ze = [h € R]))
e'eGt

e’=(h,B)
e=(h,BU{s_/})

A\ (e Aft € R])
teT
e=(t,0)

/\ (((/\ ) xc) A(ze — mh))
beBU{s/}
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If T Z R, then U_, = 0; otherwise,

. _%)e (500 2) Alg A so)

’
e=(h,BU{s./})
B C Randh € R

A Q/\ e ) ( A o)

(12)

e’=(h,B)eG+
e=(h,BU{s.}) ¢
BYZR

Next, we calculate W,_.

(G%)[:cg = 1][zy\g :=0]

A ((Awa=( v

rr =1
JJE) T =0
L weL eelgL (D) VAR -

loopofG%
Tzr:=1
Te
)) [mv\R = 0:|

sa+
U, =¢L

LNSG+=0

V

I
=
—
=
3
4

loopchfGL et EGJG% (£)

- A (Ber-( V@)

]oopft/‘Gi eEJG% (L)

= A (0 V=)V =)
L e teTNL

loopof G+ &' =(h, B)eJGi (L) e=(t,0)

LCR e=(h,BU{s,})

When we calculate ¥_, A U, we see that U_, fixes the values of
all the variables x. corresponding to arcs.

L
¢ GE) = 3 m (WL AT

EEG%
- e =S, for(e,e’) € S
= [TQR]/\ /\ Se/)/\\IJH |:z Te ;:,Ofnr:eeo :|
)GGJ- ze := lfore € I
'=(Ch,B

gRandheR

where S, O, and I stand for corresponding ranges in (12). More
precisely, letting ¢/ = (h, B) range over G and letting e be its
corresponding arc (h, BU {s./}) in G¥, we have S := { (e, ¢) |
BCRandh € R}andO := {e| B Z R}. Also, I contains all
the dummy arcs of the form (¢, ), for all ¢ € T. Now we apply these
three substitutions to W, one by one. The first line just introduces
a shorthand notation for each of the three kinds of substitutions.

Te := S, for (e,e') € S S
U, [ze:=0foree O =0, |O
Te:=1foreel T

S

= A (( V=)V o))

L o teTNL T

loopof G+ ¢'=(h,B)€J 1 (L)  e=(t,0)

LCR e=(h,BU{s_})
S
AV

@)
loop of G+ €’ =(h, B)eJg 1 (L)

L e/

LER\T = (h,BU{s.r})
= A Vel
L o

loop of G- e'=(h, B)EJGL (L)
LER\T  ¢=(h,BU{s,/})
BCR

= /L\ \/56/

loop of G &’ =(h, B)eJGL (L)
LCR\T BCR

Finally, we conclude that

5 (G =

TCRA( A S) ( /\ \/ Se) (13)
e=(h,B)eG+ e=(h,B)
BCR, h¢R 1°°PmG e€Jg1 (L)
LCR\T  BCR

Now observe that

Pr(ﬁ (Rk = Ru(Th) ))

n (/\ (e )) (14)

Putting together (13) and (14), we obtain the following lemma.

Lemma 24. Consider the probabilistic model associated with
the cheap provenance G+ of an analysis A. Let Ty, . .., Ty, and

R1, ..., Ry be subsets of the vertices of G*. If Ty, C Ry, for all k,
then
(fymam) -
[TesB( ANAY s.)
eeN e=(h,B)
InnpofGJ‘ LCRk\Tk e€Jg1 (L\N
BCRk

where

N = {(h’B)eGL|B§Rkandh¢kaorsomek}

Proof. We assume that 7}, C Ry. Using (13) and (14), we transform
1
Ny ¢5¢ 1 (G%k) as follows:

A 605 )
=1

k=1 ( e=(h, B)eGJ- (

AN

s)>

L €= (h,B)
BCRy, h¢Ry, iogpénG eeJg1 (L)
k\Tk  BCRy
=(As)A (A A Vs
e€EN k=1 e=(h,B)
loopmG e€Jg 1 (L)
LERR\Tr,  BCRy,
- (As)~(A A Vs
eEN k=1 e=(h,B)
loop in G+ e€J, 1 (L\N
LCRp\Tx,  BCR,,
(A Ay
eeN L ked{1,..., n} e=(h,B)
loop in G- LCRp\Ty ecd, 1 (L)\N
BCRk

The conclusion of the lemma now follows from the result of this
calculation and the fact that S. and S,/ are independent whenever
e#e. O

We can finally prove Theorem 7. Recall its statement:

Theorem 7. Consider the probabilistic model associated with the
cheap provenance G+ of some analysis A. Let Tt ..., Tn and
Ri,..., R, be subsets of vertices of G-. If h ¢ B for all arcs
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(h,B) in G* and R, C Rer Ty for all k, then we have the
following lower and upper bounds for Pr((;_,(Rx = RuTk)):

Mes Il X Ies IT es
ecN ecFy ec AR\ E1
C’h;t@ E1CA
VkeCy, ElﬁFk7£0

(ﬁ (Ri = RuT))
SIes Tl %

ch;éw E1CA
VkeCh, B1NDy#0

I] Es.

ecky

H ES.

e€cAp\E1

where
N :={(h,B)e G| B C Ry and k' ¢ Ry, for some k" }
pi={K|h€Ry\Tw} An={(h,B)eG"}\N
Dy:={(W,B)eG" | B CRy}
F.:={e=(W,B’) € Dy | eis a forward arc w.r.t. Ty, }

If Ti. € Ry for some k, then the probability and both of its
bounds are all 0. In what follows, we shall invoke Lemma 24, thus
silently assuming that T}, C Ry, for all k. We first prove the claim
about an upper bound, and then show the claim about a lower bound.

Proof of the Upper Bound in Theorem 7. We start with a short cal-
culation which shows what happens if we consider only trivial loops.
Recall the assumption that h ¢ B for all arcs (h, B).

e=(h,B)
loop ofGL LCRk\TIc e€. ]Gl (L)\N

SE( AA _(\h/B) se)

vertex ofGi hERk\Tk e¢N,BCRy,

(AN Vs
keCp e=(h,B)

5)
h keC =(h,B
Cp#0 " eeeN,(Bg)?,k

Ch¢® e¢N,BCRy,
(A V os)

h kEC), e=(h,B)€A

O h eI

15)

Ie( AV

The expression above has the form Hh EU,. We rewrite ¥y,
by essentially enumerating all of its models and checking if they
satisfy Wy,. The result is the following equivalent form:

Vo ((As)r (A S)

ecAp\E1
E1CA,,
VEEC . BAMDy#0

and so

Ev, =

Z I] ES.

ecEy

H ES.

ecAp\E1

(16)

Ey CA
VkEC), ElﬁDk;é@

Finally, we multiply the inequality (15) on both sides by [ ..y E Se,
plug in (16), and use Lemma 24. O

Note that the upper bound is tight if G* has no cycles and
therefore all loops are trivial.

Proof of the Lower Bound in Theorem 7. By Lemma 24,

Pr(@l(Rk = RHTk)) =
IIEs. (/\ AV se)

eEN N
loop of G LCRk\Tk e€J, 1 (L)\N
BCRy,

Thus, the main part of the lemma follows if we show that

AV (A A ) o
C'hhiw EIL?A ecE e€Ap\Ey

VkeCy, ElﬁFk;t(D

implies
ANV s
) e=(h,B)
loop nfG LCRk\Tk e€J 1 (L\N
BCR,,

(18)

To show this implication, we will show that a fixed but arbitrary
conjunct of (18) holds, assuming that (17) holds. A conjunct of (18)
is determined by a loop Lo and an index ko. The idea is to show
that loop Ly is justified via its vertex that is closest to Tk, .

Since Lo and ko determine a conjunct of (18), we know that
Lo C Ry, \ Tk, We need to find an arc e = (h, B) such that

e€ Jgi(Lo)\ N, BC Ry, and S.=1. (19

Since Lo is not empty and Lo C Ry, C Rg1Tk,, we can choose
h € Lo such that diO (h) is minimum. Since h € Lo C Ry, \ Tk,
we have that

ko € Ch.

This lets us instantiate (17) with h, and derive that for some subset
E1 of Ah,

EiNF, #0 foralk € C, and S.=1 foralle € F;
(20

Since ko € Ch, the first conjunct implies that F4 N Fy, # 0. Thus,

there exists an arc eg = (ho, Bo) in E1 N Fy,, and it satisfies the

following conditions:

. the head hg of eg is h;

. eo isnotin V;

. Bo C Ry, and

. eg is a forward arc with respect to T}, .

B W N =

Since eq is a forward arc w.r.t. Ty, and h has the minimal distance
from T}, among all the vertices in Lo,

eg € Jgj_ (Lo)
Also, by the second conjunct in (20),
Sep =1

From what we have just shown follows that e is the desired arc; it
satisfies the requirements in (19). O

Note that the lower bound and the upper bound coincide if
Dy N Ap = Fi, N Ay, for all k and h. In this case, both bounds are
tight.
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B. Proofs for Results in Section 6

Lemma 13. Consider an instance of the action scheduling problem
(Definition 12). Assume the success probabilities of the actions are
independent. A permutation o has the minimal cost C(c) if and
onlyifforalll1 <i,j <m,

Co (i) < Co(j)

1<j = < .
Do(i)  Po(y)

(6)
Proof. Pick an arbitrary permutation o. We will study the effect of
one transposition (i <+ i+ 1) on the cost. Let 0’ = oo (i <> i+1);
in other words

o(i+1) ifj=i
a'(5) = { (i) ifj=di+1
o(j) otherwise

Observe that g (o) and g (
w failo) ifk=i+1
ar(07) = { otherwise

o) differ for only one value of k:
( — Po 'L+1))
1(9)

Also notice that g, (o) # 0 and g}, (o) # O for all k. The difference
in cost between o’ and o is

C(o") = C(0) = qi(0")eoriy + qit1(0")corivn)
— qi(0)coi) — Gir1(0)Co(it1)

3i(0)Co(i+1) + Gi(0) (1 = Po(it1))Coi)

= 4i(0)Co(i) — 4i(0)(1 = Po(i))Co(it1)
= Qi(U)(Pcru)Cv(iﬂ) - po(i+1)ca(i))-
Thus,
Clo") - C(o
M = PiCi+1 — Pi+1C;
(o)

where p; denotes p,(;), and ¢; denotes ¢, (;), for the fixed permuta-
tion 0.

All that remains is to interpret the result of these calculations.
For the left-to-right direction, assume that o has the minimal cost.
Also, for the sake of contradiction, suppose that there exist ¢ and j
such that ¢ < j and ¢;/p; > ¢;/p;. Then, there must also exist an ¢
such that ¢; /p; > ¢i+1/pi+1, Which is equivalent to

PiCit1 — Pit1Ci < 0.

Thus, the previous calculation shows that ¢’ would have a lower
cost than o. This contradicts the assumption that ¢ has the minimal
cost.

For the right-to-left direction, pick o and o that satisfy the RHS
of (6). Then, we can convert o to ¢’ by composing o with a sequence
of transpositions ¢ <+ % + 1 for ¢ such that

Ci _ Citl

Pi Dit1
Then the previous computation shows that such composition leaves
the cost unchanged. Thus, o and o’ have the same cost. But by what
we have already shown, there should be at least one o’/ that satisfies
the RHS of (6) and have the minimal cost. This implies that all of o,
o’ and ¢ are optimal. O

Lemma 18. Let a be an abstraction, and let q be a query, for some
analysis A. Let the hard constraint ® be defined as in (8): let the
feasible set F(G2,) be defined as in (9). There is a bijection between
the models M of ® and the elements (a', H) of F(G%,). According
to this bijection,

MnNXe(GL) =
MnNXv(GY) =

Proof sketch. Let
G = {(heUB)|e=(h,B) e G}
S = {e|e€ G4}

Because G, has no cycles by construction, G’ does not have cycles,
either. We have that

( g:ye (@, /\@2)) N (¢S/Upo(a)upl(a)(G/))

ec

where the latter uses the definition in (10). Thus, we can apply
Corollary 21. Finally, note that ®3 ensures that a’ > a and
q € Ru(T(a, a’)). O
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