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Abstract
The core challenge in designing an effective static program analysis
is to find a good program abstraction – one that retains only details
relevant to a given query. In this paper, we present a new approach
for automatically finding such an abstraction. Our approach uses
a pessimistic strategy, which can optionally use guidance from
a probabilistic model. Our approach applies to parametric static
analyses implemented in Datalog, and is based on counterexample-
guided abstraction refinement. For each untried abstraction, our
probabilistic model provides a probability of success, while the
size of the abstraction provides an estimate of its cost in terms
of analysis time. Combining these two metrics, probability and
cost, our refinement algorithm picks an optimal abstraction. Our
probabilistic model is a variant of the Erdős–Rényi random graph
model, and it is tunable by what we call hyperparameters. We
present a method to learn good values for these hyperparameters,
by observing past runs of the analysis on an existing codebase. We
evaluate our approach on an object sensitive pointer analysis for
Java programs, with two client analyses (PolySite and Downcast).

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification

Keywords Datalog, Horn, hypergraph, probability

1. Introduction
We wish that static program analyses would become better as
they see more code. Starting from this motivation, we designed
an abstraction refinement algorithm that incorporates knowledge
learnt from observing its own previous runs, on an existing codebase.
For a given query about a program, this knowledge guides the
algorithm towards a good abstraction that retains only the details of
the program relevant to the query. Similar guidance also features in
existing abstraction refinement algorithms [4, 8, 20], but is based
on nontrivial heuristics that are developed manually by analysis
designers. These heuristics are often suboptimal and difficult to
transfer from one analysis to another. Our algorithm has the potential
to improve itself by learning from past runs, and it applies to almost
any analysis implemented in Datalog.

Prior work on abstraction refinement for Datalog [54] implicitly
uses an optimistic strategy: the search is geared towards finding
an abstraction that would show the current counterexample to
be spurious. We take the complimentary approach: our search is
geared towards finding an abstraction that would show the current
counterexample to be unavoidable. Furthermore, we bias the search
by using a probabilistic model, which is tuned using information
from previous runs of the analysis.

In other approaches to program analysis that are based on
learning [42, 53], the analysis designer must choose appropriate
features. A feature is a measurable property of the program, usually
a numeric one. Choosing features that are effective for program
analysis is nontrivial, and involves knowledge of both the analysis
and the probabilistic model. In our approach, the analysis designer
does not need to choose appropriate features.

Instead of observing features, our models observe directly the
internal representations of analysis runs. Parametric static analyses
implemented in Datalog consist of universally quantified Horn
clauses, and work by instantiating the universal quantification of
these clauses, while respecting the constraints on instantiation
imposed by a given parameter setting. These instantiated Horn
clauses are typically implications of the form

h← t1, t2, . . . , tn

and can be understood as a directed (hyper) arc from the source
vertices t1, . . . , tn to the target vertex h. Thus, the instantiated
Horn clauses taken altogether form a hypergraph. This hypergraph
changes when we try the analysis again with a different parameter
setting. Given a hypergraph obtained under one parameter setting,
we build a probabilistic model that predicts how the hypergraph
would change if a new and more precise parameter setting were
used. In particular, the probabilistic model estimates how likely it
is that the new parameter setting will end the refinement process,
which happens when the new hypergraph includes evidence that
the analysis will never prove a query. Technically, our probabilistic
model is a variant of the Erdős–Rényi random graph model [11]:
given a template hypergraph G, each of its subhypergraphs H
is assigned a probability, which depends on the values of the
hyperparameters. Intuitively, this probability quantifies the chance
that H correctly describes the changes in G when the analysis
is run with the new and more precise parameter settings. The
hyperparameters quantify how much approximation occurs in each
of the quantified Horn clauses of the analysis. We provide an
efficient method for learning hyperparameters from prior analysis
runs. Our method uses certain analytic bounds in order to avoid
the combinatorial explosion of a naive learning method based on
maximum likelihood; the explosion is caused by H being a latent
variable, which can be observed only indirectly.

The next parameter setting to try is chosen by our refinement
algorithm based on predictions of the probabilistic model but also
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based on an estimate of the runtime cost. For each parameter setting,
the probability of successfully handling the query is evaluated by our
model, and the runtime is estimated to increase with the precision
of the parameter setting. We prove that our method of integrating
these two metrics is optimal, under reasonable assumptions.

The paper starts with an informal overview of our approach
(Section 2) and a review of notations from probability theory
(Section 3), and is followed by a description of our probabilistic
model (Section 4) and its learning algorithm (Section 5). The
probabilistic model is then used to implement a refinement loop
that optimally chooses the next parameter setting (Section 6).
The experimental evaluation (Section 7) shows the value of the
pessimistic strategy, but suggests we need better optimisers in order
to take full advantage of the probabilistic model. Section 8 positions
our work in the various attempts to combine probabilistic reasoning
and static analyses, and Section 9 concludes the paper. Most proofs
are in the full version.

2. Overview
Figure 1 gives a high level overview of our abstraction refinement
algorithm, and in particular it shows the role of our probabilistic
model. The refinement loop is standard, with analysis on one side
and refinement on the other. Our contribution lies in the refinement
part, which receives guidance from a learnt probabilistic model and
chooses the next abstraction by balancing the model’s prediction and
the estimated cost of running the analysis under each abstraction.

We assume that the analysis is given and obeys two constraints.
The first is that the analysis is implemented in Datalog – it is
specified in terms of universally quantified Horn clauses, such as

pointsto(α, `)← precise(α), pointsto(β, `),

assignTo(β, α)
(1)

in which all the free variables α, β, ` are implicitly universally
quantified. We call these clauses Datalog rules. The analysis works
by instantiating the quantification of these rules, and thus deriving
new facts. A query is a particular fact such as pointsto(x, h),
which is an instantiation of the left side of the rule (1), with α := x
and ` := h. The query represents an undesirable situation in
the program being analysed. The analysis could derive the query
because the undesirable situation really occurs at runtime. But, the
analysis could also derive the query because it approximates the
runtime semantics. Our task is to decide whether it is possible to
avoid deriving the query by approximating less. If the query is
derived, then the set of all instances of Datalog rules constitute a
counterexample, which is then used for refinement.

The second constraint is that the analysis is parametric. For
instance, it might have a parameter for each program variable,
which specifies whether the variable should be tracked precisely

object x, y, z, v
assume x.dirty
x.value := 10

0: smudge2(x, y)
0’: y.value := y.value + 2 * x.value
1: smudge3(y, z)

if z.dirty && y.value > 5
v.value := x.value + y.value

2: smudge3(z, v)
...

3: smudge5(x, y)
...

4: smudge7(y, v)
assert !v.dirty

Figure 2. Example program to analyse

or not. The analysis would encode a setting of these parameters
in Datalog by using relations cheap and precise. In fact, the
Datalog rule (1) assumes such parametrisation and fires only when
the parameter setting dictates the precise tracking of the variable α.
For a parametric analysis, an abstraction can be specified by a
parameter setting, and so we use these two terms interchangeably.

The refinement part analyses a counterexample, and suggests a
new promising parameter setting. If the counterexample derives the
query without relying on approximations, then the refinement part
reports impossibility and stops [50, 54, 55]. If the counterexample
derives the query by relying on approximations, then the refinement
part sets itself the goal to find a similar counterexample that does
not rely on approximations. This is a pessimistic goal. To find such
a similar counterexample, the analysis must be run with a different
parameter setting. Which one? On the one hand, the parameter
setting should be likely to uncover a similar counterexample. On
the other hand, the parameter should be as cheap as possible. The
refinement part uses a MAXSAT solver to balance these desiderata.

Consider now the example program in Figure 2. The language
is idiosyncratic, and so will be the analysis. The language and the
analysis are chosen to allow a concise rendering of the main ideas. In
this toy language, each object has two fields, the boolean dirty and
the integer value. Initially, all value fields are 0. Object x is dirty
at the beginning, and we are interested in whether object v is dirty
at the end. Dirtiness is propagated from one object to another only
by the primitive commands smudgeK. The effect of the command
smudgeK(x, y) is equivalent to the following pseudocode:

if (x.value + y.value) mod K = 0

y.dirty := x.dirty ∨ y.dirty

That is, if the sum of the values of objects x and y is a multiple
of K, then dirt propagates from x to y.

To decide whether object v is dirty at the end, an analysis may
need to track the values of multiple objects. The values can be
changed by guarded assignments. The guard of an assignment can
be any boolean expression; the right hand side of an assignment can
be any integer expression. In short, tracking values and relations
between values could be expensive.

However, tracking all values may also be unnecessary. In the
first iteration, the analysis treats all non-smudge commands as skip.
As a result, the analysis knows nothing about the value fields. To
remain sound, it assumes that smudge commands always propagate
dirtiness; that is, it treats the command smudgeK(x, y) as equivalent
to the following pseudocode, dropping the guard:

y.dirty := x.dirty ∨ y.dirty

If, using these approximate semantics, the analysis concluded that
v is clean at the end, then it would stop. But, in our example, v could
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Figure 3. Abstract view of the program in Figure 2. Each label on
the left identifies a smudge command. The dashed, vertical lines
signify that once an object is dirty it remains dirty. The solid, oblique
lines signify that smudge commands might propagate dirtiness.
Depending on the values of the objects, a smudgeK command
propagates dirtiness with probability 1/K. The highlighted path
illustrates one way in which dirtiness could propagate from object x
to object v, thus violating the assertion.

be dirty at the end, for example because of the smudge commands
on lines 0 and 4: the smudge on line 0 propagates dirtiness from x
to y, and the smudge on line 4 propagates dirtiness from y to v. This
scenario corresponds to the highlighted path in Figure 3.

Before seeing what happens in the next iteration, let us first
describe the analysis in more detail. The approximate semantics of
the command smudge2 are modelled by the following Datalog rule:

dirty(`′, β)← cheap(`), dirty(`, α), flow(`, `′)

smudge2(`, α, β)
(2)

The rule makes use of the following relations:

flow(`, `′) the control flow goes from ` to `′

smudge2(`, α, β) the command at ` is smudge2(α, β)

cheap(`) the command at ` should be approximated
dirty(`, α) α.dirty is true before the command at `

The relations flow and smudge2 encode the program that is being
analysed. The relation cheap parametrises the analysis, by allowing
it or disallowing it to approximate the semantics of particular com-
mands. Finally, the relation dirty expresses facts about executions
of the program that is being analysed. From the point of view of
the analysis, flow, smudge2, and cheap are part of the input, while
dirty is part of the output. The relations flow and smudge2 are
simply a transliteration of the program text. The relation cheap is
computed by a refinement algorithm, which we will see later.

The precise semantics of smudge2 can also be encoded with a
Datalog rule, albeit a more complicated one.

dirty(`′, β)← precise(`), dirty(`, α), flow(`, `′),

smudge2(`, α, β), value(`, α, a),

value(`, β, b), (a+ b) mod 2 = 0

(3)

This rule makes use of two further relations:

precise(`) the command at ` should not be approximated
value(`, α, a) α.value = a holds before the command at `

Like cheap, the relation precise is part of the input. If the input
relation precise activates rules like the one above, then the analysis
takes longer not only because the rule is more complicated, but also
because it needs to compute more facts about the relation value.

The refinement algorithm ensures that for each program point `
exactly one of cheap(`) and precise(`) holds. In the first iteration,
cheap(`) holds for all `, and precise holds for no `. In each of
the next iterations, the refinement algorithm switches some program
points from cheap to precise semantics.

Let us see what happens when one program point is switched
from cheap to precise. In the first iteration, cheap(0) is part of the
input, and the following rule instance derives dirty(0′, y):

dirty(0′, y)← cheap(0), dirty(0, x), flow(0, 0′)

smudge2(0, x, y)

Let us now look at the scenario in which for the second iteration
the fact cheap(0) is replaced by the fact precise(0). In this case,
dirty(0′, y) is still derived, this time by the following rule instance:

dirty(0′, y)← precise(0), dirty(0, x), flow(0, 0′),

smudge2(0, x, y), value(0, x, 10),

value(0, y, 0), (10 + 0) mod 2 = 0

To be able to apply this rule, the analysis had to work harder, to
derive the intermediate results value(0, x, 10) and value(0, y, 0).
Using precise(0) influences other Datalog rules as well, and forces
the analysis to derive these intermediate results, so that dirty(0′, y)
is still derived. This is not always the case. For example, the
smudge3 command at program point 1 will not propagate dirtiness
if the precise semantics is used.

Let us now step back and see which parts of the example
generalise.

Model. If we replace cheap(`) by precise(`), then the set of
Datalog rule instances could change unpredictably. Yet, we observe
empirically that the change is confined to one of two cases:

(a) precise(`) eventually derives facts similar to those facts that
cheap(`) derives, but with more work; or

(b) precise(`) no longer derives the facts that cheap(`) derived.

This dichotomy is by no means necessary. Intuitively, it holds
because the Datalog rules are not arbitrary: they are implementing a
program analysis. In our example, case (a) occurs when cheap(0)
is replaced by precise(0), and case (b) occurs when cheap(1) is
replaced by precise(1). In general, we formalise this dichotomy by
requiring that a certain predictability condition holds. The condition
is flexible, in that it allows one to choose the meaning of ‘similar’ in
case (a) by defining a so called projection function. In our example,
no projection is necessary. In context sensitive analyses, projection
corresponds to truncating contexts. In general, by adjusting the
definition of the projection function we can exploit more knowledge
about the analysis, if we so wish. If we do not, then it is always
possible to choose a trivial projection for which the meaning of
‘similar’ is ‘exactly the same’.

Provided that the predictability condition holds, which is a
formal way of saying that the dichotomy between cases (a) and (b)
holds, it is natural to define the probabilistic model as a variant of
the Erdős–Rényi random graph model. Our sets of Datalog rule
instances are seen as sets of arcs of a hypergraph. Each arc of the
hypergraph is either selected or not, with a certain probability. Being
selected corresponds to case (a) – having a counterpart in the precise



hypergraph; being unselected corresponds to case (b) – not having a
counterpart in the precise hypergraph.

For the predictability condition and for the projection function,
we drew inspiration from abstract interpretation [10]. Intuitively,
our projection functions correspond to concretisation maps, and our
predictability condition corresponds to correctness of approximation.
However, we did not formalise this intuitive correspondence.

Learning. The model predicts that each rule instance is selected
(that is, has a precise counterpart) with some probability. How to
pick this probability? Figure 3 gives an intuitive representation of
a set of instances. In particular, each dashed arc and each solid arc
represents some rule instance. We assume that instances represented
by dashed arcs are selected with probability 1. These are instances
of some rule which says that a dirty object remains dirty. We also
assume that instances represented by solid arcs are selected with
probability 1/K. These are instances of rules of the form (2), which
describe the semantics of smudgeK commands. These probabilities
make intuitive sense. In particular, it is reasonable to expect that a
number is a multiple of K with probability 1/K.

But, how can we design an algorithm to find these probabilities,
without appealing to intuition and knowledge about arithmetic?
The answer is that we run the analysis on many programs, and
observe whether rule instances have precise counterparts or not.
In our example, if the training sample is large enough, we would
observe that instances of the form (2) do indeed have counterparts of
the form (3) in about 1/K of cases. In general, it is not possible to
observe directly which rules have precise counterparts. It is difficult
to decide which rule is a counterpart of which rule. Instead, we make
indirect observations based on which similar facts are derived.

Refinement. In terms of Figure 3, refinement can be understood
intuitively as follows. We are interested in whether there is a path
from the input on the top left to the output on the bottom right.
We know the dashed arcs are really present: they have a precise
counterpart with probability 1. We do not know if the solid arcs
are really present: we see them only because we used a cheap
parameter setting, and they have a precise counterpart only with
probability 1/K. We can find out whether the solid arcs are really
present or just an illusion, by running the analysis with a more
precise parameter setting. But, we have to pay a price, because more
precise parameter settings are also more expensive.

The question is then which of the solid arcs should we enquire
about, such that we decide quickly whether there is a path from input
to output. There are several possible strategies, in particular there
is an optimistic strategy and a pessimistic strategy. The optimistic
strategy hopes that there is no path, so object v is clean at the end.
Accordingly, the optimistic strategy considers asking about those
sets of solid arcs that could disconnect the input from the output,
if the arcs were not really there. The pessimistic strategy hopes
that there is a path, so object v is dirty at the end. Accordingly, the
pessimistic strategy considers asking about those sets of solid arcs
that could connect the input to the output, if the arcs were really there.
The highlighted path in Figure 3 corresponds to replacing cheap(0)
by precise(0), and also cheap(4) by precise(4). Thus, let us
denote its set of arcs as 04. There are two other paths that the
pessimistic strategy will consider, whose sets of arcs are 012 and 34.
The path 04 gets a probability 1/2× 1/7 of surviving; the path 012
gets a probability 1/2× 1/3× 1/3 of surviving; the path 34 gets a
probability 1/5× 1/7 of surviving. According to probabilities, the
path 04 has the highest chance of showing that v is dirty at the end.

We designed an algorithm which generalises the pessimistic
strategy described above by taking into account unions of paths and
also the runtime cost of trying a parameter setting. Our refinement
algorithm has to work in a more general setting than suggested by
Figure 3. In particular, it must handle hypergraphs, not just graphs.

3. Preliminaries and Notations
In this section we recall several basic notions from probability
theory. At the same time, we introduce the notation used throughout
the paper.

A finite probability space is a finite set Ω together with a
function Pr : Ω → R such that Pr(ω) ≥ 0 for all ω ∈ Ω, and∑
ω∈Ω Pr(ω) = 1. An event is a subset of Ω. The probability of

an event A is

Pr(A) :=
∑
ω∈A

Pr(ω) =
∑
ω∈Ω

Pr(ω)[ω ∈ A]

The notation [Ψ] is the Iverson bracket: if Ψ is true it evaluates
to 1, if Ψ is false it evaluates to 0. A random variable is a
function X : Ω → X . For each value x ∈ X , the set X−1(x)
is an event, traditionally denoted by (X = x). In particular, we
write Pr(X = x) for its probability; occasionally, we may write
Pr(x = X) for the same probability. A boolean random variable is
a function X : Ω→ {0, 1}. For a random variable X with X ⊆ R,
we define its expectation EX by

EX :=
∑
x∈X

xPr(X = x) =
∑
ω∈Ω

Pr(ω)X(ω)

In particular, if X is a boolean random variable, then

EX = Pr(X = 1)

Events A1, . . . , An are said to be independent when

Pr(A1 ∩ . . . ∩An) =

n∏
i=1

Pr(Ai)

Note that n events could be pairwise independent, but still dependent
when taken altogether. Random variables X1, . . . ,Xn are said to
be independent when the events (X1 = x1), . . . , (Xn = xn)
are independent for all x1, . . . , xn in their respective domains.
In particular, if X1, . . . ,Xn are independent boolean random
variables, then X1 ∧ . . . ∧Xn is also a boolean random variable,
and

E(X1 ∧ . . . ∧Xn) =

n∏
i=1

EXi

Events A and B are said to be incompatible when they are disjoint.
In that case, Pr(A ∪ B) = Pr(A) + Pr(B). In particular, if
X1, . . . ,Xn are boolean random variables such that the events
(X1 = 1), . . . , (Xn = 1) are pairwise incompatible, then

E(X1 ∨ . . . ∨Xn) =

n∑
i=1

EXi

4. Probabilistic Model
The probabilistic model predicts what analyses would do if they
were run with precise parameter settings. To make such predictions,
the model relies on several assumptions: the analysis must be
implemented in Datalog (Section 4.1) and its precision must be
configurable by parameters (Section 4.2); furthermore, increasing
precision should correspond to invalidating some derivation steps
(Section 4.3). Given probabilities that individual derivation steps
survive the increase in precision, we compute probabilities that sets
of derivation steps survive the increase in precision (Section 4.4).
Given which set of derivation steps survives the increase in precision,
we can tell whether a given query, which signifies a bug, is still
reachable (Section 4.5).

4.1 Datalog Programs and Hypergraphs
We shall use a simplified model of Datalog programs, which is
essentially a directed hypergraph. The semantics will then be given



by reachability in this hypergraph. For readers already familiar with
Datalog, it may help to think of vertices as elements of Datalog
relations, and to think of arcs as instances of Datalog rules with
non-relational constraints removed. For readers not familiar with
Datalog, simply thinking in terms of the hypergraph introduced
below will be sufficient to understand the rest of the paper.

We assume a finite universe of facts. An arc is a pair (h,B)
of a head h and a body B; the head is a fact; the body is a set of
facts. A hypergraph is a set of arcs. The vertices of a hypergraph
are those facts that appear in its arcs. If a hypergraph G contains an
arc (h,B), then we say that h is reachable from B in G. In general,
given a hypergraph G and a set T of facts, the set RGT of facts
reachable from T in G is defined as the least fixed-point of the
following recursive equation:

{h | (h,B) ∈ G and B ⊆ RGT } ∪ T ⊆ RGT

The following monotonicity properties are easy to check.

Proposition 1. LetG,G1 andG2 be hypergraphs; let T , T1 and T2

be sets of facts.

(a) If T1 ⊆ T2, thenRGT1 ⊆ RGT2.
(b) If G1 ⊆ G2, thenRG1T ⊆ RG2T .

Given a hypergraph G and a set T of facts, the induced sub-
hypergraph G[T ] retains those arcs that mention facts from T :

G[T ] := { (h,B) ∈ G | h ∈ T and B ⊆ T }

4.2 Analyses
We use Datalog programs to implement static analyses that are
parametric and monotone. Thus, the Datalog programs we consider
have additional properties:

1. Because the Datalog program implements a static analysis, a
subset of facts encode queries, corresponding to assertions in
the program being analysed.

2. Because the static analysis is parametric, a subset of facts encode
parameter settings.

3. Because the static analysis is monotone, parameter settings that
are more expensive are also more precise.

For example, in Section 2, queries are facts from the relation dirty;
parameter settings are encoded by relations cheap and precise;
and switching a parameter from cheap to precise makes the
analysis more expensive but cannot grow the relation dirty.

If we only assume that the analysis is parametric, monotone, and
implemented in Datalog, then we can already make good predictions
in some cases, such as the case of the analysis in Section 2. In other
cases, we require more information about the relationship between
what the analysis does when run in a precise mode and what the
analysis does when run in an imprecise mode. We assume that this
information comes in the form of a partial function that projects
facts. The technical requirements on the projection function are mild,
so the analysis designer has considerable leeway in choosing an
appropriate projection. In some cases, the choice is straightforward.
For example, if the analysis is k-object sensitive, meaning that it
tracks calling contexts using sequences of allocation sites, then a
good choice of projection corresponds to truncating these sequences.

An analysis A is a tuple (G,Q, P, p0, p1, π), where G is a
hypergraph called the global provenance, Q is a set of facts called
queries, P is a finite set of parameters, the encoding functions
p0 and p1 map parameters to facts, and π is a partial function
from facts to facts called projection. A parameter setting a of an
analysis A is an assignment of booleans to the parameters P . We
sometimes refer to parameter settings as abstractions, for brevity.
We encode the abstraction a as two sets of facts, P0(a) and P1(a),

defined by

Pk(a) := { pk(x) | x ∈ P and a(x) = k } for k ∈ {0, 1}

The set A(a) of facts derived by the analysis A under abstraction a
is defined to beRG

(
P0(a)∪P1(a)

)
. Abstractions form a complete

lattice with respect to the pointwise order: a ≤ a′ iff a(x) ≤ a′(x)
for all x ∈ P . We write ⊥ for the cheapest abstraction that
assigns 0 to all parameters, and > for the most precise abstraction
that assigns 1 to all parameters.

For an analysis A, we sometimes consider the restriction of
its hypergraph to those facts derived under a given abstraction a:
Ga := G[A(a)]. In particular, G⊥ is called the cheap provenance,
and G> is called the precise provenance.

An analysis is well formed when it obeys further restrictions:
(i) facts derived under the cheapest abstraction are fixed-points of
the projection, π(x) = x for x ∈ A(⊥), (ii) the image of the
projection π is included in A(⊥), (iii) only fixed-points project
on queries, π−1(q) ⊆ {q} for q ∈ Q, (iv) the encoding functions
p0 and p1 are injective and have disjoint images, and (v) projection
is compatible with parameter encoding, π◦p1 = p0. From (i) and (ii)
it follows that π is idempotent. These conditions are technical: they
ease the treatment that follows, but do not restrict which analyses
can be modelled.

An analysis A is said to be monotone when the set of derived
queries decreases as a function of the abstraction: a ≤ a′ implies(
Q ∩ A(a)

)
⊇
(
Q ∩ A(a′)

)
.

We can now formally define the main problem.

Problem 2. Given are a well formed, monotone analysis A, and a
query q forA. Does there exist an abstraction a such that q /∈ A(a)?

Because the analysis is monotone, q ∈ A(a) for all a if and only
if q ∈ A(>). Thus, one way to solve the problem is to check if q is
derived by A under the most precise abstraction >. However, this
is typically too expensive. Instead, we consider a class of solutions
called monotone refinement algorithms. A monotone refinement
algorithm evaluates the analysis for a sequence a1 ≤ · · · ≤ an
of abstractions. Refinement algorithms terminate when one of two
conditions holds: (i) q /∈ A(an) or (ii) q ∈ RGan

(
P1(an)

)
. It is

easy to see why q /∈ A(an) implies that Problem 2 has answer
‘yes’. It is less easy to see why q ∈ RGan

(
P1(an)

)
implies that

Problem 2 has answer ‘no’. Intuitively, this second termination
condition says that the query q is reachable even if we rely only
on precise semantics. In other words, our abstract counterexample
does not actually have any abstract step. Formally, we rely on the
following lemma:

Lemma 3. Let q be a query for a well formed, monotone analysisA.
If q ∈ RGa

(
P1(a)

)
for some abstraction a, then q ∈ A(a′) for all

abstractions a′.

Proof. By Proposition 1(a), q ∈ RGa

(
P1(a)

)
= RG

(
P1(a)

)
⊆

RG
(
P1(>)

)
= A(>). We conclude by noting that the analysis is

monotone.

4.3 Predictability
The precise provenance G> contains all the information necessary
to answer Problem 2. Unfortunately, the precise provenance G>

is typically very large and hard to compute. In contrast, the cheap
provenance G⊥ is typically smaller and easier to compute. In fact,
most refinement algorithms start with the cheapest abstraction,
a1 = ⊥. Fortunately, we observed empirically that G> and G⊥ are
compatible, in a way made precise next.

We begin by lifting the projection π to sets T of facts as follows:

π(T ) := { t′ | t′ = π(t) and t ∈ T }



In particular, if the partial function π is not defined for any t ∈ T ,
then π(T ) = ∅. Our empirical observation is that

π ◦ RG> ◦ P1 = RH ◦ π ◦ P1 for some H ⊆ G⊥ (4)

An analysis A that obeys condition (4) is said to be predictable. A
hypergraph H that witnesses condition (4) is said to be a predictive
provenance of analysis A. For a predictable analysis, reachability
and projection almost commute on the image of P1, except that if
projection is done first, then reachability must ignore some arcs.

The inspiration for condition (4) came from the notion of correct
approximation, as used in abstract interpretation. But, it is not the
same. We tested condition (4) on analyses that do not explicitly
follow the abstract interpretation framework, and we were surprised
that it holds. Then we designed the example analysis from Section 2
so that the reason why condition (4) holds is apparent: Datalog rules
come in pairs, one encoding precise semantics, the other encoding
approximate semantics. But, for real analyses, we could not discern
any such simple reason. Thus, we consider our empirical finding as
surprising and intriguing.

Recall that refinement algorithms use two termination conditions:
q /∈ A(a) and q ∈ RGa

(
P1(a)

)
. Predictive provenances help us

evaluate the termination conditions of refinement algorithms.

Lemma 4. LetA be a well formed, monotone analysis. Let a be an
abstraction, and let H be a predictive provenance. Finally, let q be
a query derived by A under the cheapest abstraction ⊥.

(a) If q /∈ A(a), then q /∈ RG⊥(P0(a)) and q /∈ RH(π(P1(a))).
(b) Also, q ∈ RGa

(
P1(a)

)
if and only if q ∈ RH(π(P1(a))).

Part (a) lets us approximate the termination condition q /∈ A(a);
part (b) lets us evaluate the termination condition q ∈ RGa

(
P1(a)

)
.

In both cases, only small parts of the global provenance G are
used, namely G⊥ and H . The assumption q ∈ A(⊥) is reasonable:
otherwise the refinement algorithm terminates after the first iteration.

Proof. Assume that q ∈ RH(π(P1(a))). We have

RH(π(P1(a))) = π
(
RG>(P1(a))

)
by (4)

q ∈π
(
RG>(P1(a))

)
⇒ q ∈RG>(P1(a)) by π−1(q)⊆{q}

RG>(P1(a)) = RGa(P1(a)) ⊆ A(a) by Prop. 1(a)

Putting these together, we conclude that q ∈ A(a). Using a very
similar argument we can show that q ∈ RG⊥(P0(a)) implies
q ∈ A(a). This concludes the proof of part (a).

The proof of part (b) is similar.

Lemma 4 tells us that we could evaluate termination conditions
more efficiently if we knew a predictive provenance. Alas, we do
not know a predictive provenance.

4.4 Probabilities of Predictive Provenances
If we do not know a predictive provenance, then a naive way forward
is as follows: enumerate each possible predictive provenance, see
what it predicts, and take an average of the predictions. Our model
is only marginally more complicated: it considers some possible
predictive provenances as more likely than others. On the face of it,
enumerating all possible predictive provenances takes us back to an
inefficient algorithm. We will see later how to deal with this problem
(Section 6). Now, let us define the probabilistic model formally.

The blueprint of the probabilistic model is given by a cheap
provenance G⊥. To each arc e ∈ G⊥, we associate a boolean
random variable Se, and call it the selection variable of e. Selection
variables are independent but may have different expectations.
We partition G⊥ into types G⊥1 , . . . , G⊥t , and we do not require
selection variables to have the same expectation unless they have
the same type. Each type G⊥k has an associated hyperparameter θk:

if e ∈ G⊥k , then we say that e has type k, and we require that
ESe = θk. Recall that ESe = Pr(Se = 1). We define, in terms
of the selection variables, a random variable H whose values are
predictive provenances, by requiring that Se = [e ∈ H]. Thus, the
probability of a predictive provenance H is

Pr(H = H) =

t∏
k=1

θ
|G⊥

k ∩H|
k (1− θk)|G

⊥
k \H| (5)

For example, if all arcs have the same type, then the model has only
one hyperparameter θ, and Pr(H = H) is θ|H|(1− θ)|G

⊥\H|. At
the other extreme, if all arcs have their own type, then the model has
one hyperparameter θe for each arc e ∈ G⊥, and Pr(H = H) is∏
e∈G⊥ θ

[e∈H]
e (1− θe)[e/∈H].

How many types should there be? Few types could lead to under-
fitting, many types could lead to overfitting. In the implementation,
we have one type per Datalog rule. Intuitively, this means that we
trust the judgement of whoever implemented the analysis.

4.5 Use of the Model
Before using the probabilistic model in a refinement algorithm, we
must choose appropriate values for hyperparameters. This is done
offline, in a learning phase (Section 5). After learning, each Datalog
rule has an associated probability – its hyperparameter.

After the first invocation of the analysis we know the cheap
provenance G⊥, which we use as a blueprint for the probabilistic
model. Then, our model predicts whether q ∈ RGa(P1(a)), where
a is some abstraction not yet tried. Recall that q ∈ RGa(P1(a)) is
one of the termination conditions. The hypergraph Ga is unknown,
and thus we model it by a random variable Ga. However, we
do know from Lemma 4(b) that q ∈ RGa(P1(a)) if and only if
q ∈ RH(π(P1(a))). Thus,

Pr
(
q ∈ RGa(P1(a))

)
= Pr

(
q ∈ RH(π(P1(a)))

)
=
∑
R
q∈R

Pr
(
RH(π(P1(a))) = R

)
where R ranges over subsets of vertices of G⊥. It remains to
compute a probability of the form Pr

(
RHT = R

)
. Explicit

expressions for such probabilities are also needed during learning,
so they are discussed later (Section 5).

Intuitively, one could think that the refinement algorithm runs
a simulation in which the static analyser is approximated by the
probabilistic model. However, it would be inefficient to actually run
a simulation, and we will have to use heuristics that have a similar
effect (Section 6), namely to minimise the expected total runtime.

5. Learning
The probabilistic model (Section 4) lets us compute the probability
that a given abstraction will provide a definite answer, and thus
terminate the refinement. These probabilities are computed as a
function of hyperparameters. The values of the hyperparameters,
however, remain to be determined. To find good hyperparameters,
we shall use a standard method from machine learning, namely MLE
(maximum likelihood estimation).

MLE works as follows. First, we set up an experiment. The result
of the experiment is that we observe an event O. Next, we compute
the likelihood Pr(O) according to the model, which is a function
of the hyperparameters. Finally, we pick for hyperparameters values
that maximise the likelihood.

The standard challenge in deploying the MLE method is in the
last phase: the likelihood is typically a complicated function of
the hyperparameters. Often, to maximise the likelihood, analytic
methods do not exist, and numeric methods could be unstable



or inefficient. This is indeed the case for our model: analytic
methods do not apply, and many numeric methods are inefficient.
But, we did find one numeric method that is both stable and
efficient (Section 7.2). In addition to the standard challenge, our
setting presents an additional difficulty. The expression of Pr(O)
is exponentially large if the cheap provenance has cycles. We will
handle this difficulty by finding bounds that approximate Pr(O).

5.1 Training Experiment
For the training experiment, we collect a set of programs. For
the formal development, it is convenient to consider the set of
programs as one larger program. We run the analysis on this
large training program several times, each time under a different
abstraction. The abstractions a1, . . . , an are chosen randomly, with
bias. In particular, they have to be cheap enough so that the analysis
terminates in reasonable time. As a result of running the analysis, we
observe the provenances Ga1 , . . . , Gan . To connect these observed
provenances to a probabilistic event, we shall use the predictability
condition (4) together with the following simple fact.

Proposition 5. Let G be a hypergraph, and let T1 and T2 be sets of
facts. If T1 ⊆ T2, thenRGT1 = RG′T1, where G′ = G[RGT2].

Corollary 6. Let a be an abstraction for analysis A. We have
RG>(P1(a)) = RGa(P1(a)).

Given an efficient way to compute the projection π, we can
compute the sets of facts Rk := π

(
RGak (P1(ak))

)
, for each

k ∈ {1, . . . , n}. Using Corollary 6 and condition (4), we have
that Rk = RH(π(P1(ak))), for k ∈ {1, . . . , n}. We define the
following events:

Ok :=
(
RH(π(P1(ak))) = Rk

)
for k ∈ {1, . . . , n}

O :=
(
O1 ∩ . . . ∩On

)
The event O is what we observe. It is completely described by
the pairs (ak, Rk). The abstraction ak is sampled at random. The
set Rk of facts is easily computed from Gak . The provenance Gak
is obtained from the set of instantiated Datalog rules during the
analysis under abstraction ak, and it records all the reasoning steps
of the analysis.

5.2 Bounds on Likelihood
There appears to be no formula that computes the likelihood Pr(O)
and that is not exponentially large. However, there exist reasonably
small formulas that provide lower and upper bounds. We shall use
the lower bound for learning, and we shall use both bounds to
evaluate the quality of the model.

One could define different bounds on likelihood. Our choice
relies on the concept of forward arc, which leads to several desirable
properties we will see later. Given a hypergraph G, we define the
distance d(G)

T (h) from vertices T to vertex h by requiring d(G)
T to

be the unique fixed-point of the following equations:

d
(G)
T (h) = 0 if h ∈ T

d
(G)
T (h) =∞ if h 6∈ RGT

d
(G)
T (h) = min

e=(h,B)∈G
max
b∈B

(d
(G)
T (b) + 1) otherwise

We omit the superscript when the hypergraph is clear from context.
A forward arc with respect to T is an arc e = (h,B) ∈ G such that
dT (h) > dT (b) for every b ∈ B.

Theorem 7. Consider the probabilistic model associated with the
cheap provenance G⊥ of some analysis A. Let T1, . . . , Tn and
R1, . . . , Rn be subsets of vertices of G⊥. If h /∈ B for all arcs
(h,B) in G⊥ and Rk ⊆ RG⊥Tk for all k, then we have the

following lower and upper bounds on Pr
(⋂n

k=1(RHTk = Rk)
)
:∏

e∈N

E S̄e
∏
h

Ch 6=∅

∑
E1

E1⊆Ah
∀k∈Ch, E1∩Fk 6=∅

∏
e∈E1

ESe
∏

e∈Ah\E1

E S̄e

≤ Pr
( n⋂
k=1

(
RHTk = Rk

))
≤

∏
e∈N

E S̄e
∏
h

Ch 6=∅

∑
E1

E1⊆Ah
∀k∈Ch, E1∩Dk 6=∅

∏
e∈E1

ESe
∏

e∈Ah\E1

E S̄e

where

N := { (h′, B′) ∈ G⊥ | B′ ⊆ Rk′ and h′ /∈ Rk′ for some k′ }
Ch := { k′ | h ∈ Rk′ \ Tk′ } Ah := { (h,B′) ∈ G⊥ } \N
Dk := { (h′, B′) ∈ G⊥ | B′ ⊆ Rk }
Fk := { e = (h′, B′) ∈ Dk | e is a forward arc w.r.t. Tk }

Intuitively, the arcs in N are those arcs that were observed to
be not selected; thus, the factor

∏
e∈N E S̄e. For each reachable

vertex, there is a factor that requires a justification, in terms of other
reachable vertices and in terms of selected arcs. Let us consider
a simple example, in which the lower and upper bounds coincide:
there are four arcs ek = (h, {bk}) for k ∈ {1, 2, 3, 4}, and we
observed R1 = {b1}, R2 = {b1, b2, b4, h}, and R3 = {b3, b4, h}.
In R1, vertex h is not reachable but b1 is, so Se1 must not hold. In
R2, vertex h is reachable and could be justified by one of e1, e2, e4,
so Se1 ∨ Se2 ∨ Se4 must hold. In R3, vertex h is reachable and
could be justified by one of e3, e4, so Se3 ∨ Se4 must hold. In all,

S̄e1 ∧ (Se1 ∨ Se2 ∨ Se4) ∧ (Se3 ∨ Se4)

= S̄e1 ∧ (Se2 ∨ Se4) ∧ (Se3 ∨ Se4)
(6)

must hold. The expectation of this quantity is written in Theorem 7
as E S̄e1(E S̄e2 E S̄e3 ESe4 + · · · + ESe2 ESe3 ESe4), where
the inner sum enumerates the models of (Se2 ∧ Se3) ∨ Se4 .

The situation becomes more complicated when the hypergraph
has cycles. In the presence of cycles, the recipe from the previous
example does not compute the likelihood, but it does compute an
upper bound. The reason is that it counts all cyclic justifications as if
they were valid. Indeed, this is the upper bound given in Theorem 7.
For the lower bound, we first eliminate cycles by dropping some
arcs, thus lowering the likelihood; then, we apply the same recipe.
Theorem 7 indicates that the arcs which should be dropped are the
nonforward arcs. Why is this a good choice? One might think that
we should drop a minimum number of arcs if we want a good lower
bound. However, (1) it is NP-hard to find the minimum number
of arcs [26, Feedback Arc Set], and (2) the set of such arcs is not
uniquely determined. In contrast, we can find the set of nonforward
arcs in polynomial time, and the solution is unique.

Another nice property of the set of forward arcs is that, if for
each reachable vertex h we retain at least one forward arc whose
head is h, then all reachable vertices remain reachable. This property
is desirable for detecting impossibility (see Lemma 15). In terms of
the lower bound, this property means that we never lower bound a
positive probability by 0.

In the implementation, we sometimes heuristically drop forward
arcs, in order to keep the size of the formula small. But, we only
choose to drop a forward arc with head h if there are more than
8 forward arcs with head h. For example, if we drop arc e2 in our
running example, the effect is that we lower bound (6) by

S̄e1 ∧ Se4 ∧ (Se3 ∨ Se4)



We simply drop the corresponding variable Se2 from the formula,
thus making the formula smaller. Similarly, we can reduce the size
of the formula for the upper bound, at the cost of weakening the
bond. This time, we drop clauses rather than variables. For example,
we can upper bound (6) by

S̄e1 ∧ (Se2 ∨ Se4)

For each vertex, our implementation drops all clauses except for the
longest one.

Although the probabilistic model is simple, computing the
likelihood of an event of the form ‘RHT1 = R1 and . . . and
RHTn = Rn’ is not computationally easy. The full version of
this paper gives an exact formula that has size exponential in the
number of vertices of the cheap provenance, but also points to
evidence that a significantly smaller formula is unlikely to exist [31].
The size explosion is caused mainly by the cycles of the cheap
provenance. Theorem 7 gives likelihood lower and upper bounds
that are exponential only in the maximum in-degree of the cheap
provenance. These formulas are still too large to be used in practice.
However, there are simple heuristics that can be applied to reduce
the size of the formulas, at the cost of weakening the bounds.

We use the lower bound to learn hyperparameters (Section 7.2).
We use the upper bound to measure the quality of the learnt
hyperparameters (Section 7.3).

5.3 Results
We learnt hyperparameters for a flow insensitive but object sensitive
aliasing analysis. The aliasing analysis is implemented in 59 Datalog
rules. All but 5 rules get a hyperparameter of 1. A rule with a
hyperparameter of 1 is a rule that was not observed to be involved in
any approximation, in the training set. For two of the remaining five
rules, the learnt hyperparameters were essentially random, because
the likelihood lower bound did not depend on them. The reason is
that the training set did not contain enough data, or that the lower
bound was too weak.

For the remaining three rules the hyperparameters were 0.997,
0.985, and 0.969. These values were robust, in the sense that they
varied little when the training subset changed. For example, the rule
with a hyperparameter of 0.969 is

CVC(c, u, o)← DVDV(c, u, d, v), CVC(d, v, o), VCfilter(u, o)

Looking briefly at the aliasing analysis implementation we see
that (a) CVC(c, u, o) means ‘in context c, variable u may point
to object o’, and (b) the relation DVDV is responsible for copying
method arguments and returned values. We interpret this as evidence
that the approximations done by the aliasing analysis are closely
related to approximations of the call graph.

We are not the authors of the aliasing analysis; it is taken
from Chord. Our learning algorithm automatically identified the
three rules that are most interesting, from the point of view of
approximation.

6. Refinement
The probabilistic model is interesting from a theoretical point of
view (Section 4). The learning algorithm is already useful, because it
lets us find which rules of a static analysis approximate the concrete
semantics, and by how much (Section 5). In this section we explore
another potential use of the learnt probabilistic model: to speed up
the refinement of abstractions.

We consider a refinement algorithm that is applicable to analyses
implemented in Datalog (Section 6.1). The key step of refinement is
choosing the next abstraction to try. Abstractions that make good
candidates share several desirable properties. In particular, they are
likely to answer the posed query (Section 6.2), and they are likely

Given: A well formed, monotone analysis A, and a query q.
SOLVE
1 a := ⊥ // ⊥ as initial abstraction
2 repeat
3 Ga := G[A(a)] // invokes analysis
4 if q /∈ A(a) then return “yes”
5 if q ∈ RGa (P1(a)) then return “no”
6 a := CHOOSENEXTABSTRACTION(Ga, q, a)

Figure 4. The refinement algorithm used to solve Problem 2.

to be cheap to try (Section 6.3). These two desiderata need to be
balanced (also Section 6.3). Once we formalise how desirable an
abstraction is, the next task is to search for the most desirable one
(Section 6.4).

6.1 Refinement Algorithm
The refinement algorithm is straightforward (Figure 4). It repeatedly
obtains the provenance Ga by running the analysis under abstrac-
tion a (line 3), checks if one of the two termination conditions
holds (lines 4 and 5), and invokes CHOOSENEXTABSTRACTION to
update the current abstraction (line 6). The correctness of this algo-
rithm follows from the discussion in Section 4.2, and in particular
Lemma 3.

Let a′ be the result of CHOOSENEXTABSTRACTION(Ga, q, a).
For termination, we require that a′ is strictly more precise than a.
This is sufficient because the lattice of abstractions is finite. The
next abstraction to try should satisfy two further requirements:

1. The termination conditions are likely to hold for a′.

2. The estimated runtime of A under a′ is small.

Next, we discuss these two requirements in turn. To some degree, we
will make each of them more precise. But, we caution that from now
on the discussion leaves the realm of hard theoretical guarantees,
and enters the land of heuristic reasoning, where discussions about
static program analysis are typically found.

6.2 Making Termination Likely
The key step of the refinement algorithm (Figure 4) is the pro-
cedure CHOOSENEXTABSTRACTION. The simplest implementa-
tion that would ensure correctness is the following: return a ran-
dom element from the set of feasible abstractions { a′ | a′ > a }.
Note that if a were the most precise abstraction then the procedure
CHOOSENEXTABSTRACTION would not be called, so the feasible
set from above is indeed guaranteed to be nonempty.

One idea to speed up refinement is to restrict the set of feasible
solutions to those abstractions that are likely to provide a definite
answer. Let Ay and An be the sets of abstractions that will lead
the refinement algorithm to terminate on the next iteration with the
answer ‘yes’ or, respectively, ‘no’:

Ay := { a′ | a′ > a and q /∈ A(a′) }
An := { a′ | a′ > a and q ∈ RGa′ (P1(a′)) }

Of course, exactly one of the two sets Ay and An is nonempty, but
we do not know which. More generally, we cannot evaluate these
sets exactly without running the analysis. But, we can approximate
them, because CHOOSENEXTABSTRACTION has access to Ga. For
Ay we can compute an upper bound A⊇y ; for An we use a heuristic
approximation A≈n .

A⊇y := { a′ | a′ > a and q /∈ RGa(P0(a′)) }
A≈n := { a′ | a′ > a and q ∈ RH(T (a, a′)) }



for some H ⊆ Ga, where

T (a, a′) := P1(a) ∪ π(P1(a′) \ P1(a))

It is easy to see why A⊇y ⊇ Ay; it is less easy to see why A≈n ≈ An.
Let us start with the easy part.

Lemma 8. Let A⊇y and Ay be defined as above. Then A⊇y ⊇ Ay.

Proof. Assume that a′ > a, as in the definitions of A⊇y and Ay.
Then P0(a′) ⊆ P0(a). By Proposition 5 and Proposition 1,

RGa(P0(a′)) = RG(P0(a′)) = RGa′ (P0(a′)) ⊆ A(a′)

The claimed inclusion now follows.

Let us now discuss the less obvious claim that A≈n ≈ An. One
could wonder why we did not define A≈n by

{ a′ | a′ > a and q ∈ RH(π(P1(a′))) }

for some H ⊆ G⊥. This definition is simpler and is also guaranteed
to be equivalent to An, by the predictability condition (4). In
the implementation, we use the more complicated definition of
A≈n for two reasons. First, we note that (4) implies A≈n = An

if a = ⊥. Thus, the claim that A≈n = An can be seen as a
generalisation of (4). We did not use this generalisation of (4)
in the more theoretical parts (Section 4 and Section 5) because
it would complicate the presentation considerably. For example,
instead of one projection π, we would have a family of projections
that compose. In principle, however, it would be possible to take
A≈n = An as an axiom, from the point of view of the theoretical
development. Second, the more complicated definition of A≈n
exploits all the information available in Ga. The simpler version
can also incorporate information from Ga by conditioning H to be
compatible with Ga, via (4). However, this conditioning would only
use the projected set of vertices of Ga, rather than its full structure.

Furthermore, the definition ofA≈n used in the implementation has
the following intuitive explanation. The conditionA≈n ≈ An tells us
that in order to predictRGa′ (P1(a′)) by usingGa we should do the
following: (i) split P1(a′) into P1(a) and P1(a′) \ P1(a); (ii) use
the facts P1(a) as they are, because they already appear in Ga;
(iii) approximate the facts in P1(a′) \ P1(a) by their projections,
because they do not appear in Ga; and (iv) define the predictive
provenance H with respect to Ga, because it is the most precise
provenance available so far.

We defined two possible restrictions of the feasible set, namely
A⊇y and A≈n . The remaining question is now which one should
we use, or whether we should use some combination of them
such as A⊇y ∩ A≈n . The restriction to A⊇y could be called the
optimistic strategy, because it hopes the answer will be ‘yes’; the
restriction to A≈n could be called the pessimistic strategy, because
it hopes the answer will be ‘no’. The optimistic strategy has been
used in previous work [54]. The pessimistic strategy is used in
our implementation. We found that it leads to smaller runtime
(Section 7.4). It would be interesting to explore combinations of the
two strategies, as future work.

In the optimistic strategy, one needs to check whether A⊇y = ∅.
In this case, it must be that Ay = ∅ and thus the answer is ‘no’.
In other words, the main loop of the refinement algorithm needs
to be slightly modified to ensure correctness. In the pessimistic
strategy, it is never the case that A≈n = ∅, and so the main loop
of the refinement algorithm is correct as given in Figure 4. The
pessimistic restrictionA≈n is nonempty because it always contains>,
by choosing H = Ga (see Lemma 15).

The set A≈n is defined in terms of an unknown predictive
provenance H . Thus, we work in fact with the random variable

A≈n := { a′ | a′ > a and q ∈ RH(T (a, a′)) }

Cases all-one fine coarse

95.0% 0 (−0.22,−0.20) (−0.73,−0.72)
3.8% −∞ (−15,−14) (−33,−32)
1.2% −∞ −∞ (−12,−11)

Table 1. Bounds on the average log-likelihood, in base e.

defined in a probabilistic model with respect to Ga, instead of G⊥.
We wish to choose an abstraction a′ that is likely in A≈n . In other
words, we want to maximise Pr(a′ ∈ A≈n ). There is no simple
expression to compute this probability. For optimisation, we will
use the following lower bound.

Lemma 9. Let A≈n be defined as above, with respect to an anal-
ysis A, an abstraction a, and a query q. Let a′ be some abstrac-
tion such that a′ > a. Let H be some subgraph of Ga such that
q ∈ RH(T (a, a′)). Then

Pr(a′ ∈ A≈n ) ≥
∏
e∈H

ESe

where Se is the selection variable of arc e.

Before describing the search procedure (Section 6.4), we must
see how to balance maximising the probability of termination with
minimising the running cost.

6.3 Balancing Probabilities and Costs
We are looking for an abstraction that is likely to answer the query
but, at the same time, is not too expensive. Most of the time, these
two desiderata point in opposite directions: expensive abstractions
are more likely to provide an answer. This raises the question of how
to balance the two desiderata. We model the problem as follows.

Definition 10 (Action Scheduling Problem). Suppose that we have
a list of m ≥ 1 actions, which can succeed or fail. The success
probabilities of these actions are p1, . . . , pm ∈ (0, 1], and the costs
for executing these actions are c1, . . . , cm > 0. Find a permutation
σ on {1, . . . ,m} that minimises the cost C(σ):

C(σ) =

m∑
k=1

qk(σ)cσ(k), qk(σ) =

k−1∏
j=1

(
1− pσ(j)

)
.

Intuitively, C(σ) represents the average cost of running actions
according to σ until we hit success.

In the setting of our algorithm, the m actions correspond to all
the possible next abstractions a′1, . . . , a′m. The pi is Pr(a′i ∈ A≈n ),
and ci is the cost of running the analysis under abstraction a′i. Hence,
a solution to this action scheduling problem tells us how we should
combine probability and cost, and select the next abstraction a′.

Lemma 11. Consider an instance of the action scheduling problem
(Definition 10). Assume the success probabilities of the actions are
independent. A permutation σ has minimum cost C(σ) if and only
if pσ(1)/cσ(1) ≥ · · · ≥ pσ(m)/cσ(m).

Corollary 12. Under the conditions of Lemma 11, if the cost of
permutation σ is minimum, then σ(1) ∈ arg maxi pi/ci.

6.4 MAXSAT encoding
We saw a refinement algorithm (Section 6.1) whose key step chooses
an abstraction to try next. Then we saw how to estimate whether
an abstraction a′ is a good choice (Section 6.2 and Section 6.3): it
should have a high ratio between success probability and runtime
cost. But, since the number of abstractions is exponential in the
number of parameters, it is infeasible to enumerate all in the search
for the best one. Instead of performing a naive exhaustive search,
we encode the search problem as a MAXSAT problem.



Configuration Solved queries

Strategy Optimiser Ruled out Impossible Limit

optimistic exact 6 48 365
optimistic approximating 6 0 413
pessimistic exact 20 82 317
pessimistic approximating 20 82 317
probabilistic exact 20 70 329
probabilistic approximating 16 81 322

Table 2. Outcomes. All queries are assertions that seem to be
violated when the cheapest abstraction is used. A ruled out query is
an assertion that is shown not to be violated. An impossible query is
an assertion that seems violated even if the most precise abstraction
is used. The exact optimiser is MiFuMax [22]. The approximating
optimiser is based on MCSls [35].

Figure 5. Runtime comparison.

Let us summarise the search problem. Given are a query q, an
abstraction a and its local provenance Ga. We want to find an ab-
straction a′ > a that maximises the ratio Pr(a′ ∈ A≈n )/c(a′),
where c(a′) is an estimate of the runtime of the analysis under ab-
straction a′ (see Corollary 12). We will approximate Pr(a′ ∈ A≈n )
by a lower bound (see Lemma 9). Based on empirical observations,
we estimate the runtime of the analysis to increase exponentially
with the number

∑
x∈P a(x) of precise parameters. In short, we

want to evaluate the following expression:

arg max
a′

a′>a

((
max
H

H⊆Ga

q∈RH (T (a,a′))

∏
e∈H

ESe

)/
exp
(
α
∑
x∈P

a′(x)
))

Or, after absorbing max in arg max, taking the log of the resulting
objective value, and simplifying the outcome:

arg max
a′,H

a′>a, H⊆Ga

q∈RH (T (a,a′))

(∑
e∈H

log(ESe)−
∑
x∈P

a′(x)=1

α

)
(7)

We shall evaluate this expression by using a MAXSAT solver. The
idea is to encode the range of arg max as hard constraints, and the
objective value as soft constraints.

There exist several distinct versions of the MAXSAT problem.
We define here a version that is most convenient to our development.
We consider arbitrary boolean formulas, not necessarily in some
normal form. We view assignments as sets of variables; in particular,

M |= x iff x ∈M
M |= x̄ iff x /∈M
M |= φ1 ∧ φ2 iff M |= φ1 and M |= φ2

The evaluation rules for other boolean connectives are as expected.
If M |= φ holds, we say that the assignment M is a model of
formula φ.

Problem 13 (MAXSAT). Given are a boolean formula Φ and a
weight w(x) for each variable x that occurs in Φ. Find a model M
of Φ that maximises

∑
x∈M w(x).

We refer to Φ as the hard constraint.
Remark 14. Technically, Problem 13 is none of the standard
variations of MAXSAT. It is easy to see, although we do not prove
it here, that Problem 13 is polynomial-time equivalent to partial
weighted MAXSAT [3, 37]: the reduction in one direction uses the
Tseytin transformation, while the reduction in the other direction
introduces relaxation variables.

The idea of the encoding is to define the hard constraint Φ
such that (i) the models of Φ are in one-to-one correspondence
with the possible choices of H and T such that H ⊆ Ga and
P0(a) ⊆ T ⊆ P0(a) ∪ P1(a), and moreover (ii) each model also
encodes the reachable set RHT . To construct a hard constraint Φ
with these properties, we use the same technique as we used
for computing the likelihood (Section 5.2). As was the case for
likelihood, cycles lead to an exponential explosion. We again deal
with cycles by retaining only forward arcs:

Ga→ := { e ∈ Ga | e is a forward arc w.r.t. P0(a) ∪ P1(a) }
The hard constraint is a formula whose variables correspond to
vertices and arcs of Ga→. More precisely, its set of variables is
XV (Ga→) ∪XE(Ga→), where

XV (G) := {xu | u vertex of G} XE(G) := {xe | e arc of G}
We construct the hard constraint Φ as follows:

Φ := ∃
e∈Ga

→
ye
(

Φ1 ∧ Φ2 ∧ Φ3

)
Φ1 :=

∧
e=(h,B)∈Ga

→

((
ye ↔

(
xe ∧

∧
b∈B

xb
))
∧ (ye → xh)

)

Φ2 :=
∧
h

vertex ofGa
→

h 6∈P0(a)∪P1(a)

(
xh →

( ∨
e=(h,B)∈Ga

→

ye
))

Φ3 := xq ∧
( ∧
u∈P0(a)

xu
)
∧
( ∨
u∈P1(a)

xu
)

(8)

The notation ∃e∈Ga
→ ye stands for several existential quantifiers,

one for each variable in the set { ye | e ∈ Ga→ }. Intuitively,
the constraints Φ1 and Φ2 ensure that the models correspond to
reachable sets, and the constraint Φ3 ensures that the query is
reachable and that a′ > a.

The formula Φ defined above has several desirable properties: its
size is linear in the size of the local provenance Ga, it is satisfiable,
and each of its models represents a pair (a′, H) that satisfies the
range conditions of (7). The satisfiability of Φ is important for the
correctness of the refinement algorithm, and it follows from how we
remove cycles, by retaining forward arcs. To state these properties
more precisely, let us denote the range of (7) by F (Ga) where

F (G) := { (a′, H) | a′ > a and H ⊆ G and q ∈ RH(T (a, a′)) }
(9)

Lemma 15. Let a be an abstraction, and let q be a query, for some
analysis A. Let F (G) and Ga→ be defined as above. If a < > and
q ∈ A(a), then (>, Ga→) ∈ F (Ga→) ⊆ F (Ga).

The conditions a < > and q ∈ A(a) are guaranteed to hold
when CHOOSENEXTABSTRACTION is called on line 6 of Figure 4.



Lemma 16. Let a be an abstraction, and let q be a query, for some
analysis A. Let the hard constraint Φ be defined as in (8): let the
feasible set F (Ga→) be defined as in (9). There is a bijection between
the models M of Φ and the elements (a′, H) of F (Ga→). According
to this bijection,

M ∩XE(Ga→) = XE(H)

M ∩XV (Ga→) = XV
(
RH(T (a, a′))

)
The proof of this lemma, given in the submitted supplement,

relies on techniques very similar to those used to prove Theorem 7.
At this point, we know how to define the hard constraint Φ, so

that its models form a subrange of the range of (7). It remains to
encode the value

∑
e∈H log(ESe)− α

∑
x∈P a

′(x) by assigning
weights to variables. This is very easy. Each arc variable xe is
assigned the weight w(xe) = log(ESe). Each vertex variable xu
corresponding to u ∈ P0(a) ∪ P1(a) is assigned the weight
w(xu) = −α. All other variables are assigned the weight 0.

7. Empirical Evaluation
In the empirical evaluation1 we aim to answer three questions:
(a) Which optimisation algorithm should be used for learning
(Section 7.2)? (b) How well does the probabilistic model predict
what the analysis does (Section 7.3)? (c) What is the effect of the
new refinement algorithm on the total runtime (Section 7.4)?

7.1 Experimental Design
For experiments, our goal was to improve upon the refinement
algorithm of Zhang et al. [54]. Accordingly, we use the same test
suite and the same aliasing analysis. The test suite consists of 8 Java
programs, which amount to 0.45 MiB of application bytecode plus
1 MiB of library bytecode.

We try three refinement strategies: optimistic, pessimistic, and
probabilistic. The optimistic strategy uses the baseline refinement
algorithm. The pessimistic strategy uses our refinement algorithm
with all hyperparameters set to 1. The probabilistic strategy uses our
refinement algorithm with hyperparameters learnt. We use a time
limit of 60 minutes per query, and a memory limit of 25 GiB.

For learning, we observe what the analysis does on a small set
of queries and abstractions. Each observation is essentially an event
of the form ‘RHT1 = R1 and . . . andRHTn = Rn’ (Section 5.1).
From these observations we learn hyperparameters, by optimising a
lower bound on the likelihood (Section 5.2). The hyperparameters
we use to solve a query are learnt only from observations made on
the other programs.

7.2 Numeric Optimisation of Likelihood
First, from the 8 programs, we chose a random sample of 26 queries.
Then, for each query, we chose a random sample of 10 abstractions
(Section 5.1). In total, the training set has 260 samples.

We first tried three numerical optimisers from the SciPy
toolkit [23]: tnc, slsqp, and basinhopping. They all fail. Then
we implemented a couple of numeric optimisers ourselves. We
found that the cyclic coordinate ascent method works well on our
problem. In the implementation, we use basinhopping and slsqp
as subroutines, for line search.

Intuitively, cyclic coordinate ascent behaves well because the
likelihood tends to be concave along a coordinate, and tends to not
be concave along an arbitrary direction. Concave functions are much
easier to optimise than non-concave functions, and so the line search
algorithm has an easier task when applied along coordinates.

1 http://rgrig.appspot.com/static/papers/
popl2016experiments.html

7.3 Predictive Power of the Probabilistic Model
In addition to the 260 samples used for training, we obtain, using
the same method, another set of 260 samples used for evaluation.
Given a model, which is determined by an assignment of values
to hyperparameters, we can evaluate likelihood bounds for each of
the 260 evaluation samples. In absolute terms, these numbers are
hard to interpret: are they good or bad? To make the numbers more
meaningful, we consider three models, and we see how good they
are relative to each other.

The three models are: fine, coarse, and all-one. The fine
model is learnt as described above. The coarse model is also learnt
as described above, but under the constraint that all hyperparameters
have the same value. The all-one model simply assigns value 1
to all hyperparameters, and thus corresponds to the pessimistic
refinement strategy.

Table 1 presents the results of the three models on the evaluation
set. For the aliasing analysis we consider, it turns out that an
abstraction chosen at random does no better than the cheapest
abstraction in 95% of cases. The all-one model predicts that all
abstractions do no better than the cheapest one, so it is exactly right
in these 95% of cases; conversely, it thinks the other 5% of cases
cannot happen. More interestingly, the fine model thinks that 1.2%
samples from the evaluation set cannot happen. This means that
some hyperparameter is 1 but should be < 1. We expect that the
number of such situations would decrease as the training set grows.
Assuming this is true, we can conclude that the fine model is better
than the coarse model.

It is not possible to conclude which of all-one and fine is
better. One difficulty is that the 95% is a property of the analysis. It
might very well be that for another analysis this percent (of cases in
which precision helps) is higher or lower. A lower percentage would
favour the fine model; a high percentage favours the all-one
model.

7.4 Total Analysis Runtime
In the 8 programs there are in total 1450 queries. We report results
for a random sample of 419 queries. The first thing to notice in
Table 2 is that most queries are not solved. This is in stark contrast
with Zhang et al. [54] where all queries are reported as solved. The
difference is explained by several differences between their setup
and ours. (1) In addition to their PolySite queries, we also include
Downcast queries. The latter are more difficult. (2) We used less
space and time: they used a machine with 128 GiB of memory,
whereas we only had 25 GiB available; they did not have an explicit
time limit, whereas we used 1 hour as our time limit. (3) One of our
modifications to the code (unfortunate, with hindsight), was that we
loaded in memory the results of the Datalog analysis, which further
increased our memory use. (4) They solve multiple queries at once,
whereas we solve one at a time. By solving one query at a time, we
can make a more fine grained comparison.

These differences notwithstanding, we stress that the results
reported here are for running different algorithms under conditions
that are as similar as possible. For example, as much as possible of
the implementation is shared.

From the number of solved queries (Table 2), we see that
the refinement strategies, from best to worst, are: pessimistic,
probabilistic, optimistic. The pessimistic strategy solves the same set
of 102 queries regardless of the optimiser it uses. The probabilistic
strategy solves 101 queries in total, if we take the union over the
two optimisers. There is exactly one query solved by the pessimistic
strategy but not by the probabilistic one. The pessimistic strategy
solves this query in four iterations, whereas the probabilistic strategy
dies in the second iteration. The exact optimiser times out. The
approximate optimiser increases the precision more than necessary
after the first iteration, the Datalog solver does cope with the

http://rgrig.appspot.com/static/papers/popl2016experiments.html
http://rgrig.appspot.com/static/papers/popl2016experiments.html


increased precision, but an out of memory error happens while
Datalog’s answer is loaded in memory.

Figure 5 compares the six configurations from the point of view
of runtime. We see that both the pessimistic and the probabilistic
strategies are better than the optimistic strategy.

7.5 Discussion
According to Table 2 and Figure 5, setting all hyperparameters to 1
works better than using learnt hyperparameters. Given this, is there
any point in learning hyperparameters? We believe the answer is
yes. Initially we tried only an exact MAXSAT solver2. When the
pessimistic strategy succeeds but the probabilistic strategy fails, the
cause is always that the MAXSAT solver times out. Our encoding in
MAXSAT is already an approximation, so an approximate answer
would do. We conjectured that replacing the exact solver with an
approximate one would improve performance. We are not aware of
an off-the-shelf approximate MAXSAT solver, so we implemented
one. Comparing prob-exact with prob-approx, we see that using
an approximate solver does improve the results, but not enough.
However, our approximate solver is so dumb that we feel it ought to
be possible to do much better.

Another reason to learn hyperparameters is independent of
their use for refinement: learnt hyperparameters identify interesting
parts of an analysis implemented in Datalog (Section 5.3). This
is especially useful when one wants to understand an analysis
implemented by a third party.

Finally, we note that our empirical evaluation of refinement
strategies shows promise but is not comprehensive. In future work,
we intend to try better approximate MAXSAT solvers, and we intend
to evaluate refinement algorithms on more analyses implemented in
Datalog. But, first, we need better approximate MAXSAT solvers,
and we need more analyses implemented in Datalog.

8. Related and Future Work
The potential of using machine learning techniques or probabilistic
reasoning for addressing challenges in static analysis [4, 10] has
been explored by several researchers in the past ten years. Three
dominant directions so far are: to infer program specifications au-
tomatically using probabilistic models or other inductive learning
techniques [5, 27, 32, 36, 42, 43, 45], to guess candidate program
invariants from test data or program traces using generalisation
techniques from machine learning [33, 40, 47], and to predict prop-
erties of potential or real program errors, such as true positiveness
and cause, probabilistically [29, 30, 53, 56]. Our work brings a
new dimension to this line of research by suggesting the use of
a probabilistic model for predicting the effectiveness of program
abstractions: a probabilistic model can be designed for predicting
how well a parametric static analysis would perform for a given
verification task when it is given a particular abstraction, and this
model can help the analysis to select a good program abstraction for
the task in the context of abstraction refinement. Another important
message of our work is that the derivations computed during each
analysis run include a large amount of useful information, and ex-
ploiting this information could lead to more beneficial interaction
between probabilistic reasoning and static analysis.

Machine learning techniques have been used before to speed up
abstraction refinement [9, 18], but in the setting of bounded model
checking of hardware.

Several probabilistic models for program source code have
been proposed in the past [1, 2, 21, 25, 34, 42, 43], and used for
extracting natural coding conventions [1], helping the correct use
of library functions [43], translating programs between different
languages [25], and cleaning program source code and inferring

2 also, at submission time, we had not tried setting all hyperparameters to 1

likely properties [42]. These models are different from ours in
that they are not designed to predict the behaviours of program
analyses under different program abstractions, the main task of our
probabilistic models.

Our probabilistic models are examples of first-order probabilistic
logic programs studied in the work on statistical relational learning
[12, 13, 19, 46]. In our case, models are large, and training data
provides only partial information about the random variable H used
in the models. To overcome this difficulty, we designed an algorithm
tailored to our needs, which is based on the idea of variational
inference [24, 51]. More precisely, we optimised a lower bound on
the likelihood.

Our work builds on a large amount of research for automatically
finding good program abstraction, such as CEGAR [4, 7–9, 20, 44],
parametric static analysis with parameter search algorithms [28, 39,
54, 55], and static analysis based on Datalog or Horn solvers [6, 16,
17, 48, 52]. The novelty of our work lies in the use of adding a bias
in this abstraction search using a probabilistic model, which predicts
the behaviour of the static analysis under different abstractions.

One future direction would be to find new applications for our
probabilistic techniques. For example, one could try to use our
techniques in order to improve other, non-probabilistic approaches
to estimating the impact of abstractions [41, 49]. Another future
direction would be to better characterise the theoretical properties
of our refinement algorithm. For example, if applied in the setting
of abstract interpretation, how does it interact with the notion of
completeness [14, 15]?

9. Conclusion
We have presented a new approach to abstraction refinement, one
that receives guidance from a learnt probabilistic model. The model
is designed to predict how well would the static analysis perform
for a given verification task under different parameter settings. The
model is fully derived from the specification of the analysis, and
does not require manually crafted features. Instead, our model’s
prediction is based on all the reasoning steps performed by the
analysis in a failed run. To make these predictions, the model needs
to know how much approximation is involved in each Datalog rule
that implements the static analysis. We have shown how to quantify
the approximation, by using a learning algorithm that observes the
analysis running on a large codebase. Finally, we have shown how
to combine the predictions of the model with a cost measure in order
to choose an optimal next abstraction to try during refinement. Our
empirical evaluation with an object-sensitive pointer analysis shows
that our approach is promising.
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