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Abstract. We present a formal framework for static specification mining. The
main idea is to represent partial temporal specifications as symbolic automata –
automata where transitions may be labeled by variables, and a variable can be
substituted by a letter, a word, or a regular language. Using symbolic automata,
we construct an abstract domain for static specification mining, capturing both
the partialness of a specification and the precision of a specification. We show in-
teresting relationships between lattice operations of this domain and common op-
erators for manipulating partial temporal specifications, such as building a more
informative specification by consolidating two partial specifications.

1 Introduction

Programmers make extensive use of frameworks and libraries. To perform standard
tasks such as parsing an XML file or communicating with a database, programmers
use standard frameworks rather than writing code from scratch. Unfortunately, a typical
framework API can involve hundreds of classes with dozens of methods each, and often
requires sequences of operations to be invoked on specific objects to perform a single
task (e.g., [14, 6, 12, 3, 13]). Even experienced programmers might spend hours trying
to understand how to use a seemingly simple API [6].

Static specification mining techniques (e.g., [10, 7, 2, 15]) have emerged as a way to
obtain a succinct description of usage scenarios when working with a library. However,
although they demostrated great practical value, these techniques do not address many
interesting and challenging technical questions.

In this paper, we present a formal framework for static specification mining. The
main idea is to represent partial temporal specifications as symbolic automata, where
transitions may be labeled by variables representing unknown information. Using sym-
bolic automata, we present an abstract domain for static specification mining, and show
interesting relationships between the partialness and the precision of a specification.

Representing Partial Specifications using Symbolic Automata We focus on generalized
typestate specifications [11, 7]. Such specifications capture legal sequences of method
invocations on a given API, and are usually expressed as finite-state automata where a
state represents an internal state of the underlying API, and transitions correspond to
API method invocations.

To make specification mining more widely applicable, it is critical to allow mining
from code snippets, i.e., code fragments with unknown parts. A natural approach for



mining from code snippets is to capture gaps in the snippets using gaps in the specifi-
cation. For example, when the code contains an invocation of an unknown method, this
approach reflects this fact in the mined specification as well (we elaborate on this point
later). Our symbolic automaton is conceived in order to represent such partial informa-
tion in specifications. It is a finite-state machine where transitions may be labeled by
variables and a variable can be substituted by a letter, a word, or a regular languages in
a context sensitive manner — when a variable appears in multiple strings accepted by
the state machine, it can be replaced by different words in all these strings.

An Abstract Domain for Mining Partial Specifications One challenge for forming an
abstract domain with symbolic automata is to find appropriate operations that capture
the subtle interplay between the partialness and the precision of a specification. Let us
explain this challenge using a preorder over symbolic automata.

When considering non-symbolic automata, we typically use the notion of language
inclusion to model “precision” — we can say that an automaton A1 overapproximates
an automaton A2 when its language includes that of A2. However, this standard ap-
proach is not sufficient for symbolic automata, because the use of variables introduces
partialness as another dimension for relating the (symbolic) automata. Intuitively, in a
preorder over symbolic automata, we would like to capture the notion of a symbolic
automaton A1 being more complete than a symbolic automaton A2 when A1 has fewer
variables that represent unknown information. In Section 4, we describe an interesting
interplay between precision and partialness, and define a preorder between symbolic
automata, that we later use as a basis for an abstract domain of symbolic automata.

Consolidating Partial Specifications After mining a large number of partial specifi-
cations from code snippets, it is desirable to combine consistent partial information to
yield consolidated temporal specifications. This leads to the question of combining con-
sistent symbolic automata. In Section 7, we show how the join operation of our abstract
domain leads to an operator for consolidating partial specifications.

Completion of Partial Specifications Having constructed consolidated specifications,
we can use symbolic automata as queries for code completion. Treating one symbolic
automaton as a query being matched against a database of consolidated specifications,
we show how to use simulation over symbolic automata to find automata that match the
query (Section 5), and how to use unknown elimination to find completions of the query
automaton (Section 6).

Main Contributions The contributions of this paper are as follows:

– We formally define the notion of partial typestate specification based on a new
notion of symbolic automata.

– We explore relationships between partial specifications along two dimensions: (i) pre-
cision of symbolic automata, a notion that roughly corresponds to containment of
non-symbolic automata; and (ii) partialness of symbolic automata, a notion that
roughly corresponds to an automata having fewer variables, which represent un-
known information.



– We present an abstract domain of symbolic automata where operations of the do-
main correspond to key operators for manipulating partial temporal specifications.

– We define the operations required for algorithms for consolidating two partial spec-
ifications expressed in terms of our symbolic automata, and for completing certain
partial parts of such specifications.

Related Work Mishne et. al [7] present a practical framework for static specification
mining and query matching based on automata. Their framework imposes restrictions
on the structure of automata and they could be viewed as a restricted special case of the
formal framework introduced in this paper. In contrast to their informal treatment, this
paper presents the notion of symbolic automata with an appropriate abstract domain.

Weimer and Necula [14] use a lightweight static analysis to infer simple specifi-
cations from a given codebase. Their insight is to use exceptional program paths as
negative examples for correct API usage. They learn specifications consisting of pairs
of events 〈a, b〉, where a and b are method calls, and do not consider larger automata.

Monperrus et. al [8] attempt to identify missing method calls when using an API by
mining a codebase. They only compare objects with identical type and same containing
method signature, which only works for inheritance-based APIs. Their approach deals
with identical histories minus k method calls. Unlike our approach, it cannot handle
incomplete programs, non-linear method call sequences, and general code queries.

Wasylkowski et. al [13] use an intraprocedural static analysis to automatically mine
object usage patterns and identify usage anomalies. Their approach is based on iden-
tifying usage patterns, in the restricted form of pairs of events, reflecting the order in
which events should be used.

Gruska et. al [5] considers limited specifications that are only pairs of events. [1] also
mines pairs of events in an attempt to mine partial order between events. [12] mine spec-
ifications (operational preconditions) of method parameters to detect problems in code.
The mined specifications are CTL formulas that fit into several pre-defined templates
of formulas. Thus, the user has to know what kind of specifications she is looking for.

Shoham et. al [10] use a whole-program analysis to statically analyze clients using
a library. Their approach is not applicable in the setting of partial programs and partial
specification since they rely on the ability to analyze the complete program for complete
alias analysis and for type information.

Plandowski [9] uses the field of word equations to identify assignments to variables
within conditions on strings with variable portions and regular expression. Ganesh et.
al [4] expand this work with quantifiers and limits on the assignment size. In both cases,
the regular language that the assignments consist of does not allow variables, disal-
lowing the concept of symbolic assignments of variables within the branching of the
automata for the regular language. In addition, while word equations allow all predi-
cate arguments to have symbolic components, the equation is solved by a completely
concrete assignment, disallowing the concept of assigning a symbolic language.

2 Overview

We start with an informal overview of our approach by using a simple File example.



1 void process(File f) {
2 f.open();
3 doSomething(f);
4 f.close();
5 }

30 1open 2X close

(a) (b)

Fig. 1. (a) Simple code snippet using File. The methods open and close are API methods,
and the method doSomething is unknown. (b) Symbolic automaton mined from this snippet.
The transition corresponding to doSomething is represented using the variable X. Transitions
corresponding to API methods are labeled with method name.

40 1open 2canRead 3read close 30 1open 2write close

(a) (b)

Fig. 2. Automata mined from programs using File to (a) read after canRead check; (b) write.

2.1 Illustrative Example

Consider the example snippet of Fig. 1(a). We would like to extract a temporal speci-
fication that describes how this snippet uses the File component. The snippet invokes
open and then an unknown method doSomething(f) the code of which is not avail-
able as part of the snippet. Finally, it calls close on the component. Analyzing this
snippet using our approach yields the partial specification of Fig. 1(b). Technically,
this is a symbolic automaton, where transitions corresponding to API methods are
labeled with method name, and the transition corresponding to the unknown method
doSomething is labeled with a variable X. The use of a variable indicates that some
operations may have been invoked on the File component between open and close,
but that this operation or sequence of operations is unknown.

Now consider the specifications of Fig. 2, obtained as the result of analyzing similar
fragments using the File API. Both of these specifications are more complete than the
specification of Fig. 1(b). In fact, both of these automata do not contain variables, and
they represent non-partial temporal specifications. These three separate specifications
come from three pieces of code, but all contribute to our knowledge of how the File

API is used. As such, we would like to be able to compare them to each other and to
combine them, and in the process to eliminate as many of the unknowns as possible
using other, more complete examples.

Our first step is to consolidate the specifications into a more comprehensive specifi-
cation, describing as much of the API as possible, while losing no behavior represented
by the original specifications.

Next, we would like to eliminate unknown operations based on the extra informa-
tion that the new temporal specification now contains with regard to the full API. For
instance, where in Fig. 1 we had no knowledge of what might happen between open

and close, the specification in Fig. 3(a) suggests it might be either canRead and read,
or write. Thus, the symbolic placeholder for the unknown operation is now no longer
needed, and the path leading through X becomes redundant (as shown in Fig. 3(b)).
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Fig. 3. (a) Automaton resulting from combining all known specifications of the File API, and
(b) the File API specifications after partial paths have been subsumed by more concrete ones.

30 1X 2read Y X 7→ open
Y 7→ close

(a) (b)

Fig. 4. (a) Symbolic automaton representing the query for the behavior around the method read
and (b) the assignment to its symbolic transitions which answers the query.

We may now note that all three original specifications are still included in the speci-
fication in Fig. 3(b), even after the unknown operation was removed; the concrete paths
are fully there, whereas the path with the unknown operation is represented by both the
remaining paths.

The ability to find the inclusion of one specification with unknowns within another
is useful for performing queries. A user may wish to use the File object in order to
read, but be unfamiliar with it. He can query the specification, marking any portion he
does not know as an unknown operation, as in Fig. 4(a).

As this very partial specification is included in the API’s specification, there will be
a match. Furthermore, we can deduce what should replace the symbolic portions of the
query. This means the user can get the reply to his query that X should be replaced by
open and Y by close.

Fig. 5 shows a more complex query and its assignment. The assignment to the vari-
able X is made up of two different assignments for the different contexts surrounding
X: when followed by write, X is assigned open, and when followed by read, X is
assigned the word open,canRead. Even though the branching point in Fig. 3(b) is not
identical to the one in the query, the query can still return a correct result using contexts.

2.2 An Abstract Domain of Symbolic Automata

To provide a formal background for the operations we demonstrated here informally, we
define an abstract domain based on symbolic automata. Operations in the domain cor-
respond to natural operators required for effective specification mining and answering
code search queries. Our abstract domain serves a dual goal: (i) it is used to represent
partial temporal specification during the analysis of each individual code snippet; (ii) it
is used for consolidation and answering code search queries across multiple snippets

In its first role — used in the analysis of a single snippet — the abstract domain can
further employ a quotient abstraction to guarantee that symbolic automata do not grow
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(*,X,read) 7→ open,canRead
(*,X,write) 7→ open
Y 7→ close
Z 7→ close

(a) (b)

Fig. 5. (a) Symbolic automaton representing the query for the behavior around read and write
methods and (b) the assignment with contexts to its symbolic transitions which answers the query.

without a bound due to loops or recursion [10]. In Section 4.2, we show how to obtain
a lattice based on symbolic automata.

In second role — used for consolidation and answering code-search queries —
query matching can be understood in terms of unknown elimination in a symbolic au-
tomata (explained in Section 6), and consolidation can be understood in terms of join
in the abstract domain, followed by “minimization” (explained in Section 7).

3 Symbolic Automata

We represent partial typestate specifications using symbolic automata:

Definition 1. A deterministic symbolic automaton (DSA) is a tuple 〈Σ,Q, δ, ι, F,Vars〉
where:

– Σ is a finite alphabet a, b, c, . . .;
– Q is a finite set of states q, q′, . . .;
– δ is a partial function from Q× (Σ∪Vars) to Q, representing a transition relation;
– ι ∈ Q is an initial state;
– F ⊆ Q is a set of final states;
– Vars is a finite set of variables x, y, z, . . ..

Our definition mostly follows the standard notion of deterministic finite automata.
Two differences are that transitions can be labeled not just by alphabets but by variables,
and that they are partial functions, instead of total ones. Hence, an automaton might get
stuck at a letter in a state, because the transition for the letter at the state is not defined.

We write (q, l, q′) ∈ δ for a transition δ(q, l) = q′ where q, q′ ∈ Q and l ∈ Σ∪Vars.
If l ∈ Vars, the transition is called symbolic. We extend δ to words over Σ ∪Vars in the
usual way. Note that this extension of δ over words is a partial function, because of the
partiality of the original δ. When we write δ(q, sw) ∈ Q0 for such words sw and a state
set Q0 in the rest of the paper, we mean that δ(q, sw) is defined and belongs to Q0.

From now on, we fix Σ and Vars and omit them from the notation of a DSA.

3.1 Semantics

For a DSA A, we define its symbolic language, denoted SL(A), to be the set of all
words over Σ ∪ Vars accepted by A, i.e.,

SL(A) = {sw ∈ (Σ ∪ Vars)∗ | δ(ι, sw) ∈ F}.
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Fig. 6. DSAs (a) and (b).

Words over Σ ∪ Vars are called symbolic words, whereas words over Σ are called
concrete words. Similarly, languages over Σ ∪ Vars are symbolic, whereas languages
over Σ are concrete.

The symbolic language of a DSA can be interpreted in different ways, depending
on the semantics of variables: (i) a variable represents a sequence of letters from Σ;
(ii) a variable represents a regular language over Σ; (iii) a variable represents different
sequences of letters from Σ under different contexts.

All above interpretations of variables, except for the last, assign some value to a
variable while ignoring the context in which the variable lies. This is not always desir-
able. For example, consider the DSA in Fig. 6(a). We want to be able to interpret x as d
when it is followed by b, and to interpret it as e when it is followed by c (Fig. 6(b)). Mo-
tivated by this example, we focus here on the last possibility of interpreting variables,
which also considers their context. Formally, we consider the following definitions.

Definition 2. A context-sensitive assignment, or in short assignment, σ is a function
from (Σ ∪ Vars)∗ × Vars× (Σ ∪ Vars)∗ to NonEmptyRegLangOn(Σ ∪ Vars).

When σ maps (sw1, x, sw2) to SL, we refer to (sw1, sw2) as the context of x.
The meaning is that an occurrence of x in the context (sw1, sw2) is to be replaced
by SL (i.e., by any word from SL). Thus, it is possible to assign multiple words to
the same variable in different contexts. The context used in an assignment is the full
context preceding and following x. In particular, it is not restricted in length and it can
be symbolic, i.e., it can contain variables. Note that these assignments consider a linear
context of a variable. A more general definition would consider the branching context
of a variable (or a symbolic transition).

Formally, applying σ to a symbolic word behaves as follows. For a symbolic word
sw = l1l2 . . . ln, where li ∈ Σ ∪ Vars for every 1 ≤ i ≤ n,

σ(sw) = SL1SL2 . . .SLn

where (i) SLi = {li} if li ∈ Σ; and (ii) SLi = SL if li ∈ Vars is a variable x and
σ(l1...li−1, x, li+1...ln) = SL.

Accordingly, for a symbolic language SL, σ(SL) =
⋃
{σ(sw) | sw ∈ SL}.

Definition 3. An assignment σ is concrete if its image consists of concrete languages
only. Otherwise, it is symbolic.

If σ is concrete then σ(SL) is a concrete language, whereas if σ is symbolic then σ(SL)
can still be symbolic.
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Fig. 7. DSA before and after assignment

In the sequel, when σ maps some x to the same language in several contexts, we
sometimes write σ(C1, x, C2) = SL as an abbreviation for σ(sw1, x, sw2) = SL for
every (sw1, sw2) ∈ C1 × C2. We also write ∗ as an abbreviation for (Σ ∪ Vars)∗.

Example 1. Consider the DSA A from Fig. 6(a). Its symbolic language is {axb, axc}.
Now consider the concrete assignment σ : (∗, x, b∗) 7→ d, (∗, x, c∗) 7→ e. Then
σ(axb) = {adb} and σ(axc) = {aec}, which means that σ(SL(A)) = {adb, aec}.
If we consider σ : (∗, x, b∗) 7→ d∗, (∗, x, c∗) 7→ (e|b)∗, then σ(axb) = ad∗b and
σ(axc) = a(e|b)∗c, which means that σ(SL(A)) = (ad∗b)|(a(e|b)∗c).

Example 2. Consider the DSA A depicted in Fig. 7(a) and consider the symbolic as-
signment σ which maps (∗ab, x, ∗) to g, and maps x in any other context to x. The
assignment is symbolic since in any incoming context other than ∗ab, x is assigned x.
Then Fig. 7(b) presents a DSA for σ(SL(A)).

Completions of a DSA Each concrete assignment σ to a DSA A results in some “com-
pletion” of SL(A) into a language over Σ (c.f. Example 1). We define the semantics
of a DSA A, denoted JAK, as the set of all languages over Σ obtained by concrete
assignments:

JAK = {σ(SL(A)) | σ is a concrete assignment}.

We call JAK the set of completions of A.
For example, for the DSA from Fig. 6(a), {adb, aec} ∈ JAK (see Example 1). Note

that if a DSA A has no symbolic transition, i.e. SL(A) ⊆ Σ∗, then JAK = {SL(A)}.

4 An Abstract Domain for Specification Mining

In this section we lay the ground for defining common operations on DSAs by defining
a preorder on DSAs. In later sections, we use this preorder to define an algorithm for
query matching (Section 5), completion of partial specification (Section 6), and consol-
idation of multiple partial specification (Section 7).

The definition of a preorder over DSAs is motivated by two concepts. The first
is precision. We are interested in capturing that one DSA is an overapproximation of
another, in the sense of describing more behaviors (sequences) of an API. When DFAs
are considered, language inclusion is suitable for capturing a precision (abstraction)
relation between automata. The second is partialness. We would like to capture that a
DSA is “more complete” than another in the sense of having less variables that stand
for unknown information.
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Fig. 8. Dimensions of the preorder on DSAs

4.1 Preorder on DSAs

Our preorder combines precision and partialness. Since the notion of partialness is less
standard, we first explain how it is captured for symbolic words. The consideration of
symbolic words rather than DSAs allows us to ignore the dimension of precision and
focus on partialness, before we combine the two.

Preorder on Symbolic Words

Definition 4. Let sw1, sw2 be symbolic words. sw1 ≤ sw2 if for every concrete assign-
ment σ2 to sw2, there is a concrete assignment σ1 to sw1 such that σ1(sw1) = σ2(sw2).

This definition captures the notion of a symbolic word being “more concrete” or “more
complete” than another: Intuitively, the property that no matter how we fill in the un-
known information in sw2 (using a concrete assignment), the same completion can
also be obtained by filling in the unknowns of sw1, ensures that every unknown of
sw2 is also unknown in sw1 (which can be filled in the same way), but sw1 can
have additional unknowns. Thus, sw2 has “no more” unknowns than sw1. In partic-
ular, {σ(sw1) | σ is a concrete assignment} ⊇ {σ(sw2) | σ is a concrete assignment}.
Note that when considering two concrete words w1, w2 ∈ Σ∗ (i.e., without any vari-
able), w1 ≤ w2 iff w1 = w2. In this sense, the definition of ≤ over symbolic words is a
relaxation of equality over words.

For example, abxcd ≥ ayd according to our definition. Intuitively, this replation-
ship holds because abxcd is more complete (carries more information) than ayd.

Symbolic Inclusion of DSAs We now define the preorder over DSAs that combines
precision with partialness. On the one hand, we say that a DSA A2 is “bigger” than A1,
if A2 describes more possible behaviors of the API, as captured by standard automata
inclusion. For example, see the DSAs (a) and (b) in Fig. 8. On the other hand, we say
that a DSAA2 is “bigger” thanA1, ifA2 describes “more complete” behaviors, in terms
of having less unknowns. For example, see the DSAs (c) and (d) in Fig. 8.

However, these examples are simple in the sense of “separating” the precision and
the partialness dimensions. Each of these examples demonstrates one dimension only.



We are also interested in handling cases that combine the two, such as cases where A1

and A2 represent more than one word, thus the notion of completeness of symbolic
words alone is not applicable, and in addition the language of A1 is not included in the
language of A2 per se, e.g., since some of the words in A1 are less complete than those
of A2. This leads us to the following definition.

Definition 5 (symbolic-inclusion). A DSA A1 is symbolically-included in a DSA A2,
denoted by A1 � A2, if for every concrete assignment σ2 of A2 there exists a concrete
assignment σ1 of A1, such that σ1(SL(A1)) ⊆ σ2(SL(A2)).

The above definition ensures that for each concrete language L2 that is a completion
of A2, A1 can be assigned in a way that will result in its language being included in
L2. This means that the “concrete” parts of A1 and A2 admit the inclusion relation, and
A2 is “more concrete” than A1. Equivalently: A1 is symbolically-included in A2 iff for
every L2 ∈ JA2K there exists L1 ∈ JA1K such that L1 ⊆ L2.

Example 3. The DSA depicted in Fig. 6(a) is symbolically-included in the one depicted
in Fig. 6(b), since for any assignment σ2 to (b), the assignment σ1 to (a) that will yield
a language that is included in the language of (b) is σ : (∗, x, b∗) 7→ d, (∗, x, c∗) 7→ e.
Note that if we had considered assignments to a variable without a context, the same
would not hold: If we assign to x the sequence d, the word adc from the assigned (a) will
remain unmatched. If we assign e to x, the word aeb will remain unmatched. If we as-
sign to x the language d|e, then both of the above words will remain unmatched. There-
fore, when considering context-free assignments, there is no suitable assignment σ1.

Theorem 1. � is reflexive and transitive.

Structural Inclusion As a basis for an algorithm for checking if symbolic-inclusion
holds between two DSAs, we note that provided that any alphabet Σ′ can be used in
assignments, the following definition is equivalent to Definition 5.

Definition 6. A1 is structurally-included in A2 if there exists a symbolic assignment σ
to A1 such that σ(SL(A1)) ⊆ SL(A2). We say that σ witnesses the structural inclusion
of A1 in A2.

Theorem 2. Let A1, A2 be DSAs. Then A1 � A2 iff A1 is structurally-included in A2.

The following corollary provides another sufficient condition for symbolic-inclusion:

Corollary 1. If SL(A1) ⊆ SL(A2), then A1 � A2.

Example 4. The DSA depicted in Fig. 9(a) is not symbolically-included in the one de-
picted in Fig. 9(b) since no symbolic assignment to (a) will substitute the symbolic
word axbg by a (symbolic) word (or set of words) in (b). This is because assignments
cannot “drop” any of the contexts of a variable (e.g., the outgoing bg context of x). Such
assignments are undesirable since removal of contexts amounts to removal of observed
behaviors.
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Fig. 9. Example for a case where there is no assignment to either (a) or (b) to show (a) � (b) or
(b) � (a), and where there is such an assignment for (a) so that (a) � (c).

On the other hand, the DSA depicted in Fig. 9(a) is symbolically-included in the
one depicted in Fig. 9(c), since there is a witnessing assignment that maintains all the
contexts of x: σ : (a, x, b∗) 7→ d, (a, x, cf∗) 7→ h, (a, x, cg∗) 7→ eh∗e, (bya, x, ∗) 7→
d, (∗, y, ∗) 7→ zd. Assigning σ to (a) results in a DSA whose symbolic language is
strictly included in the symbolic language of (c). Note that symbolic-inclusion holds
despite of the fact that in (c) there is no longer a state with an incoming c event and
both an outgoing f and an outgoing g events while being reachable from the state 1.
This example demonstrates our interest in linear behaviors, rather than in branching
behavior. Note that in this example, symbolic-inclusion would not hold if we did not
allow to refer to contexts of any length (and in particular length > 1).

4.2 A Lattice for Specification Mining

As stated in Theorem 1, � is reflexive and transitive, and therefore a preorder. How-
ever, it is not antisymmetric. This is not surprising, since for DFAs � collapses into
standard automata inclusion, which is also not antisymmetric (due to the existence of
different DFAs with the same language). In the case of DSAs, symbolic transitions are
an additional source of problem, as demonstrated by the following example.

Example 5. The DSAs in Fig. 10 satisfy � in both directions even though their sym-
bolic languages are different. DSA (a) is trivially symbolically-included in (b) since
the symbolic language of (a) is a subset of the symbolic language of (b) (see Corol-
lary 1). Examining the example closely shows that the reason that symbolic-inclusion
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Fig. 10. Equivalent DSAs w.r.t. symbolic-inclusion

also holds in the other direction is the fact that the symbolic language of DSA (b) con-
tains the symbolic word axb, as well as the concrete word adb, which is a completion of
axb. In this sense, axb is subsumed by the rest of the DSA, which amounts to DSA (a).

In order to obtain a partial order we follow a standard construction of turning a pre-
ordered set to a partially ordered set. We first define the following equivalence relation
based on �:

Definition 7. DSAs A1 and A2 are symbolically-equivalent, denoted by A1 ≡ A2, iff
A1 � A2 and A2 � A1.

Theorem 3. ≡ is an equivalence relation over the set DSA of all DSAs.

We now lift the discussion to the quotient set DSA/≡, which consists of the equiv-
alence classes of DSA w.r.t. the ≡ equivalence relation.

Definition 8. Let [A1], [A2] ∈ DSA/≡. Then [A1] v [A2] if A1 � A2.

Theorem 4. v is a partial order over DSA/≡.

Definition 9. For DSAs A1 and A2, we use union(A1, A2) to denote a union DSA for
A1 andA2, defined similarly to the definition of union of DFAs. That is, union(A1, A2)
is a DSA such that SL(union(A1, A2)) = SL(A1) ∪ SL(A2).

Theorem 5. Let [A1], [A2] ∈ DSA/≡ and let union(A1, A2) be a union DSA for A1

and A2. Then [union(A1, A2)] is the least upper bound of [A1] and [A2] w.r.t. v.

Corollary 2. (DSA/≡,v) is a join semi-lattice.

The ⊥ element in the lattice is the equivalence class of a DSA for ∅. The > element
is the equivalence class of a DSA for Σ∗.

5 Query Matching using Symbolic Simulation

Given a query in the form of a DSA, and a database of other DSAs, query matching
attempts to find DSAs in the database that symbolically include the query DSA. In
this section, we describe a notion of simulation for DSAs, which precisely captures
the preorder on DSAs and serves a basis of core algorithms for manipulating symbolic
automata. In particular, in Section 5.2, we provide an algorithm for computing symbolic
simulation that can be directly used to determine when symbolic inclusion holds.



5.1 Symbolic Simulation

Let A1 and A2 be DSAs 〈Q1, δ1, ι1, F1〉 and 〈Q2, δ2, ι2, F2〉, respectively.

Definition 10. A relation H ⊆ Q1 × (2Q2 \ {∅}) is a symbolic simulation from A1 to
A2 if it satisfies the following conditions:

(a) (ι1, {ι2}) ∈ H;
(b) for every (q,B) ∈ H , if q is a final state, some state in B is final;
(c) for every (q,B) ∈ H and q′ ∈ Q1, if q′ = δ1(q, a) for some a ∈ Σ,

∃B′ s.t. (q′, B′) ∈ H ∧ B′ ⊆ {q′2 | ∃q2 ∈ B s.t. q′2 = δ2(q2, a)};

(d) for every (q,B) ∈ H and q′ ∈ Q1, if q′ = δ1(q, x) for x ∈ Vars,

∃B′ s.t. (q′, B′) ∈ H ∧ B′ ⊆ {q′2 | ∃q2 ∈ B s.t. q′2 is reachable from q2}.

We say that (q′, B′) in the third or fourth item above is a witness for ((q,B), l), or an
l-witness for (q,B) for l ∈ Σ ∪ Vars. Finally, A1 is symbolically simulated by A2 if
there exists a symbolic simulation H from A1 to A2.

In this definition, a state q of A1 is simulated by a nonempty set B of states from
A2, with the meaning that their union overapproximates all of its outgoing behaviors.
In other words, the role of q in A1 is “split” among the states of B in A2. A “split”
arises from symbolic transitions, but the “split” of the target of a symbolic transition
can be propagated forward for any number of steps, thus allowing states to be simulated
by sets of states even if they are not the target of a symbolic transition. This accounts
for splitting that is performed by an assignment with a context longer than one. Note
that since we consider deterministic symbolic automata, the sizes of the sets used in
the simulation are monotonically decreasing, except for when a target of a symbolic
transition is considered, in which case the set increases in size.

Note that a state q1 of A1 can participate in more than one simulation pair in the
computed simulation, as demonstrated by the following example.

Example 6. Consider the DSAs in Fig. 9(a) and (c). In this case, the simulation will be

H = { (0, {0}), (1, {1}), (2, {2, 6, 9}), (3, {3}), (4, {4, 10}), (5, {7}), (6, {12})
(7, {11}), (8, {8}), (9, {13}), (10, {15}), (1, {16}), (2, {17}), (4, {18}),
(7, {20}), (8, {19}), (3, {18}), (5, {20}), (6, {19}) }.

One can see that state 2 in (a), which is the target of the transition labeled x, is “split”
between states 2, 6 and 9 of (c). In the next step, after seeing b from state 2 in (a), the
target state reached (state 3) is simulated by a singleton set. On the other hand, after
seeing c from state 2 in (a), the target state reached (state 4), is still “split”, however this
time to only two states: 4 and 10 in (c). In the next step, no more splitting occurs.

Note that the state 1 in (a) is simulated both by {1} and by {16}. Intuitively, each
of these sets simulates the state 1 in another incoming context (a and b respectively).

Theorem 6 (Soundness). For all DSAsA1 andA2, if there is a symbolic simulationH
from A1 to A2, then A1 � A2.



Our proof of this theorem uses Theorem 2 and constructs a desired symbolic assignment
σ that witnesses structural inclusion of A1 in A2 explicitly from H . (see Appendix A).
This construction shows, for any symbolic word in SL(A1), the assignment (comple-
tion) to all variables in it (in the corresponding context). Taken together with our next
completeness theorem (Theorem 7), this construction supports a view that a symbolic
simulation serves as a finite representation of symbolic assignment in the preorder. We
develop this further in Section 6.

Theorem 7 (Completeness). For al DSAs A1 and A2, if A1 � A2, then there is a
symbolic simulation H from A1 to A2.

5.2 Algorithm for Checking Simulation

A maximal symbolic simulation relation can be computed using a greatest fixpoint al-
gorithm (similarly to the standard simulation). A naive implementation would consider
all sets in 2Q2 , making it exponential.

More efficiently, we obtain a symbolic simulation relation H by an algorithm that
traverses both DSAs simultaneously, starting from (ι1, {ι2}), similarly to a computation
of a product automaton. For each pair (q1, B2) that we explore, we make sure that if
q1 ∈ F1, then B2 ∩ F2 6= ∅. If this is not the case, the pair is removed. Otherwise, we
traverse all the outgoing transitions of q1, and for each one, we look for a witness in the
form of another simulation pair, as required by Definition 10 (see below). If a witness is
found, it is added to the list of simulation pairs that need to be explored. If no witness is
found, the pair (q1, B2) is removed. When a simulation pair is removed, any simulation
pair for which it is a witness and no other witness exists is also removed (for efficiency,
we also remove all its witnesses that are not witnesses for any other pairs). If at some
point (ι1, {ι2}) is removed, then the algorithm concludes that A1 is not symbolically
simulated by A2. If no more pairs are to be explored, the algorithm concludes that there
is a symbolic simulation, and it is returned.

Consider a candidate simulation pair (q1, B2). When looking for a witness for some
transition of q1, a crucial observation is that if some set B′2 ⊆ Q2 simulates a state
q′1 ∈ Q1, then any superset of B′2 also simulates q′1. Therefore, as a witness we add the
maximal set that fulfills the requirement: if we fail to prove that q′1 is simulated by the
maximal candidate for B′2, then we will also fail with any other candidate, making it
unnecessary to check.

Specifically, for an a-transition, where a ∈ Σ, from q1 to q′1, the witness is (q′1, B
′
2)

where B′2 = {q′2 | ∃q2 ∈ B2 s.t. q′2 = δ2(q2, a)}. If B′2 = ∅ then no witness exists. For
a symbolic transition from q1 to some q′1, the witness is (q′1, B

′
2) where B′2 is the set of

all states reachable from the states in B2 (note that B′2 6= ∅ as it contains at least the
states of B2). In both cases, if q′1 is a final state, we make sure that B′2 contains at least
one final state as well. Otherwise, no witness exists.

In order to prevent checking the same simulation pair, or related pairs, over and
over again, we keep all removed pairs. When a witness (q′1, B

′
2) is to be added as a

simulation pair, we make sure that no simulation pair (q′1, B
′′
2 ) where B′2 ⊆ B′′2 was al-

ready removed. If such a pair was removed, then clearly, (q′1, B
′
2) will also be removed.

Moreover, since B′2 was chosen as the maximal set that fulfills the requirement, any



other possible witness will comprise of its subset and will therefore also be removed.
Thus, in this case, no witness is obtained.

As an optimization, when for some simulation pair (q1, B2) we identify that all the
witnesses reachable from it have been verified and remained as simulation pairs, we
mark (q1, B2) as verified. If a simulation pair (q1, B′2) is to be added as a witness for
some pair where B′2 ⊇ B2, we can automatically conclude that (q1, B′2) will also be
verified. We therefore mark it immediately as verified, and consider the witnesses of
(q1, B2) as its witnesses as well. Note that in this case, the obtained witnesses are not
maximal. Alternatively, it is possible to simply use (q1, B2) instead of (q1, B′2). Since
this optimization damages the maximality of the witnesses, it is not used when maximal
witnesses are desired (e.g., when looking for all possible unknown elimination results).

Example 7. Consider the DSAs depicted in Fig. 9(a) and (c). A simulation between
these DSAs was presented in Example 6. We now present the simulation computed by
the above algorithm, where “maximal” sets are used as the sets simulating a given state.

H = {(0, {0}), (1, {1}), (2, {1, ..., 12, 21}), (3, {3}), (4, {4, 10, 21}), (5, {7}),
(6, {12}), (7, {11}), (8, {8}), (9, {13}), (10, {13, ..., 20}), (1, {16}),
(2, {16, ..., 20}), (3, {18}), (4, {18}), (5, {20}), (6, {19}), (7, {20}), (8, {19})}.

For example, the pair (2, {1, ..., 12, 21}) is computed as an x-witness for (1, {1}), even
though the subset {2, 6, 9} of {1, ..., 12, 21} suffices to simulate state 2.

6 Completion using Unknown Elimination

Let A1 be a DSA that is symbolically-included in A2. This means that the “concrete
parts” of A1 exist in A2 as well, and the “partial” parts of A1 have some completion in
A2. Our goal is to be able to eliminate (some of) the unknowns inA1 based onA2. This
amounts to finding a (possibly symbolic) assignment to A1 such that σ(SL(A1)) ⊆
SL(A2) (whose existence is guaranteed by Theorem 2).

We are interested in providing some finite representation of an assignment σ derived
from a simulation H . Namely, for each variable x ∈ Vars, we would like to represent
in some finite way the assignments to x in every possible context in A1. When the set
of contexts in A1 is finite, this can be performed for every symbolic word (context)
separately as described in the proof of Theorem 6 (see Appendix A). However, in this
section we also wish to handle cases where the set of possible contexts in A1 is infinite.

We choose a unique witness for every simulation pair (q1, B2) in H and every
transition l ∈ Σ ∪ Vars from q1. Whenever we refer to an l-witness of (q1, B2) in the
rest of this section, we mean this chosen witness. The reason for making this choice
will become clear later on.

Let x ∈ Vars be a variable. To identify the possible completions of x, we identify
all the symbolic transitions labeled by x in A1, and for each such transition we identify
all the states of A2 that participate in simulating its source and target states, q1 and
q′1 respectively. The states simulating q1 and q′1 are given by states in simulation pairs
(q1, B2) ∈ H and (q′1, B

′
2) ∈ H respectively. The paths in A2 between states in B2 and

B′2 will provide the completions (assignments) of x, where the corresponding contexts



will be obtained by tracking the paths in A1 that lead to (and from) the corresponding
simulation pairs, where we make sure that the sets of contexts are pairwise disjoint.

Formally, for all q1, q′1, x with δ(q1, x) = q′1, we do the following:

(a) For every simulation pair (q1, B2) ∈ H we compute a set of incoming contexts,
denoted in(q1, B2) (see computation of incoming contexts in the next page). These
contexts represent the incoming contexts of q1 under which it is simulated by
B2. The sets in(q1, B2) are computed such that the sets of different B2 sets are
pairwise-disjoint, and form a partition of the set of incoming contexts of q1 in A1.

(b) For every (q′1, B
′
2) ∈ H which is an x-witness of some (q1, B2) ∈ H , and for

every q′2 ∈ B′2, we compute a set of outgoing contexts, denoted out(q′1, B
′
2, q
′
2) (see

computation of outgoing contexts). These contexts represent the outgoing contexts
of q′1 under which it is simulated by the state q′2 of B′2. The sets out(q′1, B

′
2, q
′
2) are

computed such that the sets of different states q′2 ∈ B′2 are pairwise-disjoint and
form a partition of the set of outgoing contexts of q′1 in A1.

(c) For every pair of simulation pairs (q1, B2), (q
′
1, B

′
2) ∈ H where (q′1, B

′
2) is an

x-witness, and for every pair of states q2 ∈ B2 and q′2 ∈ B′2, such that q2 “con-
tributes” q′2 to the witness (see computation of outgoing contexts), we compute the
set of words leading from q2 to q′2 in A2. We denote this set by lang(q2, q′2). The
“contribution” relation ensures that for every state q2 ∈ B2 there is at most one
state q′2 ∈ B′2 such that lang(q2, q′2) 6= ∅.

(d) Finally, for every pair of simulation pairs (q1, B2), (q
′
1, B

′
2) ∈ H where (q′1, B

′
2)

is an x-witness of (q1, B2), and for every pair of states q2 ∈ B2 and q′2 ∈ B′2,
if in(q1, B2) 6= ∅ and out(q′1, B

′
2, q
′
2) 6= ∅ and lang(q2, q′2) 6= ∅, then we de-

fine σ(in(q1, B2), x, out(q
′
1, B

′
2, q
′
2)) = lang(q2, q

′
2). For all other contexts, σ is

defined arbitrarily.

Note that in step (d), for all the states q2 ∈ B2 the same set of incoming contexts
is used (in(q1, B2)), whereas for every q′2 ∈ B′2, a separate set of outgoing contexts
is used (out(q1, B′2, q

′
2)). This means that assignments to x that result from states in

the same B2 do not differ in their incoming context, but they differ by their outgoing
contexts, as ensured by the property that the sets out(q′1, B

′
2, q
′
2) of different states q′2 ∈

B′2 are pairwise-disjoint. Assignments to x that result from states in different B2 sets
differ in their incoming context, as ensured by the property that the sets in(q1, B2)
of different B2 sets are pairwise-disjoint. Assignments to x that result from different
transitions labeled by x also differ in their incoming contexts, as ensured by the property
that A1 is deterministic, and hence the set of incoming contexts of each state in A1 are
pairwise disjoint. Altogether, there is a unique combination of incoming and outgoing
contexts for each assignment of x.

Computation of Incoming Contexts: To compute the set in(q1, B2) of incoming con-
texts of q1 under which it is simulated by B2, we define the witness graph GW =
(QW , δW ). This is a labeled graph whose states QW are all simulation pairs, and
whose transitions δW are given by the witness relation: ((q′1, B

′
2), l, (q

′′
1 , B

′′
2 )) ∈ δW

iff (q′′1 , B
′′
2 ) is a l-witness of (q′1, B

′
2).

To compute in(q1, B2), we derive from GW a DSA, denoted AW (q1, B2), by set-
ting the initial state to (ι1, {ι2}) and the final state to (q1, B2). We then define in(q1, B2)



to be SL(AW (q1, B2)), describing all the symbolic words leading from (ι1, {ι2}) to
(q1, B2) along the witness relation. These are the contexts in A1 for which this witness
is relevant.

By our particular choice of witnesses for H , the witness graph is deterministic and
hence each incoming context in it will lead to at most one simulation pair. Thus, the
sets in(q1, B2) partition the incoming contexts of q1, making the incoming contexts
in(q1, B2) of different sets B2 pairwise-disjoint.

Computation of Outgoing Contexts: To compute the set out(q′1, B
′
2, q
′
2) of outgoing

contexts of q′1 under which it is simulated by the state q′2 of B′2, we define a contribu-
tion relation based on the witness relation, and accordingly a contribution graph GC .
Namely, for (q1, B2), (q

′′
1 , B

′′
2 ) ∈ H such that (q′′1 , B

′′
2 ) is an l-witness of (q1, B2), we

say that q2 ∈ B2 “contributes” q′′2 ∈ B′′2 to the witness if q2 has a corresponding l-
transition (if l ∈ Σ) or a corresponding path (if l ∈ Vars) to q′′2 . If two states q2 6= q′2 in
B2 contribute the same state q′′2 ∈ B′′2 to the witness, then we keep only one of them in
the contribution relation.

The contribution graph is a labeled graph GC = (QC , δC) whose states QC are
triples (q1, B2, q2) where (q1, B2) ∈ H and q2 ∈ B2. In this graph, a transition
((q1, B2, q2), l, (q

′′
1 , B

′′
2 , q
′′
2 )) ∈ δC exists iff (q′′1 , B

′′
2 ) is an l-witness of (q1, B2) and q2

contributes q′′2 to the witness. Note that GC refines GW in the sense that its states are
substates ofGW and so are its transitions. However, unlikeWC ,GC is nondeterministic
since multiple states q2 ∈ B2 can have outgoing l-transitions.

To compute out(q′1, B
′
2, q
′
2) we derive from GC a nondeterministic version of our

symbolic automaton, denoted AC(q′1, B
′
2, q
′
2), by setting the initial state to (q′1, B

′
2, q
′
2)

and the final states to triples (q1, B2, q2) where q1 is a final state of A1 and q2 is a final
state in A2. Then out(q′1, B

′
2, q
′
2) = SL(AC(q

′
1, B

′
2, q
′
2)). This is the set of outgoing

contexts of q′1 in A1 for which the state q′2 of the simulation pair (q′1, B
′
2) is relevant.

That is, it is used to simulate some outgoing path of q′1 leading to a final state.
However, the sets SL(AC(q′1, B

′
2, q
′
2)) of different q′2 ∈ B′2 are not necessarily dis-

joint. In order to ensure disjoint sets of outgoing contexts out(q′1, B
′
2, q
′
2) for different

states q′2 within the same B′2, we need to associate contexts in the intersection of the
outgoing contexts of several triples with one of them. Importantly, in order to ensure
“consistency” in the outgoing contexts associated with different, but related triples, we
require the following consistency property: If δW ((q1, B2), sw) = (q′1, B

′
2) then for

every q′2 ∈ B′2, {sw} · out(q′1, B′2, q′2) ⊆
⋃
{out(q1, B2, q2) | q2 ∈ B2 ∧ (q′1, B′2, q′2) ∈

δC((q1, B2, q2), sw)}.
This means that the outgoing contexts associated with some triple (q′1, B

′
2, q
′
2) are a

subset of the outgoing contexts of triples that lead to it in GC , truncated by the corre-
sponding word that leads to (q′1, B

′
2, q
′
2).

Note that this property holds trivially if out(q′1, B
′
2, q
′
2) = SL(AC(q

′
1, B

′
2, q
′
2)), as

is the case if these sets are already pairwise-disjoint and no additional manipulation is
needed. The following lemma ensures that if the intersections of the out sets of differ-
ent q′2 states in the same set B′2 are eliminated in a way that satisfies the consistency
property, then correctness is guaranteed. In many cases (including the case where A1

contains no loops, and the case where no two symbolic transitions are reachable from
each other) this can be achieved by simple heuristics. In addition, in many cases the



simulation H can be manipulated such that the sets SL(AC(q
′
1, B

′
2, q
′
2)) themselves

will become pairwise disjoint.

Lemma 1. If for every (q′1, B
′
2, q
′
2) ∈ QC , out(q′1, B

′
2, q
′
2) ⊆ SL(AC(q

′
1, B

′
2, q
′
2)),

and for every (q′1, B
′
2) ∈ QW ,

⋃
q′2∈B′2

out(q′1, B
′
2, q
′
2) =

⋃
q′2∈B′2

SL(AC(q
′
1, B

′
2, q
′
2)),

and the consistency property holds then the assignment σ defined as above satisfies
σ(SL(A1)) ⊆ SL(A2).

Example 8. Consider the simulation H from Example 6, computed for the DSAs from
Fig. 9(a) and (c). Unknown elimination based onH will yield the following assignment:
σ(a, x, b(f |g)) = d, σ(a, x, cg) = eh∗e, σ(a, x, cf) = h, σ(bya, x, (b|c)(f |g)) =
d, σ(b, y, ax(b|c)(f |g)) = zd. All other contexts are irrelevant and assigned arbitrar-
ily. The assignments to x are based on the symbolic transition (1, x, 2) in (a) and on
the simulation pairs (1, {1}), (1, {16}) and their x-witnesses (2, {2, 6, 9}), (2, {17})
respectively. Namely, consider the simulation pair (q1, B2) = (1, {1}) and its wit-
ness (q′1, B

′
2) = (2, {2, 6, 9}). Then B2 = {1} contributed the incoming context

in(1, {1}) = a, and each of the states 2, 6, 9 ∈ B′2 = {2, 6, 9}, contributed the outgoing
contexts out(2, {2, 6, 9}, 2) = b(f |g), out(2, {2, 6, 9}, 6) = cg, out(2, {2, 6, 9}, 9) =
cf respectively. In this example the out sets are pairwise-disjoint, thus no further ma-
nipulation is needed. Note that had we considered the simulation computed in Exam-
ple 7, where the x-witness for (1, {1}) is (2, {2, . . . 12, 20}), we would still get the
same assignment since for any q 6= 2, 6, 9, out(2, {2, . . . 12, 20}, q) = ∅. Similarly,
(1, {16}) contributed in(1, {16}) = bya and the (only) state 17 ∈ {17} contributed
out(2, {17}, 17) = (b|c)(f |g). The assignment to y is based on the symbolic transition
(9, x, 10) and the corresponding simulation pair (9, {13}) and its y-witness (10, {15}).

7 Consolidation using Join and Minimization

Consolidation consists of (1) union, which corresponds to join in the lattice over equiv-
alence classes, and (2) choosing a “most complete” representative from an equivalence
class, where “most complete” is captured by having a minimal set of completions.

Note that DSAs A, A′ in the same equivalence class do not necessarily have the
same set of completions. Therefore, it is possible that JAK 6= JA′K (as is the case in Ex-
ample 5). A DSA A is “most complete” in its equivalence class if there is no equivalent
DSA A′ such that JA′K ⊂ JAK. Thus, A is most complete if its set of completions is
minimal.

Let A be a DSA for which we look for an equivalent DSA A′ that is most complete.
If JAK itself is not minimal, there exists A′ such that A′ is equivalent to A but JA′K ⊂
JAK. Equivalence means that (1) for every L′ ∈ JA′K there exists L ∈ JAK such that
L ⊆ L′, and (2) conversely, for every L ∈ JAK there exists L′ ∈ JA′K such that L′ ⊆ L.
Requirement (1) holds trivially since JA′K ⊂ JAK. Requirement (2) is satisfied iff for
every L ∈ JAK \ JA′K (a completion that does not exist in the minimal DSA), there
exists L′ ∈ JA′K such that L′ ⊆ L (since for L ∈ JAK ∩ JA′K this holds trivially).

Namely, our goal is to find a DSA A′ such that JA′K ⊂ JAK and for every L ∈
JAK \ JA′K there exists L′ ∈ JA′K such that L′ ⊆ L. Clearly, if there is no L′ ∈ JAK
such that L′ ⊆ L, then the requirement will not be satisfied. This means that the only



completions L that can be removed from JAK are themselves non-minimal, i.e., are
supersets of other completions in JAK.

Note that it is in general impossible to remove from JAK all non-minimal languages:
as long as SL(A) contains at least one symbolic word sw ∈ (Σ ∪ Vars)∗ \ Σ∗, there
are always comparable completions in JAK. Namely, if assignments σ and σ′ differ only
on their assignment to some variable x in sw (with the corresponding context), where
σ assigns to it Lx and σ′ assigns to it L′x where Lx ⊃ L′x, then L = σ(SL(A)) =
σ(SL(A)\{sw})∪σ(sw) ⊃ σ′(SL(A)\{sw})∪σ′(sw) = σ′(SL(A′)) = L′. Therefore
L ⊃ L′ where both L,L′ ∈ JAK. On the other hand, not every DSA has an equivalent
concrete DSA, whose language contains no symbolic word. For example, consider a
DSA Ax such that SL(Ax) = {x}, i.e. JAxK = 2Σ

∗ \ {∅}. Then for every concrete
DSA Ac with JAcK = {SL(Ac)}, there is Lx ∈ JAxK such that either Lx ⊃ SL(Ac), in
which case Ax 6� Ac, or SL(Ac) ⊃ Lx, in which case Ac 6� Ax. Therefore, symbolic
words are a possible source of non-minimlaity, but they cannot always be avoided.

Below we provide a condition which ensures that we remove from JAK only non-
minimal completions. The intuition is that non-minimality of a completion can arise
from a variable in A whose context matches the context of some known behavior. In
this case, the minimal completion will be obtained by assigning to the variable the
matching known behavior, whereas other assignments will result in supersets of the
minimal completion. Or in other words, to keep only the minimal completion, one needs
to remove the variable in this particular context.

Example 9. This intuition is demonstrated by Example 5, where the set of completions
of the DSA from Fig. 10(b) contains non-minimal completions due to the symbolic
word axb that co-exists with the word adb in the symbolic language of the DSA. Com-
pletions resulting by assigning d to x are strict subsets of completions assigning to x a
different language, making the latter non-minimal. The DSA from Fig. 10(a) omits the
symbolic word axb, keeping it equivalent to (b), while making its set of completions
smaller (due to removal of non-minimal completions resulting from assignments that
assign to x a language other than d).

Definition 11. Let A be a DSA. An accepting path π in A is redundant if there exists
another accepting path π′ in A such that π � π′. A symbolic word sw ∈ SL(A) is
redundant if its (unique) accepting path is redundant.

This means that a symbolic word is redundant if it is “less complete” than another
symbolic word in SL(A). In particular, symbolic words where one can be obtained
from the other via renaming are redundant. Such symbolic words are called equivalent
since their corresponding accepting paths π and π′ are symbolically-equivalent.

In Example 9, the path 〈0, 1, 6, 7〉 of the DSA in Fig. 10(b) is redundant due to
〈0, 1, 2, 3〉. Accordingly, the symbolic word axb labeling this path is also redundant.

An equivalent characterization of redundant paths is the following:

Definition 12. For a DSA A and a path π in A we use A \ π to denote a DSA such that
SL(A \ π) = SL(A) \ SL(π).

Lemma 2. Let A be a DSA. An accepting path π in A is redundant iff π � A \ π.
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Fig. 11. Inputs (a) and (b), union (u) and minimized DSA (m).

Theorem 8. If π is a redundant path, then (A \ π) ≡ A, and JA \ πK ⊆ JAK, i.e. A \ π
is at least as complete as A.

Theorem 8 leads to a natural semi-algorithm for minimization by iteratively iden-
tifying and removing redundant paths. Several heuristics can be employed to identify
such redundant paths.

In fact, when considering minimization of A into some A′ such that SL(A′) ⊆
SL(A), it turns out that a DSA without redundant paths cannot be minimized further:

Theorem 9. If A ≡ (A \ π) for some accepting path π in A then π is redundant in A.

The theorem implies that for a DSA A without redundant paths there exists no DSA
A′ such that SL(A′) ⊂ SL(A) and A′ ≡ A, thus it cannot be minimized further by
removal of paths (or words).

Fig. 11 provides an example for consolidation via union (which corresponds to join
in the lattice), followed by minimization.

8 Putting It All Together

Now that we have completed the description of symbolic automata, we describe how
they can be used in a static analysis for specification mining. We return to the example in
Section 2, and emulate an analysis using the new abstract domain. This analysis would
combine a set of program snippets into a typestate for a given API or class, which can
then be used for verification or for answering queries about API usage.

Firstly, the DSAs in Fig. 1 and Fig. 2 would be mined from user code using the
analysis defined by Mishne et. al [7]. In this process, code that may modify the object
but is not available to the analysis becomes a variable transition.

Secondly, we generate a typestate specification from these individual DSAs. As
shown in Section 2, this is done using the join operation, which consolidates the DSAs
and generates the one in Fig. 3(b). This new typestate specification is now stored in our



specification database. If we are uncertain that all the examples which we are using to
create the typestate are correct, we can add weights to DSA transitions, and later prune
low-weight paths, as suggested by Mishne et. al.

Finally, a user can query against the specification database, asking for the correct
sequence of operations between open and close, which translates to querying the
symbolic word open ·x · close. Unknown elimination will find an assignment such that
σ(x) = canRead · read, as well as the second possible assignment, σ(x) = write.

The precision/partialness ordering of the lattice captures the essence of query match-
ing. A query will always have a� relationship with its results: the query will always be
more partial than its result, allowing the result to contain the query’s assignments, as
well as more precise, which means a DSA describing a great number of behaviors can
contain the completions for a very narrow query.
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A Proofs

Proof (Theorem 1). Reflexivity: Let A be a DSA. Then A � A since for every concrete
assignment σ to A, σ will fulfill σ(SL(A)) ⊆ σ(SL(A)).

Transitivity: Let A1, A2, A3 be DSAs such that A1 � A2 and A2 � A3. We show
thatA1 is ∀∃-included inA3. Let σ3 be a concrete assignment toA3. Then there exists a
concrete assignment σ2 to A2 such that σ2(SL(A2)) ⊆ σ3(SL(A3)) (since A2 � A3).
Similarly, since A1 � A2, then in particular for σ2 there exists a concrete assignment
σ1 to A1 such that σ1(SL(A1)) ⊆ σ2(SL(A2)). By transitivity of language inclusion,
we get that σ1(SL(A1)) ⊆ σ3(SL(A3)). ut

Lemma 3. A1 is structurally-included in A2 iff there exists a symbolic assignment σ to
A1, such that σ(SL(A1)) ⊆ SL(A2), and the image of σ consists of singleton languages
only.

Proof (Theorem 2). We first show that structural inclusion implies symbolic-inclusion.
Suppose A1 is structurally included in A2. Then there exists a symbolic assignment
σ such that σ(SL(A1)) ⊆ SL(A2), i.e., for every sw ∈ SL(A1), σ(sw) ⊆ SL(A2).
Without loss of generality (by Lemma 3), σ assigns to each variable a single sequence
under each context. To show that A1 � A2, consider some assignment σ2 of A2. To
find a corresponding assignment σ1 to A1 such that σ1(SL(A1)) ⊆ σ2(SL(A2)) we
consider the composition of σ2 on σ, defined as follows.

Let a1, a2, . . . , an, b1, b2, . . . , bm ∈ Σ ∪ Vars and x ∈ Vars. Then

σ1(a1a2 . . . an, x, b1b2 . . . bm) = {w1}L1{w2} . . . {wk}Lk{wk+1}

where

– w1, w2, . . . , wk+1 ∈ Σ∗ and
– L1, . . . , Lk ⊆ Σ∗

and there exist

– x1, . . . , xk ∈ Vars and
– sw1, . . . , swn, sw

′
1, . . . sw

′
m ∈ (Σ ∪ Vars)∗

such that:

– σ(a1a2 . . . an, x, b1b2 . . . bm) = {w1x1w2 . . . wkxkwk+1}.
– For every 1 ≤ i ≤ n such that ai ∈ Vars: σ(a1 . . . ai−1, ai, ai+1 . . . anxb1b2 . . . bm) =
{sw i}.

– For every 1 ≤ i ≤ n such that ai ∈ Σ: sw i = ai.
– For every 1 ≤ i ≤ m such that bi ∈ Vars:: σ(a1 . . . anxb1 . . . bi−1, bi, bi+1 . . . bm) =
{sw ′i}.

– For every 1 ≤ i ≤ m such that bi ∈ Σ: sw ′i = bi.
– For every 1 ≤ i ≤ k: σ2(sw1 . . . swnw1x1 . . . wi, xi, wi+1 . . . xkwk+1sw

′
1 . . . sw

′
m) =

Li.
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Fig. 12. Example for a case where symbolic-inclusion does not imply structural inclusion

In other words, if

σ(a1a2 . . . anxb1b2 . . . bm) = {sw1 . . . swnw1x1w2 . . . wkxkwk+1sw
′
1 . . . sw

′
m}

∧ σ2(sw1 . . . swnw1x1w2 . . . wkxkwk+1sw
′
1 . . . sw

′
m)

= L′{w1}L1{w2} . . . {wk}Lk{wk+1}L′′,

then σ1(a1a2 . . . anxb1b2 . . . bm) is also equal toL′{w1}L1{w2} . . . {wk}Lk{wk+1}L′′.
Therefore, the definition of σ1 ensures for every symbolic word sw ∈ SL(A1), σ1(sw) =
σ2(σ(sw)). Since σ(sw) ⊆ SL(A2) (by the choice of σ), we conclude that σ1(sw) =
σ2(σ(sw)) ⊆ σ2(SL(A2)), and hence σ1(SL(A1)) ⊆ σ2(SL(A2)).

We now show that symbolic-inclusion implies structural inclusion. Suppose A1 �
A2. For each variable x ∈ Vars we introduce a new letter ax ∈ Σ′. We now define an
assignment σ2 to A2 such that for every x ∈ Vars, and for every sw1, sw2 ∈ (Σ′ ∪
Vars)∗, σ2 : (sw1, x, sw2) 7→ ax. Since A1 � A2, there exists an assignment σ1 such
that σ1(SL(A1)) ⊆ σ2(SL(A2)). To obtain a symbolic assignment σ to A1 such that
σ(SL(A1)) ⊆ SL(A2) we replace every occurrence of ax in σ1 by x. ut

To understand why we need to consider assignments over an extended alphabet Σ′,
consider the following example.

Example 10. Consider the DSAs in Fig. 12. Structural inclusion does not hold be-
tween (a) and (b). However, when considering assignments over Σ = {a} only, (a)
is symbolically-included in (b). Note that if we also consider assignments over, say
{a, b}, then, symbolic-inclusion ceases to hold as well, regaining the relation between
structural inclusion and symbolic-inclusion.

Proof (Theorem 6). Let H be a symbolic simulation from A1 to A2. We show that
there exists a symbolic assignment σ such that σ(SL(A1)) ⊆ SL(A2). Recall that
σ(SL(A1)) =

⋃
{σ(sw) | sw ∈ SL(A1)}. Hence, it suffices to find σ such that for

every sw ∈ SL(A1), σ(sw) ⊆ SL(A2).
Let sw = l1 . . . ln ∈ SL(A1) where each li ∈ Σ ∪Vars. First, we define a sequence

of simulation pairs h = h0 . . . hn, where h0 = (ι1, {ι2}), and for every 1 ≤ i ≤ n,
hi ∈ H is a li-witness for hi−1. The sequence is well defined, since by the definition
of H , a corresponding witness always exists. Note that if several witnesses exist, one of
them is chosen arbitrarily.

The idea is to track a symbolic word in A2 that matches sw , up to variables, by
following the simulation pairs in h. For this purpose, we first need to minimize the
simulation pairs to include only states that are relevant to the simulation of the partic-
ular word sw . Once this is done, any path in A2 through h defines a symbolic word



that matches sw up to variables, and accordingly defines a possible assignment for the
variables in sw .

We therefore first apply the following minimization algorithm on h: The algorithm
updates the second component of the hi’s from i = n− 1 to i = 0. For hn = (qn, Bn),
we remove all non-final states from Bn, and set B̃n to be the set of the remaining ones
in Bn. Suppose hi = (qi, Bi) and hi+1 = (qi+1, Bi+1), where hi+1 is a li+1-witness
for hi. Let B̃i+1 denote the updated Bi+1. Then we remove from Bi all the states that
contributed no states to B̃i+1. More specifically:

– If li+1 ∈ Σ, we let B̃i = {q2 ∈ Bi | ∃q′2 ∈ B̃i+1 s.t. δ2(q2, li+1) = q′2}.
– If li+1 ∈ Vars, we let B̃i = {q2 ∈ Bi | ∃q′2 ∈ B̃i+1 s.t. q2 is reachable from q2}.

Importantly, no set becomes empty as a result of the update, since B̃i+1 ⊆ Bi+1, which
ensures that every state in B̃i+1 is contributed by at least one state in Bi.

Once h is minimized as above, we greedily choose states

q20 = ι2 ∈ B̃0, q
2
1 ∈ B̃1, . . . , q

2
n ∈ B̃n

such that if li ∈ Σ, then δ2(q
2
i−1, li) = q2i , and otherwise, q2i is reachable from

q2i−1. This choice of states defines a symbolic word sw ′ that matches sw up to vari-
ables. Moreover, given this choice, for li ∈ Vars, each symbolic word s̃w i such that
δ2(q

2
i−1, s̃w i) = q2i is a possible match for li. We denote such s̃w i by match(li).
Now we are ready to define the desired symbolic assignment σ. Suppose that sw =

w1x1w2 . . . wkxkwk+1 where x1, . . . , xk ∈ Vars and w1, . . . , wk+1 ∈ Σ∗. We let sw j
and sw ′j be the following prefix and suffix of sw :

sw j = w1x1w2 . . . wj−1xj−1wj , sw ′j = wj+1xj+1wj+2 . . . wkxkwk+1.

Then for every 1 ≤ j ≤ n,

σ(sw j , xj , sw
′
j) = {match(xj)}.

We now get that σ(sw) = {sw ′} ⊆ SL(A2), as required. ut

Proof (Theorem 7). Let σ be a symbolic assignment such that σ(SL(A1)) ⊆ SL(A2).
Without loss of generality, we can assume that σ maps all variables and contexts to
singleton languages. This is because otherwise, we can reduce σ such that the resulting
assignment satisfy this singleton-language requirement. Since σ satisfies this singleton-
language requirement, we have that for every sw ∈ SL(A1), σ(sw) = {sw ′} for some
sw ′ ∈ SL(A2). We define a symbolic simulation H from A1 to A2 based on σ.

We start by removing from A1 and A2 all states that do not lie on any path from an
initial to an accepting state. In the rest of the proof, byA1 andA2 we refer to the pruned
DSAs. Clearly, SL(A1) and SL(A2) remain unchanged, thus σ(SL(A1)) ⊆ SL(A2)
still holds.

The idea is to consider for each state q1 ∈ Q1, all the symbolic words that lead to it
in A1, and for each of these words sw of length k let q1 be simulated by the set of all
states in A2 reached when traversing σ ↓k (sw ′) for some sw ′ ∈ SL(A1) where sw is
a prefix of sw ′.



Technically, for a symbolic word sw ′ = l1l2 . . . ln, and for 0 ≤ k ≤ n we define
σ ↓k (sw ′) as follows. σ ↓k (l1l2 . . . ln) = L1L2 . . . Lk where Li = {li} if li ∈ Σ, and
Li = L if li is a variable x and σ(l1...li−1, x, li+1...ln) = L. In particular, for k = 0,
σ ↓0 (l1l2 . . . ln) = {ε}, and for k = n, σ ↓n (l1l2 . . . ln) = σ(l1l2 . . . ln).

Since we consider an assignment σ whose image consists of singleton languages,
we abuse the notation and write σ(sw) or σ ↓k (sw) as a shorthand for the single word
in the set.

For a symbolic word sw , we define

ext(sw) = {sw ′ ∈ SL(A1) | sw is a prefix of sw ′},

which denotes the set of extensions of sw in SL(A1). Also, if sw is of length k, we
define

B(sw) = {δ2(ι2, σ ↓k (sw ′)) ∈ Q2 | sw ′ ∈ ext(sw)}

to be the set of states reached in A2 when following the symbolic word obtained by
applying σ to some extension sw ′ of sw up to the k’th symbol.

Let

H = {(δ1(ι1, sw), B(sw)) | sw ∈ (Σ ∪ Vars)∗ ∧ δ1(ι1, sw) is defined}.

In the rest of the proof, we will show that H is a symbolic simulation from A1 to A2.
The first requirement to check is thatH ⊆ Q1×(2Q2 \{∅}). Pick sw ∈ (Σ∪Vars)∗

such that δ1(ι1, sw) is defined. Since we keep only those states in A1 that lie in a path
from the initial state to an accepting state, there exists at least one sw ′ ∈ ext(sw) ⊆
SL(A1), which in turn implies that σ(sw ′) ∈ SL(A2). Then, δ2(ι2, σ ↓k (sw ′)) is
defined, and it should belong to B(sw). Hence, B(sw) 6= ∅.

The next requirement is that (ι1, {ι2}) ∈ H . This holds because

δ1(ι1, ε) = ι1 ∧ B(ε) = {δ2(ι2, σ ↓0 (sw ′)) ∈ Q2 | sw ′ ∈ ext(ε)} = {ι2}.

To prove the remaining requirements, consider (q1, B2) ∈ H . We show that all the
remaining requirements of a symbolic simulation hold. Let sw ∈ (Σ ∪ Vars)∗ be a
symbolic word such that q1 = δ1(ι

1, sw), and B2 = B(sw). Also, let k be the length
of sw .

If q1 is a final state, the word sw is in SL(A1). Hence, in this case, σ(sw) ∈ SL(A2),
so δ(ι2, σ(sw)) should be a final state. But, δ(ι2, σ(sw)) ∈ B(sw). It means thatB(sw)
should contain a final state, as required.

Suppose δ1(q1, a) = q′1 for some a ∈ Σ. Then (δ1(ι1, swa), B(swa)) ∈ H is an
a-witness for (q1, B2). First, δ1(ι1, swa) = δ1(δ1(ι1, sw), a) = δ1(q1, a) = q′1, and
hence it is defined. It remains to show that

B(swa) ⊆ {δ2(q2, a) | q2 ∈ B2} = {δ2(q2, a) | q2 ∈ B(sw)}.

Let q′2 ∈ B(swa). We need to show that q′2 ∈ {δ2(q2, a) | q2 ∈ B(sw)}, i.e. that
there exists q2 ∈ B(sw) such that q′2 = δ2(q2, a). Since q′2 ∈ B(swa), there exists
sw ′ ∈ ext(swa) such that

q′2 = δ2(ι2, σ ↓k+1 (sw ′)) = δ2(ι2, σ ↓k (sw ′)a) = δ2(δ2(ι2, σ ↓k (sw ′)), a).



Moreover, sw ′ ∈ ext(sw) since ext(swa) ⊆ ext(sw). So, δ2(ι2, σ ↓k (sw ′)) ∈ B(sw).
Thus for q2 = δ2(ι2, σ ↓k (sw ′)) ∈ B(sw), we have that q′2 = δ2(q2, a).

Suppose δ1(q1, x) = q′1 for some x ∈ Vars. Then (δ1(ι1, swx), B(swx)) ∈ H is an
x-witness for (q1, B2). First,

δ1(ι1, swx) = δ1(δ1(ι1, sw), x) = δ1(q1, x) = q′1.

Hence it is defined. It remains to show that every state q′2 ∈ B(swx) is reachable in
A2 from some q2 ∈ B(swx). Let q′2 ∈ B(swx). Since q′2 ∈ B(swx), there exist
sw ′ ∈ ext(swx) and swx such that

q′2 = δ2(ι2, σ ↓k+1 (sw ′))

= δ2(ι2, σ ↓k (sw ′)swx) = δ2(δ2(ι2, σ ↓k (sw ′)), swx).

Moreover, sw ′ ∈ ext(sw) since ext(swx) ⊆ ext(sw). So, δ2(ι2, σ ↓k (sw ′)) ∈
B(sw). Thus for q2 = δ2(ι2, σ ↓k (sw ′)) ∈ B(sw), we have that q′2 = δ2(q2, swx),
which means q′2 is reachable from q2. ut

Proof (Lemma 1). We show that the consistency property ensures that σ defined as
described above indeed satisfies σ(sw) ⊆ SL(A2) for every sw ∈ SL(A1). To see this,
consider sw = w1x1w2x2w3 . . . wnxnwn+1 ∈ SL(A1). Let qi = δ1(ι

1, w1 . . . wi) be
the state reached in A1 after traversing the prefix of sw up to wi (before traversing xi),
and let q′i = δ1(ι

1, w1 . . . wixi) be the state reached after traversing xi as well. Let Bi
be the unique subset of Q2 such that w1 . . . wi ∈ in(qi, Bi), let B′i be the unique subset
of Q2 such that (q′i, B

′
i) is a xi-witness for (qi, Bi), and let q̃′i ∈ B′i be the unique state

of Q2 such that wi+1 . . . wn+1 ∈ out(q′i, B′i, q̃′i). Moreover, let q̃i ∈ Bi be the unique
state that contributed q̃′i to B′i. Then by definition of σ, σ assigns lang(q̃i, q̃′i) 6= ∅ to
xi in its context in sw . We denote this assignment σ(xi), omitting the corresponding
(unique) context. Thus, q̃1, q̃′1, . . . , q̃i, q̃

′
i, . . . , q̃n, q̃

′
n is a sequence of states ofQ2, where

we know that for every i and for every sw i ∈ σ(xi), δ2(q̃i, sw i) = q̃′i. In order to show
that σ(sw) = {w1}σ(x1){w2} . . . {wn}σ(xn{{wn+1} ⊆ SL(A2), it remains to show
that (1) δ2(ι2, w1) = q̃1, (2) δ2(q̃′i, wi+1) = q̃i+1, and (3) δ2(q̃′n, wn+1) ∈ F2.

Properties (1) and (3) follow immediately from the definition of in and out and
the properties that w1 ∈ in(q1, B1) and wn+1 ∈ out(q′n, B

′
n, q̃
′
n). We show (2), i.e.

that δ2(q̃′i, wi+1) = q̃i+1. By definition of the in sets based on the witness graph, we
know that (qi, Bi) is the unique w1 . . . wi-witness for (ι1, {ι2}), and (qi+1, Bi+1) is
the unique w1 . . . wixiwi+1-witness for (ι1, {ι2}). Moreover, recall that (q′i, B

′
i) is the

unique xi-witness for (qi, Bi). This means that (q′i, B
′
i) is also the unique w1 . . . wixi-

witness for (ι1, {ι2}). Due to our particular choice of witnesses forH , we conclude that
(qi+1, Bi+1) is the unique wi+1-witness of (q′i, B

′
i).

The consistency requirement ensures that since δW ((q′i, B
′
i), wi+1) = (qi+1, Bi+1)

then in particular for q̃i+1 ∈ Bi+1, we have that {wi+1} · out(qi+1, Bi+1, q̃i+1) ⊆⋃
q̃∈B′i
{out(q′i, B′i, q̃) | (qi+1, Bi+1, q̃i+1) ∈ δC((q′i, B′i, q̃), wi+1)}. In our case,

xi+1wi+2 . . . wn+1 ∈ out(qi+1, Bi+1, q̃i+1).
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Fig. 13. Example demonstrating the need for consistency in computation of outgoing contexts
during unknown elimination.

Therefore,

wi+1xi+1wi+2 . . . wn+1

∈
⋃
q̃∈B′i

{out(q′i, B′i, q̃) | (qi+1, Bi+1, q̃i+1) ∈ δC((q′i, B′i, q̃), wi+1)}.

This means that there exists q̃ ∈ B′i such that wi+1xi+1wi+2 . . . wn+1 ∈ out(q′i, B′i, q̃)
and (qi+1, Bi+1, q̃i+1) ∈ δC((q′i, B′i, q̃), wi+1). Since out is a partition and

wi+1xi+1wi+2 . . . wn+1 ∈ out(q′i, B′i, q̃′i),

we conclude that q̃ = q̃′i satisfies the above, and in particular q̃i+1 = δ2(q̃
′
i, wi+1),

which concludes (2). ut

Example 11. To understand the importance of the consistency requirement of the out-
going contexts in the unknown elimination algorithm, consider the DSAs in Fig. 13.
DSA (a) is symbolically-included in (b). A possible simulation between the two is:

H = { (0, {0}), (1, {1}), (2, {2, 5}), (3, {3, 6}), (4, {4, 7})}.

We use H to perform unknown elimination in (a) based on (b). When considering the
symbolic transition (1, x, 2) in (a), we obtain in(1, {1}) = a, and out(2, {2, 5}, 2) =
out(2, {2, 5}, 5) = by. Similarly, based on the symbolic transition (3, y, 4), we obtain
in(3, {3, 6}) = axb, and out(4, {4, 7}, 4) = out(4, {4, 7}, 7) = ε. In both cases, the
out sets are not pairwise disjoint. If we arbitrarily eliminate the intersections we can
get for example out(2, {2, 5}, 2) = by, out(2, {2, 5}, 5) = ∅, and out(4, {4, 7}, 4) =
∅, out(4, {4, 7}, 7) = ε. This will result in an assignment σ(a, x, by) = c, σ(axb, y, ε) =
f . However σ(axby) = acbf which is not included in the symbolic language of (b).
This happens since the out sets computed for the x-transition are not consistent with
those computed for the y-transition, even though the latter is reachable from the former.
A consistent update of the out sets can be: out(2, {2, 5}, 2) = by, out(2, {2, 5}, 5) = ∅,
and out(4, {4, 7}, 4) = ε, out(4, {4, 7}, 7) = ∅, resulting in

σ(a, x, by) = c, σ(axb, y, ε) = d,

in which case σ(axby) = acbd.



Proof (Theorem 5). We first show that [union(A1, A2)] w [Ai] for every i ∈ {1, 2}.
This follows since SL(union(A1, A2)) = SL(A1) ∪ SL(A2) ⊇ SL(Ai) and hence by
Corollary 1, Ai � union(A1, A2).

We now show that if [A] w [Ai] for every i ∈ {1, 2} then

[A] w [union(A1, A2)].

It suffices to show that union(A1, A2) � A. Since [A] w [Ai], we conclude that Ai �
A. Consider a concrete assignment σ to A. Since [A] w [Ai], Ai � A, thus there exists
an assignment σi such that σi(SL(Ai)) ⊆ σ(SL(A)). This means that σ1(SL(A1)) ∪
σ2(SL(A2)) ⊆ σ(SL(A)) (*). Consider the assignment σ′ to union(A1, A2) obtained
by σ′1 ∪ σ′2, where σ′1 is identical to σ1, except that it is undefined for symbolic words
in SL(A2), and σ′2 is identical to σ2, except that it is defined only for symbolic words
in SL(A2). This ensures that the assignment is well defined. In addition,

σ′(SL(union(A1, A2)) = σ′(SL(A1) ∪ SL(A2))

= σ′(SL(A1)) ∪ σ′(SL(A2))

= σ1(SL(A1) \ SL(A2)) ∪ σ2(SL(A2))

⊆ σ1(SL(A1)) ∪ σ2(SL(A2)) ⊆ σ(SL(A)).

We conclude that union(A1, A2) � A. ut

Proof (Lemma 2). Let π, π′ be accepting paths in A such that π � π′. Let SL(π) =
{sw},SL(π′) = {sw ′}, where sw , sw ′ ∈ SL(A). Since A is deterministic, sw 6= sw ′.
Therefore SL(π) = {sw} ⊆ SL(A) \ {sw ′} = SL(A) \ SL(π) = SL(A \ π). By
Corollary 1, π � A \ π.

Let π be an accepting path in A such that π � A \ π. Then there exists a symbolic
assignment σ to π such that σ(SL(π)) ⊆ SL(A \ π) = SL(A) \ SL(π) (*). Further-
more, by Lemma 3, there exists such an assignment that maps each word in SL(π) to
a singleton language. Suppose SL(π) = {sw}, and assume that σ(sw) = {sw ′}, then
σ(SL(π)) = σ(sw) = {sw ′}. Thus by (*), sw ′ ∈ SL(A) \ {sw}. This ensures that sw ′

is in SL(A) and that it is 6= sw . Therefore, there exists an accepting path π′ 6= π in A
such that SL(π′) = {sw ′}. The same symbolic assignment σ also witnesses structural
inclusion of π in π′ since σ(SL(π)) = {sw ′} ⊆ SL(π′). We conclude that π � π′. ut

Proof (Theorem 8). First, A \ π � A since SL(A \ π) ⊆ SL(A) (see Corollary 1). For
the other direction, recall that π � A\π (by Lemma 2) and hence there exists a symbolic
assignment σ such that σ(SL(π)) ⊆ SL(A \ π). We define a symbolic assignment σ′

that agrees with σ on the single word in SL(π), and assigns to any other x ∈ Vars in
any other context {x}. Therefore, σ′(SL(A)) = σ(SL(π)) ∪ SL(A \ π) = SL(A \ π,
and σ′ witnesses structural inclusion of A in A \ π. We conclude that A � A \ π.

We show that JA \πK ⊆ JAK. Let L ∈ JA \πK, and let σL be a concrete assignment
such that σL(SL(A \ π)) = L. Moreover, let σ be such that σ(SL(π)) ⊆ SL(A \ π) (as
defined above), where we assume that σ assigns a singleton language to the single word
in SL(π). We use the composition of σL over σ to define a concrete assignment for the
single word in SL(π), and use σL for any other word in SL(A). The result is a concrete



assignment σ′L such that σ′L(SL(A)) = σ′L(SL(π)) ∪ σ′L(A \ π) = σL(σ(SL(π))) ∪
σL(A \ π) = L, where the last equality holds since σ(SL(π)) ⊆ SL(A \ π) and hence
σL(σ(SL(π))) ⊆ SL(A \ π) = L. Therefore, L ∈ JAK as well. ut

Proof (Theorem 9). SupposeA � A\π, and let SL(π) = {sw}. Assume to the contrary
that the path π is not redundant inA. This means that π 6� A\π. Thus, there is an assign-
ment σ′ toA\π such that for every assignment σ to π, σ(SL(π)) = σ(sw) 6⊆ σ′(SL(A\
π)) (*). This implies that for every assignment σ toA, σ(SL(A)) 6⊆ σ′(SL(A\π)) (oth-
erwise σ(sw) ⊆ σ(SL(A)) ⊆ σ′(SL(A \ π)) in contradiction to (*)). We conclude that
A 6� A \ π, in contradiction to the assumption. ut

Proof (Theorem 4). Reflexivity and transitivity follow immediately from the properties
of� over DSAs. We prove that unlike the latter,v over DSA/ ≡ is also antisymmetric.
Suppose [A1] v [A2] and [A2] v [A1]. Then A1 � A2 and vice versa, hence A1 ≡ A2

and thus [A1] = [A2]. ut


