
Semantics of Separation-logic Typing and Higher-order Frame Rules

Lars Birkedal Noah Torp-Smith
IT University of Copenhagen
{birkedal, noah}@itu.dk

Hongseok Yang
ERC-ACI, Seoul National University

hyang@ropas.snu.ac.kr

Abstract

We show how to give a coherent semantics to programs
that are well-specified in a version of separation logic for a
language with higher types: idealized algol extended with
heaps (but with immutable stack variables). In particular,
we provide simple sound rules for deriving higher-order
frame rules, allowing for local reasoning.

1. Introduction

Separation logic [20, 18, 5, 14, 9, 4] is a Hoare-style pro-
gram logic, and variants of it have been applied to prove cor-
rect interesting pointer algorithms such as copying a dag,
disposing a graph, the Schorr-Waite graph algorithm, and
Cheney’s copying garbage collector. The main advantage
of separation logic compared to ordinary Hoare logic is that
it facilitates local reasoning, formalized via the so-called
frame rule using a connective called separating conjunc-
tion. The development of separation logic has mostly fo-
cused on low-level languages with heaps and pointers, al-
though in recent work [10] it was shown how to extend sep-
aration logic to a language with a simple kind of procedures,
and a second-order frame rule was proved sound.

Our aim here is to extend the study of separation logic
to high-level languages, in particular to higher-order lan-
guages, in such a way that a wide collection of frame rules
are sound, thus allowing for local reasoning in the presence
of higher-order procedures. For concreteness, we choose
to focus on the language of idealized algol extended with
heaps and pointers and we develop a semantics for this lan-
guage in which all commands and procedures are appropri-
ately local. Our approach is to refine the type system of
idealized algol extended with heaps, essentially by making
specifications be types, and give semantics to well-specified
programs. Thus we develop a separation-logic type system
for idealized algol extended with heaps. It is a dependent
type theory and the types include Hoare triples, rules cor-
responding to the rules of separation logic, and subtyping
rules formalizing higher-order versions of the frame rule of
separation logic.

Our type system is related to modern proposals for
type systems for low-level imperative languages, such as
TAL [7], in that types may express state changes (since they
include forms of Hoare triples as types). The type system
for TAL was proved sound using an operational semantics.
We provide a soundness proof of our type system using a de-
notational semantics which we, moreover, formally relate to
the standard semantics for idealized algol [11, 15]. The de-
notational semantics of a well-typed program is given by in-
duction on its typing derivation and the relation to the stan-
dard semantics for idealized algol is then used to prove that
the semantics is coherent (i.e., is independent of the chosen
typing derivation). We should perhaps stress that soundness
is not a trivial issue: Reynolds has shown [10] that already
the soundness of the second-order frame rule is tricky, by
proving that if a proof system contains the second-order
frame rule and the conjunction rule, together with the or-
dinary frame rule and rule of Consequence, then the system
becomes inconsistent. The semantics of our system proves
that if we drop the conjunction rule, then we get soundness
of all higher-order frame rules, including the second-order
one.

In idealized algol, variables are allocated on a stack and
they are mutable (i.e., one can assign to variables). We only
consider immutable variables (as in the ML programming
language) for simplicity. The reason for this choice is that
all mutation then takes place in the heap and thus we need
not bother with so-called modifies clauses on frame rules,
which become complicated to state already for the second-
order frame rule [10].

We now give an intuitive overview of the technical de-
velopment. Recall that the standard semantics of idealized
algol is given using the category CPO of pointed complete
partial orders and continuous functions. Thus types are in-
terpreted as pointed complete partial orders and terms (pro-
grams) are interpreted as continuous functions. The seman-
tics of our refined type system is given by refining the stan-
dard semantics. A type θ in our refined type system speci-
fies which elements of the “underlying” type in the standard
semantics satisfy the specification corresponding to θ and
are appropriately local (to ensure soundness of the frame

rules), that is, it “extracts” those elements. Moreover, the
semantics also equates elements, which cannot be distin-
guished by clients, that is, it quotients some of the extracted
elements. Corresponding to these two aspects of the se-
mantics we introduce two categories, C and D, where C just
contains the extracted elements and D is a quotient of C.
Thus there is a faithful functor from C to CPO and a full
functor from C to D. We show that the categories C and
D are cartesian closed and have additional structure to in-
terpret the higher-order frame rules, and that the mentioned
functors preserve all this structure. The semantics of our
type system is then given in the category D and the functors
relating C, D, and CPO are then used to prove coherence of
the semantics. In fact, as mentioned above, our type system
is a dependent type theory, with dependent product type Πiθ
intuitively corresponding to the specification given by uni-
versally quantifying i in the specification corresponding to
θ (the usual Curry-Howard correspondence). For this rea-
son the semantics is really not given in D but rather in the
family fibration Fam(D) → Set over D.

The remainder of this paper is organized as follows. In
Section 2, we define the storage model and assertion lan-
guage used in this paper, thus setting the stage for our
model. In Section 3, we provide the syntax of the version
of idealized algol we use in this paper. In particular, we
introduce our separation-logic type system, which includes
an extended subtyping relation. In Section 4, we present
the main contribution of the paper, a model which allows a
sound interpretation, which we also show to be coherent and
in harmony with the standard semantics. In the last sections
we give pointers to related and future work, and conclude.

2. Storage Model and Assertion Language

We use the usual storage model of separation logic with
one minor modification: we make explicit the shape of stack
storage. Let Ids = {i, j, . . .} be a countably infinite set of
variables, and let ∆ range over finite subsets of Ids. We use
the following semantic domains:

η ∈ [[∆]] def= ∆ → Int ,
h ∈ Heap def= Nat ⇀fin Int ,

(η, h) ∈ State(∆) def= [[∆]] × Heap.

The set ∆ models the set of variables in scope, and an ele-
ment η in [[∆]] specifies the values of those stack variables.
We sometimes call η an environment instead of a stack, in
order to emphasize that all variables are immutable. An el-
ement h in Heap denotes a heap; the domain of h specifies
the set of allocated cells, and the actual action of h deter-
mines the contents of those allocated cells. We recall the
disjointness predicate h#h′ and the (partial) heap combi-
nation operator h · h′ from separation logic. The predicate

h#h′ means that dom(h) ∩ dom(h′) = ∅; and, h · h′ is de-
fined only for such disjoint heaps h and h′, and in that case,
it denotes the combined heap h ∪ h′.

Properties of states are expressed using the assertion lan-
guage of classical separation logic [20]: 1

E ::= i | 0 | 1 | E + E,
P ::= E = E | E �→ E | emp | P ∗ P

| true | P ∧ P | ¬P | ∀i. P.

The assertion E �→ E′ means that the current heap has only
one cell E and, moreover, that the content of the cell is E′.
When we do not care about the contents, we write E �→ −;
formally, this is an abbreviation of ¬(∀i.¬E �→ i) for some
i not occurring in E. The next two assertions, emp and
P ∗ Q, are the most interesting features of this assertion
language. The empty predicate emp means that the current
heap is empty, and the separating conjunction P ∗Q means
that the current heap can be partitioned into two parts, one
satisfying P and another satisfying Q.

As in the storage model, we make explicit which set of
free variables we are considering an expression or an as-
sertion under. Thus, letting fiv be a function that takes an
expression or an assertion and returns the set of free vari-
ables, we often write assertions as ∆
 P to indicate that
fiv(P) ⊆ ∆, and that P is currently being considered for en-
vironments of the shape ∆. Likewise, we often write ∆
 E
for expressions.

The interpretations of an expression ∆
 E and an as-
sertion ∆
 P are of the forms

[[∆
 E]] : [[∆]] → Int , [[∆
 P]] : [[∆]] → P(Heap).

The interpretation of expressions is standard, just like that
of assertions. We include part of the definition of the inter-
pretation of assertions here.

[[∆
 E �→ E′]]η = {[[[∆
 E]]η→[[∆
 E′]]η]}
[[∆
 emp]]η = {[]}

[[∆
 P ∗ P ′]]η =
{h ∗ h′ | h#h′ ∧ h ∈ [[∆
 P]]η ∧ h′ ∈ [[∆
 P ′]]η}

[[∆
 ∀i. P]]η =

3. Programming Language

The programming language is Reynolds’s idealized al-
gol [15] adapted for “separation-logic typing.” It is a call-
by-name typed lambda calculus, extended with heap op-
erations, dependent functions, and Hoare-triple types. As
explained in the introduction, we only consider immutable
variables.

1The assertion language of separation logic also contains the separating
implication −∗ . Since that connective does not raise any new issues in
connection with the present work, we omit it here.

The types of the language are defined as follows. We
write ∆
 θ : Type for a type θ in context ∆. The set of
types is defined by the following inference rules (in which
P and Q range over assertions):

fiv(P) ⊆ ∆ fiv(Q) ⊆ ∆

∆
 {P}−{Q}:Type

∆
 θ:Type fiv(P) ⊆ ∆

∆
 θ ⊗ P :Type

∆ ∪ {i}
 θ : Type i /∈ ∆

∆
 Πiθ:Type

∆
 θ:Type ∆
 θ′:Type

∆
 θ → θ′:Type

Note that the types are dependent types, in that they may
depend on variables i (see the first rule above). One way to
understand a type is to read it as a specification for terms,
i.e., through the Curry-Howard correspondence. A Hoare-
triple type {P}−{Q} is a direct import from separation
logic; it denotes a set of commands c that satisfy the Hoare
triple {P}c{Q}. An invariant extension θ ⊗ P is satisfied
by a term M if and only if for one part of the heap, the be-
havior of M satisfies θ and for the other part of the heap,
M maintains the invariant P . For instance, {P}−{Q}⊗P0

intuitively consists of commands that given an input state
satisfying P ∗ P0, so that the input state may be split into
a P -part and a P0-part, change the P -part so that the result
satisfies Q; and for the P0-part, the commands modify it
freely, but maintain the invariant P0.

The type Πiθ is a dependent product type, as in stan-
dard dependent type theory (under Curry-Howard it corre-
sponds to the specification given by universally quantify-
ing i in the specification corresponding to θ). Intuitively,
Πiθ denotes functions from integers such that given an in-
teger n, they return a value satisfying θ[n/i]. For example,
the type Πi{j �→ −}−{j �→ i!} specifies a factorial func-
tion that computes the factorial of i and stores the result in
the heap cell j.

The pre-terms of the language are given by the following
grammar:

M ::=x | λx: θ.M | MM | λi.M | ME
| fixM | ifz E M M | M ; M | let i = new inM
| free(E) | [E] := E | let i = [E] inM,

where E is an integer expression defined in Section 2. The
language has the usual constructs for a higher-order imper-
ative language with heap operations, but it has two distinct
features. First, it treats the integer expressions as “second
class”: the terms M never have the integer type, and all inte-
ger expressions inside a term are from the separate grammar
for E defined in Section 2. Second, no “integer variables”
i can be modified in this language; only heap cells can be
modified. Note that the language has two forms of abstrac-
tion and application, one for general terms and the other for
integer expressions. A consequence of this stratification is
that all integer expressions terminate, because the grammar
for E does not contain the recursion operator.

The language has four heap operations. Command
let i = new in M allocates a heap cell, binds i to the ad-
dress of the allocated cell, and executes the command M .2

An allocated cell i can be disposed by free(i). The remain-
ing two commands access the content of a cell. The com-
mand [i] := E′ changes the content of cell i by E′; and
let j = [i] inM reads the content of cell i, binds j to the
read value, and executes M . Note that the allocation and
lookup commands involve the “continuation”, and make the
bound variable available in the continuation; such indirect-
style commands are needed because all variables are im-
mutable.

The typing rules of the language decide a judgment of
the form Γ
∆ M : θ, where Γ is a list of type assignments
to identifiers Γ = x1 : θ1, . . . , xn : θn, and where the set ∆
contains all the free variables appearing in Γ, M, θ.

The type system is shown in Figure 1. For notational
simplicity we have omitted some obvious side-conditions
of the form ∆
 θ : Type which ensure that, for a judgment
Γ
∆ M : θ, the set ∆ always contains all the free vari-
ables appearing in Γ, M, θ, and that the type assignment Γ
is always well-formed. There are three classes of rules. The
first class consists of the rules from the simply typed lambda
calculus extended with dependent product types and recur-
sion. The second class consists of the rules for the imper-
ative constructs, all of which come from separation logic.
The last class consists of the subsumption rule based on the
subtyping relation ∆, which is the most interesting part of
our type system. The proof rules for ∆ define a preorder
between types with free variables in ∆, and include all the
usual structural subtyping rules [13, chp. 15]. The rules
specific to our system are: the encoding of Consequence
in Hoare logic; the generalized frame rule that adds an in-
variant to all types; and the distribution rules for an added
invariant assertion.

The generalized frame rule, θ ∆ θ⊗P0, means that if a
program satisfies θ and an assertion P0 does not “mention”
any cells described by θ, then the program preserves P0.
Note that this rule indicates that the types in our system are
tight [5, 20]: if a program satisfies θ, it can only access
heap cells “mentioned” in θ. This is why an assertion P0

for “unmentioned” cells is preserved by the program. For
instance, if a program M has a type of the form

θ1 → . . . → θn → {P}−{Q},
the tightness of the type says that all the cells that M can
directly access must appear in the precondition P . Thus, if
no cells in an assertion P0 appear in P , program M main-
tains P0, as long as argument procedures maintain it. Such
a fact can, indeed, be inferred by the generalized frame rule

2We consider single-cell allocation only in order to simplify the pre-
sentation; it is straightforward to adapt our results to a language with allo-
cation of n consecutive cells.

(fiv(Γ, θ) ⊆ ∆)
Γ, x: θ
∆ x : θ

Γ, x: θ
∆ M : θ′

Γ
∆ λx: θ.M : θ → θ′
Γ
∆ M : θ′ → θ Γ
∆ M ′ : θ′

Γ
∆ MM ′ : θ

Γ
∆∪{i} M : θ′
(fiv(Γ) ⊆ ∆)

Γ
∆ λi.M : Πiθ
′

Γ
∆ M : Πiθ
(fiv(E) ⊆ ∆)

Γ
∆ ME : θ[E/i]

Γ
∆ M : θ → θ

Γ
∆ fix M : θ

Γ
∆ M : {P ∧ E=0}−{Q} Γ
∆ M ′ : {P ∧ E �=0}−{Q}
Γ
∆ ifz E M M ′ : {P}−{Q}

Γ
∆ M : {P}−{P ′} Γ
∆ M ′ : {P ′}−{Q}
Γ
∆ (M ; M ′) : {P}−{Q}

Γ
∆∪{i} M : {P ∗ i �→ −}−{Q}
(i �∈ fiv(Γ, P, Q))

Γ
∆ let i = new inM : {P}−{Q}
Γ
∆∪{i} M : {P ∗ E �→ i}−{Q}

(i �∈ fiv(Γ, E, P, Q))
Γ
∆ let i = [E] inM : {P ∗ E �→ −}−{Q}

(fiv(Γ, E) ⊆ ∆)
Γ
∆ free(E) : {E �→ −}−{emp} (fiv(Γ, E, E′) ⊆ ∆)

Γ
∆ [E] := E′ : {E �→ −}−{E �→ E′}
Γ
∆ M : θ θ ∆ θ′

Γ
∆ M : θ′

where ∆ is the usual structural subtyping relation [13, chp. 15] for types over ∆, extended with the following rules:

{P ′}−{Q′} ∆ {P}−{Q} (when for all η ∈ [[∆]], [[P]]η ⊆ [[P ′]]η and [[Q′]]η ⊆ [[Q]]η)
θ ∆ θ ⊗ P ({P}−{Q}) ⊗ P0 �∆ {P ∗ P0}−{Q ∗ P0} (Πiθ) ⊗ P �∆ Πiθ ⊗ P

(θ ⊗ Q) ⊗ P �∆ θ ⊗ (Q ∗ P) (θ → θ′) ⊗ P �∆ (θ ⊗ P → θ′ ⊗ P)

Figure 1. Typing Rules

together with the distribution rules:

θ1 → . . . → θn → {P}−{Q}
∆ (∵ θ ∆ θ ⊗ P0)

(θ1 → . . . → θn → {P}−{Q}) ⊗ P0

∆ (∵ (θ → θ′) ⊗ P0 ∆ (θ ⊗ P0 → θ′ ⊗ P0))
(θ1 ⊗ P0 → . . . → θn ⊗ P0 → {P}−{Q} ⊗ P0)

∆ (∵ {P}−{Q} ⊗ P0 ∆ {P ∗ P0}−{Q ∗ Q0})
(θ1 ⊗ P0 → . . . → θn ⊗ P0 → {P ∗ P0}−{Q ∗ P0}).

The generalized frame rule, the distribution rules, and the
structural subtyping rule for function types all together give
many interesting higher-order frame rules, including the
second-order frame rule. The common mechanism for ob-
taining such a rule is: first, add an invariant assertion by the
generalized frame rule, and then, propagate the added asser-
tion all the way down to a base triple type by the distribution
rules. The structural subtyping rule for the function type al-
lows us to apply this construction for a sub type-expression
in an appropriate covariant or contravariant way. For in-
stance, we can derive a third-order frame rule as follows:

({P1}−{Q1} → {P2}−{Q2}) → {P3}−{Q3}
∆ (∵ θ ∆ θ ⊗ P)(

({P1}−{Q1} → {P2}−{Q2}) → {P3}−{Q3}
)
⊗ P

∆ (∵ (θ → θ′) ⊗ P ∆ (θ ⊗ P → θ′ ⊗ P))
({P1}−{Q1}⊗P → {P2}−{Q2}⊗P) → {P3}−{Q3}⊗P
∆ (∵ structural subtyping)
({P1}−{Q1}⊗P → {P2}−{Q2}) → {P3}−{Q3}⊗P
∆ (∵ {P0}−{Q0} ⊗ P �∆ {P0 ∗ P}−{Q0 ∗ P})
({P1∗P}−{Q1∗P} → {P2}−{Q2}) → {P3∗P}−{Q3∗P}.

4. Semantics

In this section we present our main contribution, the
semantics that formalizes the underlying intuitions of the
separation-logic type system. In particular, we formalize
the following three intuitive properties of the type system:

1. The types in the separation-logic type system refine the
conventional types. A separation-logic type specifies
a stronger property of a term, and restricts clients of
such terms by asking them to only depend upon what
can be known from the type. For instance, the type
{1 �→ 3}−{1 �→ 0} of a term M indicates not just that
M is a command, but also that M stores 0 to cell 1 if
cell 1 contains 3 initially. Moreover, this type forces
clients to run M only when cell 1 contains 3.

2. The higher-order frame rules in the type system imply
that all programs behave locally.

3. The type system, however, does not change the com-
putational behavior of each program.

We formalize the first intuitive property by means of partial
equivalence relations. Roughly, each type θ in our seman-
tics determines a partial equivalence relation (in short, per)
over the meaning of the “underlying type” θ. The domain
of a per over a set A is a subset of A; this indicates that
θ indeed specifies a stronger property than θ. The other
part of a per, namely the equivalence relation part, explains
that the type system restricts the clients, so that no type-
checked clients can tell apart two equivalent programs. For

instance, {1 �→ 3}−{1 �→ 0} determines a per over the set
of all commands. The domain of this per consists of com-
mands satisfying {1 �→ 3}−{1 �→ 0}, and the per equates
two such commands if they behave identically when cell 1
contains 3 initially. The equivalence relation implies that
type-checked clients run a command of {1 �→ 3}−{1 �→ 0}
only when cell 1 contains 3.

We justify the other two intuitive properties by proving
technical lemmas about our semantics. For number 2, we
prove the soundness of all the subtyping rules, including
the generalized frame rule and the distribution rules. For
number 3, we prove that our semantics has been obtained
by extracting and then quotienting semantic elements in the
conventional semantics; yet, this extraction and quotienting
does not reduce the computational information of semantic
elements.

In this section, we first define categories C and D, cor-
responding to the extraction and quotienting, respectively.
Next we give the interpretation of types and terms. Finally,
we connect our semantics with the conventional semantics,
and prove that our semantics is indeed obtained by extract-
ing and quotienting from the conventional semantics.

4.1. Categories C and D

We construct C and D by modifying the category CPO of
pointed cpos and continuous functions. For C, we impose a
parameterized per on each cpo, and extract only those mor-
phisms in CPO that preserve such pers (at all instantiations).
Each per formalizes that each type θ corresponds to a spec-
ification over the underlying type θ, and the preservation
of the pers ensures that all the morphisms in C satisfy the
corresponding specifications. The parameterization of each
per guarantees that all morphisms in C behave locally (in
the sense of higher-order frame rules). The other category
D is a quotient of C. Intuitively, the quotienting of C reflects
that our type system also restricts the clients of a term; thus,
more terms cannot be distinguished observationally.

We define the “extracting” category C first. Let Pred be
the set of predicates, i.e., subsets of Heap. We recall the
semantic version of separating connectives, emp and ∗, on
Pred . For p, q ∈ Pred ,

h ∈ emp ⇐⇒ h = λn.undef
h ∈ p ∗ q ⇐⇒ ∃h1h2. h1 ∗ h2 = h ∧ h1 ∈ p ∧ h2 ∈ q.

The category C is defined as follows:

• objects: (A, R) where A is a pointed cpo, and R is a
family of admissible pers3 indexed by predicates such
that

∀p, q ∈ Pred . R(p) ⊆ R(p ∗ q);

3A per R0 on A is admissible iff (⊥,⊥) ∈ R0 and R0 is a sub-cpo of
A × A.

• morphisms: f : (A, R) → (B, S) is a continuous func-
tion from A to B such that

∀p. f [R(p) → S(p)]f,

i.e., f maps R(p) related elements to S(p) related ele-
ments.

Intuitively, each object (A, R) denotes a specification pa-
rameterized by invariant extension. The first component
A denotes the underlying set from which we select “cor-
rect” elements. R(emp) denotes the initial specification of
this object where no invariant is added by the frame rule.
The domain |R(emp)| of per R(emp) indicates which ele-
ments satisfy the specification, and the equivalence relation
on |R(emp)| expresses how the specification is also used
to limit the interaction of a client: the client can only do
what the specification guarantees, so more elements become
equivalent observationally. The per R(p) at another predi-
cate p denotes an extended specification by the invariant p.

We illustrate the intuition of C with a “Hoare-triple” ob-
ject [p, q] for some p, q ∈ Pred . Let comm be the set of all
functions c from Heap to P(Heap ∪ {wrong}) that satisfy
safety monotonicity and the frame property:

• Safety Monotonicity: for all h, h0 ∈ State, if h#h0

and wrong �∈ c(h), then wrong �∈ c(h ∗ h0);

• Frame Property: for all h, h0, h
′
1 ∈ State, if h#h0,

wrong �∈ c(h), and h′
1 ∈ c(h ∗h0), then there exists h′

such that h′
1 = h0 ∗ h′ and h′ ∈ c(h).

Intuitively, comm contains all commands that satisfy the
(first-order) frame rule [9], and it forms the underlying set
for all Hoare-triple specifications. Indeed, it is the first com-
ponent of the Hoare-triple object [p, q], where the order on
comm is given by:

c � c′ ⇐⇒ ∀h. c(h) ⊆ c′(h).

The real meaning of [p, q] is given by the second component
R. For each predicate p0, the domain of R(p0) consists of
all “commands” in comm that satisfy {p ∗ p0}−{q ∗ p0}:

c ∈ |R(p0)| ⇐⇒ ∀h ∈ p ∗ p0. c(h) ⊆ q ∗ p0.

The equivalence relation R(p0) relates c and c′ in |R(p0)|
iff c and c′ behave the same for the inputs in p ∗ p0 ∗ true:

true = {h | h ∈ Heap}
c[R(p0)]c′ ⇐⇒ ∀h ∈ p ∗ p0 ∗ true. c(h) = c′(h).

Intuitively, this equivalence relation means that the type sys-
tem allows a client to execute c or c′ in h only when h sat-
isfies p ∗ p0 ∗ p′ for some p′; the predicate p′ reflects that
the frame rule in the type system allows the “widening” of
a specification by an invariant.

The category C is cartesian closed, and it has all small
products. The terminal object is ({⊥}, R) where R(p) is
{(⊥,⊥)} for all p, and all the small products are given
pointwise; for instance, (A, R)×(B, S) is (A×B, {R(p)×
S(p)}p). The exponential of (A, R) and (B, S) is subtle,
and its per component involves the quantification over all
predicates. Let R ⇒ S be the following family of pers on
the continuous function space A ⇒ B:

f [(R ⇒ S)(p)]g ⇐⇒ ∀q ∈ Pred . f [R(p∗q) → S(p∗q)]g.

Here f and g range over the domain of (R ⇒ S)(p), which
contains only local functions: it consists of functions f in
|R(p) → S(p)| such that

∀q. f [R(p ∗ q) → S(p ∗ q)]f.

Note that this condition is precisely the semantic version of
the frame rule. The exponential (A, R) ⇒ (B, S) is given
by (A ⇒ B, R ⇒ S).

Lemma 1 C is cartesian closed, and has all small limits.

Another important feature of C is that it validates higher-
order frame rules. Let Pr be the preorder (Pred ,�) with �
defined by predicate extension:

p � r ⇐⇒ ∃q.p ∗ q = r.

Category C has an “invariant-extension” functor inv from
C × Pr to C defined by:

inv((A, R), p) = (A, R(p ∗ −)) and inv(f, p � q) = f.

Functor inv corresponds to the type constructor ⊗ in our
language; given a “type” (A, R) and a predicate p, inv
extends (A, R) by adding an invariant p. For instance,
when a triple object [p′, q′] is extended with p, it becomes
[p′ ∗ p, q′ ∗ p].

Functor inv validates the subtyping rules that express
higher-order frame rules: the generalized frame rule θ
θ ⊗ P and the rules for distributing ⊗ over each type con-
structor. We first show that the functoriality of inv gives the
soundness of the generalized frame rule. Note that for all
predicates p, emp � p, and that inv(−, emp) is the identity
functor on C. Thus, for each (A, R), the functoriality of inv
gives a morphism from (A, R) to inv((A, R), p). This mor-
phism gives the soundness of the subtyping rule θ θ⊗P .

The soundness of the other distribution rules follows
from the fact that for all p, inv(−, p) preserves most of the
structure of C. For instance, inv(−, p) preserves the expo-
nential of C, because for all objects (A, R) and (B, S) and
all predicates q, we have that

f [(R(p ∗ −) ⇒ S(p ∗ −))(q)]g
⇐⇒ ∀q′.f [R(p ∗ (q ∗ q′)) → S(p ∗ (q ∗ q′))]g
⇐⇒ ∀q′.f [R((p ∗ q) ∗ q′) → S((p ∗ q) ∗ q′)]g
⇐⇒ f [(R ⇒ S)(p ∗ q)]g.

Lemma 2 For each predicate p, inv(−, p) preserves the
cartesian closed structure and all the small products of C
on the nose.

Lemma 3 For all predicates p and q, inv(−, p) ◦
inv(−, q) = inv(−, p ∗ q).

For now, the final remark on C is that the triple-object
generator [−,−] can be made into a functor, whose mor-
phism action validates the subtyping rule for Consequence.
Let P be the set of predicates ordered by the subset inclu-
sion ⊆. Generator [−,−] can be extended to a functor tri
from Pop × P to C:

tri(p, q) = [p, q] and tri(p ⊆ p′, q′ ⊆ q)(c) = c.

Note that tri is contravariant in the first argument and co-
variant on the second argument. This mixed variance re-
flects that the pre-condition of a triple can be strengthened,
and the post-condition can be weakened; thus, it validates
the subtyping rule for Consequence. We also note that the
subtyping rule that moves an invariant assertion into the pre-
and post-conditions is sound.

Lemma 4 For each predicate p, let − ∗ p:P → P be a
functor that maps a predicate q to q ∗ p. Then,

inv(−, p) ◦ tri = tri(− ∗ p,− ∗ p).

The category D is obtained from C by equating mor-
phisms according to an equivalence relation ∼. Morphisms
f and g in C[(A, R), (B, S)] are related by ∼ iff

∀p ∈ Pred . f [R(p) → S(p)]g.

Relation ∼ is an equivalence relation; it is reflexive, because
each morphism in C[(A, R), (B, S)] should map R(p)-
related elements to S(p)-related elements, for all p; and it is
symmetric and transitive because, for all p, R(p) and S(p)
are symmetric and transitive. The interesting property of ∼
is that it is preserved by all the structure of C:

Lemma 5 (Preservation) The relation ∼ is preserved by
the following operators in C:

• the composition of morphisms;

• the currying of morphisms;

• the pairing into all the small products; and

• the functor inv(−, p � q) on C, for all predicates p, q
such that p � q.

This lemma ensures that taking a quotient of morphisms in
C gives a well-defined category, which we call D. Category
D inherits all the interesting structure of C by Lemma 5; it
is cartesian closed, has all small products, and has a functor

inv′:D×Pr → D that preserves the CCC structure and the
small products of D. Let E be the “quotienting” functor
from C to D, and tri′:Pop × P → D the composition of
E with tri. We summarize the main property of D in the
following two lemmas:

Lemma 6 The category D is a CCC with all small prod-
ucts, and has two functors inv′:D×Pr → D and tri′:Pop×
P → D such that

1. inv′(−, p) preserves all the CCC structure and the
small products of D;

2. inv′(−, p) ◦ inv′(−, q) = inv′(−, p ∗ q); and

3. inv′(−, p) ◦ tri′ = tri′(− ∗ p,− ∗ p).

Lemma 7 The functor E from C to D is full, preserves the
CCC structure as well as small products, and makes the
following diagrams commute:

C × Pr
inv ��

E×Id

��

C
E

��
D × Pr

inv′ �� D

Pop × P tri ��

Id

��

C
E

��
Pop × P tri′ �� D

4.2. Interpretation of the Language

We interpret the language in the family fibration
Fam(D) → Set. Each base set in the fibration models all
the possible environments for a fixed shape of the stack (i.e.,
a fixed set of integer variables ∆). For instance, the object
{(A, R)η}η∈[[∆]] assumes that all the available integer vari-
ables are in ∆, and it specifies a type dependent on the val-
ues of such variables, given by η. The types and terms of
our language are interpreted using the categorical structure
of this fibration.

The interpretation is explicit about the set of variables
under which we consider types, type assignments, and
terms. Write ∆
 Γ to mean that ∆
 Γ(x) : Type, for
all x in the domain of Γ.

The semantics of ∆
 θ(: Type) and ∆
 Γ is given by a
family of objects in D indexed by the environments in [[∆]].
The precise definition of [[θ]] and [[Γ]] is given as follows: for
η in [[∆]],

[[∆
 {P}−{Q}]]η = tri′([[∆
 P]]η, [[∆
 Q]]η)
[[∆
 θ ⊗ P]]η = inv′([[∆
 θ]]η, [[∆
 P]]η)
[[∆
 θ → θ′]]η = [[∆
 θ]]η ⇒ [[∆
 θ′]]η

[[∆
 Πiθ]]η = Πn∈Int [[∆ ∪ {i}
 θ]]η[i→n]

[[∆
 Γ]]η = Πx∈dom(Γ)[[∆
 Γ(x)]]η

Note that tri′ is used to interpret the triple type {P}−{Q},
and inv′ to interpret the invariant extension θ ⊗ P .

We interpret each subtype relation θ ∆ θ′ as a family
of morphisms in D of the following shape:

{fη : [[∆
 θ]]η → [[∆
 θ′]]η}η∈[[∆]].

The semantics is given by induction on the derivation. The
subtyping rule for Consequence is interpreted using the
morphism action of functor tri′:

[[{P ′}−{Q′} ∆ {P}−{Q}]]η
= tri′([[P]]η ⊆ [[P ′]]η, [[Q′]]η ⊆ [[Q]]η)

The other important subtyping rules are the ones for the
higher-order frame rules. The interpretation of these rules
uses the property of inv′. The generalized frame rule is in-
terpreted by the morphism action of inv′:

[[θ ∆ θ ⊗ P]]η = inv′([[θ]]η, emp � [[P]]η)

and the rules for distributing an invariant is interpreted
by the identity; this interpretation “typechecks,” because
inv′(−, p) preserves the exponentials and the small products
on the nose, and because of (items 2 and 3 of) Lemma 6.

Finally, we define the semantics of each typing judgment
Γ
∆ M : θ by an indexed family of morphisms in D of the
form:

{fη : [[∆
 Γ]]η → [[∆
 θ]]η}η∈[[∆]].

The semantics is given by induction on the derivation of the
judgment, and it is shown in Figure 2. The interpretation
of terms is given using the categorical structure of D in a
standard way. The only specific parts are the interpretation
of basic imperative operations, where we use five basic se-
mantic constants

seq , new , read , free, and write ,

which are also defined in the figure.
For this interpretation of terms, the question of well-

definedness arises, because of the introduction and elimina-
tion of dependent function type Πiθ. The semantic defini-
tion of λi.M assumes that if Γ does not contain the variable
i, it is interpreted as the same object in D no matter how we
change or even drop the value of i in the index. The defini-
tion of [[ME]] assumes that the reindexing precisely models
the substitution. The following lemmas show that these two
assumptions indeed hold.

Lemma 8 If fiv(Γ) ⊆ ∆, then

∀η ∈ [[∆]]. ∀n ∈ Int . [[∆
 Γ]]η = [[∆ ∪ {i}
 Γ]]η[i→n].

Lemma 9 If fiv(θ) ⊆ ∆ ∪ {i} and fiv(E) ⊆ ∆, then

∀η ∈ [[∆]]. [[∆
 θ[E/i]]]η = [[∆ ∪ {i}
 θ]]η[i→[[E]]η].

[[Γ, x : θ
∆ x : θ]]η = πx

[[Γ
∆ λx: θ.M : θ → θ′]]η = curry([[Γ, x: θ
∆ M : θ′]]η ◦ iso([[Γ]]η × [[θ]]η, [[Γ, x: θ]]η))
[[Γ
∆ MM ′ : θ]]η = ev ◦ 〈[[Γ
∆ M : θ′ → θ]]η, [[Γ
∆ M ′ : θ′]]η〉

[[Γ
∆ λi.M : Πiθ]]η = 〈[[Γ
∆∪{i} M : θ]]η[i→n]〉n∈Int

[[Γ
∆ ME: θ[E/i]]]η = π[[E]]η ◦ [[Γ
∆ M : Πiθ]]η
[[Γ
∆ M : θ′]]η = [[θ ∆ θ′]]η ◦ [[Γ
∆ M : θ]]η

[[Γ
∆ fixM : θ]]η = lfix ◦ [[Γ
∆ M : θ → θ]]η
[[Γ
∆ ifz E M M ′: {P}−{Q}]]η = if ([[∆
 E]]η = 0) then [[Γ
∆ M : {P ∧ E=0}−{Q}]]η

else [[Γ
∆ M ′: {P ∧ E �=0}−{Q}]]η
[[Γ
∆ M ; M ′: {P}−{Q}]]η = seq ◦ 〈[[Γ
∆ M : {P}−{P ′}]]η, [[Γ
∆ M ′: {P ′}−{Q}]]η〉

[[Γ
∆ let i = new in M : {P}−{Q}]]η = new ◦ 〈[[Γ
∆∪{i} M : {P ∗ i �→ −}−{Q}]]η[i→n]〉n∈Int

[[Γ
∆ let i = [E] in M : {P ∗ E �→ −}−{Q}]]η = read([[∆
 E]]η) ◦ 〈[[Γ
∆∪{i} M : {P ∗ E �→ i}−{Q}]]η[i→n]〉n∈Int

[[Γ
∆ free(E) : {E �→ −}−{emp}]]η = free([[∆
 E]]η) ◦ ![[∆�Γ]]η

[[Γ
∆ [E] := E′ : {E �→ −}−{E �→ E′}]]η = write([[∆
 E]]η, [[∆
 E′]]η) ◦ ![[∆�Γ]]η

where seq , new , read(n), free(n), and write(n, n′) are defined as a morphism in D (which is an equivalence class) as
follows: seqp,q,q′ : tri(p, q) × tri(q, q′) → tri(p, q′)

seq = [λ(c, c′). λh. {wrong | wrong ∈ c(h)} ∪ ⋃{c′(h′) | h′ ∈ c(h)}]
newp,q : (Πn∈Int tri(p ∗ n �→ −, q)) → tri(p, q)

new = [λc. λh.
⋃{c(n)(h[n �→ m]) | m, n ∈ Int ∧ n �∈ dom(h)}]

read(n)p,q : (Πm∈Int tri(p ∗ n �→ m, q)) → tri(p ∗ n �→ −, q)
read(n) = [λc. λh. if n ∈ dom(h) then c(h(n))(h) else {wrong}]
free(n) : 1 → ({n �→ −}−{emp})
free(n) = [λx. λh. if n ∈ dom(h) then {h[n→undef]} else {wrong}]

write(n, n′) : 1 → ({n �→ −}−{n �→ n′})
write(n, n′) = [λx. λh. if n ∈ dom(h) then {h[n→n′]} else {wrong}]

Figure 2. Interpretation of Terms

4.3. Adequacy

Our semantics of terms needs further justification in two
ways. First, the interpretation of a typing judgment needs
to be shown coherent. The interpretation is defined over a
proof derivation of the judgment, so two different deriva-
tions of the same judgment might have different denota-
tions. This is troublesome for us especially, because our
goal is to give a semantics of a programming language with
a separation-logic type system, instead of a semantics of a
proof in separation logic. Second, the connection with the
standard semantics needs to be provided. Our semantics
uses subsumption which never arises in the standard inter-
pretation. Thus, our interpretation could be substantially
different from the standard interpretation. In this section,
we provide justification for both of these two issues.

We consider two other interpretations of our language.
The first interpretation, called the standard interpretation,
ignores all assertions in the types. In the standard interpre-
tation, {P}−{Q} means the same thing no matter what P
and Q are, and for all P , θ ⊗ P and θ have identical inter-
pretations. Let tri′′ be the constant functor from Pop ×P to
CPO such that tri′′(p, q) = comm, and let inv′′ be a functor
given by the first projection from CPO×Pr to CPO. Then,
the standard interpretation is the interpretation of the previ-

ous section, where we use CPO, tri′′ and inv′′ instead of D,
tri′ and inv′, and we take an equivalence class representa-
tive in the definition of constants; for instance, the constant
read(n) now means

λc. λh. if n ∈ dom(h) then c(h(n))(h) else {wrong}.

The second interpretation uses the category C. It is ob-
tained by simply replacing tri′ and inv′ in the previous sec-
tion by tri and inv, and eliminating the embedding [−] to
the equivalence class in the definition of constants.

The three interpretations are very closely related. Note
that from the category C to CPO, there is a forgetful functor
F that maps an object (A, R) to A, and a morphism f to f .
This forgetful functor preserves all the categorical structure
of C that we use to interpret the types of our language:

Lemma 10 F is a faithful functor that preserves the CCC
structure and the small products of C, and makes the follow-
ing diagrams commute.

C × Pr
inv ��

F×Id

��

C
F

��
CPO × Pr

inv′′ �� CPO

Pop × P tri ��

Id

��

C
F

��
Pop × P tri′′ �� CPO

Note that Lemmas 5 and 10 imply that the interpretation of
the types in D and CPO factors through the interpretation
in C. The following lemma shows that the interpretation of
the terms has a similar property.

Lemma 11 Both the forgetful functor F from C to CPO and
the quotienting functor E from C to D preserve the interpre-
tation of terms. That is, for all typing judgments Γ
∆ M : θ
and all η ∈ [[∆]],

F ([[Γ
∆ M : θ]]Cη) = [[Γ
∆ M : θ]]CPO
η

E([[Γ
∆ M : θ]]Cη) = [[Γ
∆ M : θ]]Dη .

Since E is full and F is faithful, intuitively, Lemma 11 says
that our semantics is obtained by first selecting some ele-
ments, and then quotienting those selected elements.

Corollary 12 Our semantics is coherent: the semantics of
a typing judgment does not depend on derivations.

Proof: Let P1 and P2 be two derivations of a judgment
Γ
∆ M : θ. We note that the standard semantics is coher-
ent; only the subsumption rule is not syntax-directed, but
in the standard semantics, this rule does not contribute to
the interpretation, because all the subtyping rules denote the
identity function. Thus, for all environments η, we have

[[P1]]CPO
η = [[P2]]CPO

η .

Then, by Lemma 11 and the faithfulness of F ,

[[P1]]CPO
η = [[P2]]CPO

η =⇒ F ([[P1]]Cη) = F ([[P2]]Cη)
=⇒ [[P1]]Cη = [[P2]]Cη
=⇒ E([[P1]]Cη) = E([[P2]]Cη)
=⇒ [[P1]]Dη = [[P2]]Dη

�

5. Related Work

The (first order) frame rule was discovered in the early
days of separation logic [5], and it was a main reason for the
success of that logic. For example, it was vital in the proofs
of garbage collection algorithms in [22] and [4]. Recently,
the second-order frame rule, which allows reasoning about
simple first-order modules, was discovered [10]. This nat-
urally encouraged the question of whether there are more
general frame rules that apply to higher types.

Unlike in [10], our soundness result of higher-order
frame rules does not require that invariant assertions be
precise. This preciseness requirement is needed because
higher-order frame rules interact badly with the conjunction
rule [10]. In our system, such bad interaction does not exist,
because the system does not have the conjunction rule.

Other type systems which track state changes have
been proposed in the work on typed assembly languages

[7, 2, 21]. Their main focus is to obtain sound rules for
proving the safety of programs. Thus, they mostly use easy-
to-define conventional operational semantics, and prove the
soundness of the proof system syntactically (i.e., by subject
reduction and progress lemmas), or “logically” [21]: each
type is interpreted as a subset of a single universe of “mean-
ings,” and a typing judgment is interpreted as a specification
for the behavior of programs, like a Hoare triple in separa-
tion logic. Our separation-logic type system is more refined
in that it allows the full power of separation logic in the
types and, moreover, we also treat higher-order procedures.

The semantics of idealized algol has been studied inten-
sively [11, 15, 8, 14]. Normally, the semantics is parameter-
ized by the shape of the memory. The indexing in the fibra-
tion in our semantics follows this tradition, and it models
the shape of the stack. However, the other indexing of our
semantics, the indexing by invariant predicates over heaps,
has not been used in the literature before.

The construction of the category D is an instance of the
Kripke quotient by Mitchell and Moggi [6]. The families of
pers in D form a Kripke logical relation on CPO indexed
by the preorder category Pr; our condition on each family
ensures that the requirement of Kripke monotonicity holds.
This Kripke logical relation produces D by Mitchell and
Moggi’s construction.

The idea of proving coherence by relating two languages
comes from Reynolds [19]. Reynolds proved the coherence
of the semantics of typed lambda calculus with subtyping,
by connecting it with the semantics of untyped lambda cal-
culus. We use the general direction of Reynolds’s proof, but
the details of our proof are quite different from Reynolds’s,
because we consider very different languages.

6. Conclusion and Future Directions

We have presented a type system for idealized algol ex-
tended with heaps that includes separation-logic specifica-
tions as types and, moreover, defined the coherent semantics
of idealized algol typed with this system.

One shortcoming of our type system is that the higher-
order frame rules in the system allow only static modularity
[12]. With the higher-order frame rules alone, we cannot
capture all the the information hiding aspect of dynamically
allocated data structures as needed for modeling abstract
data types. However, it is well-known that abstract data
types can be modeled using existential types and we are
currently considering to enrich the assertion language with
predicate variables, as in the recently introduced higher-
order version of separation logic [3], and to extend the types
with dependent product and sums over predicates.

Another shortcoming of the type system is that it cannot
have the disjunction rule in separation logic. The disjunc-
tion rule has two judgments in the premise, and requires

that both judgments are about the same program. Such a
requirement about the same program cannot be expressed
in our type system. We plan to overcome this problem by
extending the type system with intersection types [17].

Yet another future direction is to define a parametric
model. Uday Reddy pointed out that separation-logic types
should validate stronger reasoning principles for data ab-
straction than ordinary types, because they let us con-
trol what clients can access more precisely. Formaliz-
ing his intuition is the goal of the parametricity seman-
tics. We currently plan to use category C′ which replaces
each predicate-indexed family of pers in C by a relation-
indexed family of saturated relations: an object in C′ is a
cpo paired with a family T of binary relations such that (1)
T is indexed by a “typed” relation r: p ↔ q on heaps (i.e.,
r ⊆ p × q); (2) for each predicate p, T at the diagonal rela-
tion ∆p is a per; (3) for all r: p ↔ q, T (r) is a saturated rela-
tion between pers T (∆p) and T (∆q); (4) T (r) ⊆ T (r ∗ r′).
The morphisms in C′ are continuous functions that preserve
the families of relations. This category has all the categori-
cal structure of C that we used in the semantics of this paper.
However, it is difficult to interpret the triple types such that
the memory allocator new live in the category. Overcom-
ing this problem will be the focus of our research in this
direction.

Finally, we would like to extend the relational separation
logic [23] to higher-order, following the style of system R
[1], and we want to explore the Curry-Howard correspon-
dence of our type system with specification logic [16].

Acknowledgements

We have benefitted greatly from discussions with Uday
Reddy and Peter O’Hearn. Yang was supported by grant
No. R08-2003-000-10370-0 from the Basic Research Pro-
gram of the Korea Science & Engineering Foundation.
Yang, Birkedal and Torp-Smith were supported by Danish
Technical Research Council Grant 56-00-0309.

References

[1] M. Abadi, L. Cardelli, and P.-L. Curien. Formal paramet-
ric polymorphism. Theoretical Comput. Sci., 121(1-2):9–58,
December 1993.

[2] A. Ahmed, L. Jia, and D. Walker. Reasoning about hierar-
chical storage. In Proc. of LICS’03, Ottawa, Canada, June
2003.

[3] B. Biering, L. Birkedal, and N. Torp-Smith. BI-
hyperdoctrines and higher order separation logic. In Proc.
of ESOP’05, Edinburgh, Scotland, April 2005.

[4] L. Birkedal, N. Torp-Smith, and J. C. Reynolds. Local
reasoning about a copying garbage collector. In Proc. of
POPL’04, pages 220 – 231, Venice, Italy, 2004.

[5] S. Ishtiaq and P. W. O’Hearn. BI as an assertion language
for mutable data structures. In Proc. of POPL’01, London,
England, January 2001.

[6] J. C. Mitchell and E. Moggi. Kripke-style models for typed
lambda calculus. Annals of Pure and Appl. Logic, 51:99–
124, 1991.

[7] G. Morrisett, D. Walker, K. Crary, and N. Glew. From sys-
tem F to typed assembly language. ACM Trans. Program.
Lang. and Syst., 21(3):527 – 568, 1999.

[8] P. W. O’Hearn and R. D. Tennent. Parametricity and local
variables. J. ACM, 42(3):658–709, 1995.

[9] P. W. O’Hearn, H. Yang, and J. C. Reynolds. Local rea-
soning about programs that alter data structures. In Proc. of
CSL’01, pages 1 – 19, Paris, France, September 2001.

[10] P. W. O’Hearn, H. Yang, and J. C. Reynolds. Separation and
information hiding. In Proc. of POPL’04, pages 268 – 280,
Venice, Italy, 2004.

[11] F. J. Oles. A Category-Theoretic Approach to the Semantics
of Programming Languages. PhD thesis, Syracuse Univer-
sity, 1982.

[12] M. Parkinson and G. Bierman. Separation logic and abstrac-
tion. In Proc. of POPL’05, Long Beach, CA, USA, January
2005.

[13] B. Pierce. Types and Programming Languages. MIT Press,
2002.

[14] U. Reddy and H. Yang. Correctness of data representations
involving heap data structures. Science of Computer Pro-
gramming, 50(1):129 – 160, March 2004.

[15] J. C. Reynolds. The essence of Algol. In J. W. de Bakker
and J. C. van Vliet, editors, Algorithmic Languages, pages
345–372. North-Holland, 1981.

[16] J. C. Reynolds. Idealized Algol and its specification logic.
In D. Neel, editor, Tools and Notions for Program Construc-
tion, pages 121–161. Cambridge University Press, 1982.

[17] J. C. Reynolds. Design of the programming language
Forsythe. Report CMU–CS–96–146, Carnegie Mellon Uni-
versity, Pittsburgh, Pennsylvania, June 28, 1996.

[18] J. C. Reynolds. Intuitionistic reasoning about shared muta-
ble data structure. In J. Davies, B. Roscoe, and J. Woodcock,
editors, Millennial Perspectives in Computer Science, pages
303–321. Palgrave, Houndsmill, Hampshire, 2000.

[19] J. C. Reynolds. The meaning of types — from intrinsic to
extrinsic semantics. Research Series RS–00–32, BRICS,
DAIMI, Department of Computer Science, University of
Aarhus, December 2000. http://www.brics.dk/RS/00/32/.

[20] J. C. Reynolds. Separation logic: A logic for shared mu-
table data structures. In Proc. of LICS’02, pages 55 – 74,
Copenhagen, Denmark, 2002.

[21] G. Tan, A. W. Appel, K. N. Swadi, and D. Wu. Construction
of a semantic model for a typed assembly language. In Proc.
of VMCAI ’04, Venice, Italy, January 2004.

[22] H. Yang. Local Reasoning for Stateful Programs. PhD the-
sis, University of Illinois, Urbana-Champaign, 2001.

[23] H. Yang. Relational separation logic. Submitted to Theoret-
ical Comput. Sci., October 2004.

