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Abstract

We present a program analysis that can automatically discover the shape of complex
pointer data structures. The discovered invariants are, then, used to verify the absence of
safety errors in the program, to check whether the program preserves the data consistency,
or, in some cases, to show the full correctness of the program. Our analysis extends the
shape analysis of Sagiv et al. with grammar annotations, which can precisely express
the shape of complex data structures. We demonstrate the usefulness of our analysis
with three examples; binomial heap construction, the Schorr-Waite tree disposal, and the
Schorr-Waite tree traversal. For a binomial heap construction algorithm, our analysis
returns a grammar that precisely describes the shape of a binomial heap; for the Schorr-
Waite disposal, it proves that the input tree is completely disposed; for the Schorr-Waite
tree traversal, our analysis shows that at the end of the execution, the result is a tree and
there are no memory leaks. We prove the correctness of our analysis by compiling it into
separation logic.

1 Introduction

We show that a static program analysis can automatically verify imperative, pointer programs
such as binomial heap construction, the Schorr-Waite tree disposal, and the Schorr-Waite tree
traversal. The verified properties are: for a binomial heap construction algorithm, our analysis
verifies that the returned heap structure is a binomial heap; for the Schorr-Waite disposal, it
verifies that the input tree is completely disposed; for the Schorr-Waite tree traversal, it verifies
that the output tree is a binary tree, and there are no memory leaks. In all three cases, the
analysis took less than 0.1 second in Intel Pentium 3.0C with 1GB memory and the analysis
result is simple and human-readable.

Note that although the three programs handle regular heap structures such as binomial
heaps and trees, the web of pointers (e.g., cycles) and their imperative operations (e.g., pointer
swapping) are fairly challenging for fully automatic static verification without any annotation
from the programmer.

We stand on two shoulders:

• The static analysis is an extension to Sagiv et al.’s shape analysis [SRW02] for separation
logic [Rey02, OYR04]. For an improved accuracy, we associate grammars, which finitely
summarize run-time heap structures, with the summary nodes of the shape graphs. This
enrichment of shape graph by grammars provides the analysis with an ample space for it
to precisely capture the imperative effects on dynamic heap structures. The grammar is
unfolded, i.e., generates a heap structure on demand to expose an exact heap shape. The
grammar is also folded to replace an exact heap structure by a more abstract nonterminal
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representation. To ensure the termination of the analysis, the grammar merges multiple
production rules into a single one, and unify two nonterminals; this simplification of
grammar makes the grammar size remain within a practical bound.

• The static analysis’ correctness is proven via the separation logic [Rey02]. The static
analysis is compositionally defined over the input program structures by using the usual
least fixpoint operator for the loops. Involved abstract operations are over the shape
graphs with grammars. The semantics (concretization) of the shape graphs are defined
as assertions in separation logic. Each abstract operator’s correctness is proven by show-
ing that the separation-logic assertion for the input graph to the operator implies the
separation-logic assertion for the operator’s output graph. The input program C wrapped
by the input and output assertions {P}C {Q} is always a provable Hoare triple by the
separation logic’s proof rules.

1.1 Comparison

There have been many works to try to verify pointer programs automatically. However, most of
those approaches require the user to provide invariants, as opposed to inferring those invariants
automatically [BRS99, JJKS97, MS01], with the notable exception of the shape analysis of
Sagiv et al. [SRW98, SRW02]

Our analysis borrows several interesting ideas from Sagiv’s shape analysis [SRW02]. Our
analysis represents a program invariant using a set of shape graphs, where each shape graph
consists of either concrete or abstract nodes. The analysis also uses the idea of refining an
abstract node, often called focus or materialization in Sagiv’s shape analysis. However, our
analysis goes beyond what Sagiv’s shape analysis achieves currently, by automatically dis-
covering what Sagiv called instrumentation predicates. We do not ask the user to provide
instrumentation predicates, and instead attempts to automatically discover those predicates.
Moreover, the discovered instrumentation predicates are high-level in the sense that they match
up with the usual intuitions of programmers. The price we pay for this enhanced automation
is that theoretically our analysis more often fails to produce meaningful results, simply by
returning the top. However, our experimental results show that for programs whose sharing
patterns mostly arise from cycles, our analysis infers invariants, which often are precise enough
to prove the full correctness.

1.2 Outline

Section 2 briefly describes the programming language that we would analyze, and Section 3
reviews separation logic which we use to give the meaning of abstract values. Then, we explain
the key ideas of our analysis, using a simpler version; this simpler version analyzes a program
well, only when the recursive data structures in the program are tree-like structures with no
shared nodes. Section 4 and 5 explain the abstract domain and operators for this domain,
and Section 6 uses these domain and operators to define the analyzer. The simpler version
is extended to the full analysis in Section 7; the full version can handle the command that
disposes cells, consequently dangling pointers, and it also can discover interesting invariants
when programs use data structures with “cyclic” sharing, such as binomial heaps. In Section 8,
we demonstrate the accuracy of our analysis using binomial heap construction algorithm, and
the Schorr-Waite tree traversing and disposing algorithms. In all three cases, the analysis shows
the partial correctness of the algorithms, which includes the simple safety properties, such as
the absence of null-pointer or dangling pointer dereferences. Finally, we prove the correctness
of our analysis by compiling it into separation logic in Section 9.
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2 Programming Language

We use the standard while language with additional constructs for pointer manipulations.

Vars x Fields f ∈ {0, 1}
Boolean Expressions B ::= x = y | !B
Commands C ::= x := nil | x := new

| x := x | x := x->f | x->f := x
| C;C | if B C C | while B C

This language assumes that every heap cell is binary, and has two fields 0 and 1. A heap
cell is allocated by x := new, and the contents of such an allocated cell is accessed by the
field-dereference operation ->; the f field of cell x is read by y := x->f , and updated by
x->f := y. Note that the language prevents nil from occurring in the boolean expressions or
the field update x->f := E; we took this constraints in order to simplify the presentation of
our algorithm. All the other constructs in the language are standard.

3 Separation Logic with Recursive Predicates

In this section, we review the assertion language in separation logic, and explain our extension
of the language with recursive predicates.

Let Loc and Val be an unspecified infinite set such that nil 6∈ Loc and Loc ∪ {nil} ⊆ Val.
We consider separation logic for the following semantic domains.

Stack = Var ⇀ Val
Heap = Loc ⇀ Val×Val
State = Stack×Heap

This domain implies that a state has the stack and heap components, and that the heap
component of a state has finitely many binary cells.

The assertion language in separation logic is given by the following grammar:1

P ::= E = E | emp | (E 7→ E,E) | P ∗ P
| true | P ∧ P | P ∨ P | ¬P | ∀x. P

Separating conjunction P ∗ Q is the most important, and it expresses the splitting of heap
storage; P ∗ Q means that the heap can be split into two parts, so that P holds for the one
and Q holds for the other. The other special constructs are standard, except (E 7→ E1, E2)
and emp. Points-to predicate (E 7→ E1, E2) means that the heap contains only one cell, the
location of the unique cell is E, and the two fields of the cell have E1 and E2, respectively;
and empty predicate emp means that the heap is empty.

We often use precise equality and iterated separating conjunction, both of which we define
as syntactic sugars. Let X be a finite set {x1, . . . , xn} where all xi’s are different.

E
.= E′ ∆= E = E′ ∧ emp

⊙
x∈X Ax

∆=
{

Ax1 ∗ . . . ∗Axn if X 6= ∅
emp otherwise

In this paper, we use the extension of the basic assertion language with recursive predicates:

P ::= . . . α(E, . . . , E) | let Γ in P
Γ ::= α(x1, . . . , xn) = P | Γ, Γ

1The assertion language also has the adjoint −∗ of ∗. But this adjoint is not used in this paper, so we omit
it here.
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The extension allows the definition of new recursive predicates by least-fixed points in “let Γ in P”,
and the use of such defined recursive predicates in α(E, . . . , E). To ensure the existence of the
least-fixed point in let Γ in P , we will consider only well-formed Γ where all recursively defined
predicates appear in positive positions.

A recursive predicate in this extended language means a set of heap objects. A heap object is
a pair of location (or locations) and heap. Intuitively, the first component denotes the starting
address of a data structure, and the second the cells in the data structure. For instance, if
a linked list is seen as a heap object, the location of the head of the list becomes the first
component, and the cells in the linked list becomes the second component.

The precise semantics of this assertion language is given by a forcing relation |=. For a state
(s, h) and an environment η for recursively defined predicates, we define inductively when an
assertion P holds for (s, h) and η. We show the sample clauses below; the full definition appear
in Appendix A.

(s, h), η |= α(E) iff ([[E]]s, h) ∈ η(α)
(s, h), η |= let α(x)=P in Q iff (s, h), η[α→k] |= P
(where k = fix λk0.{(v, h) | (s[x→v], h), η[α→k0] |= P})

4 Abstract Domain

4.1 Shape Graph

Our analysis interprets a program as a (nondeterministic) transformer of shape graphs. A
shape graph is an abstraction of a concrete state; this abstraction maintains the basic “struc-
ture” of the state, but abstracts away all the other details. For instance, consider a state
([x→1, y→3], [1→ 〈2, nil〉 , 2→ 〈nil, nil〉 , 3→ 〈1, 3〉]):

x

0 1

1
1

3
0

2

y

0

1

nil

nilnil

We obtain a shape graph from this state in two steps. First, we replace the specific addresses,
such as 1 and 2, by symbolic locations; we introduce three symbol a, b, c, and represent the state
by ([x→a, y→c], [a→ 〈b,nil〉 , b→ 〈nil,nil〉 , c→ 〈a, c〉]). Note that this process abstracts away the
specific addresses from the state, and just keeps the relationship between the addresses in the
state. Second, we abstract heap cells a and b by a grammar. Thus, this step transforms the
state to ([x→a, y→c], [a→tree, c→ 〈a, c〉]), where a→tree means that a is the address of the root
of a tree, whose structure is summarized by grammar rules fir nonterminal tree. The grammar
conversion occurs only when the the tree does not contain other cells in the heap.

The formal definition of a shape graph is given as follows:

SymLoc ∆= {a, b, c, . . .}
NonTerm ∆= {α, β, γ, . . .}

Graph ∆=(Vars ⇀ SymLoc)×
(SymLoc ⇀ {nil}+ SymLoc2 + NonTerm)

Here the set of nonterminals is disjoint from Vars and SymLoc; these nonterminals represent
recursive heap structures such as tree or list. Each shape graph has two components (s, g). The
first component s maps describes stack variables to symbolic locations. The other component
g describes heap cells reachable from each symbolic location. For each a, either no heap cells



October 21, 2005 ROPAS-2005-23 5

can be reached from a (g(a) = nil); or, a is a binary cell with contents 〈b, c〉 (g(a) = 〈b, c〉);
or, the cells reachable from a form a heap structure specified by a nonterminal α (g(a) = α).
In the first two cases, the contents of some reachable cells from a are expressed exactly, either
none or a binary cell with 〈b, c〉. The third case summarizes, by the grammar’s production
rules for α, the shape of reachable cells from a.

The semantics (or concretization) of a shape graph (s, g) is given by a translation into an
assertion in separation logic:

meanss(s, g) ∆=∃~a. true ∗ (
⊙

x∈dom(s) x
.= s(x))

∗ (
⊙

a∈dom(g) meansv(a, g(a)))

meansv(a,nil) ∆= a
.= nil

meansv(a, α) ∆=α(x)
meansv(a, 〈a1, a2〉) ∆= a 7→ a1, a2

The translation function meanss calls a subroutine meansv to get the translation of the value of
g(a), and then, it existentially quantifies all the symbolic locations appearing in the translation.
For instance, meanss([x→a, y→c], [a→tree, c→ 〈a, c〉]) is

∃ac. (x .= a) ∗ (y .= c) ∗ tree(a) ∗ (c 7→ a, c).

When we present a shape graph, we interchangeably use the set notation and a graph pic-
ture. Each variable or symbolic location becomes a node in a graph, and s and g are represented
by edges or annotations. For instance, we draw a shape graph (s, g) = ([x→a], [a→ 〈b, c〉 , b→nil, c→α])
as:

ax

b c

0 1

nil α

Note that g(a) which is a pair is represented as two edges and g(b) and g(c) which are respec-
tively nil and a nonterminal are represented as annotations to the nodes.

4.2 Grammar

A grammar gives the meaning of nonterminals in a shape graph. We define a grammar R as a
finite partial function from nonterminals (the lhs of production rules) to ℘nf({nil} + ({nil} +
NonTerm)2) (the rhs of production rules), where ℘nf(X) is the family of all nonempty finite
subsets of X.

Grammar ∆=
NonTerm ⇀ ℘nf({nil}+ ({nil}+ NonTerm)2)

Set R(α) contains all the possible shapes of heap objects for α. If nil ∈ R(α), α can be the
empty heap object. If 〈β, γ〉 ∈ R(α), then some heap object for α can be split into a root cell,
the left heap object β, and the right heap object γ. For instance, if R(tree) = {nil, 〈tree, tree〉}
(i.e., in the production rule notation, tree ::= nil | 〈tree, tree〉), then tree represents binary trees.

In our analysis, we use only well-formed grammars, where all nonterminals appearing in
the range of a grammar are defined in the grammar.

The semantics of a grammar is again defined by translating the grammar to recursive
predicate declarations in separation logic. A grammar R is translated into a context Γ for
recursive predicates that is defined exactly for dom(R), and satisfies the following: when nil 6∈
R(α), Γ(α) is

α(a) =
∨

(v,v′)∈R(α)

∃bb′.(a 7→ b, b′) ∗meansv(b, v)
∗meansv(b′, v′)
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where neither b nor b′ appear in a, v or v′; in the other case, Γ(α) is identical as above except
that a

.= nil is added as an additional disjunct. For instance, meansg([tree→{nil, 〈tree, tree〉}])
is a context

{tree(a) = a
.= nil ∨ ∃bb′.(a 7→ b, b′) ∗ tree(b) ∗ tree(b′)}.

4.3 Abstract Domain = Shape Graphs + Grammar

The abstract domain for our analysis consists of pairs of shape graph set and grammar:

D̂
∆= {>}+ ℘nf(Graph)×Grammar

The first element indicates that our analysis fails to produce any meaningful results for a
given program, because the program has the safety errors, or the program uses complex data
structures so that our analysis fails to capture them.

The meaning (or concretization) of each abstract state (G, R) in D̂ is given by a translation
into a separation-logic assertion:

means(G, R) ∆= let meansg(R) in
∨

(s,g)∈G
meanss(s, g)

5 Normalized Abstract States and Normalization Func-
tion

The main strength of our analysis is to automatically discover a grammar which describes,
in an “intuitive” level, invariants for heap data structures, and to abstract concrete states
according to this discovered grammar. This inference of high-level grammars is mainly done
by the normalization function normalize from D̂ to a subdomain D̂∇ of normalized abstract
states. In this section, we explain these two notions, normalized abstract states and function
normalize.

An abstract state (G, R) is normalized if it satisfies the following two conditions. The first
condition is that all the shape graphs (s, g) in G are abstract enough: all the recognizable heap
objects are replaced by nonterminals. Note that this condition on (G, R) is about individual
shape graphs in G. We call a shape graph normalized if it satisfies this condition. The second
condition is the absence of redundancies: all shape graphs are not similar, and all nonterminals
have non-similar definitions.

5.1 Normalized Shape Graphs

The first requirement of an abstract state (G, R) being normalized is that all shape graphs in
G are normalized. A shape graph is normalized when it is “maximally” folded. To state the
precise definition of a normalized shape graph, we need to classify symbolic locations in a shape
graph by whether they are abstractable or not. Let’s say that a symbolic location a is shared if
and only if there are more than one references to a. A symbolic location a is called abstractable
or foldable in (s, g) if g(a) is a pair and there is no path from a to a shared symbolic location.

A shape graph (s, g) is called normalized if and only if for all symbolic locations a in dom(g),
a is not foldable.

β

ax

b c

d e

nil

d e

cb

ax

y

y

nil α nil α



October 21, 2005 ROPAS-2005-23 7

In the left shape graph, symbolic location b is foldable: b is a pair and does not reach any
shared symbolic location. So, the left graph is not normalized. In the right graph, there are no
foldable symbolic locations: both a and c are pairs but they reach symbolic location e shared
with y. So, the right graph is normalized.

5.2 Similarity

The second requirement for (G, R) being normalized is that there are no redundancies in shape
graphs in G and grammar R: no two shape graphs in G have the “similar structures,” the
production rules of each nonterminal in R do not have two “similar cases,” and the definitions
of two nonterminals are not “similar.” Two shape graphs are similar if they are identical when
the symbolic locations, nonterminals, and nil are erased. The two cases in the production rules
for one nonterminal are defined similar if they become identical when symbolic locations, non-
terminals, and nil are erased from the rules. Two nonterminals are similar if one’s production
rules have similar cases in the other’s production rules.

The precise definition of similar structures is given by a relation ∼G (graph similarity),
that of similar cases by ∼C (case similarity), and that of similar grammar definitions by ∼D

(definition similarity).
Two shape graphs are similar when they have the similar structures. Let S be a substitution

that renames symbolic locations by symbolic locations. We say that two shape graphs (s, g)
and (s′, g′) are similar upto S, denoted (s, g) ∼G

S (s′, g′), if and only if

1. dom(s) = dom(s′) and S(dom(g)) = dom(g′);

2. for all x ∈ dom(s), S(s(x)) = s′(x); and

3. for all a ∈ dom(g),

(a) if g(a) is not a pair, the g′(S(a)) is not a pair, and
(b) if g(a) = 〈b, c〉, then g′(S(a)) = 〈S(b), S(c)〉.

Intuitively, two shape graphs are S-similar, when equating nil and all nonterminals make the
graphs identical upto renaming S. We call (s, g) and (s′, g′) is similar, denoted (s, g) ∼ (s′, g′),
if and only if there is a renaming relation S such that (s, g) ∼G

S (s′, g′). For instance, consider
the following three shape graphs:

ax

b cy

ax

b c

x

y

y
d

e f

(s1, g1) (s2, g2) (s3, g3)

nil nilα α αβ

(s1, g1) and (s2, g2) are not similar because s1(x) 6= s1(y) and s2(x) = s2(y); that is, we
cannot find a renaming substitution S such that S(s1(x)) = S(s1(y)) (condition 2). (s1, g1)
and (s3, g3) are similar because we can find a renaming substitution {d/a, e/b, f/c} that makes
(s1, g1) identical to (s3, g3) when nil and all nonterminals are erased.

Two cases in the grammar definitions are similar when they have similar structures. Cases
e1 and e2 are similar, denoted e1 ∼C e2, if and only if both e1 and e2 are pairs or neither e1

and e2 are pairs. For instance, all the pair cases are similar, and the nil case is similar to itself.
However, the nil case is not similar to the pair case.

The definitions of two nonterminals are similar when their cases are similar. The definitions
E1 and E2 are similar, denoted E1 ∼D E2, if and only if, for all cases e in E1, E2 has a similar
case e′ to e (e ∼C e′), and vice versa. For example, consider the following definitions:

α ::= 〈β, nil〉
β ::= nil | 〈β, nil〉
γ ::= 〈γ, γ〉 | 〈α, nil〉



October 21, 2005 ROPAS-2005-23 8

The definitions of α and γ are similar because 〈γ, γ〉 is similar to 〈β, nil〉, and 〈α, nil〉 is also
similar to 〈β, nil〉. But the definitions of α and β are not similar since α does not have a case
similar to nil. By the same reason, the definitions of β and γ are not similar.

5.3 Normalized Abstract States

An abstract state (G, R) is normalized if and only if all shape graphs in G are normalized and
(G, R) does not have redundancies.

Definition 1 (Normalized Abstract States) An abstract state (G, R) is normalized if and
only if

1. for all shape graphs in G are normalized; and

2. for all shape graphs (s1, g1) and (s2, g2) in G, ((s1, g1) ∼ (s2, g2)) implies that (s1, g1) =
(s2, g2).

3. for all α in dom(R) and for all cases e1 and e2 in R(α), e1 ∼C e2 implies that e1 = e2.

4. for all α and β in dom(R), R(α) ∼D R(β) implies that α = β.

Normalized abstract states are the analysis results expressed in a human-readable level.

5.4 k-Bounded Normalized States

Another gain from the normalized abstract domain is that it ensures that our analyzer ter-
minates. The normalized abstract domain itself has an infinite length of chain but when we
give a restriction on the number of symbolic locations, every chain becomes finite. We say
that the abstract domain D̂k is k-bounded if and only if every abstract state in D̂k has only
shape graphs whose number of symbolic locations is less than k. We prove the k-bounded nor-
malized domain has only finite length of (strictly increasing) chains by finding a “quotiented”
sub-domain which is finite.

Lemma 2 (Finite Quotiented Domain) For the k-bounded normalized abstract domain D̂∇
k ,

there exists a finite sub-domain of D̂∇
fin which satisfies that for all (G, R) ∈ D̂∇

k , there exists
(G′, R′) ∈ D̂∇

fin such that means(G, R) ⇐⇒ means(G′, R′).

Proof sketch. Consider a normalized abstract domain D̂∇
fin with a set A of k symbolic locations,

and a set N of three nonterminals. This domain is finite because it is composed of finite
domains. For all (G, R) in the k-bounded normalized abstract domain, we have to find an
abstract state whose meaning is the same as (G, R) and which is included in D̂∇

fin. It can be
obtained by renaming symbolic locations and nonterminals:

• Let’s rename symbolic locations of each shape graph in G so that G has only symbolic
names in A. It is possible because it is k-bounded.

• Let’s rename nonterminals in (G, R) so that (G, R) has only nonterminals in N . It is
possible because (G, R) has indeed no more than three nonterminals. The number of
equivalence classes of ∼D is 3: [{nil}], [{〈nil, nil〉}] and [{nil, 〈nil, nil〉}]. By the condition
4 of Definition 1, (G, R) has no more than three nonterminals.

Those renaming does not change the meaning of (G, R) and makes (G, R) be included in D̂∇
fin.

2
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5.5 Normalization Function

The normalization function normalize transforms (G, R) to an normalized (G′, R′) with a further
abstraction. That is, the following holds:

means(G, R) =⇒ means(G′, R′)

Transformation normalize is the composition of five subroutines:

normalize = boundk ◦ simplify ◦ unify ◦ fold ◦ deljunk.

The first subroutine deljunk removes all the “imaginary” sharing and garbage due to constant
symbolic locations, so that it makes the real sharing and garbage easily detectable in syntax.
The deljunk procedure applies the following two rules until an abstract state does not change.
In the definition, “]” is a disjoint union of sets, and “·” is a union of partial maps with disjoint
domains.

(alias) (G ] {(s · [x→a], g · [a→nil])} , R)
; (G ∪ {(s · [x→a′], g · [a′→nil])} , R)
where a should appear in (s, g) and a′ is fresh.

(gc) (G ] {(s, g · [a→nil])} , R) ; (G ∪ {(s, g)} , R)
where a does not appear in (s, g)

For instance, ([x→a, y→a], [a→nil]) has the same meaning as ([x→a, y→b], [a→nil, b→nil]). We
rewrite the former by the latter by (alias). ([x→a], [a→nil, b→nil]) has the same meaning as
([x→a], [a→nil]). We rewrite the former by the latter by (gc).

The second subroutine fold converts shape graphs to normal forms. For each shape graph
(s, g) in G, fold replaces all foldable symbolic locations by nonterminals. The fold procedure
applies the following rule until an abstract state does not change:

(fold) (G ] {(s, g · [a→ 〈a1, a2〉 , a1→v1, a2→v2])}, R)
; (G ∪ {(s, g · [a→α])}, R · [α→{〈v1, v2〉}])
where neither a1 nor a2 appears in the range
of g and s, and α is fresh.

The rule recognizes that the symbolic locations a1 and a2 are accessed only via a. Then, it
represents cell a, plus the reachable cells from a1 and a2 by a nonterminal α. For example,
consider:

ax

b c

α

ax

b c

α

ax

d e

β nil

γ

δ

In the first shape graph of the above example, symbolic location b is foldable. By applying rule
(fold), we obtain the second one with the production rule γ ::= 〈β, nil〉 for a new nonterminal
γ. Again, a is foldable so we achieve the last one by (fold) with extra grammar rule δ ::= 〈γ, α〉.

The third subroutine unify merges two similar shape graphs in G. Let (s, g) and (s′, g′) be
similar shape graphs by the identity renaming ∆ (i.e., (s, g) ∼G

∆ (s′, g′).) Then, these two shape
graphs are almost identical; the only exception is when g(a) and g′(a) are nonterminals or nil.
unify eliminates all such differences in two shape graphs; if g(a) and g′(a) are nonterminals,
then unify changes g and g′, so that they map a to the same fresh nonterminal γ, and then it
defines γ to cover both α and β. The unify procedure applies the following rule to (G, R) until
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the abstract state doesn’t change:

(unify) (G ] {(s1, g1 · [a1→α1]), (s2, g2 · [a2→α2])})
;

(G ∪ {(Ss1, Sg1 ·[a2→β]), (s2, g2 ·[a2→β])},
R · [β→R(α1) ∪R(α2)]

)

where (s1, g1 · [a1→α1]) ∼G
S (s2, g2 · [a2→α2]),

S(a1) ≡ a2, α1 6≡ α2, and β is fresh.

The rule recognizes two similar shape graphs which have different nonterminals at the same
position, and replaces those nonterminals by fresh nonterminal β that covers the two nonter-
minals. For example, the left two shape graphs are unified by the following steps:

β

ax

b c

γ

x

nilγ

a

b c

x

γ

a

b cx

β

ax

b c

d

e f

β nil

δ

α

We first replace the left children α and β by γ which covers both; that is, given grammar R,
we add [β→R(α)∪R(β)] to R. Then we replace the right children α and nil by δ which covers
both.

The last subroutine simplify reduces the complexity of grammar by combining similar cases
or similar definitions. This subroutine applies three rules repeatedly:

• If the definition of a nonterminal has two similar cases 〈β, v〉 and 〈β′, v′〉, and β and β′

are different nonterminals, unify nonterminals β and β′. Apply the same rule for the
second field.

• If the definition of a nonterminal has two similar cases (β, v2) and (nil, v′2), add the nil
case to R(β). Apply the same rule for the second field.

• If the definition of two nonterminals are similar, the nonterminals are unified.

The simplify procedure applies the following rules to (G, R) until the abstract value doesn’t
change:

(case) (G, R) ; (G, R) {β/α}
where {〈α, v〉 , 〈β, v′〉} ⊆ R(γ), and α 6≡ β.
(same for the second field)

(nil) (G, R · [α→E ] {〈β, v〉 , 〈nil, v′〉}])
; (G, R′[β→R′(β) ∪ {nil}])
where R′ = R · [α→E ] {〈β, v〉 , 〈β, v′〉}]
(same for the second field)

(def) (G, R) ; (G, R) {β/α} where R(α) ∼ R(β)

Note that we apply a substitution {α/β} to an abstract state (G, R) in a usual way except that
we remove the definition of β from R and re-define α so that α covers both α and β:

(G, R · [α→E1, β→E2]) {α/β} ∆=
(G {α/β} , R {α/β} · [α→(E1 ∪ E2) {α/β}]).
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For example, consider the following transitions. The initial grammar says that α means com-
plete binary trees whose height is 0, 2 or 3:

α ::= nil | 〈β, β〉 | 〈γ, γ〉 , β ::= 〈γ, γ〉 , γ ::= 〈nil, nil〉
(case)
; α ::= nil | 〈β, β〉 , β ::= 〈β, β〉 | 〈nil, nil〉
(nil)
; α ::= nil | 〈β, β〉 , β ::= 〈β, β〉 | 〈β, nil〉 | nil
(nil)
; α ::= nil | 〈β, β〉 , β ::= 〈β, β〉 | nil

(def)
; α ::= nil | 〈α, α〉

In the initial grammar, α’s definition has the similar cases 〈β, β〉 and 〈γ, γ〉, so we apply {β/γ}
(case). In the second grammar, the β has the similar cases 〈β, β〉 and 〈nil, nil〉. Thus, we
replace nil by β, and add another case nil to β’s definition (nil). We apply (nil) once more
for the second field. In the fourth grammar, since α and β have similar (in fact, the same)
definitions, we apply {α/β}. As a result, we obtain the last grammar that says α describes
binary trees, which is much weaker than the original meaning.

The last step boundk checks the number of symbolic locations in each shape graph. It
simply gives > when one of shape graphs has more than k symbolic locations.

boundk(G, R) =



(G, R), if (s, g) has no more than k symbolic
locations for all (s, g) ∈ G

>, otherwise

The normalization function normalize always terminates for any abstract state: deljunk
strictly decreases the number of shared or unreachable constants; fold strictly decreases the
number of symbolic locations; unify strictly decreases the number of shape graphs in a few
steps; and simplify strictly decreases the number of nonterminals plus the number of nil which
appears in a pair.

The normalization function normalize always gives a k-bounded normalized abstract state.
The termination of the (fold) rule ensures that every shape graph is normalized (the first
condition of Definition 1). The termination of the (unify) rule ensures that the result does
not have similar shape graphs (the second condition). The (unify) rule preserves that the every
shape graph is normalized. The termination of the (case) rule ensures that the definition of
a nonterminal does not have similar cases (the third condition), and the termination of the
(def) rule ensures that the grammar does not have similar definitions (the fourth condition).
Note that changing nonterminals in shape graphs does not change the properties that they are
normalized and they are not similar to each other. Thus the (case) and (def) rule does not
break the previous conditions. Finally, boundk gives > if the number of symbolic locations of
a shape graph is more than k.

6 Analysis

Our analyzer consists of two parts: the “forward analysis” of commands C, and the “backward
analysis” of boolean expressions B. Both of these interpret C and B as functions on abstract
states, and they accomplish the usual goals in the abstract interpretation: for an initial abstract
state (G, R), [[C]](G, R) approximates the possible output states, and [[B]](G, R) denotes the
result of pruning some states in (G, R) that do not satisfy B.

One particular feature of our analysis is that the analysis also checks the absence of memory
errors, such as null-pointer dereference errors. Given a command C and an abstraction (G, R)
for input states, the result [[C]](G, R) of analyzing a command C can be either some abstract
state (G′, R′) or >. (G′, R′) means that all the results of C from (G, R) are approximated by
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(G′, R′), but in addition to this, it also means that no computations of C from (G, R) can
generate memory errors. >, on the other hand, expresses the possibility of memory errors, or
indicates that a program uses the data structures whose complexity goes beyond the current
capability of the analysis.

The definition of our analyzer is shown in Figure 1.

6.1 Forward Analysis

The forward analysis part of our analyzer abstractly executes each command using the abstract
states. The abstract execution of a command follows the real execution of the command. For
assignment x:= y and an input abstract state (G, R), it “updates” the variable x in each shape
graph (s, g) in G to the abstract value of y. For x := new, the analyzer picks three fresh
symbols, a for a new location and a1, a2 for its contents; and for each shape graph (s, g) in the
input (G, R), the analyzer “allocates” [a→(a1, a2), a1→nil, a2→nil] in g, and updates x to the
symbolic location a of the new cell.

The abstract execution of the analyzer often preprocesses “input” shape graphs in the input
(G, R). When the command contains dereferencing operators, the analyzer checks each input
shape graph (s, g) to find out whether the dereferenced symbolic location a is mapped to a
nonterminal; if so, it looks up the nonterminal g(a) in a grammar, and expands this definition
inside the input shape graph. For example, consider the case for computing [[x:= y -> 0]] (G, R)
when G = {([x→a, y→b], [a→nil, b→β])} and R = [β ::= 〈β, β〉]. Since y has a nonterminal β,
our analysis unfolds the definition of β once by calling unfold(G, R, y). The result of unfolding
is:

b

y

b

dc

β β

y

β

After this unfolding, it updates the content of x by c. Note that unfold, in fact, gives many (not
only one) shape graphs when the grammar definition has many cases. Also, unfold fails when
the nonterminal has a nil case. This case means that there may be a null-pointer dereference
error during the dereferencing operation. In this case, our analysis gives > as a result.

For analyzing if-statement, prior to analyze each branches, our analysis prunes the input
state by using the backward interpretation of our analysis. For “ifB C1 C2,” it first selects,
from the input state, what satisfies B and what satisfies !B. Then it analyzes C1 and C2 with
the pruned results respectively, and joins the two analysis results.

For analyzing a loop, our analysis uses the subdomain D̂∇
k in order to ensure the termi-

nation. For “while B C,” our analysis does a fixpoint iteration as usual but, additionally,
normalizes the abstract state for each fixpoint iteration step. Each fixpoint iteration consists
of four procedures: it prunes the previous states with B by the backward analysis; it analyzes
C with the pruned result; it joins the analysis result of C, the previous abstract state, and the
initial abstract state; and finally, it finds a normal form of the joined result by using normalize.
These procedures are repeated until the previous and current states are provably equivalent
by our “algorithmic” order v̇ in (in Figure 1). After obtaining a fixpoint, it prunes again
by the exit condition !B (not B) of the while loop. This fixpoint iteration always terminates
because normalize is extensive for v̇ and every chain of v̇ is finite in the k-bounded normalized
abstract domain by Lemma 22.

2Lemma 2 works for the approximated order v̇
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[[C]] : bD → bD [[x := new]] (G, R) = ({(s[x→a], g[a→ 〈a1, a2〉 , a1→nil, a2→nil] | (s, g) ∈ G } , R)
new a, a1, and a2

[[x := nil]] (G, R) = ({(s[x→a], g[a→nil]) | (s, g) ∈ G } , R) new a
[[x := y]] (G, R) = when y ∈ dom(s) for all (s, g) ∈ G,

({(s[x→s(y)], g) | (s, g) ∈ G } , R)
[[x->i := y]] (G, R) = when unfold(G, R, x) = G′ and y ∈ dom(s) for all (s, g) ∈ G′,

({(s, g[a→(g(a)[i→s(y)])] | s(x) = a, (s, g) ∈ G′ } , R)
where 〈a1, a2〉 [0→a] = 〈a, a2〉 and 〈a1, a2〉 [1→a] = 〈a1, a〉

[[x := y->i]] (G, R) = when unfold(G, R, y) = G′,
({(s[x→ai], g) | g(s(y)) = 〈a1, a2〉 , (s, g) ∈ G′ } , R)

[[C1;C2]] (G, R) = [[C2]] ([[C1]] (G, R))
[[if B C1 C2]] (G, R) = [[C1]] ([[B]] (G, R)) ṫ [[C2]] ([[!B]] (G, R))

[[while B C]] (G, R) = [[!B]]
ş
fix v̇ λA.normalize(A ṫ (G, R) ṫ [[C]] ([[B]] A))

ť

[[C]] A = > (other cases)

[[B]] : bD → bD [[x = y]] (G, R) = when split(split((G, R), x), y) = (G′, R′)
({(s, g) | equal(g, s(x), s(y)) hols, (s, g) ∈ G′ } , R′)

[[!x = y]] (G, R) = when split(split((G, R), x), y) = (G′, R′)
({(s, g) | notequal(g, s(x), s(y)) hols, (s, g) ∈ G′ } , R′)

[[!(!B)]] (G, R) = [[B]] (G, R)
[[B]] A = > (other cases)

where

unfold((s, g), R, x) =

8
<
:
{(s, g)} , if g(s(x)) is a pair
{(s, g[a→ 〈a1, a2〉 , a1→v1, a2→v2]) | 〈v1, v2〉 ∈ R(a)} if s(x) = a, g(a) = α and nil 6∈ R(α)
undefined, otherwise.

unfold(G, R, x) = ∪(s,g)∈Gunfold((s, g), R, x)
if for all (s, g) ∈ G, unfold((s, g), R, x) is defined; otherwise, undefined.

split((s, g), R, x) =

8
>><
>>:

({(s, g[a→nil])} , R), if s(x) = a, g(a) = α and R(α) = {nil}
({(s, g[a→nil]), (s, g[a→β])} , R[β→R(α)− {nil}]), if s(x) = a, g(a) = α,

R(α) ⊇ {nil} and R(α) 6= {nil}
({(s, g)} , R), otherwise

split(G, R, x) = ṫ (s,g)∈Gsplit((s, g), R, x) if for all (s, g) ∈ G, x ∈ dom(s); otherwise, >.

equal(g, a, b) = (a = b) ∨ (g(a) = nil ∧ g(b) = nil)
notequal(g, a, b) = ¬equal(g, a, b)

[[nil]]R1 v̇ [[nil]]R2

[[nil]]R1 v̇ [[α]]R2 iff {nil} ⊆ R2(α)

[[α]]R1 v̇ [[nil]]R2 iff R1(α) ⊆ {nil}
[[α]]R1 v̇ [[β]]R2 iff nil ∈ R1(α) =⇒ nil ∈ R2(β)

and〈v1, v2〉 ∈ R1(α) =⇒ ∃〈v′1, v′2〉 ∈ R2(β) s.t. [[v1]]R1 v̇ [[v′1]]R2 and [[v2]]R1 v̇ [[v′2]]R2

co-inductively

[[〈a1, a2〉]]R1 v̇ [[〈a1, a2〉]]R2

[[(s1, g1)]]R1 v̇ [[(s2, g2)]]R2 iff (s1, g1) is not normalized ∧ ((s′1, g
′
1), R

′
1) = fold(s1, g1) ∧ [[(s′1, g

′
1)]]R′1 v̇ [[(s2, g2)]]R2

or (s1, g1) is normalized ∧ (s1, g1) ∼G
S (s2, g2) ∧ ∀a ∈ dom(g2).[[(S(g1))(a)]]R1 v̇ [[g2(a)]]R2

A v̇ >
(G1, R1) v̇ (G2, R2) iff (s1, g1) ∈ G1 =⇒ ∃(s2, g2) ∈ G2.[[(s1, g1)]]R1 v̇ [[(s2, g2)]]R2

A ṫ > ∆
= >

(G1, R1) ṫ (G2, R2)
∆
= (G1 ∪ G2, R1 ∪R2), no nonterminals in (G1, R1) appear in (G2, R2) and vice versa

Figure 1: The Analysis.
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6.2 Backward Analysis

The main step of the backward analysis is to transform an input abstract state (G, R) to (G′, R′)
where it can be syntactically decided whether two symbolic locations denote the same concrete
locations or not; that is, for each shape graph (s, g) in G′ and non-nil symbolic locations
a1, a2 ∈ dom(g) (i.e, g(a1) 6≡ nil and g(a2) 6≡ nil), a1 and a2 mean different concrete values if
and only if they are syntactically different. Note that this property does not hold in general,
because g(a1) and g(a2) are nonterminals, and these nonterminals have the nil case. Then,
although a1 and a2 are syntactically different, both of them can mean nil. So, our analysis
eliminates such a case, prior to comparing two symbolic locations.

We define such an elimination, which we call split, as follows. Given an input abstract
state (G, R) and a variable x, it first collects all shape graphs (s, g) in G where g(s(x)) is a
nonterminal. For all such graphs (s, g), split looks at the definition of nonterminal g(s(x)),
named α, in R, and it modifies (s, g) in the following two cases:

• If R(α) = {nil}, replace the content of x by nil.

• If R(α) contains both nil and a pair, extend R with [β→R(α)−{nil}], and split (s, g) into
two shape graphs (s, g1) and (s, g2) such that g1 and g2 are equal to g except for s(x):
g1(s(x)) ≡ nil, and g2(s(x)) ≡ β.

Note that after this transformation, if g(s(x)) is not nil, it is a pair or a nonterminal whose
definition contains only pairs; thus, it denotes the address of an allocated cell.

Using split, we define the backward analysis of equality and inequality by: preprocessing
with split followed by filtering with simple syntactic criteria. For x1=x2, the backward analyzer
first applies split twice, to get (G′, R′) = split(split((G, R), x1), x2). Then, it removes shape
graphs (s, g) in G′ such that s(x1) 6≡ s(x2) and at least one of g(s(x1)) and g(s(x2)) is not nil.
Note that this filtering is correct, because if g(s(xi)) is not nil, then it denotes the address of
an allocated cell. Thus, when precisely one of g(s(x1)) and g(s(x2)) is nil, the other denotes
the address of an allocated cell, which cannot be nil. When neither g(s(x1)) nor g(s(x2)) is nil,
both g(s(x1)) and g(s(x2)) should denote the addresses of allocated cells; now, the meaning
of a shape graph ensures that these addresses must be different because s(x1) 6≡ s(x2). The
backward analysis of inequality is defined similarly, and its correctness can be checked by a
similar argument.

7 Full Analysis

The basic version of our analysis, which we have presented so far, has two immediate shortcom-
ings. First, the basic analysis cannot deal with data structures with sharing, such as doubly
linked lists and binomial heaps; as a consequence, if a program uses such data structures,
the analysis usually gives up, and returns >. Second, the basic version cannot handle the
deallocation command dispose, because there are no ways to express dangling pointers.

The full analysis extends the basic version to overcome these shortcomings. First, it uses a
more expressive language for a grammar, where a nonterminal is allowed to have parameters.
The main feature of this new parameterized grammar is that an invariant for a data structure
with sharing is expressible by a grammar, as long as the sharing is “cyclic.” A parameter
plays a role of “targets” of such cycles. The analyzer is modified to fully exploit this increased
expressivity, so that it can handle data structures with cyclic sharing. Second, it includes an
approximate constant −, which denotes any non-nil addresses that are not necessarily allocated.
The analyzer uses this new constant − to represent dangling pointers.

In this section, we explain the full analysis by focusing on these two extensions.
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7.1 Abstract Domain

The two extensions in the full analysis appear most explicitly in the new abstract domains.
Let self and arg be two different symbolic locations. In the full analysis, the domains for shape
graphs and grammars are modified as follows:

Cons ∆= {nil, c1, . . . , cn,−}
NTermApp ∆= NonTerm× (SymLoc +⊥)
NTermAppR ∆= NonTerm× ({self, arg}+⊥)
Graph ∆=

(Var ⇀ SymLoc)×
(SymLoc ⇀ Cons + NTermApp + SymLoc2)

Grammar ∆=

NonTerm ⇀ ℘nf

(
Cons +
(Cons+{self, arg}+NTermAppR)2

)

The first change in the new definitions is that all the nonterminals have parameters. All
the uses of nonterminals in the old definitions are replaced by the applications of nonterminals,
and the declarations of nonterminals in a grammar can use two symbolic locations self and
arg, as opposed to none, which denote the implicit self parameter and the explicit parameter.
Note that ⊥ can be applied to a nonterminal; this means that we consider subcases of the
nonterminal where the arg parameter is not used. For instance, if a grammar R maps β to
{nil, 〈arg, arg〉}, then β(⊥) excludes 〈arg, arg〉, and means the empty heap object.

The second change is that the new definitions allow several constants, instead of just nil;
for all that places where a singleton set {nil} appears in the old definitions, set Cons now takes
up those positions in the new definitions. The newly added constant − means any non-null
address, and it is used to represent a dangling pointer. This constant plays a crucial role for
making the analysis of dispose possible. The other new constants c1, . . . , cn are non-address
concrete values, which are usually used to express the status of a heap cell. For example, in a
Schorr-Waite tree marking algorithm, R and L are such constants, and these constants indicate
whether the left or right field of a cell is reversed.

The third change is the addition of a boolean component in shape graphs. This additional
component indicates whether all heap cells are represented by the second partial function on
symbolic locations or not. For example, a shape graph ([x→a], [a→tree], true) means that the
heap might contain some cells besides the tree a, while ([x→a], [a→tree], false) means that the
heap contain only the tree a.

As in the base case, the precise meaning of a shape graph and a grammar is given by a
translation into separation-logic assertions. Appendix B shows this translation.

7.2 Normalization Function

To fully exploit the increased expressivity of the abstract domain, we change the abstract
function in the full analysis. This new normalization function is shown in Appendix C.3.

The most important change in the new normalization function is an extension to the (fold)
rule and the addition of a new rule (bfold). Recall that the goal of (fold) is to recognize
heap objects in a shape graph, and to replace them by nonterminals. The limitation of the old
(fold) rule is that the rule can recognize a heap object only when the object does not have
shared cells internally. The extension of the (fold) rule is for overcoming this limitation. The
key idea is to “cut” a “noncritical” link to a shared cell, and represent the removed link by a
parameter to a nonterminal. If enough such links are cut from an heap object, the object no
longer has (explicitly) shared cells, so that the wrapping step in the old definition of (fold)
can be applied.
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To understand the “cutting” of (fold), let’s consider a shape graph containing a cycle from
x:

x a

b

c

In this shape graph, “cell” a is shared, because variable x points to a and “cell” c points to
a. For this shape graph, the extended (fold) rule concludes that the link from c to a is not
critical, because even without this link, a is still reachable from variables. Thus, the rule cuts
the link from c to a, introduces a nonterminal αc with the definition {〈arg〉}, and changes the
shape graph as follows:

αc(a)

x a

b

c

αc ::= 〈arg〉

Note that the resulting graph does not have explicit sharing. So, we can apply the usual
wrapping in the old definition of (fold) to c to get a shape graph and a grammar:

x a

b

αb(a)

αc ::= 〈arg〉
αb ::= 〈αc(arg)〉

By repeating this process, we can obtain a shape graph with the following grammar:

αa(a)

ax
αc ::= 〈arg〉
αb ::= 〈αc(arg)〉
αa ::= 〈αb(arg)〉

The other change in the normalization step is the addition of the new rule (bfold). This
(bfold) rule changes the direction of wrapping a concrete cell in (fold), and wraps a cell “from
the back.” Recall that the (fold) rule puts a cell at the front of a heap object; it adds the
cell as a root of a nonterminal. The (bfold) rule, on the other hand, puts a cell a at the exit
of a heap object. When a is used as a parameter for a nonterminal α, the rule “combines” a
and α. This rule can best be explained using an list-traversing algorithm. Consider a program
that traverses a linked list where variable r points to the head cell of the list, and variable c
to the current cell of the list. The usual loop invariant of such a program is expressed by the
following shape graph and grammar:

β

r c

ba

α(b)

α ::= 〈α(arg)〉 | 〈arg〉
β ::= nil | 〈β〉

However, only with the (fold) rule, which adds a cell to the front, we cannot discover this
invariant; one iteration of the program moves c to the next cell, and thus changes the above
shape graph into the following unsimilar shape graph:

β

a

r

b’

c

b

α(b)

The (bfold) rule changes this shape graph back to the one for the invariant, by merging α(b)
with cell b. The rule first extends a grammar with [γ→{〈arg〉}].
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β

a

r

b’

c

b

γ(b′)α(b)

Then, it finds all the places where arg is used as itself in the definition of α, and replaces arg
there by β(arg). Finally, the rule changes the binding for a from α(b) to α(b′), and eliminates
cell b, thus resulting the following shape graph and a grammar3:

β

r c

a b’

α(b′)

The precise definition of (bfold) does what we call linearity checks, in order to ensure the
soundness of replacing arg by nonterminals. For the details, see the definition of (bfold) in
Appendix C.3.

7.3 Forward and Backward Analysis

The forward analysis part of the full analyser is almost identical to that of the basic one
(Figure 1). The only important difference is that the full forward analysis can handle the
deallocation command:

[[disposex]] (G, R) = when unfold(G, R, x) = G′,
({(s, g[s(x)→−]) | (s, g) ∈ G′ } , R)

The analyzer first checks whether x always points to an allocated cell; for all (s, g) in G, it
checks whether g(s(x)) is a tuple, which denotes a concrete cell, or a nonterminal whose only
cases are tuples. If so, it materializes the cell for x in each shape graph, by unrolling the
definition of nonterminals if necessary. Finally, the analyser eliminates this materialized cell,
by newly binding s(x) to −.

The backward analysis part of the full analyser is also very similar to that of the basic
analyser (Figure 1). The difference is that the new backward analysis does more case analysis
because of new constants. In particular, the backward analysis uses the fact that − can be any
addresses, but never nil, and prunes more states. For instance, when performing the backward
analysis of x = y, the analyzer eliminates a shape graph (s, g) from (G, R) if g(s(x)) ≡ − and
g(s(y)) ≡ nil. However, if g(s(x)) ≡ − and g(s(y)) is a tuple, then the analyser includes (s, g)
in its output, because − can mean the address of cell g(s(y)).

8 Example Verifications

We tested our analysis with three example programs; binomial heap construction, Schorr-
Waite tree disposal, and Schorr-Waite tree traversal. For each of these programs, we ran
the analyzer, and obtained abstract states for a loop invariant and the result. In all three
cases, the analysis took less than 0.1 second in Intel Pentium 3.0C with 1GB memory. The
obtained abstract states (G, R) were simple and human-readable, mainly because G contains
only a single shape graph. The obtained abstract states were strong enough to show several
interesting properties of programs, including the absence of null-pointer dereference errors or
memory leak, the “binomial heapness,” and the complete disposal of the input tree. In this
section, we will explain these obtained abstract states.

3The grammar is slightly different from the one for the invariant. However, if we combine two abstract states
and apply unify and simplify, then the grammar for the invariant is recovered.
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8.1 Binomial Heap Construction

In this experiment, we took an implementation of binomial heap construction in [CLRS01],
where each cell has a pointer to the left-most child, another pointer to the next sibling, and
the parent pointer. This construction algorithm produces a forest of the following shape:

x

In the figure, the horizontal edges are for next siblings, the down edges are for left-most children,
and the up edges are for parents.

We ran the analyzer with this binomial heap construction program and the empty abstract
state ({}, []). Then, the analyzer inferred the following same abstract state (G, R) for the result
of the construction as well as for the loop invariant.

G =
{(

[x→a], [a→forest]
)}

R =
[

forest ::= nil | 〈stree(self), forest, nil〉
stree ::= nil | 〈stree(self), stree(arg), arg〉

]

Here we omit ⊥ from forest(⊥).
The unique shape graph in G means that the heap has only a single heap object whose root

is stored in x, and the heap object is an instance of forest. Grammar R defines the structure
of this heap object. It says that the heap object is a linked list of instances of stree, and
that each instance of stree in the list is given the address of the containing list cell. These
instances of stree are, indeed, precisely those trees with pointers to the left-most children and
to the next sibling, and the parent pointer. To see how the grammar R implies this fact, let’s
consider the definition of stree by assuming that arg is a pointer to the parent cell. Then,
〈stree(self), stree(arg), arg〉 means that the third field points to the parent, and that the first
two fields point to instances of stree; the first instance, the one from the first field, has the
current cell as its parent, and the second instance has the same parent as the current cell. Note
that this is precisely the characterization of the trees in a binomial heap.

8.2 Schorr-Waite Tree Disposal

We applied our analysis to the Schorr-Waite tree-disposing algorithm. We took a slightly
optimized Schorr-Waite traversing algorithm, where the algorithm uses three fields instead of
four, and we inserted a “dispose” command appropriately. The resulting algorithm traverses
a binary tree in the depth-first manner, using pointer reversals, and disposes a cell when the
cell is last visited.

As an initial abstract state, we used the following abstract state (G0, R0):4

G0 =
{(

[x→a], [a→tree]
)}

R0 = [tree ::= nil | 〈I, tree, tree〉]

This abstract state means that the initial heap contains a binary tree a whose cells are marked
I, and that this tree is the only thing in the heap.

4Here again we omitted ⊥ from tree(⊥).
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Given the program and the initial value (G0, R0), the analyzer returned (G1, R1) for a final
result, and (G2, R2) for an loop invariant:

G1 =
{(

[x→a], [a→nil]
)}

R1 = []

G2 =
{(

[x→a, y→b], [a→tree, b→rtree]
)}

R2 =
[

rtree ::= nil | 〈R, nil, rtree〉 | 〈L, rtree, tree〉
tree ::= nil | 〈I, tree, tree〉

]

The abstract state (G1, R1) says that the variable x contains nil, and that the heap is empty.
Thus, this abstract state proves that all the heap cells in the input tree are disposed by the
algorithm.5

The inferred invariant (G2, R2) describes two disjoint heap objects, one reachable from the
current cell x and the other reachable from the original parent y of x. The invariant says that
the heap object x is either empty, or a binary tree all of whose nodes are marked I. The first
empty case means that cell x has already been visited before; thus, all the cells from x in the
initial state must have been disposed already. The second case, on the other hand, means
that cell x is first visited; so, no cells from the binary tree from x have been modified by the
algorithm. For the other heap object y, the invariant implies that (1) a cell is marked R, the
left subtree is completely disposed, and the right field is reversed; or (2) a cell is marked L, the
left field is reversed, and the right subtree has not been changed.

8.3 Schorr-Waite Tree Traversal

The last example is the Schorr-Waite tree traversing algorithm. Although this traversing
algorithm is almost identical to the previous Schorr-Waite tree disposal, we analyzed this
algorithm because its verification is more demanding. The full verification of the algorithm
needs to show that the final heap contains a binary tree all of whose cells are marked by R,
and that this tree is identical to the original tree except for the first marking field. In this
experiment, we wanted to see how much of this invariant can be discovered by our analyzer.

Given the traversing algorithm and the input abstract state in the previous section, the
analyzer produced (G1, R1) for final states, and (G2, R2) for a loop invariant:

G1 =
{(

[x→a], [a→treeR]
)}

R1 = [treeR ::= nil | 〈R, treeR, treeR〉]

G2 =
{(

[x→a, y→b], [a→treeRI, b→rtree]
)}

R2 =




rtree ::= nil | 〈R, treeR, rtree〉 | 〈L, rtree, tree〉
tree ::= nil | 〈I, tree, tree〉
treeR ::= nil | 〈R, treeR, treeR〉
treeRI ::= nil | 〈I, tree, tree〉 | 〈R, treeR, treeR〉




The abstract state (G1, R1) means that the heap contains only a single heap object x, and
that this heap object is a binary tree containing only R-marked cells. Note that this abstract
state implies the absence of memory leaks, because the tree x is the only thing in the heap.
However, the abstract state is not strong enough to guarantee that for each cell, the original
values of the second and third fields are restored. In fact, our analyzer cannot prove such a

5Some reader might wonder why the variable x is nil. This is because we obtained the Schorr-Waite disposal
from the Schorr-Waite traversal. In the traversing algorithm, the first field of the current cell x is checked if
x is not nil. So, after disposing the current cell, we need to set x to nil, in order to avoid dangling-pointer
dereference errors.
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property that connects the initial and final states. In section 10, we mention some ideas for
inferring even such properties.

The loop invariant (G2, R2) means that the heap contains two disjoint heap objects x and
y. Since the heap object x is an instance of treeRI, the object x is a I-marked binary tree, or a
R-marked binary tree. This first case indicates that x is first visited, and the second case that
x has been visited before. The nonterminal rtree for the other heap object y implies that one
of left or right field of cell y is reversed. The second case, 〈R, treeR, rtree〉, in the definition of
rtree means that the current cell is marked R, its right field is reversed, and the left subtree is a
R-marked binary tree. The third case, 〈L, rtree, tree〉, in the definition means that the current
cell is marked L, the left field is reversed, and the right subtree is a I-marked binary tree. Note
that this invariant, indeed, holds because y points to the parent of x, so the left or right field
of cell y must be reversed.

9 Correctness

The correctness of our analysis is expressed by the following theorem:

Theorem 3 For all programs C and abstract states (G, R), if [[C]](G, R) is a non-> abstract
state (G′, R′), then triple {means(G, R)}C{means(G′, R′)} holds in separation logic.

Note that the theorem considers only non-> abstract states. This exclusion of > is related to
the tight interpretation of a Hoare triple in separation logic. In separation logic, {P}C{Q}
implies that C does not dereference nil or dangling pointers if it is started at a state satisfying
P . Our analysis can guarantee such memory safety only when the analysis result is not >.

The proof of this theorem uses the correctness of abstract operators and the backward
analysis:

Lemma 4 All of unfold, normalize, ṫ , v̇ and the backward analysis are correct.
(1) If unfold(G, R, x) = (G′, R′), then

means(G, R) =⇒ means(G′, R′).

(2) If normalize(G, R) = (G′, R′), then

means(G, R) =⇒ means(G′, R′).

(3) If (G′′, R′′) = (G, R) ṫ (G′, R′), then

means(G, R) ∨means(G′, R′) ⇐⇒ means(G′′, R′′).

(4) If (G, R) v̇ (G′, R′), then

means(G, R) =⇒ means(G′, R′).

(5) If [[B]](G, R) = (G′, R′), then

(B ∧means(G, R)) =⇒ means(G′, R′).

Using Lemma 4, we prove the main theorem. We use the induction on the structure of C to
show that {means(G, R)}C{means(G′, R′)} is derivable in separation logic; then, the theorem
follows from the soundness of separation-logic proof rules. In the proof, we use the operator
closure that takes an assertion and existentially quantifies all the symbolic locations in the
assertions. For instance, closure(x .= a ∗ y

.= b) is ∃ab. x
.= a ∗ y

.= b. We also use meanssd(s, g)
to express meanss(s, g) without existential quantifications.
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We first consider cases when C is an atomic command A. In this case, the grammar part
of the input abstract value doesn’t change, so that R = R′. Using this fact, we construct a
part of the required proof tree:

τ

meansg(R) ` {W
(s,g)∈G meanss(s, g)}A{W

(s′,g′)∈G′ meanss(s
′, g′)}

{let meansg(R) in meansss(G)}A{let meansg(R) in meansss(G′)}
{means(G, R)}A{means(G′, R)}

In the above derivation, the missing subtree τ varies depending on the specific case of A. For
each atomic command A, we will explain, one-by-one, how to to construct such a subtree τ .

• A ≡ x := new: In this case, there are auxiliary variables a, b1, b2 such that

1. none of a, b1 and b2 occur in G or R; and

2. G′ = {(s[x→a], g[a→〈b1, b2〉, b1→nil, b2→nil] | (s, g) ∈ G}.
Thus, it suffices to show that for each (s, g) in G,

meansg(R) ` {meanss(s, g)}x := new{meanss(s[x→a], g[g′])}
where g′ = [a→〈b1, b2〉, b1→nil, b2→nil]. Let s0 the restriction of s to dom(s) − {x}. We
derive the triple as follows:

meansg(R) ` {emp}x := new{x 7→ 〈nil, nil〉} New

meansg(R) ` {emp}x := new{∃a~b. x .
= a ∗ a 7→ 〈b1, b2〉 ∗

J
i bi

.
= nil}

Conseq

meansg(R) ` {meanssd(s0, g)}x := new{meanssd(s0, g) ∗ ∃a~b. x .
= a ∗ (a 7→ b1, b2) ∗

J
i bi

.
= nil}

FR

meansg(R) ` {meanssd(s, g)}x := new{∃a~b. meanssd(s[x→a], g[g′])}
Conseq

meansg(R) ` {closure(meanssd(s, g))}x := new{closure(meanssd(s[x→a], g[g′]))} AuxElim

In the derivation, we used the “freshness” of a and~b to move the existential quantification
outside of ∗ (in the below application of Consequence). We also used the assumption
about a program variable in the shape graph; each program variable y appears at most
once in meanssd(s, g) for its own “definition” y

.= s(y). Thus, meanssd(s0, g) does not
contain x, because x 6∈ dom(s0), and so, meanssd(s0, g) can be added by the frame rule.
Also, meanssd(s, g) has to be means(s0, g) ∗ (x .= s(x)), so it implies means(s0, g). This
implication is used in the below application of Consequence.

• A ≡ x := nil: Then, there is a variable a such that

1. a does not occur in G and R; and

2. G′ = {(s[x→a], g[a→nil]) | (s, g) ∈ G}.
For each (s, h, t) ∈ G, we will construct a proof tree for the triple

meansg(R) ` {meanssd(s, g)}x := E{∃a.meanssd(s[x→a], g[a→nil])}.
Once having such a tree, we can build the required τ easily:

...
meansg(R) ` {meanssd(s, g)}x := nil{∃a. meanssd(s[x→a], g[a→nil])}

meansg(R) ` {closure(meanssd(s, g))}x := nil{closure(meanssd(s[x→a], g[a→nil]))} AuxElim

meansg(R) ` {W
(s,g)∈G meanss(s, g)}x := nil{W

(s′,g′)∈G′ meanss(s
′, g′)} Disj
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Consider a shape graph (s, g) in G. Let s0 be the restriction of s to dom(s)− {x}. We
construct the required tree as follows:

meansg(R) ` {(∃a. meanssd(s[x→a], g[a→nil]))[nil/x]}x := nil{∃a. meanssd(s[x→a], g[a→nil])} Assign

meansg(R) ` {∃a. meanssd(s0, g) ∗ nil
.
= a ∗ a

.
= nil}x := nil{∃a. meanssd(s[x→a], g[a→nil])} Conseq

meansg(R) ` {meanssd(s, g)}x := nil{∃a. meanssd(s[x→a], g[a→nil])} Conseq

In the last two steps of the derivation, we used the following implications, which follow
from the definition of meanssd and the “freshness” of a:

ţ
∃a. meanssd(s[x→a], g[a→nil])

ű
[nil/x] ≡ ∃a.

ţ
meanssd(s[x→a], g[a→nil])[nil/x]

ű

≡ ∃a.

ţ
(meanssd(s0, g) ∗ x

.
= a ∗ a

.
= nil)[nil/x]

ű

≡ ∃a. meanssd(s0, g) ∗ nil
.
= a ∗ a

.
= nil

meanssd(s, g) =⇒ ∃a. meanssd(s, g) ∗ nil
.
= a ∗ a

.
= nil

=⇒ ∃a. meanssd(s0, g) ∗ nil
.
= a ∗ a

.
= nil

• A ≡ x := y: In this case, y ∈ dom(s) for all (s, g) ∈ G, and

G′ = {(s[x→s(y)], g) | (s, g) ∈ G}.
Using these facts, we construct the require derivation:

meansg(R) ` {meanssd(s[x→s(y)], g)[y/x]}x := y{meanssd(s[x→s(y)], g)} Assign

meansg(R) ` {meanssd(s, g)}x := y{meanssd(s[x→s(y)], g)} Conseq

meansg(R) ` {closure(meanss(s, g))}x := y{closure(meanssd(s[x→s(y)], g))} AuxElim

meansg(R) ` {W
(s,h,t)∈G meanss(s, h, t)}x := y{W

(s′,g′)∈G′ meanss(s
′, g′)} Disj

In the application of Consequence, we used the following implication, which follows from
the definition of meanssd:

meanssd(s, g) =⇒ meanssd(s, g) ∗ y
.
= s(y)

=⇒ meanssd(s|dom(s)−{x}, g) ∗ y
.
= s(y)

≡ (meanssd(s|dom(s)−{x}, g) ∗ x
.
= s(y))[y/x]

≡ meanssd(s[x→s(y)], g)[y/x].

• A ≡ x->i := y: WLOG, we assume that i = 0. In this case, there exists a graph set G0

such that

1. G0 = unfold(G, R, x);

2. for all (s, g) ∈ G0, we have that (x, y ∈ dom(s)) ∧ (s(x) ∈ dom(g));

3. G′ = {(s, g[a→〈s(y), a1〉] | ∃a0. s(x) = a ∧ g(a) = 〈a0, a1〉 ∧ (s, g) ∈ G0}.
Since G0 = unfold(G, R, x), by Lemma 4, the following implication holds:

meansg(R) `
( ∨

(s,g)∈G
meanss(s, g)

)
=⇒

( ∨

(s,g)∈G0

meanss(s, g)
)
.

Thus, it suffices to derive the following triple for every (s, g) in G0:

meansg(R) ` {meanss(s, g)}x->i := E{meanss(s, g[a→〈s(y), a1〉])}
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where a = s(x) and 〈a0, a1〉 = g(a). Let b = s(y). Consider a restriction (s0, g0) of (s, g):

s0(z) =
{

undefined if z ≡ x or z ≡ y
s(z) otherwise g0(c) =

{
undefined if c ≡ a
g(c) otherwise

The required triple is proved as follows:

meansg(R) ` {x 7→ −, a1}x->0 := y{x 7→ y, a1}
meansg(R) ` {meanssd(s0, g0) ∗ x

.
=a ∗ y

.
=b ∗ x 7→−, a1}x->0 := y{meanssd(s0, g0) ∗ x

.
=a ∗ y

.
=b ∗ x7→y, a1} FR

meansg(R) ` {meanssd(s0, g0) ∗ x
.
=a ∗ y

.
=b ∗ a 7→−, a1}x->0 := y{meanssd(s0, g0) ∗ x

.
=a ∗ y

.
=b ∗ a 7→b, a1}

Conseq

meansg(R) ` {meanssd(s, g)}x->0 := y{meanssd(s, g[a→〈b, a1〉])} Conseq

meansg(R) ` {closure(meanssd(s, g))}x->0 := y{closure(meanssd(s, g[a→〈b, a1〉]))} AuxElim

In the derivation, we used the following facts:

meanssd(s, g[a→〈b, a1〉]) ≡ meanssd(s0, g0) ∗ x
.
= a ∗ y

.
= b ∗ a 7→ b, a1

meansg(R) ` meanssd(s, g) =⇒ meanssd(s0, g0) ∗ x
.
= a ∗ y

.
= b ∗ a 7→ a0, a1

=⇒ meanssd(s0, g0) ∗ x
.
= a ∗ y

.
= b ∗ a 7→ −, a1

• A ≡ x := y->i: WLOG, we assume that i = 0. In this case, there is a graph set G0 such
that

1. G0 = unfold(G, R, y);

2. for all (s, g) ∈ G0, we have that y ∈ dom(s) and s(y) ∈ dom(g); and

3. G′ = {(s[x→a0], g) | ∃a1. (s, g) ∈ G0. g(s(y)) = 〈a0, a1〉}.
Since G0 = unfold(G, R, y), by Lemma 4, the following implication holds:

meansg(R) `
( ∨

(s,g)∈G
meanss(s, g)

)
=⇒

( ∨

(s,g)∈G0

meanss(s, g)
)
.

Thus, it suffices to derive the following triple for every (s, g) in G0:

meansg(R) ` {meanss(s, g)}x := y->0{meanss(s[x→a0], g)}

where 〈a0, a1〉 = g(s(y)). Let b = s(y). Consider a restriction (s0, g0) of (s, g):

s0(z) =
{

undefined if z ≡ x or z ≡ y
s(z) otherwise g0(c) =

{
undefined if c ≡ b
g(c) otherwise

The required proof tree is given below:

meansg(R) ` {y 7→a0, a1}x := y->0{x .
=a0 ∗ y 7→a0, a1}

meansg(R) ` {meanssd(s0, g0) ∗ y
.
=b ∗ y 7→a0, a1}x := y->0{meanssd(s0, g0) ∗ y

.
=b ∗ x

.
=a0 ∗ y 7→a0, a1} FR

meansg(R) ` {meanssd(s0, g0) ∗ y
.
=b ∗ b 7→a0, a1}x := y->0{meanssd(s0, g0) ∗ y

.
=b ∗ x

.
=a0 ∗ b 7→a0, a1}

Conseq

meansg(R) ` {meanssd(s, g)}x := y->0{meanssd(s[x→a0], g)} Conseq

meansg(R) ` {closure(meanssd(s, g))}x := y->0{closure(meanssd(s[x→a], g))} AuxElim

In the tree, we use the following facts:

meanssd(s[x→a0], g) ≡ meanssd(s0, g0, t) ∗ y
.
= b ∗ x

.
= a0 ∗ b 7→ a0, a1.

meansg(R) ` meanssd(s, g) =⇒ meanssd(s0, g0) ∗ x
.
=s(x) ∗ y

.
=b ∗ b7→a0, a1 (∵ Def. of meanssd)

=⇒ meanssd(s0, g0) ∗ y
.
=b ∗ b 7→a0, a1.
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Next, we prove the cases for the composite commands. Here we focus on the case for the
loop. The other cases are straightforward. Suppose that [[whileB C]](G, R) = (G′, R′). Then,
by the definition of the forward analysis, there exist abstract states (G0, R0) and (G1, R1) such
that

1. (G1, R1) = [[C]]([[B]](G0, R0));

2. [[!B]](G0, R0) = (G′, R′); and

3. normalize
(
(G0, R0) ṫ (G, R) ṫ (G1, R1)

) v̇ (G0, R0).

Then, {means[[B]](G0, R0)}C{means(G1, R1)} is derivable by induction hypothesis, and the fol-
lowing implications hold by Lemma 4:

means(G0, R0) ∧B =⇒ means[[B]](G0, R0) means(G0, R0) ∧ ¬B =⇒ means(G′, R′)
means(G, R) =⇒ means(G0, R0) means(G1, R1) =⇒ means(G0, R0)

Using two such facts, we derive the required triple:

{means([[B]](G0, R0))}C{means(G1, R1)}
{means(G0, R0) ∧B}C{means(G0, R0)} Conseq

{means(G0, R0)}whileB C{means(G0, R0) ∧ ¬B} Loop

{means(G, R)}whileB C{means(G′, R′)} Conseq

10 Conclusion

We have designed a fully automatic analysis that infers heap invariants of pointer programs,
and applied the resulting analysis to three nontrivial pointer programs. In all three cases,
the analysis run very fast, taking at most 0.1 second, and produced invariants strong enough
to show interesting properties of the program. The obtained invariant for the binomial heap
construction algorithm proves that the construction algorithm indeed builds a binomial heap;
the invariant for the Schorr-Waite tree disposing algorithm verifies that the algorithm removes
all the cells in the tree; the invariant for the Schorr-Waite tree traversing algorithm shows that
the result of the algorithm is a marked-binary tree and that there are no memory leaks. The
current implementation and the three examples are available on the following URL:

http://ropas.snu.ac.kr/grammar

One limitation of our analysis is that the analysis cannot handle dags and general graphs.
Frankly, we are in a very early stage for attacking this problem. We are currently considering
to use a more general language for a grammar, where the definition of a nonterminal can talk
not just about the root cell, but also about shared cells.

Another limitation is that the analysis cannot prove a relational property regarding both the
initial and final states. For instance, the full specification for the Schorr-Waite tree traversing
algorithm includes a requirement that the initial and final trees are identical except for the
marking field. Our analysis cannot prove such a property. The current idea is to add “auxiliary”
fields to every cell, and to cache the initial field values of each cell to these auxiliary fields.
Then, the analyser can show that the heap is restored to the initial heap by inferring that at
the end of the execution, the actual and auxiliary fields of each cell have the same contents.
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A The Semantics Of Assertions In Separation Logic

For heaps h1, h2 such that dom(h1) ∩ dom(h2) = ∅, we write h1 · h2 for heap h1 ∪ h2. The
formal definition of |= is given as follows:

(s, h), η |= (E 7→ E1, E2) iff
dom(h) = {[[E]]s} and h([[E]]s) = ([[E1]]s, [[E2]])

(s, h), η |= E = E′ iff [[E]]s = [[E′]]s
(s, h), η |= P ∗Q iff
∃h0, h1 s.t. h0 · h1 = h

and (s, h0), η |= P and (s, h1), η |= Q
(s, h), η |= true always
(s, h), η |= P ∧Q iff (s, h), η |= P and (s, h), η |= Q
(s, h), η |= P ∨Q iff (s, h), η |= P or (s, h), η |= Q
(s, h), η |= ¬P iff (s, h), η 6|= P
(s, h), η |= ∀x.P iff ∀v ∈ Loc.(s[x→v], h), η 6|= P
(s, h), η |= α(E1, . . . , En) iff (([[E1]]s, . . . , [[En]]s), h) ∈ η(α)

(s, h), η |= let Γ in Q iff (s, h), η
h
β→k(β)

i
β∈dom(Γ)

|= P

where k = fix λk0.λα ∈ dom(Γ).
let (α(~x) = Q) ≡ Γ(α)

in {(~v, h) | (s[x→~v], h), η
h
β→k0(β)

i
|= P}
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B The Meaning Of An Abstract State Of The Full Anal-
ysis

The meaning of an abstract state in the full analysis is given by compiling it into a separation-
logic assertion. To simplify the presentation, let’s assume that Cons contains only a single
non-address constant c, and that the abstract domain is for binary cells. We can define a
translation means for such a setting, by modifying only meansv and meansg.

meansv(a,nil) ∆= a
.= nil

meansv(a,−) ∆= emp ∧ a 6= nil ∧ a 6= c

meansv(a, c) ∆= x
.= c

meansv(a, b) ∆= a
.= b

meansv(a, α(b)) ∆= α(a, b)
meansv(a, α(⊥)) ∆= ∀b.α(a, b)

In the last clause, b is a different variable from a. The meaning of a grammar is a context
defining a set of recursive predicates.

meansg(R) ∆= {α(a, b)=
∨

e∈R(α)

meansgc(a, b, e)}α∈dom(R)

where meansgc is defined as follows:

meansgc(a, b, c) ∆= meansv(a, c)
meansgc(a, b, 〈v1, v2〉) ∆= ∃a1a2.a 7→ a1, a2

∗ meansv(a1, v1 {a/self, b/arg})
∗ meansv(a2, v2 {a/self, b/arg})

In the second clause, a1 and a2 are variables that do not appear in v1, v2, a, and b.

C Full Analysis

The main definition of our full analysis is the same as Figure 1 but we use different subroutines.

C.1 An Algorithm To Compute The Order

We extend the algorithm to compute the order for parameterized nonterminals and constants:

[[c]]R1 v̇ [[c]]R2

[[c]]R1 v̇ [[α(w)]]R2 iff {c} ⊆ R2(α)
[[α(w)]]R1 v̇ [[c]]R2 iff R1(α) ⊆ {c}

[[arg]]R1 v̇ [[arg]]R1

[[self]]R1 v̇ [[self]]R1

[[α(w1)]]R1 v̇ [[β(w2)]]R2 iff
w1 ≡ ⊥ or w1 ≡ w2, and c ∈ R1(α) =⇒ c ∈ R2(β),
and 〈v1, v2〉 ∈ R1(α) =⇒ ∃〈v′1, v′2〉 ∈ R2(β) s.t.

[[v1]]R1 v̇ [[v′1]]R2 and [[v2]]R1 v̇ [[v′2]]R2

co-inductively
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C.2 Similarity

We first define the value similarity, and then define the case similarity, the definition similarity,
and the graph similarity:

c ∼V c c ∼V α(w) α(w) ∼V c
self ∼V self arg ∼V arg
α(w1)∼V β(w2) iff w1 ≡ w2, w1 ≡ ⊥, or w2 ≡ ⊥

c∼Cc
〈v1, v2〉∼C 〈v′1, v′2〉 iff v1 ∼V v′1 and v2 ∼V v′2

E1∼DE2 iff e ∈ E1 =⇒ ∃e′ ∈ E2 s.t. e ∼C e′

and e ∈ E2 =⇒ ∃e′ ∈ E1 s.t. e ∼C e′

(s1, g1)∼G
S (s2, g2) iff

dom(s1) = dom(s2) and S(dom(g1)) = dom(g2)
and for all x ∈ dom(s1), S(s1(x)) ≡ s2(x)
and for all a ∈ dom(g1),
• if g1(a) is not a pair, g2(S(a)) is not a pair and

S(g1(a)) ∼V g2(S(a)), and
• if g1(a) = 〈b, c〉, g2(S(a)) = 〈S(b), S(c)〉.

C.3 Normalization Function

The deljunk procedure has one more rule to remove “imaginary” cycles:

(cycle) (G ] {(s, g · [a→α(a)])} , R)

;

( G ∪ {(s, g · [a→β(⊥)])} ,
R · [β→R(α) {self/arg}]

)

The fold procedure has the following rules:

(fold) (G ] {(s, g · [a→ 〈a1, a2〉 , a1→v1, a2→v2])}, R)

;

( G ∪ {(s, g · [a→α(w)])},
R · [α→{〈v1, v2〉 {self/a, arg/w}}]

)

where neither a1 nor a2 appears in the range
of g and s, free(〈v1, v2〉 ⊆ {a, b}, and α is fresh.

(cut) (G ] {(s, g · [a→ 〈a1, a2〉])}, R)

;

( G ∪ {(s, g · [a→α(w)])},
R · [α→{〈a1, a2〉 {self/a, arg/w}}]

)

where there are paths from variables to a1 and
a2 in g, free(〈v1, v2〉) ⊆ {a, b}, and α is fresh.

We have two more rules for the mixed cases that left (or right) field is foldable and right (or
left) field can be cut. The mixed rules can be defined straightforwardly by mixing the (fold)
and (cut) rules. Additional rule is for the backward folding:

(bfold) (G ∪ {(s, g · [a→α(b), b→β(w)])} , R)
; (G ∪ {(s, g · [a→α′(w)])} , R · [α′→E])
where b does not appear in g, α is lin-
ear (that is, arg appears exactly once in
each case of R(α)), and E = {c ∈ R(α)} ∪
{〈f(v1), f(v2)〉 | 〈v1, v2〉 ∈ R(α)} where

f(v) =





β(arg), if v ≡ arg
α′(arg), if v ≡ α(arg)
v otherwise
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Here we present only for the case that the parameter of α is not passed to another different
nonterminals. In that case, we have to check those nonterminals are linear, introduce new
nonterminals for those, and similarly define their production rules to the case of α.

The unify procedure is straightforwardly extended for handling parameterized nonterminals
and additional constants as follows:

(unify)
(G ] {(s1, g1 · [a1→α1(w1)]), (s2, g2 · [a2→α2(w2)])})
;

(G ∪ {(Ss1, Sg1 ·[a2→β(w1)]), (s2, g2 ·[a2→β(w2)])},
R · [β→R(α1) ∪R(α2)]

)

where (s1, g1 · [a1→α1]) ∼G
S (s2, g2 · [a2→α2]),

S(a1) ≡ a2, α1 6≡ α2, and β is fresh.

(unil)
(G ] {(s1, g1 ·[a1→α(w)]), (s2, g2 ·[a2→nil])}, R)

;


G ∪

{
(S(s1), S(g1)·[a2→β(w)]),
(s2, g2 ·[a2→β(w)])

}
,

R · [β→R(α) ∪ {nil}]




where (s1, g1 · [a1→α(w)]) ∼G
S (s2, g2 · [a2→nil]),

and β is fresh.

(uarg)
(G ] {(s1, g1 ·[a1→α(w)]), (s2, g2 ·[a2→α(⊥)])}, R)

;

(
G ∪

{
(S(s1), S(g1)·[a2→α(w)]),
(s2, g2 ·[a2→α(w)])

}
, R

)

where (s1, g1 · [a1→α(w)]) ∼G
S (s2, g2 · [a2→α(⊥)]),

and w 6≡ ⊥.

The simplify procedure is also straightforwardly extended as:

(case) (G, R) ; (G, R) {β/α}
where {〈α(w1), v〉 , 〈β(w2), v′〉} ⊆ R(γ),
α(w1) ∼V α(w2), and α 6= β,
(the same rule for the second field)

(nil) (G, R · [α→E · {〈β(w), v〉 , 〈c, v′〉}])
; (G, R′[β→R′(β) ∪ {c}])
where R′ = R · [α→E ∪ {〈β(w), v〉 , 〈β(⊥), v′〉}]
(the same rule for the second field)

(arg) (G, R · [α→E · {〈β(w), v〉 , 〈β(⊥), v′〉}])
; (G, R · [α→E ∪ {〈β(w), v〉 , 〈β(w), v′〉}])
where w 6≡ ⊥
(the same rule for the second field)

(def) (G, R) ; (G, R) {β/α} where R(α) ∼D R(β)

C.4 Unfolding

When we unfold the definition of a parameterized nonterminal, we replace arg by the parameter
and self by the current symbolic location:

unfold((s, g), R, x) =

• if g(s(x)) is a pair: {(s, g)}
• if s(x) = a, g(a) = α(w), and R(α) has only pairs: {(s, g[a→ 〈a1, a2〉 , a1→v1, a2→v2]) | 〈v′1, v′2〉 ∈

R(α) {a/self, w/arg} , ⊥ doesn’t appear in v′1 or v′2}
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• otherwise, undefined.

C.5 Case Splitting and Equality

Case splitting is extended to handle multiple constants:

split((s, g), R, x) =

• if s(x) = a, g(a) = α, and R(α) ⊆ Const: ({(s, g[a→c]) | c ∈ R(α)} , R).

• if s(x) = a, g(a) = α, and R(α) contains both pairs and constants: ({(s, g[a→c]) | c ∈ R(α)}∪
{(s, g[a→β])} , R · [β→R(α)− Const]).

• otherwise: ({(s, g)} , R).

The equality and non-equality checks are:

equal(g, a, b) =
(g(a) ∈ Cons ∧ g(b) ∈ Cons =⇒ g(a) ≡ g(b)) ∧
(g(a) 6∈ Cons ∨ g(b) 6∈ Cons =⇒

g(a) ≡ − ∨ g(b) ≡ − ∨ a ≡ b)
notequal(g, a, b) =

(g(a) ∈ Cons ∧ g(b) ∈ Cons =⇒ g(a) 6≡ g(b)) ∧
(g(a) 6∈ Cons ∨ g(b) 6∈ Cons =⇒

g(a) ≡ − ∨ g(b) ≡ − ∨ a 6≡ b)

Note that notequal(g, a, b) 6= ¬equal(g, a, b) because we have an approximated constant −.


